UCSF UC San Francisco Electronic Theses and Dissertations

Title

Associations Between Neurotransmitter Genes and Fatigue and Energy Levels in Women Following Breast Cancer Surgery

Permalink https://escholarship.org/uc/item/8cw4b0h1

Author Eshragh, Jasmin Lily

Publication Date 2014

Peer reviewed|Thesis/dissertation

Associations Between Neurotransmitter Genes and Fatigue and Energy Levels in Women Following Breast Cancer Surgery

by

Jasmin Lily Eshragh

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Nursing

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

ii

Acknowledgements

I would like to express my sincere gratitude to my thesis advisor Professor Christine Miaskowski for her continuous support through the process of writing this master's thesis. Her comments, guidance, and vast knowledge made this work possible. I could not have ask for a better mentor. Additionally, I would like to give a special thanks to Professor Bradley Aouizerat for his work and review of the genetic aspects of this thesis. Finally, I would like to thank the other members of my committee, Dr. Anand Dhruva and Dr. Kord Kober, for their time and participation during my thesis defense.

Abstract

Purpose: This study explores associations between variations in neurotransmitter genes and fatigue and energy levels in a sample of patients following breast cancer surgery. Variations in neurotransmitter genes between the Lower (n=153) and Higher (n=244) Fatigue latent classes as well as between the Higher (n=127) and Lower (n=270) Energy latent classes were evaluated.

Method: This analysis is part of a larger, longitudinal study that evaluated neuropathic pain and lymphedema in women who underwent breast cancer surgery. Patients completed baseline assessments at enrollment and monthly for 6 months following surgery. Growth mixture modeling (GMM) was used to identify distinct latent classes for fatigue severity and energy levels based on Lee Fatigue Scale (LFS) scores. A total of 30 candidate genes involved in various aspects of neurotransmission were evaluated.

Results: Ten genetic associations (i.e., ADRB2 rs1042718, BDNF rs6265, COMT rs9332377, CYP3A4 rs4646437, GALR1 rs949060, GCH1 rs3783642, NOS1 rs9658498, NOS1 rs2293052, NPYR1 Haplotype A04, and SLC6A2 rs17841327) were associated with latent class membership for fatigue. Seven genetic associations (i.e., NOS1 rs471871, SLC6A1 rs2675163, SLC6A1 Haplotype D01, SLC6A2 rs36027, SLC6A3 rs37022, SLC6A4 rs2020942, and TAC1 rs2072100) were associated with latent class membership for energy. Only two (i.e., NOS1, SLC6A2) of thirteen genes were associated with latent class membership for both fatigue and energy.

Conclusions: The molecular findings from this study help support the hypothesis that fatigue and energy are different, yet related symptoms. This study suggests a large number of neurotransmitters (i.e., proteins and receptors) play a role in the development and maintenance of fatigue and energy levels in breast cancer patients.

Key words: fatigue, energy, neurotransmitter genes, growth mixture modeling, breast cancer, candidate genes

iv

Table of Contents

Acknowledgements	iii
Abstract	iv
Table of Contents	V
List of Tables	vi
Introduction	1
Materials and Methods	4
Results	10
Discussion	14
References	24
Tables	
Publishing Agreement	51

List of Tables

Table 1. Summary of Single Nucleotide Polymorphisms Analyzed for Neurotransmitter Genes	
and the Growth Mixture Model Analyses for Fatigue (i.e., Lower versus Higher) and Energy	
(i.e., Higher versus Lower)	
Table 2. Differences in Demographic and Clinical Characteristics Between the Lower Fatigue	
(n= 153) and Higher Fatigue (n= 244) Classes46	
Table 3. Differences in Demographic and Clinical Characteristics Between the Higher Energy	
(n=127) and Lower Energy (n=270) Classes	
Table 4. Multiple Logistic Regression Analyses for Neurotransmitter Genes and Lower Fatigue	
Versus Higher Fatigue Classes48	
Table 5. Multiple Logistic Regression Analyses for Neurotransmitter Genes and Higher Energy	
Versus Lower Energy Classes	

Introduction

Fatigue is the most common symptom associated with cancer and its treatments.¹ Prevalence rates for fatigue range from 59% to 100%.² While several studies have examined fatigue in breast cancer patients receiving chemotherapy (CTX)³ and radiation (RT),⁴ studies on the occurrence of and predictors for fatigue following surgery are scarce. In a recent study that examined fatigue in women following breast cancer surgery,⁵ women reported relatively high levels of fatigue in the first two months after surgery followed by mild to moderate levels of fatigue that persisted for 12 months after surgery.

The measurement of a patient's level of energy has received little or no attention in the cancer literature. While energy level is commonly thought of as the opposite of fatigue, evidence suggests that fatigue and energy are related, yet distinct concepts.^{6,7} In the only study that evaluated energy levels in patients with breast cancer prior to surgery,⁸ while 32% of the women reported clinically meaningful levels of fatigue prior to breast cancer surgery, nearly 50% of these women reported clinically meaningful decrements in energy levels. Findings from this study of patients with breast cancer, as well as a study of patients with HIV disease,⁹ support the hypothesis that energy is a distinct concept from fatigue.

Factors that contribute to fatigue severity are multidimensional and include numerous biopsychosocial characteristics.¹⁰ Some of the predictors of fatigue following breast cancer surgery include higher levels of anxiety; the personality characteristic of extraversion;¹¹ increased fatigue prior to surgery;¹² higher levels of emotional distress, mental fatigue, and pain;¹³ as well as depressive symptoms and receipt of CTX.⁵

Recent evidence suggests that genetic mechanisms are involved in the modulation of fatigue experienced by breast cancer patients. For example, in one study that examined genetic variations among breast cancer patients,¹⁴ a number of proinflammatory cytokine genes were associated with fatigue. In addition, work by our research team found that variations in interleukin 4 (IL4)¹⁵ and IL6¹⁶ were associated with distinct fatigue trajectories. Polymorphisms

in these cytokine genes may contribute to the severity of fatigue through the modulation of proand anti- inflammatory pathways.^{15,17}

Although the majority of the literature on genetic associations with fatigue has focused on cytokine dysregulation, a number of additional pathways may influence fatigue and energy levels. Neurotransmitter dysregulation may play an important role in the severity of fatigue and/or changes in energy levels. The most commonly cited neurotransmitter associated with fatigue is serotonin. For example, increased serum levels of serotonin were linked to fatigue following prolonged exercise.¹⁸ However, it is unlikely that a single neurotransmitter is responsible for the development of/or changes in fatigue and/or energy levels. Rather, it is more likely that several neurotransmitter genes that were associated with fatigue and energy in a variety of populations include alterations in the dopaminergic system, specifically polymorphyisms in catechol-o-methyl-transferase (COMT), dopamine-2 receptor (DRD2), and dopamine-1 transporter (DAT1).²⁰ However, no studies were identified that evaluated for associations between neurotransmitter genes and fatigue and energy levels in patients with breast cancer.

This study of variations in neurotransmitter genes is based on previous work from our research team that used growth mixture modeling (GMM) to identify distinct latent classes for fatigue severity (unpublished data) and energy levels (unpublished data) in women (n=398) prior to and for six months following breast cancer surgery. In the GMM analysis for fatigue, two distinct latent classes were identified (i.e., Lower Fatigue (38.5%) and Higher Fatigue (61.5%)). At enrollment, mean fatigue scores were 1.60 and 3.90 for the Lower and Higher Fatigue classes, respectively. In both fatigue classes, fatigue scores remained relatively constant from the preoperative assessment to 6 months after breast cancer surgery. In the GMM analysis for energy, two distinct latent classes were identified (i.e., Higher Energy (32.0%) and Lower Energy (68.0%)). At enrollment, mean energy scores were 5.82 and 4.35 for the Higher and

Lower Energy classes, respectively. In both energy groups, energy levels remained relatively constant from the preoperative assessment to 6 months after breast cancer surgery.

Given the paucity of research on the role of neurotransmitters in fatigue and energy levels in patients with breast cancer, the purpose of this study was to evaluate for variations in neurotransmitter genes between the Lower and Higher Fatigue latent classes as well as between the Higher and Lower Energy latent classes.

Materials and Methods

Patients and Settings

This analysis is part of a larger, longitudinal study that evaluated neuropathic pain and lymphedema in women who underwent breast cancer surgery. The study methods are described in detail elsewhere.²¹⁻²³ In brief, patients were recruited from breast care centers located in a Comprehensive Cancer Center, two public hospitals, and four community practices.

Patients were eligible to participate if they: were adult women (\geq 18 years) who were scheduled to undergo breast cancer surgery on one breast; were able to read, write, and understand English; agreed to participate; and gave written informed consent. Patients were excluded if they were having breast cancer surgery on both breasts and/or had distant metastasis at the time of diagnosis. A total of 516 patients were approached, 410 were enrolled (response rate 79.5%), and 398 completed the baseline assessment. The most common reasons for refusal were: too busy, overwhelmed with the cancer diagnosis, or insufficient time available to do the baseline assessment prior to surgery.

Instruments

The demographic questionnaire obtained information on age, marital status, education, ethnicity, employment status, and living situation. The Karnofsky Performance Status (KPS) scale is widely used to evaluate functional status in patients with cancer and has well established validity and reliability.²⁴ Patients rated their functional status using the KPS scale that ranged from 30 (I feel severely disabled and need to be hospitalized) to 100 (I feel normal; I have no complaints or symptoms).

The Self-Administered Comorbidity Questionnaire (SCQ) is a short and easily understood instrument that was developed to measure comorbidity in clinical and health service research settings.²⁵ The questionnaire consists of 13 common medical conditions that were simplified into language that could be understood without any prior medical knowledge. Patients were asked to indicate if they had the condition; if they received treatment for it; and did it limit

their activities. The SCQ has well-established validity and reliability and has been used in studies of patients with a variety of chronic conditions.^{26,27}

The Lee Fatigue Scale (LFS) consists of 18 items designed to assess physical fatigue and energy.²⁸ Each item was rated on a 0 to 10 numeric rating scale (NRS). Total fatigue and energy scores were calculated as the mean of the 13 fatigue items and the 5 energy items, with higher scores indicating greater fatigue severity and higher levels of energy. Patients were asked to rate each item based on how they felt "right now". The LFS has been used with healthy individuals^{28,29} and in patients with cancer and HIV.³⁰⁻³³ A cutoff score of \geq 4.4 indicates high levels of fatigue.⁴ A cutoff score of \leq 4.8 indicates low levels of energy.⁴ The LFS has well established validity and reliability. Cronbach's alphas for fatigue and energy scales were .96 and .93, respectively.

Study Procedures

The study was approved by the Committee on Human Research at the University of California, San Francisco and by the Institutional Review Boards at each of the study sites. During the patient's preoperative visit, a clinician explained the study and determined patients' willingness to participate. The research nurse met with interested women, determined eligibility, and obtained written informed consent prior to surgery. After obtaining consent, patients completed the enrollment questionnaires an average of 4 days <u>prior</u> to surgery. Patients completed the LFS at enrollment and monthly for 6 months (i.e., 7 assessments). Medical records were reviewed for disease and treatment information.

Genomic analyses

Gene selection – A total of 30 candidate genes involved in various aspects of neurotransmission, drug metabolism, or transport of molecules across cell membranes were evaluated. Genes involved in catecholaminergic neurotransmission included alpha-1Dadrenergic receptor (ADRA1D); alpha-2A-adrenergic receptor (ADRA2A); beta-2-adrenergic receptor (ADRB2); beta-3-adrenergic receptor (ADRB3); beta adrenergic receptor kinase 2

(ADRBK2); catecho-o-methyl transferase (COMT); solute-like carrier (SLC) family 6 member 2 – noradrenaline transporter (SLC6A2); and SLC family 5 member 3 – dopamine transporter (SLC6A3). The gene involved in the gabaergic system was SLC family 6 member 1 – GABA transporter (SLC6A1). Genes involved in serotonergic neurotransmission included: GTP cyclohydrolase 1 (GCH1); 5-hydroxytryptamine receptor (HTR) 1A (HTR1A); HTR 1B (HTR1B); HTR 2A (HTR2A); HTR 3A (HTR3A); SLC family 6 member 4 – serotonin transporter (SLC6A4); tyrosine hydroxylase (TH); and tryptophan hydroxylase 2 (TPH2). The two genes involved in molecular transport and drug metabolism that were evaluated were ATP-binding cassette, subfamily B member 1 (ABCB1) and cytochrome P450, family 3, subfamily A, polypeptide 4 (CYP3A4). A number of additional genes that are involved in various aspects of neurotransmission that were evaluated included: brain-derived neurotrophic factor (BDNF); galanin (GAL); galanin receptor 1 (GALR1); galanin receptor 2 (GALR2); nitric oxide synthase 1 (NOS1); nitric oxide synthase 2 (NOS2); neuropeptide Y (NPY); neuropeptide Y receptor 1 (NPYR1); prodynorphin (PDYN); tachykinin precursor 1 (TAC1); and tachykinin receptor 1 (TACR1).

Blood collection and genotyping - Of the 398 patients who completed the baseline assessment, 310 provided a blood sample from which DNA could be isolated from peripheral blood mononuclear cells (PBMCs). Genomic DNA was extracted from PBMCs using the PUREGene DNA Isolation System (Invitrogen, Carlsbad, CA). DNA was quantitated with a Nanodrop Spectrophotometer (ND-1000) and normalized to a concentration of 50 ng/µL (diluted in 10 mM Tris/1 mM EDTA). Genotyping was performed using the Golden Gate genotyping platform (Illumina, San Diego, CA) and processed according to the standard protocol using GenomeStudio (Illumina, San Diego, CA). Two blinded reviewers visually inspected signal intensity profiles and resulting genotype calls for each SNP.

SNP selection - A combination of tagging SNPs and literature driven SNPs were selected for analysis. Tagging SNPs were required to be common (defined as having a minor allele

frequency of ≥ 0.05) in public databases. In order to ensure robust genetic association analyses, quality control filtering of SNPs was performed. SNPs with call rates of <95% or Hardy-Weinberg p-values of <.001 were excluded. As shown in Table 1, a total of 249 SNPs among the 30 candidate genes passed all of the quality control filters and were included in the genetic association analyses. Potential functional roles of SNPs associated with fatigue and energy were examined using PUPASuite 2.0.³⁴

Statistical Analyses for the Phenotypic Data

Data were analyzed using SPSS version 20³⁵ and STATA Version 13.³⁶ Descriptive statistics and frequency distributions were generated for sample characteristics. Independent sample t-tests (for continuous variables), Mann-Whitney U tests (for continuous variables not normally distributed), and Chi square analyses (for categorical variables) were used to evaluate for differences in demographic and clinical characteristics between the two latent classes for fatigue and energy. All calculations used actual values. Adjustments were not made for missing data. Therefore, the cohort for each analysis was dependent on the largest set of available data between groups.

Unconditional GMM with robust maximum likelihood estimation was carried out to identify latent classes with distinct fatigue and energy trajectories using Mplus Version 5.21. These methods are described in detail elsewhere.³⁷ In brief, a single growth curve that represented the "average" change trajectory was estimated for the whole sample. Then, the number of latent growth classes for fatigue (unpublished data) and energy (unpublished data) that best fit the data was identified using guidelines recommended in the literature.³⁸⁻⁴⁰

Statistical Analyses for the Genetic Data

Allele and genotype frequencies were determined by gene counting. Hardy-Weinberg equilibrium was assessed by the Chi-square or Fisher Exact tests. Measures of linkage disequilibrium ((LD), i.e., D' and r²) were computed from the patients' genotypes with Haploview 4.2. The LD-based haplotype block definition was based on D' confidence interval.⁴¹

For SNPs that were members of the same haploblock, haplotype analyses were conducted in order to localize the association signals within each gene and to determine if haplotypes improved the strength of the association with the phenotype. Haplotypes were constructed using the program PHASE version 2.1.⁴² In order to improve the stability of haplotype inference, the haplotype construction procedure was repeated 5 times using different seed numbers with each cycle. Only haplotypes that were inferred with probability estimates of \geq .85, across the five iterations, were retained for downstream analyses. Only inferred haplotypes that occurred with a frequency estimate of \geq 15% were included in the association analyses, assuming a dosage model (i.e., analogous to the additive model).

Ancestry informative markers (AIMs) were used to minimize confounding due to population stratification.⁴³⁻⁴⁵ Homogeneity in ancestry among patients was verified by principal component analysis,⁴⁶ using HelixTree (GoldenHelix, Bozeman, MT). Briefly, the number of principal components (PCs) was sought that distinguished the major racial/ethnic groups in the sample by visual inspection of scatter plots of orthogonal PCs (i.e., PC 1 versus PC2, PC2 versus PC3). This procedure was repeated until no discernable clustering of patients by their self-reported race/ethnicity was possible (data not shown). The first three PCs were selected to adjust for potential confounding due to population substructure (i.e., race/ethnicity) by including them in all of the logistic regression models. One hundred and six AIMs were included in the analysis.

For association tests, three genetic models were assessed for each SNP: additive, dominant, and recessive. Barring trivial improvements (i.e., delta <10%), the genetic model that best fit the data, by maximizing the significance of the p-value was selected for each SNP. Logistic regression analysis, that controlled for significant covariates, as well as genomic estimates of and self-reported race/ethnicity, was used to evaluate the associations between genotype and Higher Fatigue and Lower Energy class memberships. Only those genetic associations identified as significant from the bivariate analyses were evaluated in the

multivariate analyses. A backwards stepwise approach was used to create a parsimonious model. Except for race/ethnicity, only predictors with a p-value of <.05 were retained in the final model. Genetic model fit and both unadjusted and covariate-adjusted odds ratios were estimated using STATA version 13.³⁶

As was done in our previous studies,^{15,47,48} based on the recommendations in the literature⁴⁹ as well as the implementation of rigorous quality controls for genomic data, the non-independence of SNPs/haplotypes in LD, and the exploratory nature of the analyses, adjustments were not made for multiple testing. In addition, significant SNPs identified in the bivariate analyses were evaluated further using logistic regression analyses that controlled for differences in phenotypic characteristics, potential confounding due to population stratification, and variations in other SNPs/haplotypes within the same gene. Only those SNPs that remained significant were included in the final presentation of the results. Therefore, the significant independent associations reported are unlikely to be due solely to chance. Unadjusted associations are reported for all of the SNPs that passed quality control criteria in Table 1, to allow for subsequent comparisons and meta-analyses.

Results

Differences in Demographic and Clinical Characteristics between the Fatigue Latent Classes

As summarized in Table 2, no differences were found between the Lower Fatigue and Higher Fatigue classes for the majority of the demographic and clinical characteristics. However, patients in the Higher Fatigue class were significantly younger, had a lower KPS score, and a higher fatigue severity score at enrollment (all p<.0001). In addition, patients in the Higher Fatigue class had a higher SCQ score (p=.009), more years of education (p=.04), and had a higher number of lymph nodes removed (p=.016). A larger percentage of patients in the Higher Fatigue class had received neoadjuvant CTX (p=.014) and had received CTX during the first 6 months after breast cancer surgery (p=.001).

Candidate Gene Analyses

As shown in Table 1, genotype distributions differed between the Lower and Higher Fatigue classes for: 2 SNPs and one haplotype in ADRB2; 3 SNPs in BDNF; 1 SNP in COMT; 1 SNP in CYP3A4; 1 SNP in GALR1; 1 SNP in GCH1; 5 SNPs and 2 haplotypes in NOS1; 1 SNP and 1 haplotype in NPYR1; 1 SNP and 1 haplotype in SLC6A1; 2 SNPs and 1 haplotype in SLC6A2; 1 SNP in SLC6A3; and 2 SNPs and 1 haplotype in TAC1.

Regression Analyses for ADRB2, BDNF, COMT, CYP3A4, GALR1, GCH1, NOS1, NPYR1, and SLC6A2 Genotypes and Lower Fatigue versus Higher Fatigue Classes

In order to better estimate the magnitude (i.e., odds ratio, OR) and precision (95% confidence interval, CI) of genotype on the odds of belonging to the Higher Fatigue as compared to the Lower Fatigue class, multivariate logistic regression models were fit. In these regression analyses that included genomic estimates of and self-reported race/ethnicity, the phenotypic characteristics that remained significant in the multivariate model were: age (in 5 year increments), KPS score (in 10 point increments), SCQ score, and receipt of CTX within six months after breast cancer surgery.

Ten genetic associations remained significant in the multivariate logistic regression analyses: ADRB2 rs1042718, BDNF rs6265, COMT rs9332377, CYP3A4 rs4646437, GALR1 rs949060, GCH1 rs3783642, NOS1 rs9658498, NOS1 rs2293052, NPYR1 Haplotype A04, and SLC6A2 rs17841327 (Table 4).

In the regression analysis for ADRB2 rs1042718, carrying two doses of the rare A allele (i.e., CC + CA versus AA) was associated with a 87% decrease in the odds of belonging to the Higher Fatigue class (p=.008). In the regression analysis for BDNF rs6265, carrying one or two doses of the rare A allele (i.e., GG versus GA + AA) was associated with a 50% decrease in the odds of belonging to the Higher Fatigue class (p=.020). In the regression analysis for COMT rs9332377, carrying one or two doses of the rare C allele (i.e., TT versus TC + CC) was associated with a 52% decrease in the odds of belonging to the Higher Fatigue class (p=.026). In the regression analysis for CYP3A4 rs4646437, carrying one or two doses of the rare T allele (i.e., CC versus CT + TT) was associated with a 52% decrease in the odds of belonging to the Higher Fatigue class (p=.025). In the regression analysis for GALR1 rs949060, carrying two doses of the rare C allele (i.e., GG + GC versus CC) was associated with a 2.46-fold increase in the odds of belonging to the Higher Fatigue class (p=.020). In the regression analysis for GCH1 rs3783642, carrying one or two doses of the rare C allele (i.e., TT versus TC + CC) was associated with a 53% decrease in the odds of belonging to the Higher Fatigue class (p=.003).

For NOS1, two SNPs (rs9658498, rs2293052) were associated with membership in the Higher Fatigue class. In the regression analysis, including both SNPs, for NOS1 rs9658498, carrying two doses of the rare C allele (i.e., TT + TC versus CC) was associated with a 55% decrease in the odds of belonging to the Higher Fatigue class (p=.029). In the same regression analysis, for NOS1 rs2293052, carrying two doses of the rare T allele (i.e., CC + CT versus TT) was associated with a 4.58-fold increase in the odds of belonging to the Higher Stellar (p=.004). In the regression analysis for NPYR1 HapA04, that is composed of alleles at two SNPs (i.e., rs9764 [common T allele], and rs7687423 [common G allele]), each additional dose

of NPYR1 HapA04 was associated with a 1.77-fold increase in the odds of belonging to the Higher Fatigue class (p=.003). In the regression analysis for SLC6A2 rs17841327, carrying two doses of the rare A allele (i.e., CC + CA versus AA) was associated with a 10.31-fold increase in the odds of belonging to the Higher Fatigue class (p=.003).

Differences in Demographic and Clinical Characteristics between the Energy Latent Classes

As summarized in Table 3, no differences were found between the Higher Energy and Lower Energy classes for the majority of the demographic and clinical characteristics. However, patients in the Lower Energy class had a lower KPS score (p=.002), a higher SCQ score (p=.001), and a lower mean energy score at enrollment (p<.0001). In addition, a significant difference was found between the Higher Energy and Lower Energy classes based on stage of disease (p=.040).

Candidate Gene Analysis

As shown in Table 1, genotype distributions differed between the Higher Energy and Lower Energy classes for: 1 SNP in COMT; 2 SNPs in HTR2A; 1 SNP in NOS1; 1 SNP in NOS2A; 4 SNPs and 3 haplotypes in SLC6A1; 4 SNPs in SLC6A2; 1 SNP in SLC6A3; 3 SNPs and 1 haplotype in SLC6A4; 1 SNP in TAC1; and 1 SNP in TACR1.

Regression Analyses for NOS1, SLC6A1, SLC6A2, SLC6A3, SLC6A4, and TAC1 Genotypes and Higher Energy versus Lower Energy Classes

In order to better estimate the magnitude (i.e., odds ratio, OR) and precision (95% confidence interval, CI) of genotype on the odds of belonging to the Lower Energy as compared to the Higher Energy class, multivariate logistic regression models were fit. In these regression analyses that included genomic estimates of and self-reported race/ethnicity, the phenotypic characteristics that remained significant in the multivariate model were: KPS score (in 10 point increments) and receipt of CTX within six months after breast cancer surgery.

Seven genetic associations remained significant in the multivariate logistic regression analyses: NOS1 rs471871, SLC6A1 rs2675163, SLC6A1 Haplotype D01, SLC6A2 rs36027, SLC6A3 rs37022, SLC6A4 rs2020942, and TAC1 rs2072100 (Table 5).

In the regression analysis for NOS1 rs471871, carrying two doses of the rare T allele (i.e., AA + AT versus TT) was associated with a 72% decrease in the odds of belonging to the Lower Energy class (p=.010). For SLC6A1, one SNP (rs2675163) and one haplotype (HapD01) were associated with membership in the Lower Energy class. In the regression analysis, for SLC6A1 rs2675163, carrying one or two doses of the rare C allele (i.e., TT versus TC + CC) was associated with a 1.85-fold increase in the odds of belonging to the Lower Energy class (p=.025). In the same regression analysis, for SLC6A1 HapD01, that is composed of alleles at three SNPs (i.e., rs10514669 [common C allele], rs2697138 [common C allele], and rs1062246 [common A allele]), each additional dose of SLC6A1 HapD01 was associated with a 40% decrease in the odds of belonging to the Lower Energy class (p=.009). In the regression analysis for SLC6A2 rs36027, each additional dose of the rare G allele (i.e., AA versus AG versus GG) was associated with a 41% decrease in the odds of belonging to the Lower Energy class (p=.004). In the regression analysis for SLC6A3 rs37022, carrying two doses of the rare A allele (i.e., TT + TA versus AA) was associated with a 9.75-fold increase in the odds of belonging to the Lower Energy class (p=.036). In the regression analysis for SLC6A4 rs2020942, carrying two doses of the rare A allele (i.e., GG + GA versus AA) was associated with a 64% decrease in the odds of belonging to the Lower Energy class (p=.011). In the regression analysis for TAC1 rs2072100, carrying two doses of the rare G allele (i.e., AA + AG versus GG) was associated with a 2.11-fold increase in the odds of belonging to the Lower Energy class (p=.028).

Discussion

Differences in phenotypic characteristics between the fatigue latent classes as well as between the energy latent classes are described in detail elsewhere (data in preparation). Therefore, this discussion will focus on the genotypic differences.

Polymorphisms Associated With Fatigue

Polymorphisms in the β2-adrenergic receptor (ADRB2) gene may protect individuals from higher levels of fatigue through a number of mechanisms. The ADRB2 receptor, located in musculoskeletal, cardiovascular, respiratory, and metabolic systems, is part of the G-proteincoupled receptor family that influences sympathetic nervous system responses. In addition, this receptor plays a role in the regulation of lipid metabolism. Polymorphisms in the ADRB2 are associated with bronchodilation; insulin secretion; gluconeogenesis and glycogenolysis in skeletal muscle; as well as increased cardiac output; arterial dilation; and lipolysis.⁵⁰ Sarpeshkar and Bentley hypothesized that alterations in this gene may be responsible for enhanced aerobic capacity and delayed exercise-induced fatigue.⁵⁰ In addition, ADRB2 receptor stimulation inhibits production of type 1 pro-inflammatory cytokines⁵¹ and under-expression of ADRB2 receptors is associated with chronic fatigue syndrome.⁵²

In our study, patients who carried two doses of the rare A allele for ADRB2 rs1042718 had a 87% decrease in the odds of belonging to the Higher Fatigue class. Polymorphisms in ADRB2 rs1042718, located on chromosome 5, result in the creation of a synonymous codon (i.e., arginine). No studies were identified that evaluated for associations between rs1042718 and fatigue. However, two studies identified significant associations between rs1042718 and other clinical phenotypes (i.e., enhanced longevity⁵³ and negative emotions⁵⁴). In the study by Zeng and colleagues,⁵⁴ individuals who were heterozygous or homozygous for the rare allele in rs1042718 were less likely to report feelings of uselessness, loneliness, and anxiety. Of note, these results are consistent with our finding that patients who were homozygous for the rare

allele in rs1042718 were less likely to be classified in the Higher Fatigue class because previous studies demonstrated significant associations between psychological distress (e.g. anxiety, depression) and increased fatigue in patients with a variety of cancer diagnoses.⁵⁵⁻⁵⁷

BDNF is a neural growth factor found throughout the central nervous system. BDNF is associated with overall brain health because it plays a role in the promotion of neurogenesis, neuroprotection, mental performance, and cognitive function.⁵⁸ Altered BDNF levels are associated with Fibromyalgia syndrome, a chronic pain condition that includes fatigue as an associated symptom,⁵⁹ as well as chronic fatigue syndrome⁶⁰ and depression.⁶¹

BDNF rs6265 is a missense mutation that results in a functional change in the amino acid sequence from valine (Val) to methionine (Met). In two studies,^{61,62} decreases in serum BDNF levels were associated with the Met allele. In our study, carrying one or two doses of the rare allele was associated with a reduction in the odds of belonging to the Higher Fatigue class. One might hypothesize that lower levels of BDNF would be associated with membership in the Higher Fatigue class given that lower levels of BDNF were associated with depression⁶¹ and chronic fatigue syndrome.⁶⁰ However, findings regarding changes in serum levels of BDNF associated with the Met allele are inconsistent.⁶³ In addition, the effect of the Met allele on BDNF levels in the brain, where it may play a greater role in the perception of fatigue, remains unknown. No studies were identified that evaluated for associations between BDNF rs6265 and fatigue.

Catechol-o-methyltransferase (COMT) is a key enzyme responsible for the metabolism and inactivation of dopamine, norepinephrine, and epinephrine.⁶⁴ Alterations in the COMT gene, located on chromosome 22, were associated with fatigue and pain in breast cancer patients through interactions with two stress pathways (i.e., hypothalamic-pituitary-adrenal (HPA) axis, the sympathetic nervous system (SNS)).⁶⁴⁻⁶⁶ A specific polymorphism in the COMT gene (i.e., rs4650) that results in a Val to Met substitution has been studied extensively. This SNP has functional consequences for the COMT enzyme that results in altered levels of dopamine⁶⁷ and

catecholamines. However, it is unlikely that only one polymorphism in the COMT gene would contribute to fatigue. Indeed a number of studies found associations between other SNPs in the COMT gene and fatigue.⁶⁸

In our study, patients who carried one or two doses of the rare C allele for COMT rs9332377 had a 52% decrease in the odds of belonging to the Higher Fatigue class. This intronic SNP is located near the 3' UTR of the COMT gene. Its location near the 3' UTR suggests that this polymorphism has a regulatory function and might affect COMT expression.⁶⁹ Only three studies have reported significant associations between COMT rs9332377 and clinical phenotypes (i.e., hearing loss,⁷⁰ suicidal ideation,⁶⁷ nicotine dependence⁶⁹). No studies have evaluated for associations between COMT rs9332377 and fatigue. Of note, in a study of patients with mood disorders,⁶⁷ individuals who were homozygous for the rare C allele of COMT rs9332377 reported lower irritability scores on the Questionnaire for Measuring Factors of Aggression. This finding supports our association between rs9332377 and increased fatigue when one considers COMT's role in the manifestation of emotions, a possible marker for chronic fatigue syndrome.⁶⁸

The CYP3A4 gene, located on chromosome 7, encodes for a hepatic enzyme that is a part of the cytochrome P450 superfamily. Cytochrome P450 enzymes are responsible for catalyzing multiple reactions involved in lipid synthesis and drug metabolism. In addition, CYP3A enzymes are responsible for the metabolism of approximately one-third of anticancer drugs.⁷¹

The rs4646437 SNP is located in intron 7 of the CYP3A4 gene. No studies have evaluated for associations between CYP3A4 rs4646437 and fatigue. However, a recent study reported an association between CYP3A4 rs4646437 and in vitro CYP3A expression and activity.⁷² In this study, women who carried the rare T allele of rs4646437 had higher expression and activity of the CYP3A4 enzyme. Considering CYP3A4's role in metabolizing anti-cancer drugs, one can hypothesize that women who are able to more effectively metabolize CTX

agents would be less likely to experience higher levels of fatigue. This hypothesis is supported by our findings that carrying one or two doses of the rare T allele for rs4646437 was associated with a 52% decrease in the odds of belonging to the Higher Fatigue class.

Galanin, a neuropeptide found throughout the CNS, has an inhibitory effect on multiple neurotransmitters including serotonin and norepinephrine.⁷³ Polymorphisms in the galanin gene are associated with a number of clinical conditions including eating disorders,⁷⁴ cancer,⁷⁵ Alzheimer's disease,^{76,77} depression, and anxiety.⁷³

Within the CNS, the functional effects of galanin are mediated by three G-proteincoupled galanin receptor subtypes, including GALR1. The GAL1 receptor has an inhibitory effect on adenylate cyclase through coupling with the G proteins Gi/Go. This inhibition affects ATP metabolism and plays an important role in cellular energy pathways.⁷⁷ Of note, Staines⁷⁸ hypothesized that dysfunctions in G protein-coupled receptors, such as GALR1, contribute to the development of fatigue-related conditions. In our study, patients who carried two doses of the rare C allele for GALR1 rs949060 had a 2.46-fold increase in the odds of belonging to the Higher Fatigue class. GALR1 rs949060 is located on chromosome 18 approximately 3000 bps upstream of the GALR1 gene in the promoter region. No studies were identified that report on polymorphisms in GALR1 rs949060 and fatigue.

Guanosine triphosphate cyclohydrolase (GCH1) is the rate-limiting enzyme involved in the synthesis of tetrahydrobiopterin (BH4). BH4 plays a role in nitric oxide (NO) production and hydroxylation of aromatic amino acids. The GCH1 gene is located on chromosome 14. Polymorphisms in GCH1 are associated with pain,⁷⁹ altered cognitive performance,⁸⁰ and doparesponsive dystonia.⁸¹ In our study, carrying one or two doses of the rare C allele for GCH1 rs3783642 was associated with a 53% decrease in the odds of belonging to the Higher Fatigue class. No studies have reported on GCH1 rs3783642. However, one study did find a protective association between other polymorphisms in GCH1 and fibromyalgia syndrome, which is characterized by pain, fatigue, and mood disturbances.⁸²

Neuropeptide Y receptor Y1 (NPYR1) is part of a family of G protein-coupled receptors that binds neuropeptide Y (NPY). NPY acts in both the central and peripheral nervous systems. Peripherally, NPY is a neurotransmitter that is released from sympathetic nerve endings. In the CNS, NPY acts on receptors present in those areas of the brain that are involved with emotion.⁸³ NPY is involved in sleep regulation, anxiety, memory, pain, and energy homeostasis.^{84,85} Alterations in NPY are implicated in chronic fatigue syndrome⁸³ and depression.⁸⁶ Alterations in NPY signaling through variations in NPYR1 may have an effect on any of the aforementioned processes, including fatigue.

In our study, each additional dose of NPYR1 HapA04, that is composed of alleles at two SNPs (i.e., rs9764 [common T allele], and rs7687423 [common G allele]), was associated with a 1.77-fold increase in the odds of belonging to the Higher Fatigue class. HapA04 is located on chromosome 4 and is comprised of a 3-prime UTR SNP (rs9764) and one intronic SNP (rs7687423). Although no studies were identified that reported on NPYR1 HapA04, the polymorphisms rs9764 and rs7687423 were associated with nicotine⁸⁷ and methamphetamine⁸⁸ dependence, respectively. No studies were identified that reported on associations with either SNP and fatigue.

Polymorphisms Associated With Energy

The solute carrier family 6, member 1 (SLC6A1) gene, located on chromosome 3, encodes for one of the four GABA transporters found in the brain. The role of this transporter is to remove GABA from the synaptic cleft which decreases extracellular levels of GABA. The inhibitory neurotransmitter GABA is responsible for normal brain function. Based on studies of knockout mice,⁸⁹ deficiencies in SLC6A1 are associated with depression, reduced aggression, and reduced anxiety. Furthermore, research by Thoeringer and colleagues⁹⁰ demonstrated an association between polymorphisms in the SLC6A1 gene and anxiety disorders. In a recent genome-wide association study,⁹¹ an association was found between a SNP in SLC6A1 and symptoms of inattention and hyperactivity in attention-deficit/hyperactivity disorder (ADHD).

In our study, one SNP (rs2675163) and one haplotype (HapD01) in the SLC6A1 gene were associated with membership in the Lower Energy class. Carrying one or two doses of the rare C allele of SLC6A1 rs2675163 was associated with a 1.85-fold increase in the odds of belonging to the Lower Energy class, while each additional dose of SLC6A1 HapD01, that is composed of alleles at three SNPs (i.e., rs10514669, rs2697138, and rs1062246), was associated with a 40% decrease in the odds of belonging to the Lower Energy class. No studies were identified that reported on polymorphisms in SLC6A1 rs2675163, rs10514669, rs2697138, or rs1062246.

The solute carrier family 6, member 3 (SLC6A3) gene, located on chromosome 5, encodes for a dopamine transporter. The dopamine transporter protein is responsible for reuptake of dopamine from the synaptic cleft which results in decreased extracellular levels of dopamine.⁹² Decreased levels of dopamine are hypothesized to play a role in the development of central fatigue because of dopamine's known effects on initiation of movement.⁹³ Therefore, alterations in dopaminergic circuits, including its transport receptors, may affect an individual's energy level and fatigue.

The majority of the literature on polymorphisms in the SLC6A3 gene has focused on ADHD.^{94,95} In addition, associations were found between dopaminergic polymorphisms and fatigue,²⁰ as well as decreases in mental energy and sustained attention.⁹⁶ In our study, carrying two doses of the rare A allele of SLC6A3 rs37022 was associated with a 9.75-fold increase in the odds of belonging to the Lower Energy class. No studies were identified that reported on polymorphisms in this SNP.

The solute carrier family 6, member 4 (SLC6A4) gene, located on chromosome 17, encodes for a membrane protein that is responsible for re-uptake of serotonin from the synaptic cleft. The serotonergic neurotransmitter system is hypothesized to play a role in cancer-related fatigue.^{97,98} Serotonin is involved in various human behaviors including sleep, mood, appetite, memory, and learning. Increased levels of serotonin in the brain are hypothesized to contribute

to fatigue through its interaction with the HPA axis leading to a sensation of reduce potential to perform physical activity.⁹⁷ Yamamoto et al.⁹⁹ demonstrated a reduced density of serotonin transporters in the rostral subdivision of the anterior cingulate of patients with chronic fatigue syndrome versus healthy controls. In addition, in one study, an association was found between polymorphisms in the promoter of the SLC6A4 gene and chronic fatigue syndrome.¹⁰⁰

In our study, polymorphisms in the SLC6A4 gene were not associated with Higher Fatigue class membership. In our study, carrying two doses of the rare A allele of SLC6A4 rs2020942 was associated with a 64% decrease in the odds of belonging to the Lower Energy class. The rs2020942 polymorphism has been linked with obsessive-compulsive symptoms¹⁰¹ and risk for nonsyndromic cleft lip with or without cleft palate.¹⁰² No studies were identified that reported on associations between SLC6A4 rs2020942 and energy level.

The tachykinin, precursor 1 (TAC1) gene, located on chromosome 7, encodes for a group of tachykinin peptide hormones (i.e., substance P, neurokinin A, neuropeptide K, neuropeptide γ) that function as neurotransmitters. Substance P plays a role in inflammation in both the central and peripheral nervous systems.¹⁰³ Substance P is implicated in fibromyalgia syndrome, which is characterized by symptoms including pain, fatigue, anxiety, and depression.¹⁰⁴ In addition, Substance P is associated with fatigue and other negative mood states.¹⁰⁵ Therefore, polymorphisms in the tachykinin pathway genes may have an effect on fatigue and energy levels.

In our study, carrying two doses of the rare G allele of TAC1 rs2072100 was associated with a 2.11-fold increase in the odds of belonging to the Lower Energy class. The rs2072100 polymorphism has been linked with increased risk for colorectal cancer¹⁰⁶ and susceptibility to multiple sclerosis.¹⁰⁷ No studies were identified that reported on associations with rs2072100 and energy.

Polymorphisms Associated With Both Fatigue and Energy

Two genes (i.e., NOS1, SLC6A2) were associated with latent class membership for both fatigue and energy. Nitric oxide synthase 1 (NOS1) is part of a group of nitric acid synthases (NOS) responsible for the synthesis of NO. NO mediates several biological processes including vasodilation, neural regulation of skeletal muscle, and neurotransmission.¹⁰⁸ Elevated NO levels are implicated in several fatigue-related disorders including chronic fatigue syndrome,¹⁰⁹ fatigue in patients with muscular dystrophies,^{110,111} and post-radiation syndrome.¹¹² NOS gene polymorphisms that alter regulation of NO synthesis may influence a patient's susceptibility for the development of fatigue. While no studies were identified on associations between NOS polymorphisms and fatigue, other studies found associations between polymorphisms in the NOS1 gene and depression¹¹³ and anxiety.¹¹⁴

In our study, two SNPs (i.e., rs9658498, rs2293052) in the NOS1 gene were associated with membership in the Higher Fatigue class. Carrying two doses of the rare C allele of rs9658498 was associated with a 55% decrease in the odds of belonging to the Higher Fatigue class, while carrying two doses of the rare T allele of rs2293052 was associated with a 4.58-fold increase in the odds of belonging to the Higher Fatigue class. No studies were identified that reported on NOS1 rs9658498. However, in one study an association was found between rs2293052 and Parkinson's disease (PD).¹¹⁵ These results support our findings of an association between this SNP and increased fatigue because similar to the aforementioned fatigue-syndromes, PD is associated with increased NO levels.¹¹⁶ In addition, fatigue is a common symptom associated with PD¹¹⁷ and may share similar susceptibility gene polymorphisms.

In addition, a different SNP (rs471871) in the NOS1 gene was associated with energy level. Carrying two doses of the rare T allele of rs471871 was associated with a 72% decrease in the odds of belonging to the Lower Energy class. No studies were identified that reported on NOS1 rs471871.

The solute carrier family 6, member 2 (SLCA2) gene encodes for the norepinephrine transporter (NET) protein. The NET found on noradrenergic synapses, is responsible for the removal of NE from the synaptic cleft and plays a major role in NE homeostasis.¹¹⁸ Impairments in the NET protein may contribute to the development of fatigue.¹¹⁹ Mutations in the SLCA2 gene are associated with orthostatic intolerance, a syndrome that includes fatigue as a significant symptom.^{118,120} In addition, polymorphisms in the SLCA2 gene are associated major depression, a condition that includes fatigue as a major symptom.¹²¹ In our study, carrying two doses of the rare A allele of SLC6A2 rs17841327 was associated with a 10.31-fold increase in the odds of belonging to the Higher Fatigue group. No studies were identified that reported on SLC6A2 rs17841327. In addition, a different SNP (rs36027) in the SLC6A2 gene was associated with energy level. Each additional dose of the rare G allele of SLC6A2 rs36027 was associated with a 41% decrease in the odds of belonging to the Lower Energy class. No studies were identified that reported on SLC6A2 rs36027.

Limitations and Directions for Future Research

The molecular findings from this study support the hypothesis that fatigue and energy are different, yet related symptoms. Only 2 of the 13 genes identified in this study were associated with membership in both the fatigue and energy latent classes. Additional support for this hypothesis comes from a recent study that explored the concepts of fatigue and energy in a sample of women with HIV.¹²² Lerdal et al.¹²² concluded that fatigue and energy are distinct constructs and should not be used interchangeably, neither clinically nor in research. Additional studies are needed that determine which phenotypic and genotypic characteristics differentiate differences in fatigue and energy. Findings from these types of studies will provide insights into the mechanism that underlie one or both of these symptoms and facilitate the development and testing of interventions to decrease fatigue and/or increase energy levels of patients undergoing cancer treatment.

A number of limitations must be acknowledged. While our sample size was sufficient, additional studies with independent samples are needed to confirm the latent classes as well as the genetic associations. In order to increase the generalizability of these results, women were recruited from 7 different centers and approximately 30% of the patients were ethnic minorities. However, the single diagnosis of breast cancer limits the generalizability of the findings to other cancer diagnoses. Lastly, longer prospective studies may reveal a potential effect of hormonal therapy on the trajectories of fatigue and energy following breast cancer surgery.

Despite these limitations, the findings from this study suggest that higher levels of fatigue and decrements in energy are significant symptoms for women following breast cancer surgery. The molecular findings suggest a large number of neurotransmitters (i.e., proteins and receptors) play a role in the development and maintenance of fatigue and energy levels in breast cancer patients. If these genetic associations are confirmed in independent samples, these findings may help identify individuals at higher risk for experiencing higher fatigue and lower energy levels.

References

- 1. Prue G, Rankin J, Allen J, et al: Cancer-related fatigue: A critical appraisal. Eur J Cancer 42:846-63, 2006
- 2. Weis J: Cancer-related fatigue: prevalence, assessment and treatment strategies. Expert Rev Pharmacoecon Outcomes Res 11:441-6, 2011
- 3. Siefert ML: Fatigue, pain, and functional status during outpatient chemotherapy. Oncol Nurs Forum 37:E114-23, 2010
- 4. Dhruva A, Dodd M, Paul SM, et al: Trajectories of fatigue in patients with breast cancer before, during, and after radiation therapy. Cancer Nurs 33:201-12, 2010
- 5. Huang HP, Chen ML, Liang J, et al: Changes in and predictors of severity of fatigue in women with breast cancer: A longitudinal study. Int J Nurs Stud 51:582-92, 2014
- 6. Lerdal A: A theoretical extension of the concept of energy through an empirical study. Scand J Caring Sci 16:197-206, 2002
- 7. Lerdal A: A concept analysis of energy. Its meaning in the lives of three I ndividuals with chronic illness. Scand J Caring Sci 12:3-10, 1998
- 8. Van Onselen C, Aouizerat BE, Dunn LB, et al: Differences in sleep disturbance, fatigue and energy levels between women with and without breast pain prior to breast cancer surgery. Breast 22:273-6, 2013
- 9. Aouizerat BE, Gay CL, Lerdal A, et al: Lack of energy: an important and distinct component of HIV-related fatigue and daytime function. J Pain Symptom Manage 45:191-201, 2013
- 10. Berger AM, Gerber LH, Mayer DK: Cancer-related fatigue: implications for breast cancer survivors. Cancer 118:2261-9, 2012
- 11. De Vries J, Van der Steeg AF, Roukema JA: Determinants of fatigue 6 and 12 months after surgery in women with early-stage breast cancer: a comparison with women with benign breast problems. J Psychosom Res 66:495-502, 2009
- 12. Lockefeer JP, De Vries J: What is the relationship between trait anxiety and depressive symptoms, fatigue, and low sleep quality following breast cancer surgery? Psychooncology 22:1127-33, 2013
- 13. Bortolon C, Krikorian A, Carayol M, et al: Cancer-related fatigue in breast cancer patients after surgery: a multicomponent model using partial least squares-path modeling. Psychooncology 23:444-51, 2014
- 14. Bower JE, Ganz PA, Irwin MR, et al: Cytokine genetic variations and fatigue among patients with breast cancer. J Clin Oncol 31:1656-61, 2013

- 15. Illi J, Miaskowski C, Cooper B, et al: Association between pro- and anti-inflammatory cytokine genes and a symptom cluster of pain, fatigue, sleep disturbance, and depression. Cytokine 58:437-47, 2012
- 16. Miaskowski C, Dodd M, Lee K, et al: Preliminary evidence of an association between a functional interleukin-6 polymorphism and fatigue and sleep disturbance in oncology patients and their family caregivers. J Pain Symptom Manage 40:531-44, 2010
- 17. Collado-Hidalgo A, Bower JE, Ganz PA, et al: Cytokine gene polymorphisms and fatigue in breast cancer survivors: early findings. Brain Behav Immun 22:1197-200, 2008
- 18. Meeusen R, Roelands B: Central fatigue and neurotransmitters, can thermoregulation be manipulated? Scand J Med Sci Sports 20 Suppl 3:19-28, 2010
- 19. Meeusen R, Watson P, Hasegawa H, et al: Brain neurotransmitters in fatigue and overtraining. Appl Physiol Nutr Metab 32:857-64, 2007
- 20. Malyuchenko NV, Schegolkova JV, Kulikova MA, et al: Effects of genetic variations in the dopaminergic system on fatigue in humans: gender aspects. Bull Exp Biol Med 149:226-32, 2010
- 21. McCann B, Miaskowski C, Koetters T, et al: Associations between pro- and antiinflammatory cytokine genes and breast pain in women prior to breast cancer surgery. J Pain 13:425-37, 2012
- 22. Miaskowski C, Cooper B, Paul SM, et al: Identification of patient subgroups and risk factors for persistent breast pain following breast cancer surgery. J Pain 13:1172-87, 2012
- 23. Van Onselen C, Aouizerat BE, Dunn LB, et al: Differences in sleep disturbance, fatigue and energy levels between women with and without breast pain prior to breast cancer surgery. Breast 22:273-276, 2013
- 24. Karnofsky D, Abelmann WH, Craver LV, et al: The use of nitrogen mustards in the palliative treatment of carcinoma. Cancer 1:634-56, 1948
- 25. Sangha O, Stucki G, Liang MH, et al: The Self-Administered Comorbidity Questionnaire: a new method to assess comorbidity for clinical and health services research. Arthritis Rheum 49:156-63, 2003
- 26. Brunner F, Bachmann LM, Weber U, et al: Complex regional pain syndrome 1--the Swiss cohort study. BMC Musculoskelet Disord 9:92, 2008
- 27. Cieza A, Geyh S, Chatterji S, et al: Identification of candidate categories of the International Classification of Functioning Disability and Health (ICF) for a Generic ICF Core Set based on regression modelling. BMC Med Res Methodol 6:36, 2006
- 28. Lee KA, Hicks G, Nino-Murcia G: Validity and reliability of a scale to assess fatigue. Psychiatry Res 36:291-8, 1991

- 29. Gay CL, Lee KA, Lee SY: Sleep patterns and fatigue in new mothers and fathers. Biol Res Nurs 5:311-8, 2004
- 30. Lee KA, Portillo CJ, Miramontes H: The fatigue experience for women with human immunodeficiency virus. J Obstet Gynecol Neonatal Nurs 28:193-200, 1999
- 31. Miaskowski C, Lee KA: Pain, fatigue, and sleep disturbances in oncology outpatients receiving radiation therapy for bone metastasis: a pilot study. J Pain Symptom Manage 17:320-32, 1999
- 32. Miaskowski C, Paul SM, Cooper BA, et al: Trajectories of fatigue in men with prostate cancer before, during, and after radiation therapy. J Pain Symptom Manage 35:632-43, 2008
- Miaskowski C, Cooper BA, Paul SM, et al: Subgroups of patients with cancer with different symptom experiences and quality-of-life outcomes: a cluster analysis. Oncol Nurs Forum 33:E79-89, 2006
- Conde L, Vaquerizas JM, Dopazo H, et al: PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes. Nucleic Acids Res 34:W621-5, 2006
- 35. SPSS: IBM SPSS for Windows (Version 21). Chicago, Illinois, SPSS, Inc., 2012
- 36. StataCorp: Stata Statistical Software: Release 13. College Station, Texas, Stata Corporation, 2014
- 37. Van Onselen C, Cooper BA, Lee K, et al: Identification of distinct subgroups of breast cancer patients based on self-reported changes in sleep disturbance. Support Care Cancer 20:2611-9, 2012
- 38. Jung T, Wickrama KAS: An introduction to latent class growth analysis and growth mixture modeling. Social and Personality Psychology Compass 2:302-317, 2008
- Nylund KL, Asparouhov T, Muthen BO: Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Struct Equ Modeling 14:535-569, 2007
- 40. Tofighi D, Enders CK: Identifying the correct number of classes in growth mixture models. Charlotte, NC, Information Age Publishing, 2008
- 41. Gabriel SB, Schaffner SF, Nguyen H, et al: The structure of haplotype blocks in the human genome. Science 296:2225-9, 2002
- 42. Stephens M, Smith NJ, Donnelly P: A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978-89, 2001
- 43. Halder I, Shriver M, Thomas M, et al: A panel of ancestry informative markers for estimating individual biogeographical ancestry and admixture from four continents: utility and applications. Hum Mut 29:648-58, 2008

- 44. Hoggart CJ, Parra EJ, Shriver MD, et al: Control of confounding of genetic associations in stratified populations. Am J Hum Genet 72:1492-1504, 2003
- 45. Tian C, Gregersen PK, Seldin MF: Accounting for ancestry: population substructure and genome-wide association studies. Hum Mol Genet 17:R143-50, 2008
- 46. Price AL, Patterson NJ, Plenge RM, et al: Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904-9, 2006
- 47. Dunn LB, Aouizerat BE, Langford DJ, et al: Cytokine gene variation is associated with depressive symptom trajectories in oncology patients and family caregivers. Eur J Oncol Nurs 17:346-353, 2013
- 48. Miaskowski C, Cooper BA, Dhruva A, et al: Evidence of associations between cytokine genes and subjective reports of sleep disturbance in oncology patients and their family caregivers. PLoS One 7:e40560, 2012
- 49. Rothman KJ: No adjustments are needed for multiple comparisons. Epidemiology 1:43-6, 1990
- 50. Sarpeshkar V, Bentley DJ: Adrenergic-beta(2) receptor polymorphism and athletic performance. J Hum Genet 55:479-85, 2010
- 51. Elenkov IJ, Wilder RL, Chrousos GP, et al: The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52:595-638, 2000
- 52. Light AR, White AT, Hughen RW, et al: Moderate exercise increases expression for sensory, adrenergic, and immune genes in chronic fatigue syndrome patients but not in normal subjects. J Pain 10:1099-112, 2009
- 53. Zhao L, Yang F, Xu K, et al: Common genetic variants of the beta2-adrenergic receptor affect its translational efficiency and are associated with human longevity. Aging Cell 11:1094-101, 2012
- 54. Zeng Y, Cheng L, Zhao L, et al: Interactions between Social/ behavioral factors and ADRB2 genotypes may be associated with health at advanced ages in China. BMC Geriatr 13:91, 2013
- 55. So WK, Marsh G, Ling WM, et al: The symptom cluster of fatigue, pain, anxiety, and depression and the effect on the quality of life of women receiving treatment for breast cancer: a multicenter study. Oncol Nurs Forum 36:E205-14, 2009
- 56. Fox SW, Lyon D, Farace E: Symptom clusters in patients with high-grade glioma. J Nurs Scholarsh 39:61-7, 2007
- 57. Hwang SS, Chang VT, Rue M, et al: Multidimensional independent predictors of cancerrelated fatigue. J Pain Symptom Manage 26:604-14, 2003
- 58. Seifert T, Secher NH: Sympathetic influence on cerebral blood flow and metabolism during exercise in humans. Prog Neurobiol 95:406-26, 2011

- 59. Nugraha B, Karst M, Engeli S, et al: Brain-derived neurotrophic factor and exercise in fibromyalgia syndrome patients: a mini review. Rheumatol Int 32:2593-9, 2012
- 60. Chen R, Liang FX, Moriya J, et al: Chronic fatigue syndrome and the central nervous system. J Int Med Res 36:867-74, 2008
- 61. Lotrich FE, Albusaysi S, Ferrell RE: Brain-derived neurotrophic factor serum levels and genotype: association with depression during interferon-alpha treatment. Neuropsychopharmacology 38:985-95, 2013
- 62. Ozan E, Okur H, Eker C, et al: The effect of depression, BDNF gene val66met polymorphism and gender on serum BDNF levels. Brain Res Bull 81:61-5, 2010
- 63. Terracciano A, Martin B, Ansari D, et al: Plasma BDNF concentration, Val66Met genetic variant and depression-related personality traits. Genes Brain Behav 9:512-8, 2010
- 64. Light KC, White AT, Tadler S, et al: Genetics and Gene Expression Involving Stress and Distress Pathways in Fibromyalgia with and without Comorbid Chronic Fatigue Syndrome. Pain Res Treat 2012:427869, 2012
- 65. Fernandez-de-Las-Penas C, Cantarero-Villanueva I, Fernandez-Lao C, et al: Influence of catechol-o-methyltransferase genotype (Val158Met) on endocrine, sympathetic nervous and mucosal immune systems in breast cancer survivors. Breast 21:199-203, 2012
- 66. Fernandez-de-las-Penas C, Fernandez-Lao C, Cantarero-Villanueva I, et al: Catechol-Omethyltransferase genotype (Val158met) modulates cancer-related fatigue and pain sensitivity in breast cancer survivors. Breast Cancer Res Treat 133:405-12, 2012
- 67. Calati R, Porcelli S, Giegling I, et al: Catechol-o-methyltransferase gene modulation on suicidal behavior and personality traits: review, meta-analysis and association study. J Psychiatr Res 45:309-21, 2011
- 68. Goertzel BN, Pennachin C, de Souza Coelho L, et al: Combinations of single nucleotide polymorphisms in neuroendocrine effector and receptor genes predict chronic fatigue syndrome. Pharmacogenomics 7:475-83, 2006
- 69. Greenbaum L, Kanyas KS, Rigbi A, et al: Why do young women smoke? VII COMT as a risk modifying gene for Nicotine dependence role of gene-gene interaction, personality, and environmental factors. Hum Psychopharmacol 25:536-42, 2010
- 70. Ross CJ, Katzov-Eckert H, Dube MP, et al: Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet 41:1345-9, 2009
- 71. Oneda B, Crettol S, Jaquenoud Sirot E, et al: The P450 oxidoreductase genotype is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogenet Genomics 19:877-83, 2009
- 72. Schirmer M, Rosenberger A, Klein K, et al: Sex-dependent genetic markers of CYP3A4 expression and activity in human liver microsomes. Pharmacogenomics 8:443-53, 2007

- 73. Holmes A, Heilig M, Rupniak NM, et al: Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol Sci 24:580-8, 2003
- 74. Leibowitz SF: Regulation and effects of hypothalamic galanin: relation to dietary fat, alcohol ingestion, circulating lipids and energy homeostasis. Neuropeptides 39:327-32, 2005
- 75. Misawa K, Ueda Y, Kanazawa T, et al: Epigenetic inactivation of galanin receptor 1 in head and neck cancer. Clin Cancer Res 14:7604-13, 2008
- 76. Wrenn CC, Crawley JN: Pharmacological evidence supporting a role for galanin in cognition and affect. Prog Neuropsychopharmacol Biol Psychiatry 25:283-99, 2001
- 77. Ogren SO, Kuteeva E, Hokfelt T, et al: Galanin receptor antagonists : a potential novel pharmacological treatment for mood disorders. CNS Drugs 20:633-54, 2006
- 78. Staines D: Are vasoactive neuropeptide autoimmune fatigue-related disorders mediated via G protein-coupled receptors? Med Hypotheses 65:29-31, 2005
- 79. Lotsch J, Klepstad P, Doehring A, et al: A GTP cyclohydrolase 1 genetic variant delays cancer pain. Pain 148:103-6, 2010
- 80. Yasuda Y, Hashimoto R, Ohi K, et al: A functional polymorphism of the GTP cyclohydrolase 1 gene predicts attention performance. Neurosci Lett 566:46-9, 2014
- 81. Theuns J, Crosiers D, Debaene L, et al: Guanosine triphosphate cyclohydrolase 1 promoter deletion causes dopa-responsive dystonia. Mov Disord 27:1451-6, 2012
- 82. Kim SK, Kim SH, Nah SS, et al: Association of guanosine triphosphate cyclohydrolase 1 gene polymorphisms with fibromyalgia syndrome in a Korean population. J Rheumatol 40:316-22, 2013
- 83. Fletcher MA, Rosenthal M, Antoni M, et al: Plasma neuropeptide Y: a biomarker for symptom severity in chronic fatigue syndrome. Behav Brain Funct 6:76, 2010
- 84. Dyzma M, Boudjeltia KZ, Faraut B, et al: Neuropeptide Y and sleep. Sleep Med Rev 14:161-5, 2010
- 85. Chambers AP, Woods SC: The role of neuropeptide Y in energy homeostasis. Handb Exp Pharmacol:23-45, 2012
- 86. Morales-Medina JC, Dumont Y, Quirion R: A possible role of neuropeptide Y in depression and stress. Brain Res 1314:194-205, 2010
- 87. Wei J, Chu C, Wang Y, et al: Association study of 45 candidate genes in nicotine dependence in Han Chinese. Addict Behav 37:622-6, 2012
- Okahisa Y, Ujike H, Kotaka T, et al: Association between neuropeptide Y gene and its receptor Y1 gene and methamphetamine dependence. Psychiatry Clin Neurosci 63:417-22, 2009

- 89. Zhou Y, Danbolt NC: GABA and Glutamate Transporters in Brain. Front Endocrinol (Lausanne) 4:165, 2013
- 90. Thoeringer CK, Ripke S, Unschuld PG, et al: The GABA transporter 1 (SLC6A1): a novel candidate gene for anxiety disorders. J Neural Transm 116:649-57, 2009
- 91. Ebejer JL, Duffy DL, van der Werf J, et al: Genome-wide association study of inattention and hyperactivity-impulsivity measured as quantitative traits. Twin Res Hum Genet 16:560-74, 2013
- 92. Sikora M, Gese A, Czypicki R, et al: Correlations between polymorphisms in genes coding elements of dopaminergic pathways and body mass index in overweight and obese women. Endokrynol Pol 64:101-7, 2013
- 93. Foley TE, Fleshner M: Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromolecular Med 10:67-80, 2008
- 94. Althaus M, Groen Y, Wijers AA, et al: Variants of the SLC6A3 (DAT1) polymorphism affect performance monitoring-related cortical evoked potentials that are associated with ADHD. Biol Psychol 85:19-32, 2010
- 95. Yang B, Chan RC, Jing J, et al: A meta-analysis of association studies between the 10repeat allele of a VNTR polymorphism in the 3'-UTR of dopamine transporter gene and attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 144B:541-50, 2007
- 96. Lim J, Ebstein R, Tse CY, et al: Dopaminergic polymorphisms associated with time-ontask declines and fatigue in the Psychomotor Vigilance Test. PLoS One 7:e33767, 2012
- 97. Ryan JL, Carroll JK, Ryan EP, et al: Mechanisms of cancer-related fatigue. Oncologist 12 Suppl 1:22-34, 2007
- 98. Alexander S, Stone P, White S, et al: Evaluation of central serotonin sensitivity in breast cancer survivors with cancer-related fatigue syndrome. J Pain Symptom Manage 40:892-8, 2010
- 99. Yamamoto S, Ouchi Y, Onoe H, et al: Reduction of serotonin transporters of patients with chronic fatigue syndrome. Neuroreport 15:2571-4, 2004
- Narita M, Nishigami N, Narita N, et al: Association between serotonin transporter gene polymorphism and chronic fatigue syndrome. Biochem Biophys Res Commun 311:264-6, 2003
- 101. Lei X, Chen C, He Q, et al: Sex determines which section of the SLC6A4 gene is linked to obsessive-compulsive symptoms in normal Chinese college students. J Psychiatr Res 46:1153-60, 2012
- 102. Mostowska A, Hozyasz KK, Wojcicka K, et al: Polymorphisms of stress-related genes and the risk of nonsyndromic cleft lip with or without cleft palate. Birth Defects Res A Clin Mol Teratol 91:948-55, 2011

- 103. Vandenbroeck K, Fiten P, Heggarty S, et al: Chromosome 7q21-22 and multiple sclerosis: evidence for a genetic susceptibility effect in vicinity to the protachykinin-1 gene. J Neuroimmunol 125:141-8, 2002
- 104. Iqbal R, Mughal MS, Arshad N, et al: Pathophysiology and antioxidant status of patients with fibromyalgia. Rheumatol Int 31:149-52, 2011
- 105. Lieberman HR, Kellogg MD, Kramer FM, et al: Lipid and other plasma markers are associated with anxiety, depression, and fatigue. Health Psychol 31:210-6, 2012
- 106. Yu Y, Pan Y, Jin M, et al: Association of genetic variants in tachykinins pathway genes with colorectal cancer risk. Int J Colorectal Dis 27:1429-36, 2012
- 107. Cunningham S, O'Doherty C, Patterson C, et al: The neuropeptide genes TAC1, TAC3, TAC4, VIP and PACAP(ADCYAP1), and susceptibility to multiple sclerosis. J Neuroimmunol 183:208-13, 2007
- 108. Colasanti M, Suzuki H: The dual personality of NO. Trends Pharmacol Sci 21:249-52, 2000
- 109. Pall ML: Elevated, sustained peroxynitrite levels as the cause of chronic fatigue syndrome. Med Hypotheses 54:115-25, 2000
- 110. Angelini C, Tasca E: Fatigue in muscular dystrophies. Neuromuscul Disord 22 Suppl 3:S214-20, 2012
- 111. Heydemann A, McNally E: NO more muscle fatigue. J Clin Invest 119:448-50, 2009
- 112. Pall ML: Post-radiation syndrome as a NO/ONOO- cycle, chronic fatigue syndrome-like disease. Med Hypotheses 71:537-41, 2008
- 113. Galecki P, Maes M, Florkowski A, et al: Association between inducible and neuronal nitric oxide synthase polymorphisms and recurrent depressive disorder. J Affect Disord 129:175-82, 2011
- 114. Kurrikoff T, Lesch KP, Kiive E, et al: Association of a functional variant of the nitric oxide synthase 1 gene with personality, anxiety, and depressiveness. Dev Psychopathol 24:1225-35, 2012
- 115. Hancock DB, Martin ER, Vance JM, et al: Nitric oxide synthase genes and their interactions with environmental factors in Parkinson's disease. Neurogenetics 9:249-62, 2008
- 116. Beal MF: Excitotoxicity and nitric oxide in Parkinson's disease pathogenesis. Ann Neurol 44:S110-4, 1998
- 117. Wen HB, Zhang ZX, Wang H, et al: Epidemiology and clinical phenomenology for Parkinson's disease with pain and fatigue. Parkinsonism Relat Disord 18 Suppl 1:S222-5, 2012

- 118. Robertson D, Flattem N, Tellioglu T, et al: Familial orthostatic tachycardia due to norepinephrine transporter deficiency. Ann N Y Acad Sci 940:527-43, 2001
- 119. Morriss RK, Robson MJ, Deakin JF: Neuropsychological performance and noradrenaline function in chronic fatigue syndrome under conditions of high arousal. Psychopharmacology (Berl) 163:166-73, 2002
- 120. Shannon JR, Flattem NL, Jordan J, et al: Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency. N Engl J Med 342:541-9, 2000
- 121. Ryu SH, Lee SH, Lee HJ, et al: Association between norepinephrine transporter gene polymorphism and major depression. Neuropsychobiology 49:174-7, 2004
- 122. Lerdal A, Kottorp A, Gay CL, et al: Lee Fatigue And Energy Scales: exploring aspects of validity in a sample of women with HIV using an application of a Rasch model. Psychiatry Res 205:241-6, 2013

Table 1 – { (i.e., Lower	Table 1 – Summary of Single Nucleotide Polymorphisms Analyzed for Neurotransmitter Genes and the Growth Mixture Model Analyses for Fatigue (i.e., Lower versus Higher) and Energy (i.e., Higher versus Lower)	cleotide Polymo nergy (i.e., Hig	orphism her vers	ns Analyzeo rsus Lower)	zed for Ne er)	eurotransmitter	. Genes and th	ne Growth Mix	ture Model Ana	alyses for Fati	ang
Gene	SNP	Position	Chr	MAF	MAF Alleles		Fatigue			Energy	
						Chi Square p-value	p-value	Model	Chi Square p-value	p-value	Model
		ATP	ATP-BINDIN	NG CAS	SETTE, \$	ING CASSETTE, SUBFAMILY B (MDR/TAP) MEMBER 1	(MDR/TAP)	MEMBER 1			
ABCB1	rs2235048	86976447	۷	.471	.471 T>C	0.100	.951	۲	0.297	.862	A

Gene	SNP	Position	Chr	MAF	Alleles		Fatigue			Energy	
						Chi Square	p-value	Model	Chi Square	p-value	Model
		ATP	ATP-BINDING		CASSETTE, S	SUBFAMILY B	B (MDR/TAP) MEMBER	MEMBER 1			
ABCB1	rs2235048	86976447	7	.471	T>C	0.100	.951	A	0.297	.862	A
ABCB1	rs6961419	87010072	7	.400	T>C	0.994	.608	А	0.379	.828	A
ABCB1	rs1128503	87017537	7	.433	C>T	1.306	.520	٨	0.129	.938	A
ABCB1	rs1922241	87023830	7	.299	G>A	2.837	.242	٨	3.502	.174	A
ABCB1	rs10264990	87040551	7	.293	T>C	0.868	.648	۷	1.805	.405	A
ABCB1	rs1989830	87043599	7	.309	C>T	2.162	.339	۷	1.293	.524	A
ABCB1	rs1858923	87059152	7	.445	T>C	0.027	.987	٨	096.0	.619	A
ABCB1	rs9282564	87067376	7	.089	A>G	2.773	.250	۷	0.744	.689	A
ABCB1	rs13233308	87082896	7	.438	C>T	0.438	.803	۷	1.249	.535	A
ABCB1	rs10267099	87116696	7	.213	A>G	4.187	.123	٨	0.050	.975	A
ABCB1	HapA01					1.328	.515		0.104	.949	
ABCB1	HapA05					2.796	.247		3.493	.174	
ABCB1	HapB01					0.574	.751		1.448	.485	
ABCB1	HapB02					0.312	.855		1.712	.425	
				ALPH	ALPHA-1D AD	ADRENERGIC RE	RECEPTOR				
ADRA1D	rs3787441	4153060	20	.268	T>C	2.162	.339	A	0.886	.642	A
ADRA1D	rs6084664	4155930	20	.159	T>C	0.421	.810	A	1.962	.375	A
ADRA1D	rs2326478	4156247	20	.326	C>T	2.629	.269	A	1.064	.587	A
ADRA1D	rs835880	4156895	20	.225	A>G	2.733	.255	A	0.373	.830	A
ADRA1D	rs8183794	4158448	20	.182	C>T	1.239	.538	٨	0.565	.754	A
ADRA1D	rs6116268	4159440	20	.480	C>T	0.231	.891	٨	0.382	.826	A
ADRA1D	rs946188	4163316	20	.236	A>G	1.912	.385	А	1.632	.442	A
ADRA1D	rs1556832	4163557	20	.461	C>T	0.036	.982	А	1.230	.541	A
ADRA1D	rs8118409	4164663	20	.229	G>A	1.469	.480	А	1.247	.536	A
ADRA1D	rs4815670	4164864	20	.467	G>A	1.559	.459	A	0.012	.994	A
ADRA1D	rs6076639	4167258	20	.206	C>T	0.024	.988	A	1.069	.586	A

ADRA1D	rs4815675	4171454	20	.423	T>C	0.441	.802	A	2.968	.227	A
ADRA1D	HapA01					1.244	.537		0.303	.859	
ADRA1D	HapA03					2.644	.267		0.360	.835	
ADRA1D	HapB02					1.672	.433		1.494	.474	
ADRA1D	HapB03					0.272	.873		0.321	.852	
ADRA1D	HapC01					1.608	.448		0.020	066.	
ADRA1D	HapC02					0.668	.716		0.408	.816	
ADRA1D	HapC03					1.469	.480		1.247	.536	
ADRA1D	HapD01					0.217	.897		2.698	.260	
ADRA1D	HapD02					0.477	.788		0.252	.881	
				ALPH	IA 2A AD	ALPHA 2A ADRENERGIC R	RECEPTOR				
ADRA2A	rs521674	112825580	10	.364	A>T	n/a	n/a	n/a	n/a	n/a	n/a
ADRA2A	rs3750625	112829591	10	079.	C>A	2.186	.335	A	2.644	.267	A
				BETA	FA 2 ADR	2 ADRENERGIC RE	RECEPTOR				
ADRB2	rs2400707	148185245	5	.401	G>A		.142	A	1.770	.413	A
ADRB2	rs11168070	148186120	5	.357	C>G	FE	.046	D	2.522	.283	A
ADRB2	rs1042718	148187110	5	203	C>A	ΕE	.023	Я	2.519	.284	A
ADRB2	rs1042719	148187640	5	.315	G>C	3.870	.144	A	1.158	.560	A
ADRB2	HapA01					0.754	.686		0.538	.764	
ADRB2	HapA02					8.497	.014		1.642	.440	
ADRB2	HapA05					4.652	.098		2.265	.322	
				BEJ	FA 3 ADR	BETA 3 ADRENERGIC RECEPTOR	CEPTOR				
ADRB3	rs4994	37942955	8	260.	T>C	2.520	.284	A	0.959	.619	٨
				BETA A	DRENER	ETA ADRENERGIC RECEPTOR KINASE	DR KINASE 2				
ADRBK2	rs1008673	24324013	22	.148	A>G	0.651	.722	A	1.077	.584	A
ADRBK2	rs3817819	24405188	22	.421	C>T	0.264	.876	۷	2.243	.326	٨
ADRBK2	rs5761159	24432308	22	.438	G>T	0.210	.901	А	0.325	.850	A
ADRBK2	rs9608416	24441018	22	.468	9 <a< td=""><td>1.498</td><td>.473</td><td>۷</td><td>1.133</td><td>295.</td><td>A</td></a<>	1.498	.473	۷	1.133	295.	A
ADRBK2	HapA01					1.253	.534		1.533	.465	
ADRBK2	HapA04					0.378	.828		0.364	.834	
				BRAIN	DERIVED	NEUROTROF	BRAIN DERIVED NEUROTROPHIC FACTOR				
BDNF	rs7124442	27633617	11	0.290	T>C	4.385	.112	A	2.754	.252	A
BDNF	rs6265	27636492	11	.222	G>A	FE	.042	D	2.636	.268	A
BDNF	rs11030101	27637320	11	.409	A>T	2.614	.271	A	0.792	.673	A

A>G 4.24/ 120 A 3.035 219 G>C 2.743 254 A 1.505 .471 T>C 5.365 .068 A 3.313 192 T>C 5.365 .068 A 3.313 192 T>C 5.365 .068 A 3.311 149 T>C 5.365 .068 A 3.311 149 T>C 3.149 207 A 2.151 341 A>T 2.727 .256 A 1.592 .451 A>T 2.727 .256 A 0.573 714 C>A 1.476 .476 A 0.573 714 C>T 1.755 416 A 0.341 49 C>T 1.746 718 A 0.246 864 C>T 1.7165 718 A 0.246 864 C>G 1.210 .546		27638172	11	.205	C>G	6.132	.047	A -	3.223	.200	A .
G>C 2.743 $.254$ A 1.505 $.471$ A $7 > C$ 5.365 .068 A 3.303 .192 .149 $7 > C$ 5.365 .068 A 3.311 .149 .149 $A > T$ 5.365 .068 A 3.811 .149 .238 $A > T$ 5.365 .068 A 3.811 .149 .341 $T > C$ 5.345 .068 A 3.811 .149 .341 $T > C$ 3.149 .207 A 2.871 .238 .341 $T > C$ 1.476 .478 A 0.573 .821 .714 $T > G$ 1.559 .456 A 0.739 .691 .691 $T > G$ 1.516 $.334$ A 0.770 .884 .714 $T > G > 1.818$.403 A 0.770 .891 .691 .714 $T > G > 1.510$ $.718$	27641093		11	.233	A>G	4.247	.120	A	3.035	.219	A
A>G 6.53 $.044$ A 3.303 $.192$ $.192$ $T>C$ 5.365 $.068$ A 3.811 $.149$ 149 $A>T$ 5.365 $.068$ A 3.811 149 149 $A>T$ 5.365 $.068$ A 3.811 149 207 $T>C$ 3.149 207 A 2.871 238 $A>T$ 3.149 207 A 2.171 241 $A>T$ 3.149 207 A 2.161 241 $A>T$ 0.694 709 714 714 $A>G$ 1.569 476 A 0.739 814 $A>G$ 1.210 546 A 0.739 814 $A>G$ 1.818 714 A 0.739 814 $A>G$ 0.281 A 0.770 884 714 $A>G$ <td>27650817</td> <td></td> <td>11</td> <td>.156</td> <td>G>C</td> <td>2.743</td> <td>.254</td> <td>A</td> <td>1.505</td> <td>.471</td> <td>A</td>	27650817		11	.156	G>C	2.743	.254	A	1.505	.471	A
T>C 5.365 .068 A 3.811 1.49 . G>T 4.987 .083 A 2.871 2.38 .	27651411 11	1	1	.205	A>G	6.253	.044	A	3.303	.192	A
G5T 4.987 .083 A 2.871 2.38 1 A>T 5.365 .068 A 3.811 1.49 2.34 T>C 3.149 .207 A 3.811 1.149 2.34 T>C 3.149 .207 A 2.151 3.41 1.49 A>T 2.727 .256 A 1.592 451 3.41 A>T 2.343 .304 .3673 8.64 2.14 C>A 1.476 .446 A 0.673 864 2.45 C>T 1.755 .446 A 0.246 884 2.44 C>G 1.818 .403 A 0.730 694 2.46 C>G 1.818 .403 A 0.730 .694 2.41 C>G 0.581 .748 A 0.730 .694 2.41 C>G 0.581 .748 A 0.730 .694 2.41	27656701 11	11		.243	T>C	5.365	.068	А	3.811	.149	A
A>T 5.365 .068 A 3.811 1.49 3.41 T>C 3.149 .207 A 2.151 .341 .341 A>T 2.727 .256 A 1.592 .451 .341 A>T 2.727 .256 A 1.592 .451 .341 Z 3.149 .275 .256 A 1.592 .451 .341 Z 2.384 .304 .304 .5034 .514 .545 Z 1.476 .478 A 0.394 .821 P C>A 1.710 .546 A 0.203 .864 P C>A 1.210 .546 A 0.234 .814 P C>A 1.210 .546 A 0.739 .691 P C>A 1.818 A 0.739 .691 P P C>A 0.581 .748 A 0.730 P P <td>27658959 11</td> <td>11</td> <td></td> <td>.231</td> <td>G>T</td> <td>4.987</td> <td>.083</td> <td>A</td> <td>2.871</td> <td>.238</td> <td>۲</td>	27658959 11	11		.231	G>T	4.987	.083	A	2.871	.238	۲
T>C 3.149 .207 A 2.151 .341 .341 A>T 2.727 2.566 A 1.592 .451 .341 Z 2.384 .304 0.673 .714 . Z 2.384 .304 .516 A 1.592 .451 Z 2.384 .304 .304 .714 .714 . Z 1.476 .478 A 0.394 .821 P C>A 1.755 .416 A 0.203 .864 P C>A 1.210 .546 A 0.234 .818 P C>A 1.210 .546 A 0.234 .884 P C>A 1.210 .546 A 0.234 .884 P C>A 0.281 .403 A 0.739 .691 P C>A 0.581 .748 A 0.730 .884 P C>A 0	27659764 11	11		.243	A>T	5.365	.068	А	3.811	.149	A
A>T 2.727 .256 A 1.592 .451 2.384 .304 0.673 .714 C>A 1.476 .478 A 0.673 .714 C>A 1.476 .478 A 0.673 .714 C>A 1.476 .478 A 0.394 .818 C>T 1.755 .416 A 0.394 .818 T>G 1.510 .546 A 0.293 .864 T>G 1.210 .546 A 0.293 .864 T>G 1.210 .546 A 0.234 .864 T>G 0.294 .863 A 0.236 .691 T>C 2.192 .334 A 0.730 .694 T>C 2.192 .334 A 0.730 .694 T>C 2.192 .334 A 0.730 .694 T>C 2.192 .334 A 0.770 .694 <td>27671460 11</td> <td>11</td> <td></td> <td>.295</td> <td>T>C</td> <td>3.149</td> <td>.207</td> <td>A</td> <td>2.151</td> <td>.341</td> <td>۲</td>	27671460 11	11		.295	T>C	3.149	.207	A	2.151	.341	۲
2.334 .304 .0 0.673 .714 I ECHOL-O-METHYLTRANSFERASE .304 .304 .714 .714 C>A 1.476 .478 A 0.0394 .818 .714 C>T 1.755 .416 A 0.0394 .818 .821 C>T 1.755 .416 A 0.293 .864 .81 T>G 1.210 .546 A 0.293 .864 .83 T>G 1.210 .546 A 0.233 .864 .834 T>G 0.581 .748 A 0.236 .864 .834 T>G 0.581 .748 A 0.730 .694 .745 T>C 2.192 .334 A 0.730 .694 .746 T>C 2.192 .334 A 0.770 .694 .74 T>C 2.192 .334 A 0.770 .694 .74 A <t< td=""><td>27680351 11</td><td>11</td><td>1</td><td>.464</td><td>A>T</td><td>2.727</td><td>.256</td><td>A</td><td>1.592</td><td>.451</td><td>A</td></t<>	27680351 11	11	1	.464	A>T	2.727	.256	A	1.592	.451	A
CHOLMETHYLTRANSFERASE C>A 1.476 .478 A 0.394 .821 C>A 1.476 .478 A 0.394 .821 C>T 1.755 .416 A 0.394 .818 A>G 1.569 .456 A 0.293 .864 A>G 1.210 .546 A 0.293 .864 T>G 1.210 .546 A 0.293 .864 T>G 1.210 .546 A 0.293 .864 T>G 0.181 .403 A 0.246 .884 T>G 0.294 .863 A 0.730 .694 T>C 2.192 .334 A 0.730 .694 T>C 2.192 .334 A 0.730 .694 T>C 2.192 .334 A 0.770 .884 T>C 2.192 .317 N .748 .748 C>G						2.384	.304		0.673	.714	
C>A 1.476 .478 A 0.394 .821 C>T 1.755 .416 A 0.401 .818 A>G 1.755 .416 A 0.293 .864 A>G 1.569 .456 A 0.293 .864 T>G 1.210 .546 A 0.293 .864 . T>G 1.818 .403 A 0.246 .884 . T>G 0.294 .863 A 0.739 .691 . T>G 0.294 .863 A 0.730 .694 . T>G 0.581 .748 A 0.730 .694 . T>C 2.192 .334 A 0.730 .694 . T>C 0.589 .716 A 0.730 .694 . T>C 2.192 .317 N T>C 0.699 .716 A <td></td> <td></td> <td>1 </td> <td>CATE</td> <td>1-O-JOHC</td> <td><u>ИЕТНҮLTRAI</u></td> <td>NSFERASE</td> <td></td> <td></td> <td></td> <td></td>			1	CATE	1-O-JOHC	<u>ИЕТНҮLTRAI</u>	NSFERASE				
C>T 1.755 $\cdot .416$ A 0.401 $\cdot .818$ $\cdot .816$ A 0.233 $\cdot .816$ A A>G 1.569 $\cdot .456$ A 0.233 $\cdot .864$ $\cdot .763$ $\cdot .763$ $\cdot .764$ $\cdot .763$ $\cdot .764$ 764 764 764 764 764 764	18307146 22	22		.388	C>A	1.476	.478	А	0.394	.821	A
A>G 1:569 :456 A 0.293 :864 F 0:246 A 0.246 :884 :884 T>G 1:818 :403 A F :034 :884 T>G 1:818 :403 A 0.246 :884 :884 T>G 0.294 :863 A 0.739 :691 :034 T>G 0.291 :365 A 0.739 :694 :034 T>C 2:192 :334 A 0.739 :694 :034 T>C 2:192 :334 A 0.739 :694 :034 T>C 2:192 :334 A 0.730 :694 :034 T>C 2:192 :341 A 0.730 :638 :630 :638 T>C 0:699 :716 A 0.899 :638 :646 :716 A>C 0.669 :716 A 0.770 :640 :716 <td>18308884 22</td> <td>22</td> <td></td> <td>.263</td> <td>C>T</td> <td>1.755</td> <td>.416</td> <td>A</td> <td>0.401</td> <td>.818</td> <td>A</td>	18308884 22	22		.263	C>T	1.755	.416	A	0.401	.818	A
G>A 1.210 5.46 A 0.246 .884 .884 T>G 1.818 .403 A FE .034 .884 T>G 1.818 .403 A 0.739 .691 .034 T>G 0.294 .863 A 0.730 .691 .034 T>C 2.192 .334 A 0.730 .694 .034 T>C 2.192 .334 A 0.730 .694 .034 T>C 2.192 .334 A 0.730 .694 .034 T>C 2.192 .334 A 0.770 .694 .036 A>G 2.017 .365 A 0.770 .680 .317 A>C 1.04 A 1.36 .317 .317 .317 A>C 0.669 .716 A 0.770 .680 .317 A>C 1.0/a N/a N/a .7187 .397 .373 </td <td>18310109 22</td> <td>22</td> <td></td> <td>.265</td> <td>A>G</td> <td>1.569</td> <td>.456</td> <td>А</td> <td>0.293</td> <td>.864</td> <td>A</td>	18310109 22	22		.265	A>G	1.569	.456	А	0.293	.864	A
T>G 1.818 .403 A FE .034 .034 T>G 0.294 .863 A 0.739 .691 .034 G>A 0.581 .748 A 0.730 .694 .691 T>C 2.192 .334 A 0.730 .694 .691 T>C 2.192 .334 A 0.730 .694 .691 T>C 2.192 .334 A 0.730 .694 .694 T>C 2.192 .334 A 0.730 .694 .694 T>C 2.192 .334 A 0.770 .680 .341 A>G 2.017 .365 A 0.770 .680 .317 A>C 1.04 N/a N/a N/a .1/a .1/a A>C 2.017 .363 A 1.847 .397 .397 A>C 2.193 .716 A .1847 .703 .706 <td>18311668 22</td> <td>22</td> <td></td> <td>.397</td> <td>G>A</td> <td>1.210</td> <td>.546</td> <td>А</td> <td>0.246</td> <td>.884</td> <td>A</td>	18311668 22	22		.397	G>A	1.210	.546	А	0.246	.884	A
T>G 0.294 .863 A 0.739 .691 B G>A 0.581 .748 A 0.730 .694 N T>C 2.192 .334 A 0.730 .694 N T>C 2.192 .334 A 0.770 .694 N C>G 0.689 .709 A 2.150 .341 N C>G 0.689 .709 A 2.150 .341 N C>T 0.669 .716 A 0.770 .680 .317 A>C 2.017 .365 A 0.770 .680 .317 A>C 0.669 .716 A 2.295 .317 N G>T n/a n/a n/a n/a n/a n/a N A>C 2.671 .263 A 1.847 .397 N G>A 1.935 .380 A 1.847 .397 N	18317533 22	22		.234	T>G	1.818	.403	A	ЭJ	.034	Я
G>A 0.581 .748 A 0.730 .694 T>C 2.192 .334 A 0.899 .638 .638 C>G 0.689 .709 A 0.770 .638 .341 A>G 2.017 .365 A 0.770 .680 .341 A>C 2.017 .365 A 0.770 .680 .317 A>C 2.017 .365 A 0.770 .680 .317 A>C 2.671 .263 A 1.847 .397 .317 A>C 2.661 .718 .703 .703 .703 .703 C>G 1.935 .380 A 1.847 .703 .746	18317638 22	22		.495	T>G	0.294	.863	A	0.739	.691	A
T>C 2:192 .334 A 0.899 .638 .638 C>G 0.689 .709 A 0.770 .680 .341 A>G 2.017 .365 A 0.770 .680 .341 A>G 2.017 .365 A 0.770 .680 .341 A>G 2.017 .365 A 0.770 .680 .341 A>G 2.069 .716 A 0.770 .680 .317 A>C 2.671 .263 A n/a n/a n/a .1/a A>C 2.671 .263 A 1.847 .397 .397 A>C 2.611 .263 A .1.847 .397 .397 A>C 2.1935 .380 A .1.847 .397 .397 C>G 1.935 .380 A .1.847 .397 .397 C>G 0.919 .632 A .1.847 .703	18325177 22	22		.495	G>A	0.581	.748	A	0:730	.694	A
C>G 0.689 .709 A 2.150 .341 341 A>G 2.017 .365 A 0.770 .680 .341 A>G 2.017 .365 A 0.770 .680 .317 C>T 0.669 .716 A 2.295 .317 .680 C>T n/a n/a n/a n/a n/a n/a A>C 2.671 .263 A 1.847 .397 . C>G 1.935 .380 A 1.847 .397 . C>G 1.935 .380 A 1.847 .703 . C>G 0.919 .630 .704 .703 . . <td< td=""><td>18328337 22</td><td>22</td><td></td><td>.371</td><td>T>C</td><td>2.192</td><td>.334</td><td>А</td><td>0.899</td><td>.638</td><td>А</td></td<>	18328337 22	22		.371	T>C	2.192	.334	А	0.899	.638	А
A>G 2.017 .365 A 0.770 .680 .680 C>T 0.669 .716 A 2.295 .317 .680 G>T n/a n/a n/a n/a n/a n/a A>C 2.671 .263 A 1.847 .397 .397 A>C 2.671 .263 A n/a n/a n/a .397 G>A n/a n/a n/a n/a n/a n/a .397 G>A 0.1935 .380 A 1.847 .397 .397 G>A 0.919 .632 A 0.704 .703 .703 G>A 0.705 .703 A 1.270 .530 .704 T>C 3.521 .172 A 0.704 .703 .703 T>C 3.521 .172 A 0.704 .703 .746 .703 T>C FE .029 D 0.712 </td <td>18328863 22</td> <td>22</td> <td></td> <td>.489</td> <td>C>G</td> <td>0.689</td> <td>607.</td> <td>A</td> <td>2.150</td> <td>.341</td> <td>۲</td>	18328863 22	22		.489	C>G	0.689	607.	A	2.150	.341	۲
C>T 0.669 .716 A 2.295 .317 A G>T n/a n/a <td>18329952 22</td> <td>22</td> <td></td> <td>.391</td> <td>A>G</td> <td>2.017</td> <td>.365</td> <td>А</td> <td>0.770</td> <td>.680</td> <td>A</td>	18329952 22	22		.391	A>G	2.017	.365	А	0.770	.680	A
G>T n/a n/a <td>18330235 22</td> <td>22</td> <td></td> <td>.472</td> <td>C>T</td> <td>0.669</td> <td>.716</td> <td>А</td> <td>2.295</td> <td>.317</td> <td>A</td>	18330235 22	22		.472	C>T	0.669	.716	А	2.295	.317	A
A>C 2.671 .263 A 1.847 .397 .397 C>A n/a n/a n/a n/a n/a .397 .397 C>G 1.935 .380 A 0.704 .703 n/a C>G 1.935 .380 A 0.704 .703 1 G>A 0.919 .632 A 2.802 .246 1 G>A 0.705 .703 A 1.270 .530 1 T>C 3.521 .172 A 0.875 .646 1 T>C 3.521 .172 A 0.875 .646 1 T>C FE .029 D 1.310 .519 1 A>G 0.173 .917 A 0.123 .949 1 A>G 0.624 .732 0.106 .949 1 .640 1	18330263 22	22		.002	G>T	n/a	n/a	n/a	n/a	n/a	n/a
(C>A n/a (C>G 0.0.005 703 A 0.1270 0.1200 703 A 0.1270 703 D 1 1 1 1 1 1 1 1 1 1 1 1 1	18330763 22	22	-	.399	A>C	2.671	.263	А	1.847	.397	۲
C>G 1.935 .380 A 0.704 .703 G>A 0.919 .632 A 2.802 .246 G>A 0.705 .703 A 1.270 .530 T>C 3.521 .172 A 1.270 .530 T>C 3.521 .172 A 0.875 .646 T>C 3.521 .172 A 0.875 .646 T>C FE .029 D 1.310 .519 . A>G 0.173 .917 A 0.123 .940 . A>G 0.624 .732 A 0.106 .949 .	18331103 22	22		.001	G>A	n/a	n/a	n/a	n/a	n/a	n/a
G>A 0.919 .632 A 2.802 .246 G>A 0.705 .703 A 1.270 .530 T>C 3.521 .172 A 0.875 .646 T>C 3.521 .172 A 0.875 .646 T>C 3.521 .172 A 0.875 .646 T>C 1.72 A 0.123 .519 P A>G 0.173 .917 A 0.123 .940 P A>G 0.624 .732 0.106 .949 P .646 P A 0.624 .732 A 0.106 .949 P .640 P	18331207 22	22		.387	C>G	1.935	.380	А	0.704	.703	А
G>A 0.705 .703 A 1.270 .530 T>C 3.521 .172 A 0.875 .646 T>C FE .029 D 1.310 .519 A>G 0.173 .917 A 0.123 .940 1 1.618 .732 0 0.106 .949	18331271 22	22		.475	G>A	0.919	.632	А	2.802	.246	۷
T>C 3.521 .172 A 0.875 .646 T>C FE .029 D 1.310 .519 A>G 0.173 .917 A 0.123 .940 0.624 .732 A 0.106 .949 1.618 .45 .554 .060	18332561 22	22		.288	G>A	0.705	.703	A	1.270	.530	۲
T>C FE .029 D 1.310 .519 A>G 0.173 .917 A 0.123 .940 A>G 0.173 .917 A 0.123 .940 1 0.624 .732 0.106 .949 1.618 .945	18334458 22	22		.098	T>C	3.521	.172	А	0.875	.646	A
A>G 0.173 .917 A 0.123 .940 0 0.624 .732 0.106 .949 1 1.618 .45 5.354 0.60	18335692 22	22	-	.129	T>C	FE	.029	D	1.310	.519	A
.732 0.106	18336781 22	22		.338	A>G	0.173	.917	А	0.123	.940	A
445 5.354						0.624	.732		0.106	.949	
						1.618	.445		5.354	.069	

COMT	HapA10					1.939	.379		0.260	.878	
COMT	HapB02					0.789	.674		1.102	.576	
COMT	HapB20					1.404	.496		0.244	.885	
COMT	HapC01					0.173	.917		0.123	.940	
COMT	HapC02					4.286	.117		1.028	.598	
COMT	PAIN LPS					2.839	.242		1.586	.452	
COMT	PAIN APS					0.707	.702		1.737	.420	
COMT	PAIN HPS					3.552	.169		2.015	.365	
COMT	PAIN DIPLO					6.161	.291		4.338	.502	
COMT	PAIN RECODE A					ШJ	.634		Ш	100.	
		CYT	OCHRC	OME P4	CYTOCHROME P450, FAMILY 3,	LY 3, SUBFAMILY	AILY A, POLY	A, POLYPEPTIDE 4			
CYP3A4	rs4646437	99203019	7	.163	C>T	ΞJ	.031	D	1.013	.602	A
						GALANIN					
GAL	rs694066	68209561	11	.104	G>A	0.433	.805	A	0.571	.751	A
GAL	rs3136540	68212986	11	.249	C>T	1.936	.380	A	0.753	.686	A
GAL	rs1042577	68215046	11	.334	G>A	2.473	.290	A	3.691	.158	A
GAL	HapA01					2.443	.295		3.508	.173	
GAL	HapA04					1.838	.399		0.762	.683	
					GALANIN	IIN RECEPTOR	-				
GALR1	rs949060	73087926	18	.381	C>C	ΞJ	.017	Я	4.518	.104	A
					GALAN	GALANIN RECEPTOR	R 2				
GALR2	rs2443168	71578042	17	.443	T>A	1.118	.572	۷	0.066	.968	A
GALR2	rs2598414	71578694	17	.391	C>T	0.043	679.	۷	1.314	.518	A
GALR2	HapA01					0.043	.979		1.314	.518	
GALR2	HapA03					1.333	.513		0.085	.958	
					GTP CYC	GTP CYCLOHYDROLASE	VSE 1				
GCH1	rs7142517	54376554	14		C>A	1.053	.591	۷	0.077	.962	A
GCH1	rs841	54380242	14	0.236	C>T	1.116	.572	۷	2.634	.268	A
GCH1	rs752688	54381319	14	.236	C>T	1.116	.572	۷	2.634	.268	A
GCH1	rs7155309	54392601	14	.234	T>C	1.085	.581	۷	2.556	622.	A
GCH1	rs12587434	54395333	14	.236	9<1	0.675	.713	۷	2.942	.230	A
GCH1	rs9671371	54398385	14	.337	C>T	3.455	.178	۷	0.920	.631	A
GCH1	rs2183081	54406501	14	.409	T>C	0.566	.754	۷	3.866	.145	A
GCH1	rs17128050	54413629	14	.148	T>C	2.307	.316	A	3.276	.194	A

3.939 .140 A	2.287 .319 A	2.700 .259 A	3.142 .208 A	2.752 .253	2.616 .270	0.091 .955	2.672 .263	2.942 .230	-	0.092 .955 A	-	3.466 .177 A	-	0.589 .745 A	1.289 .525 A	3.683 .159 A	0.053 .974 A	0.032 .984 A	0.083 .959 A	0.284 .868 A	2.276 .320 A	0.180 .914 A	1.113 .573 A	FE .384 A	6.131 .047 A	0.393 .822 A	0.787 .675 A	2.168 .338 A	2.884 .236 A		n/a r
	A	A	Δ							A		A		A	A	۷	A	۷	A	A	A	۷	A	A	A	A	A	A	A	n/a	
.219	.095	.111	.003	.395	.571	.577	.383	.058	RECEPTOR 1A	.423	RECEPTOR 1B	.382	RECEPTOR 2A	.127	.614	.513	.407	.935	.815	.199	.278	.678	.276	.889	.130	.715	.578	.525	.422	n/a	
3.040	4.716	4.400	Ш	1.855	1.122	1.100	1.922	5.712	5-HYDROXYTRYPTAMINE RE	1.721	5-HYDROXYTRYPTAMINE RE	1.927	5-HYDROXYTRYPTAMINE RE	4.127	0.976	1.334	1.799	0.134	0.410	3.229	2.559	0.777	2.576	Ш	4.086	0.672	1.095	1.288	1.724	n/a	
C>T	G>A	C>T	T>C						охутку	A>G	OXYTRYI	G>C	охутку	C>T	T>A	C>T	G>A	A>G	C>T	T>C	C>T	G>C	G>T	A>G	G>C	G>T	C>G	A>C	C>T	G>A	
.155	.187	.168	.461						5-HYDR	.437	5-HYDR	.313	5-HYDR	.078	.420	.223	.380	.189	.167	.427	.364	.374	.330	.114	.182	.264	.162	.218	.376	.044	
14	14	14	14							S		9		13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	
54417868	54418123	54424781	54429953						-	63291774	-	78228979	-	46307035	46308104	46309662	46309986	46317578	46319837	46321292	46321593	46322945	46326472	46327229	46329109	46330611	46333107	46335217	46336975	46339708	
rs3783637	rs3783638	rs998259	rs3783642	HapA01	HapA05	HapA06	HapB01	HapB03		rs6449693	-	rs6296	_	rs6314	rs7322347	rs1923882	rs7997012	rs3742278	rs1923884	rs1923886	rs7330636	rs9567739	rs2296972	rs9534495	rs9534496	rs4942578	rs2770292	rs1928042	rs2770293	rs1328674	
GCH1	GCH1	GCH1	GCH1	GCH1	GCH1	GCH1	GCH1	GCH1		HTR1A		HTR1B		HTR2A	HTR2A	HTR2A	HTR2A	HTR2A	HTR2A	HTR2A	HTR2A										

HTR2A	rs972979	46347165	13	.373	G>A	0.861	.650	A	0.310	.856	A
HTR2A	rs731779	46350039	13	.171	T>G	2.539	.281	A	0.810	.667	A
HTR2A	rs2770304	46353366	13	.333	A>G	0.124	.940	А	0.749	.688	A
HTR2A	rs927544	46354052	13	.255	T>C	0.687	.709	А	1.617	.445	A
HTR2A	rs594242	46356053	13	.169	C>G	2.157	.340	А	0.357	.837	А
HTR2A	rs4941573	46362858	13	.447	A>G	2.597	.273	А	0.611	.737	А
HTR2A	rs1328684	46364231	13	.314	T>C	2.964	.227	A	1.412	.494	A
HTR2A	rs6304	46364550	13	.010	A>G	n/a	n/a	n/a	n/a	n/a	n/a
HTR2A	rs2296973	46364782	13	.281	G>T	0.486	.784	A	0.144	.930	А
HTR2A	rs2070037	46365071	13	.216	T>C	0.222	.895	A	0.603	.740	А
HTR2A	rs9534511	46366581	13	.445	C>T	3.026	.220	A	0.195	.907	A
HTR2A	rs6313	46367941	13	.450	C>T	3.482	.175	A	0.891	.640	A
HTR2A	HapA03					1.394	.498		3.597	.166	
HTR2A	HapA07					1.790	.409		0.517	.772	
HTR2A	HapB01					0.296	.862		0.034	.983	
HTR2A	HapB02					2.558	.278		2.390	.303	
HTR2A	HapB03					3.229	.199		0.284	.868	
HTR2A	HapC01					1.400	.497		2.117	.347	
HTR2A	HapC05					2.004	.367		0.646	.724	
HTR2A	HapD01					0.672	.715		0.393	.822	
HTR2A	HapD02					0.617	.734		0.810	.667	
HTR2A	HapE01					1.288	.525		2.168	.338	
HTR2A	HapF01					3.173	.205		4.584	.101	
HTR2A	HapF02					4.177	.124		1.625	.444	
HTR2A	HapF03					1.500	.472		0.512	.774	
HTR2A	HapG01					0.456	.796		0.687	.709	
HTR2A	HapH01					2.201	.333		0.306	.858	
HTR2A	НарНОб					1.304	.521		2.825	.244	
HTR2A	Hapl01					3.916	.141		0.835	.659	
				5-HYDF	OXYTRY		RECEPTOR 3A				
HTR3A	rs1985242	113353483	11	.370	T>A	1.548	.461	А	0.170	.919	А
HTR3A	rs11214796	113359889	11	.261	T>C	0.845	.655	А	1.080	.583	A
HTR3A	rs10160548	113361891	11	.378	T>G	2.139	.343	A	0.480	.787	A

HTR3A	HapA01					1.214	.545		0.206	.902	
HTR3A	HapA04					1.218	.544		0.763	.683	
					NITRIC 0)	OXIDE SYNTHAS	ASE 1				
NOS1	rs2682826	116137221	12	.311	C>T	0.946	.623	A	0.143	.931	A
NOS1	rs816361	116139514	12	.318	C>G	1.353	.508	A	0.359	.836	A
NOS1	rs816363	116144850	12	.458	C>G	ΕE	.042	D	1.261	.532	A
NOS1	rs9658498	116152908	12	.409	T>C	ΕE	.041	R	1.186	.553	A
NOS1	rs1353939	116159736	12	.261	G>A	1.739	.419	A	1.016	.602	۷
NOS1	rs1047735	116169653	12	.346	C>T	1.896	.387	A	1.227	.542	A
NOS1	rs12829185	116178403	12	.243	C>T	FE	.025	R	0.295	.863	A
NOS1	rs2293054	116186097	12	.299	G>A	3.410	.182	A	3.123	.210	A
NOS1	rs6490121	116192578	12	.364	A>G	2.852	.240	A	0.548	.760	A
NOS1	rs2293052	116200003	12	.358	C>T	ΞJ	.001	R	1.925	.382	A
NOS1	rs7977109	116214723	12	.418	A>G	0.957	.620	A	1.830	.401	A
NOS1	rs3782206	116229472	12	.116	C>T	4.155	.125	А	1.577	.455	A
NOS1	rs7295972	116231751	12	.445	G>A	1.150	.563	A	0.033	.984	A
NOS1	rs11068447	116232070	12	.124	C>T	2.235	.327	А	1.408	.495	A
NOS1	rs547954	116238889	12	.206	C>T	1.188	.552	А	1.085	.581	A
NOS1	rs3782212	116239785	12	.270	C>T	0.320	.852	А	0.069	.966	A
NOS1	rs12578547	116247730	12	.266	T>C	2.973	.226	A	0.642	.726	A
NOS1	rs471871	116249901	12	.246	A>T	3.255	.196	A	Ш	.039	R
NOS1	rs545654	116261432	12	.496	T=C	0.913	.633	А	1.220	.543	A
NOS1	rs1552277	116263418	12	.257	C>T	3.750	.153	А	0.096	.953	A
NOS1	rs10507279	116264657	12	.122	G>A	0.206	.902	А	1.890	.389	A
NOS1	rs693534	116269101	12	.382	G>A	2.797	.247	А	0.826	.662	A
NOS1	rs1123425	116270488	12	.439	A>G	12.001	.002	А	3.429	.180	A
NOS1	rs3782221	116280264	12	.270	G>A	4.488	.106	А	1.189	.552	A
NOS1	HapA02					3.993	.136		0.878	.645	
NOS1	HapA04					1.299	.522		0.429	.807	
NOS1	HapB02					1.739	.419		1.016	.602	
NOS1	HapB03					5.382	.068		1.186	.553	
NOS1	HapC01					1.896	.387		1.227	.542	
NOS1	HapC03					6.036	.049		0.295	.863	

HapD02 HapD03						3.004	.00/		2.102	002.	
HapD03						2.376	.305		0.208	.901	
_						1.204	.548		1.340	.512	
HapE01						5.117	220.		1.019	.601	
HapE03						1.150	.563		0.033	.984	
HapF01						1.914	.384		2.593	.273	
HapF02						4.204	.122		1.325	.516	
HapF04						1.045	.593		1.299	.522	
HapF06						3.648	.161		2.065	.356	
	-				NITRIC O	OXIDE SYNTHASE	ASE 2	_		-	
rs9906835	35	23113501	17	.413	A>G	0.061	026	A	1.357	.507	A
rs2297512	12	23116682	17	.385	A>G	1.117	.572	A	1.156	.561	A
rs2297516	16	23119857	17	.416	A>C	1.368	.505	A	0.896	.639	A
rs2297518	18	23120724	17	.145	G>A	1.666	.435	A	3.351	.187	A
rs2248814	14	23124448	17	.393	G>A	0.840	.657	A	2.349	.309	A
rs1137933	33	23130059	17	.170	C>T	0.889	.641	۲	0.817	.665	A
rs4795067	67	23130802	17	.278	A>G	0.266	.876	۲	0.278	.870	A
rs3729508	08	23133157	17	.422	G>A	1.730	121.	۲	2.031	.362	A
rs944725	5	23133698	17	.382	C>T	689.0	602.	A	FE	.034	D
rs3730013	13	23150045	17	.342	C>T	2.534	282.	۲	0.021	066.	A
rs10459953	953	23151645	17	.366	G>C	4.128	.127	۲	1.975	.372	A
rs2779248	48	23151959	17	.347	T>C	0.452	.798	۲	0.340	.844	A
HapA01						1.518	.468		1.018	.601	
HapA04						1.088	085.		1.051	.591	
HapB01						2.660	265.		3.648	.161	
HapB02						1.177	.555		1.658	.436	
HapC01						0.649	.723		0.520	.771	
HapC02						3.667	.160		1.396	.498	
HapC03						2.487	.288		0.123	.940	
					NEU	NEUROPEPTIDE	7				
rs16148		24288863	7	.424	T>C	0.669	.716	۲	1.443	.486	A
rs16147		24289935	7	.496	A>G	0.401	.818	A	0.807	.668	A
rs16478		24291133	7	.290	C>T	1.867	262.	A	2.658	.265	A

rs1468271 24293506 7 .42 rs5574 24295658 7 .42 HapA01 24295658 7 .42 HapA01 16464855 7 .42 HapA04 164464855 4 .28 rs9764 164464855 4 .28 rs9764 164464855 4 .28 rs7687423 164470247 4 .41 HapA01 164470247 4 .41 HapA01 164470247 4 .41 Fs7687423 164470247 4 .41 HapA01 11011480 3 .20 rs2697149 11011624 3 .32 rs2601126 110014655 3 .32 rs1710885 11001480 3 .32 rs26990174 11001480 3 .32 rs2601126 11001480 3 .32 rs1710885 11001480 3 .32 rs1770881 <t< th=""><th>24291404 7 .029</th><th>A>G</th><th>n/a</th><th>n/a</th><th>n/a</th><th>n/a</th><th>n/a</th><th>n/a</th></t<>	24291404 7 .029	A>G	n/a	n/a	n/a	n/a	n/a	n/a
rs5574 24295658 7 44 HapA01 HapA01 1 1 HapA05 1 4 1 HapA05 1 1 1 rs9764 164464855 4 .28 rs97643 164464855 4 .28 rs97643 164470247 4 .41 HapA01 164470247 4 .41 HapA01 164470247 4 .41 HapA01 164470247 4 .41 rs7687235751 164470247 4 .41 HapA04 1917934 20 .33 rs6045868 1917934 20 .36 rs2099174 11011480 3 .16 rs1710885 110114855 3 .32 rs1710885 110114655 3 .32 rs1710886 110114655 3 .32 rs1710886 110114655 3 .32 rs17108870 110114655	7	A>G	n/a	n/a	n/a	n/a	n/a	n/a
HapA01 HapA04 HapA04 HapA04 HapA04 HapA04 HapA05 HapA05 HapA05 164464855 4 .28 rs9764 164464855 4 .28 .28 .28 .28 .21	7	C>T	0.466	.792	A	0.667	.717	۷
HapA04 HapA04 HapA05 HapA01 I64470247 HapA01 I64470247 HapA01 I64470247 HapA01 I64470247 HapA01 I64470247 HapA01 I64470247 HapA01 I011 I0111 I011 I011 I011 I011 I011 I011 <thi011< th=""> I0111 I0111</thi011<>			0.621	.733		0.501	677.	
HapA05 164464855 4 rs9764 164464855 4 rs9764 164464855 4 rs7687423 164470247 4 HapA01 164470247 4 HapA04 1915278 20 rs2097149 11011480 3 rs2091126 11011480 3 rs2001126 11011624 3 rs1710885 11011480 3 rs1710885 11011624 3 rs1710885 11011624 3 rs1710885 11011624 3 rs1710885 110116870 3 rs1710885 110016806 3 rs1710885 110016806 3 rs1710885 110016806 3 rs1170695			2.576	.276		1.807	.405	
rs9764 164464855 4			1.867	.393		2.658	.265	
rs9764 164464855 4 rs7687423 164470247 4 HapA01 164470247 4 HapA01 164470247 4 HapA04 1515278 20 rs56045868 1915278 20 rs6045868 1915278 20 rs50045868 1917934 20 rs5001126 11011480 3 rs2607149 11011480 3 rs2607126 110114655 3 rs1710885 110114655 3 rs1710887 110114655 3 rs17708811 11011624 3 rs1770881 110114655 3 rs1770881 110116606 3 rs1770881 110116870 3 rs1758811 110116606 3 rs17528811	NEUF	ROPEPTIC	NEUROPEPTIDE Y RECEPTOR Y1	FOR Y1				
rs7687423 164470247 4 HapA01 164470247 4 HapA01 1915278 20 rs6045868 1915278 20 rs6045868 1917934 20 rs6045868 1917934 20 rs6045868 1917934 20 rs6045868 11011480 3 rs2601126 11011480 3 rs2601126 110114655 3 rs1710885 11014655 3 rs1710885 11014655 3 rs1710887 11016606 3 rs1710887 11016606 3 rs1708811 11016606 3 rs1708811 11016606 3 rs10568079 110016870 3 rs20597144 110020020 3 rs2053308 110030338 3 rs2053308 110030338 3 <td>4</td> <td>T>C</td> <td>2.934</td> <td>.231</td> <td>۷</td> <td>4.479</td> <td>.107</td> <td>۷</td>	4	T>C	2.934	.231	۷	4.479	.107	۷
HapA01 HapA04 HapA04 1915278 20 rs6045868 1915278 20 rs2535751 1917934 20 rs2235751 1917934 20 rs2697149 11011480 3 rs2601126 11011624 3 rs2601126 11011624 3 rs1710885 11011624 3 rs1710885 11011660 3 rs1710885 110116606 3 rs1710887 11016606 3 rs1708811 11016870 3 rs17708311 11016870 3 rs1770893 11030338 3 rs2697144 11030114 3 rs20533308 11030338 3 rs20533308 11030114 3 rs20510403 11030014 3 rs20510403 1100300312 3	4	G>A	ШĿ	.008	Δ	2.179	.336	A
HapA04 1915278 20 rs6045868 1915278 20 rs204551 1917934 20 rs2697149 11011480 3 rs2697149 11011480 3 rs2601126 110011624 3 rs1710885 110014655 3 rs1710886 110014655 3 rs1710887 110014655 3 rs25697144 110016606 3 rs17728811 110016606 3 rs11718132 110016605 3 rs25697144 110020020 3 rs25697144 110020030 3 rs2010403 110030114 3 rs256971469 110030624 3 rs205163 110030624 3 rs205163 110030624 3 rs20510403 110030624 3 rs20514669 110050014 3 rs10510403 110050012 3			3.258	.196		4.432	.109	
rs6045868 1915278 20 rs6045868 1917934 20 rs2235751 1917934 20 rs2697149 11011480 3 rs2601126 11011624 3 rs1710885 11011654 3 rs1710885 110114655 3 rs1710885 110114655 3 rs1710885 11014655 3 rs1710885 11014655 3 rs1710887 11014655 3 rs1710887 11014655 3 rs1710887 11016606 3 rs1710887 11016606 3 rs17568072 11016606 3 rs15568072 11016606 3 rs1770833 11016606 3 rs20597144 11020020 3 rs2053308 11030114 3 rs2053308 11030338 3 rs2053308 11030624 3 rs20510403 11030624 3 rs20510403 11030624 3 rs10510403 110050014 3<			7.788	.020		2.296	.317	
rs6045868 1915278 20 rs2235751 1917934 20 rs2235751 1917934 20 rs2697149 11011480 3 rs2601126 110011624 3 rs2601126 11011480 3 rs2601126 11011624 3 rs1710885 11011624 3 rs1710887 11011624 3 rs1710887 110114655 3 rs1710887 110114655 3 rs1710887 110114655 3 rs1710887 110116606 3 rs1728811 110116606 3 rs1728811 11016606 3 rs1770833 11016606 3 rs11718132 11016606 3 rs20597144 110020020 3 rs2053308 11030114 3 rs2053308 11030114 3 rs20510403 110300524 3 rs20510403 110030624 3 rs105104	-	PROD	PRODYNORPHIN	-		-		
rs2235751 1917934 20 rs2697149 11011480 3 rs2607126 11011624 3 rs27710885 11011624 3 rs1710886 11011624 3 rs1710885 11011624 3 rs1710885 11011624 3 rs1710885 110114960 3 rs1710887 110114950 3 rs1710887 110114950 3 rs1710887 110116406 3 rs17108811 110116870 3 rs17708811 110116870 3 rs17708313 110016870 3 rs1770893 110016870 3 rs1770895 110016870 3 rs2093308 110030114 3 rs2093308 11030114 3 rs20510403 11030114 3 rs10510403 11030114 3 rs10510403 11030114 3 rs10510403 11041670 3 rs10514695 110050014 3 rs10514695 110050012	20	G>A	2.867	.239	A	0.441	.802	A
SOLUTE CAR rs2697149 11011480 3 rs2601126 11011624 3 rs1710885 11011655 3 rs1710885 110114655 3 rs1710886 11014655 3 rs1710887 11014655 3 rs1710887 11014655 3 rs1710887 11014960 3 rs1710887 11014655 3 rs1710887 11016606 3 rs1568072 110016606 3 rs15568072 110016606 3 rs1508072 110106870 3 rs10720811 11016606 3 rs20597144 11020020 3 rs2053308 11030114 3 rs2053308 11030338 3 rs20510403 11030624 3 rs20514669 11060014 3 rs10510403 11060014 3 rs10514669 110050012 3	20	G>A	0.229	.892	A	1.737	.420	A
rs2697149 11011480 3 rs2601126 11011624 3 rs1710885 11011655 3 rs1710886 11014655 3 rs1710887 11014655 3 rs1710887 11014655 3 rs1710887 11014960 3 rs1728811 11016606 3 rs1728811 11016670 3 rs1728811 11016670 3 rs17788313 11016870 3 rs205979 110016870 3 rs2058079 110030114 3 rs2058079 11030114 3 rs2053308 11030138 3 rs2053308 11030114 3 rs20510403 11030024 3 rs20510403 110050912 3 rs10510403 110050912 3 rs105514669 110050912 3	RIER	FAMILY 6 N	MEMBER 1 -	GABA TRANSPORTER	SPORTER		-	
rs2601126 11011624 3 rs1710885 11013807 3 rs1710886 11014655 3 rs1710887 11014655 3 rs1710887 11014960 3 rs1710887 11014960 3 rs1710887 11016606 3 rs17108811 11016606 3 rs17268072 110016606 3 rs1778811 11016870 3 rs1728811 11016870 3 rs1770695 11003014 3 rs2023308 11030114 3 rs20510403 11030338 3 rs20510403 11030114 3 rs20510403 11030114 3 rs20510403 11030114 3 rs10510403 11030124 3 rs10510403 11041670 3 rs10514669 110050014 3 rs10514669 110050012 3	ю	T>G	4.406	.110	۷	1.138	.566	A
rs1710885 11013807 3 rs1710886 11014655 3 rs1710887 11014655 3 rs1710887 11014656 3 rs9990174 11015439 3 rs1568072 11016606 3 rs1568072 110016606 3 rs1568072 11016606 3 rs1708811 11016606 3 rs17728811 11016606 3 rs1778132 11016609 3 rs20597144 11020020 3 rs20597308 11030114 3 rs2053308 11030138 3 rs2053308 11030134 3 rs2053308 11030624 3 rs205163 11060014 3 rs205163 11060014 3 rs20514669 11050012 3 rs10514669 11050012 3	3	C>T	7.247	.027	A	9.249	.010	۷
rs1710886 11014655 3 rs1710887 11014960 3 rs9990174 11015439 3 rs1568072 11016606 3 rs1728811 11016870 3 rs1728811 11016870 3 rs1728811 11016870 3 rs1728811 11016870 3 rs1778811 11016870 3 rs1778811 11016870 3 rs1778811 11016870 3 rs20597144 11020020 3 rs2058079 11030114 3 rs2053308 11030114 3 rs2053308 11030114 3 rs20510403 11030124 3 rs20510403 11041670 3 rs20514669 11050014 3 rs10514669 11050012 3 rs10514669 11050012 3	m	T>C	0.932	.627	A	1.105	.575	A
rs1710887 11014960 3 rs9990174 11015439 3 rs1568072 11016606 3 rs1728811 11016870 3 rs1728811 11016870 3 rs1728811 11016870 3 rs1728811 11020020 3 rs17788132 11020020 3 rs2697144 11020020 3 rs2038079 11030114 3 rs2928079 11030114 3 rs2033308 11030138 3 rs20510403 11030624 3 rs10510403 11041670 3 rs205163 110041670 3 rs1051469 11050014 3 rs1051469 11050912 3	£	G>C	1.273	.529	A	2.153	.341	۷
rs9990174 11015439 3 rs1568072 11016606 3 rs1728811 11016870 3 rs1728811 11016870 3 rs1728811 11016870 3 rs1728811 11016870 3 rs11718132 11016870 3 rs2697144 11020020 3 rs2058079 11030114 3 rs2928079 11030114 3 rs2928079 11030114 3 rs2058079 11030114 3 rs2170695 11030338 3 rs2170695 11030624 3 rs2053308 11041670 3 rs20571469 11050014 3 rs205714669 11050012 3	ŝ	G>T	0.483	.786	A	0.833	.659	۷
rs1568072 11016606 3 rs1728811 11016870 3 rs11718132 11016870 3 rs11718132 11020020 3 rs2697144 11020020 3 rs2593079 11030114 3 rs2928079 11030114 3 rs293308 11030138 3 rs2933308 11030624 3 rs20510403 11041670 3 rs20510403 11050014 3 rs20510403 11050014 3 rs10510403 11050014 3 rs10510403 11050014 3 rs1051469 11050014 3	3	G>T	3.317	.190	A	0.073	.964	۷
rs1728811 11016870 3 rs11718132 11020020 3 rs2697144 11026099 3 rs22928079 11030114 3 rs21770695 11030114 3 rs2933308 11030624 3 rs20510403 11041670 3 rs205163 11050014 3 rs205163 11050014 3 rs10514669 11050014 3	3	C>T	0.107	.948	A	0.725	.696	۷
rs11718132 11020020 3 rs2697144 11026099 3 rs2928079 11030114 3 rs21170695 11030338 3 rs1170695 11030338 3 rs2033308 11030624 3 rs2057163 11041670 3 rs10510403 11050014 3 rs1055165 11050912 3	ε	C>T	1.060	.589	A	Ш	.019	۵
rs2697144 11026099 3 rs2928079 11030114 3 rs1170695 11030338 3 rs2933308 11030624 3 rs20510403 11041670 3 rs20575163 11050014 3 rs10514669 11050912 3	ε	G>T	2.251	.324	A	2.314	.314	A
rs2928079 11030114 3 rs1170695 11030338 3 rs2933308 11030624 3 rs10510403 11041670 3 rs2675163 11050014 3 rs10514669 11050014 3	ε	A>G	1.457	.483	A	2.461	.292	۷
rs1170695 11030338 3 rs2933308 11030624 3 rs10510403 11041670 3 rs2675163 11050014 3 rs10514669 11050912 3	ŝ	A>T	0.727	.695	A	5.034	.081	۷
rs2933308 11030624 3 rs10510403 11041670 3 rs2675163 11050014 3 rs10514669 11050912 3	£	T>C	0.011	.994	A	3.093	.213	۷
rs10510403 11041670 3 rs2675163 11050014 3 rs10514669 11050912 3	3	G>A	0.001	666.	A	5.113	.078	۷
rs2675163 11050014 3 rs10514669 11050912 3	3	A>G	1.210	.546	A	3.984	.136	A
rs10514669 11050912 3	3	T>C	4.566	.102	A	FE	.007	D
	3	C>T	3.846	.146	A	0.410	.815	A
	907 3 .145	C>A	3.498	.174	A	0.902	.637	A
SLC6A1 rs1062246 11055169 3 .417	Э	A>G	0.752	.686	A	6.731	.035	A

											A	۵	۵	۷	۷	۷	۵	A	A	۲	۷	A	A	۷	۷	۷	A					
.008	.157	.614	.222	.029	.078	.582	.213	.010	.107		.275	.038	.034	.288	.576	.044	600.	.228	.616	.876	.964	.313	.626	.926	.681	.866	.684	.126	.634	.932	.889	.634
9.703	3.699	0.977	3.012	7.111	5.113	1.084	3.093	9.291	4.475	TER	2.579	Ш	Ш	2.487	1.102	6.269	Ш	2.959	0.969	0.264	0.073	2.325	0.937	0.153	0.768	0.289	0.760	4.147	0.913	0.141	0.235	0.912
										E TRANSPOR	A	Я	A	A	A	A	D	A	A	A	A	A	A	A	A	A	A					
.022	.073	.129	.840	.589	666.	.981	.994	.932	.960	ADRENALINE	.082	.001	.150	.434	.462	.128	.033	.511	.717	.184	.343	.080	.435	.554	.219	.769	.584	.004	.275	.205	.746	.620
7.675	5.233	4.102	0.350	1.060	0.001	0.039	0.011	0.142	0.083	-Y 6 MEMBER 2 - NORADRENALINE TRANSPORTER	5.004	Ш	3.800	1.667	1.543	4.109	Ш	1.343	0.664	3.383	2.140	5.059	1.663	1.182	3.038	0.526	1.076	11.238	2.585	3.172	0.585	0.955
										Y 6 MEME	T>C	C>A	C>T	C C>C	A>G	A>G	C>T	T>A	C>T	T>C	0 C>C	G>A	C>A	A>C	G>T	C>T	C>T					
										FAMII	.242	.321	.087	.291	.155	.439	.403	.416	.323	.404	.438	.138	.433	.315	.321	.303	.303					
										ARRIER	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16					
										SOLUTE CARRIER	54247926	54251754	54252607	54257725	54258172	54260281	54263892	54269451	54274341	54274578	54276319	54279891	54283963	54287625	54289076	54289336	54289447					
HapA01	HapA02	HapA04	HapB01	HapB03	HapC01	HapC02	HapC03	HapD01	HapD02		rs2242446	rs17841327	rs3785143	rs192303	rs6499771	rs36027	rs36024	rs36021	rs40147	rs1814270	rs36017	rs3785155	rs47958	rs5568	rs1566652	rs5569	rs998424	HapA01	HapC01	HapC10	HapD01	HapD04
SLC6A1		SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2	SLC6A2									

	A	A	۷	n/a	۷	ĸ	۷	۷	A	۷	A	A	۷	A						۷	A	A	A	A	A	2	۵	۵	A			
	.615	.463	.557	n/a	.714	.015	.853	.676	.941	.902	.234	969.	.851	.463	.896	.218	.804	.710		.534	.479	.614	.240	.144	.372	.016	.018	.041	.114	.337	.313	.276
~	0.973	1.541	ΕE	n/a	0.673	ШЦ	0.318	0.783	0.122	0.207	2.907	0.064	Ш	1.541	0.220	3.043	0.437	0.684	2	1.254	1.473	0.974	2.851	3.873	1.979	Ш	Ш	Ш	4.337	2.173	2.324	2.573
- DOPAMINE TRANSPORTER	A	A	A	n/a	A	۷	۷	A	A	A	۷	A	A	ĸ					TRANSPORTER	A	A	۷	۷	۷	۷	۷	۷	۷	۷			
OPAMINE TR	.173	.621	.706	n/a	.127	.294	.155	.438	.774	.399	.319	.846	.212	.032	.728	.347	.456	.409	SEROTONIN TI	.628	.667	.655	.821	.874	.608	.737	.350	.735	.607	.825	.806	.980
MEMBER 3 – D	3.510	0.951	ΕE	n/a	4.120	2.452	3.724	1.653	0.512	1.840	2.283	0.333	Ш	Ш	0.635	2.116	1.570	1.786	MEMBER 4 – SI	0.931	0.808	0.846	0.394	0.270	0.995	0.611	2.102	0.617	0.999	0.386	0.432	0.041
ER FAMILY 6 M	C>T	G>A	A>G	C>A	A>G	T>A	C>G	C>C	T>C	T>C	0~0 C>	G>T	C>T	G>A					9	A>C	T>G	T>C	G>A	G>A	G>A	G>A	A>G	A>C	C>T			
	.219	.419	.052	.035	.265	.216	.447	.323	.465	.213	.253	.207	.060	.471					CARRIER FAMILY	.476	.478	.473	.469	.464	.089	.346	.214	.180	.345			
SOLUTE CARRI	5	5	5	2	2	5	5	5	5	5	5	5	5	5					E CARR	17	17	17	17	17	17	17	17	17	17			
SOLUT	1445711	1448077	1449813	1459036	1464412	1468629	1472932	1473588	1476905	1481135	1484164	1491354	1496199	1496728					SOLUTE	25548930	25549137	25550601	25555919	25562658	25567515	25571040	25571336	25574024	25575791			
	rs3863145	rs40184	rs11564773	rs6876225	rs6347	rs37022	rs2975292	rs11564758	rs464049	rs10053602	rs463379	rs403636	rs6350	rs2937639	HapA01	HapA07	HapA09	HapA10		rs3813034	rs1042173	rs4325622	rs3794808	rs140701	rs140700	rs2020942	rs8076005	rs6354	rs2066713	HapA01	HapA11	HapB01
	SLC6A3	SLC6A3	SLC6A3	SLC6A3	SLC6A3	SLC6A3	SLC6A3	SLC6A3	SLC6A3	SLC6A3	SLC6A3	SLC6A3	SLC6A3	SLC6A3	SLC6A3	SLC6A3	SLC6A3	SLC6A3		SLC6A4	SLC6A4	SLC6A4	SLC6A4	SLC6A4	SLC6A4	SLC6A4	SLC6A4	SLC6A4	SLC6A4	SLC6A4	SLC6A4	SLC6A4

2		3 A	9 R	1 A	9 V	8	3	8	-	1 A	4 A	7 A	4 A	9 0	1 A	A A	0 A	3 A	a n/a	A 0	9 A	A O	4 A	A A		¢					
.032		.323	.019	.171	.139	.208	.133	.328	-	.741	.794	.917	.834	.199	144.	.521	.330	.523	n/a	.360	.229	.180	.174	.531	.980		.018	.955	.018 .955 .732	.018 .955 .732 .860	
6.867		2.257	H	3.535	3.950	3.141	4.030	2.232	-	0.598	0.461	0.174	0.362	3.227	1.636	1.303	2.217	1.295	n/a	2.041	2.945	3.431	3.500	1.267	0.040	Ë		0.092	0.092 0.624	0.092 0.624 0.301	0.092 0.624 0.301 0.755
		A	Я	R	A				-	A	A	A	A	A	A	A	A	A	n/a	A	A	A	A	A	A	A		∢	A A	AAA	4 4 4 4
.765	SOR 1	.674	<.0001	.004	.422	600 [.]	.427	.651	TOR 1	.191	.879	.935	.829	.462	.860	.169	.474	.688	n/a	.066	.431	.743	.556	.326	966.	.847	GGR	000.	.256	.000 .256 .570	.000 .256 .570 .506
0.535	TACHYKININ PRECURSOR	0.788	ΞJ	FE	1.723	9.317	1.700	0.857	TACHYKININ RECEPTOR	3.306	0.259	0.135	0.374	1.544	0.303	3.557	1.493	0.748	n/a	5.424	1.683	0.595	1.174	2.240	0.007	0.333	0.808		2.724	2.724 1.126	2.724 1.126 1.363
	ГАСНҮКІІ	9<0	9 <a< td=""><td>A>G</td><td>C>T</td><td></td><td></td><td></td><td>TACHYK</td><td>G>A</td><td>A>G</td><td>A>G</td><td>T>C</td><td>0~0 C>0</td><td>T>C</td><td>G>A</td><td>C>T</td><td>C>T</td><td>T>C</td><td>A>G</td><td>T>C</td><td>T>G</td><td>C>T</td><td>C>T</td><td>A>G</td><td>C>T</td><td>C>T</td><td></td><td>G>A</td><td>G>A A>G</td><td>G>A A>G A>G</td></a<>	A>G	C>T				TACHYK	G>A	A>G	A>G	T>C	0~0 C>0	T>C	G>A	C>T	C>T	T>C	A>G	T>C	T>G	C>T	C>T	A>G	C>T	C>T		G>A	G>A A>G	G>A A>G A>G
		.267	.476	.429	.195				-	.243	.385	.390	.399	.224	.167	.199	.315	.197	.453	.440	.479	.484	.378	.458	.189	.169	.407		.462	.462 .334	.462 .334 .410
		2	2	7	2					2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	(7	7	7 7
		97197521	97199720	97203778	97205565				-	75131495	75140614	75146665	75155271	75155814	75161161	75174688	75208112	75208988	75215372	75216694	75223077	75234460	75238057	75240819	75241342	75249287	75255122		2/22/2/	75264786	75264786
HapB04		rs7793277	rs2072100	rs1229434	rs4526299	HapA01	HapA05	HapA06		rs1106855	rs4439987	rs11688000	rs6546952	rs17564182	rs3771810	rs34242711	rs2111378	rs3771825	rs3771827	rs741418	rs9808455	rs3771836	rs759588	rs3821318	rs6733933	rs13428269	rs3771853		rs1247/544	rs124//554 rs4853116	rs1247/554 rs4853116 rs3821320
SLC6A4		TAC1	TAC1	TAC1	TAC1	TAC1	TAC1	TAC1		TACR1	TACR1	TACR1	TACR1	TACR1	TACR1	TACR1	TACR1	TACR1	TACR1	TACR1	TACR1	TACR1	TACR1	TACR1	TACR1	TACR1	TACR1		IACR1	TACR1 TACR1	IACR1 TACR1 TACR1

												A	A	A					A	A	A
.821	.716	.330	.961	.523	.388	.226	.120	.174	.735	.940		.691	.477	.524	.517	966.	.538		.209	.236	.926
0.394	0.668	2.217	0.081	1.295	1.896	2.971	4.246	3.500	0.617	0.124		0.738	1.481	1.292	1.319	0.005	ЦЦ		3.130	2.892	0.154
												A	۲	A					۲	۲	A
.181	.843	.474	.397	.688	.076	.429	.812	.556	.330	.535	ASE	066.	.686	.430	.508	.693	.555	-ASE 2	.826	.948	.952
3.414	0.342	1.493	1.846	0.748	5.149	1.691	0.416	1.174	2.217	1.250	TYROSINE HYDROXYLASE	0.021	0.755	1.687	1.354	0.733	Ш	TRYTOPHAN HYDROXYLASE 2	0.383	0.108	0.097
											LYROSIN	T>C	G>A	G>A				YTOPHA	A>T	A>T	T>G
												.500	.243	.403				TR	.268	.357	.259
												11	11	11					12	12	12
												2142911	2144814	2147527					70624895	70636293	70696559
HapA01	HapA04	HapB01	HapB02	HapB03	HapC01	HapC04	HapD03	HapD05	HapE01	HapE04		rs2070762	rs6357	rs6356	HapA01	HapA02	HapA04		rs11179000	rs7955501	rs1487275
TACR1		TH	TH	TH	TH	TH	TH		TPH2	TPH2	TPH2										

A = additive model, ABCB1 = ATP-binding cassette, subfamily B (MDR/TAP) member 1, ADRA1D = adrenergic, alpha-1D receptor, ADRA2A = adrenergic, alpha-2A receptor, ADRB2 = adrenergic, beta. receptor kinase 2, BDNF = brain derived neurotrophic factor, Chr = chromosome, COMT = catechol-O-methyltransferase, CYP344 = cytochrome P450, family 3, subfamily A, polypeptide 4, D = dominant model, FE = Fisher's Exact, GAL = galanin, GALR1 = galanin receptor 1, GALR2 = adalanin receptor 2, GCH1 = GTP cyclohydrolase 1, Hap = haplotype, HTR1A = 5-hydroxytryptamine receptor 1A, G protein coupled, HTR1B = 5-
Nydroxytryptamine receptor 1B, G protein coupled, HTR2A = 5-hydroxytryptamine receptor 2A, G protein coupled, HTR3A = 5-hydroxytryptamine receptor 3A, ionotropic, MAF = minor allele frequency, n/a = not assayed because the SNP violated Hardy-Weinberg expectations (p<.001) or because its MAF was <.05, NOS1 = nitric oxide synthase 1, NOS2A = nitric oxide synthase 2, inducible, NPY = neuropeptide Y, NPYR1 =
neuropeptide Y receptor Y1, PDYN = prodynorphin; R = recessive model, SLC6A1 = solute carrier family 6 (neurotransmitter transporter, GABA) member 1, SLC6A2 = solute carrier family 6 (neurotransmitter transporter, noradrenaline) member 2, SLC6A3 = solute carrier family 6 (neurotransmitter transporter, noradrenaline) member 4, SNC6A2 = solute carrier family 6 (neurotransmitter transporter, noradrenaline) member 4, SNP=
single nucleotide polymorphism, TAC = tachykinin, precursor 1, TACR1 = tachykinin receptor 1, TH = tyrosine hydroxylase, TPH2 = tryptophan hydroxylase 2

Table 2 - Differences in Demographic and Clinical Characteristics Between the Lower Fatigue (n= 153) and Higher Fatigue (n= 244) Classes

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Characteristic	Lower	Higher	Statistic and
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				p-value
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Class	Class	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		n=153	n- 244	
Mean (SD) Mean (SD) Age (years) 57.8 (11.9) 53.1 (11.0) t=4.09, p<.0001				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(00.+70)	(01.070)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Mean (SD)	Mean (SD)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Age (years)	57.8 (11.9)	53.1 (11.0)	t=4.09, p<.0001
Self-administered Comorbidity Questionnaire score 3.8 (2.6) 4.6 (3.0) t=-2.64, p=.009 Fatigue severity score at enrollment 1.6 (1.6) 4.1 (2.2) t=-12.55, p<.0001	Education (years)	15.3 (2.5)	15.9 (2.8)	t=-2.02, p=.04
Self-administered Comorbidity Questionnaire score 3.8 (2.6) 4.6 (3.0) t=-2.64, p=.009 Fatigue severity score at enrollment 1.6 (1.6) 4.1 (2.2) t=-12.55, p<.0001	Karnofsky Performance Status score	96.6 (7.0)	91.1 (11.4)	t=5.86, p<.0001
Fatigue severity score at enrollment 1.6 (1.6) 4.1 (2.2) t=-12.55, p<.0001 Number of breast biopsies in past year 1.5 (0.8) 1.5 (0.8) U, p=.47 Number of positive lymph nodes 0.8 (1.9) 1.0 (2.4) t=-0.88, p=.38 Number of lymph nodes removed 4.8 (5.1) 6.4 (7.5) t=-2.43, p=.016 n (%) n (%) n (%) 100 (65.8) 155 (63.8) Black 19 (12.5) 21 (8.6) X²=2.82, p=.42 Asian/Pacific Islander 17 (11.2) 32 (13.2) Hispanic/Mixed ethnic background/Other 16 (10.5) 35 (14.4) Married/partnered (% yes) 64 (42.1) 100 (41.5) FE, p=.92 Work for pay (% yes) 71 (46.4) 118 (49.0) FE, p=.40 Gone through menopause (% yes) 96 (63.6) 151 (64.3) FE, p=.40 Gone through menopause (% yes) 90 (65.8) 151 (64.3) FE, p=.91 Stage of disease 29 (19.0) 44 (18.0) 151 (64.3) FE, p=.13 IIA and IIB 48 (31.4) 92 (37.7) 111A (118, 1116, 1116, 116, 116, 116, 116, 116			4.6 (3.0)	
Number of breast biopsies in past year 1.5 (0.8) 1.5 (0.8) U, p=.47 Number of positive lymph nodes 0.8 (1.9) 1.0 (2.4) t=-0.88, p=.38 Number of lymph nodes removed 4.8 (5.1) 6.4 (7.5) t=-2.43, p=.016 n (%) n (%) n (%) t=-2.43, p=.016 Ethnicity n (%) n (%) X²=2.82, p=.42 Asian/Pacific Islander 17 (11.2) 32 (13.2) Hispanic/Mixed ethnic background/Other Married/partnered (% yes) 64 (42.1) 100 (41.5) FE, p=.92 Work for pay (% yes) 71 (46.4) 118 (49.0) FE, p=.40 Gone through menopause (% yes) 96 (63.6) 151 (64.3) FE, p=.40 Gone through menopause (% yes) 92 (19.0) 44 (18.0) 1 IIA and IIB 48 (31.4) 92 (37.7) 1 IIIA, IIIB, IIIC, and IV 10 (65.) 23 (9.4) 1 Surgical treatment T T 130 (85.0) 197 (80.7) FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.1.00 Mastecto				
Number of positive lymph nodes 0.8 (1.9) 1.0 (2.4) t=-0.88, p=.38 Number of lymph nodes removed 4.8 (5.1) 6.4 (7.5) t=-2.43, p=.016 n (%) n (%) n (%) t=-2.43, p=.016 Ethnicity n (%) n (%) t=-2.43, p=.016 White 100 (65.8) 155 (63.8) t=-2.43, p=.016 Black 19 (12.5) 21 (8.6) X²=2.82, p=.42 Asian/Pacific Islander 17 (11.2) 32 (13.2) 14.4 Married/partnered (% yes) 64 (42.1) 100 (41.5) FE, p=.92 Work for pay (% yes) 71 (46.4) 118 (49.0) FE, p=.40 Gone through menopause (% yes) 96 (63.6) 151 (64.3) FE, p=.91 Stage of disease 0 29 (19.0) 44 (18.0) 14 IIA and IB 48 (31.4) 92 (37.7) 1114 Surgical treatment 123 (80.4) 195 (79.9) FE, p=.100 Mastectomy 30 (19.6) 49 (20.1) 151 (64.3) FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) <td< td=""><td></td><td>· · · ·</td><td>· · · /</td><td></td></td<>		· · · ·	· · · /	
Number of lymph nodes removed 4.8 (5.1) 6.4 (7.5) t=-2.43, p=.016 n (%) n (%) n (%) n (%) n (%) Ethnicity 100 (65.8) 155 (63.8) X²=2.82, p=.42 Asian/Pacific Islander 17 (11.2) 32 (13.2) X²=2.82, p=.42 Hispanic/Mixed ethnic background/Other 16 (10.5) 35 (14.4) X²=2.82, p=.42 Married/partnered (% yes) 64 (42.1) 100 (41.5) FE, p=.92 Work for pay (% yes) 71 (46.4) 118 (49.0) FE, p=.68 Lives alone (% yes) 40 (26.5) 54 (22.4) FE, p=.40 Gone through menopause (% yes) 96 (63.6) 151 (64.3) FE, p=.91 Stage of disease 29 (19.0) 44 (18.0) 48 (31.4) 92 (37.7) IIA and IIB 48 (31.4) 92 (37.7) 1114, IIIB, IIIC, and IV 100 (65.5) 23 (9.4) Surgical treatment 71 (30 (85.0) 197 (80.7) FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14 Breast conservation at the time of surgery (% yes) 33				
n (%) n (%) n (%) Ethnicity 100 (65.8) 155 (63.8) Black 19 (12.5) 21 (8.6) X^2 =2.82, p=.42 Asian/Pacific Islander 17 (11.2) 32 (13.2) Hispanic/Mixed ethnic background/Other 16 (10.5) 35 (14.4) Married/partnered (% yes) 64 (42.1) 100 (41.5) FE, p=.92 Work for pay (% yes) 71 (46.4) 118 (49.0) FE, p=.68 Lives alone (% yes) 40 (26.5) 54 (22.4) FE, p=.40 Gone through menopause (% yes) 96 (63.6) 151 (64.3) FE, p=.91 Stage of disease 0 29 (19.0) 44 (18.0) 1 I 66 (43.1) 85 (34.8) U, p=.13 IIA and IIB 48 (31.4) 92 (37.7) 10 (6.5) 23 (9.4) Surgical treatment 70 (30 (19.6) 49 (20.1) FE, p=1.00 Mastectomy 30 (19.6) 49 (20.1) FE, p=.1.4 Sentinel node biopsy (% yes) 50 (32.7) 98 (40.3) FE, p=.1.4 Breast reconstruction at the time of surgery (% yes)		· · ·		
Ethnicity 100 (65.8) 155 (63.8) Black 19 (12.5) 21 (8.6) X²=2.82, p=.42 Asian/Pacific Islander 17 (11.2) 32 (13.2) 16 (10.5) 35 (14.4) Married/partnered (% yes) 64 (42.1) 100 (41.5) FE, p=.92 Work for pay (% yes) 71 (46.4) 118 (49.0) FE, p=.68 Lives alone (% yes) 40 (26.5) 54 (22.4) FE, p=.40 Gone through menopause (% yes) 96 (63.6) 151 (64.3) FE, p=.91 Stage of disease 0 29 (19.0) 44 (18.0) 1 I 66 (43.1) 85 (34.8) U, p=.13 IIA and IIB 48 (31.4) 92 (37.7) 1116, 118, 111C, and IV 10 (6.5) 23 (9.4) Surgical treatment 50 (32.7) 98 (40.3) FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 58 (23.9) FE, p=.100 Neoadjuvant chemotherapy (wy yes) 21 (13.7) 58 (23.9) FE, p=.014 <td></td> <td></td> <td></td> <td></td>				
White 100 (65.8) 155 (63.8) Black 19 (12.5) 21 (8.6) X²=2.82, p=.42 Asian/Pacific Islander 17 (11.2) 32 (13.2) X²=2.82, p=.42 Married/partnered (% yes) 64 (42.1) 100 (41.5) FE, p=.92 Work for pay (% yes) 71 (46.4) 118 (49.0) FE, p=.68 Lives alone (% yes) 40 (26.5) 54 (22.4) FE, p=.40 Gone through menopause (% yes) 96 (63.6) 151 (64.3) FE, p=.91 Stage of disease 0 29 (19.0) 44 (18.0) 10 (e.5) 23 (9.4) IIA and IIB 48 (31.4) 92 (37.7) 111A, IIIB, IIIC, and IV 10 (6.5) 23 (9.4) FE, p=.100 Surgical treatment 71 (23 (80.4) 195 (79.9) FE, p=.100 FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) FE, p=.100 Neoadjuvant chemotherapy (% yes) 21 (13.7) 58 (23.9) FE, p=.014 Breast reconstruction at the time o	Ethnicity			
Black 19 (12.5) 21 (8.6) X²=2.82, p=.42 Asian/Pacific Islander 17 (11.2) 32 (13.2) 16 (10.5) 35 (14.4) Married/partnered (% yes) 64 (42.1) 100 (41.5) FE, p=.92 Work for pay (% yes) 71 (46.4) 118 (49.0) FE, p=.68 Lives alone (% yes) 40 (26.5) 54 (22.4) FE, p=.40 Gone through menopause (% yes) 96 (63.6) 151 (64.3) FE, p=.91 Stage of disease 0 29 (19.0) 44 (18.0) I I A and IIB 48 (31.4) 92 (37.7) IIIA, IIIB, IIIC, and IV 10 (6.5) 23 (9.4) Surgical treatment T T 10 (6.5) 23 (9.4) Sentinel node biopsy (% yes) 130 (85.0) 197 (80.7) FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) FE, p=.014 Readiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) FE, p=.92		100 (65.8)	155 (63.8)	
Asian/Pacific Islander 17 (11.2) 32 (13.2) Hispanic/Mixed ethnic background/Other 16 (10.5) 35 (14.4) Married/partnered (% yes) 64 (42.1) 100 (41.5) FE, p=.92 Work for pay (% yes) 71 (46.4) 118 (49.0) FE, p=.68 Lives alone (% yes) 40 (26.5) 54 (22.4) FE, p=.40 Gone through menopause (% yes) 96 (63.6) 151 (64.3) FE, p=.91 Stage of disease 0 29 (19.0) 44 (18.0) I I and IIB 66 (43.1) 85 (34.8) U, p=.13 IIA and IIB 48 (31.4) 92 (37.7) IIIA, IIIB, IIIC, and IV 10 (6.5) 23 (9.4) Surgical treatment 1 123 (80.4) 195 (79.9) FE, p=.100 Mastectomy 30 (19.6) 49 (20.1) 1 Sentinel node biopsy (% yes) 130 (85.0) 197 (80.7) FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) FE, p=.014 Radiation t			· · ·	X ² =2.82, p=.42
Hispanic/Mixed ethnic background/Other 16 (10.5) 35 (14.4) Married/partnered (% yes) 64 (42.1) 100 (41.5) FE, p=.92 Work for pay (% yes) 71 (46.4) 118 (49.0) FE, p=.68 Lives alone (% yes) 40 (26.5) 54 (22.4) FE, p=.40 Gone through menopause (% yes) 96 (63.6) 151 (64.3) FE, p=.91 Stage of disease 0 29 (19.0) 44 (18.0) 1 I 66 (43.1) 85 (34.8) U, p=.13 IIA and IIB 48 (31.4) 92 (37.7) 1113, 1116, 111C, and IV 10 (6.5) 23 (9.4) Surgical treatment 123 (80.4) 195 (79.9) FE, p=1.00 Mastectomy 30 (19.6) 49 (20.1) 130 (85.0) 197 (80.7) FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) FE, p=.014 Radiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) FE, p=.92 <td></td> <td></td> <td></td> <td>- 71-</td>				- 71-
Married/partnered (% yes) 64 (42.1) 100 (41.5) FE, p=.92 Work for pay (% yes) 71 (46.4) 118 (49.0) FE, p=.68 Lives alone (% yes) 40 (26.5) 54 (22.4) FE, p=.40 Gone through menopause (% yes) 96 (63.6) 151 (64.3) FE, p=.91 Stage of disease 29 (19.0) 44 (18.0) FE, p=.91 I 66 (43.1) 85 (34.8) U, p=.13 IIA and IIB 48 (31.4) 92 (37.7) IIIA, IIIB, IIIC, and IV 10 (6.5) 23 (9.4) Surgical treatment 71 (30.6) 49 (20.1) Mastectomy 30 (19.6) 49 (20.1) Sentinel node biopsy (% yes) 130 (85.0) 197 (80.7) FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) FE, p=.014 Radiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) FE, p=.92				
Work for pay (% yes)71 (46.4)118 (49.0)FE, p=.68Lives alone (% yes)40 (26.5)54 (22.4)FE, p=.40Gone through menopause (% yes)96 (63.6)151 (64.3)FE, p=.91Stage of disease29 (19.0)44 (18.0)029 (19.0)44 (18.0)IIA and IIB66 (43.1)85 (34.8)U, p=.13IIA and IIB, IIIC, and IV10 (6.5)23 (9.4)Surgical treatment71 (23 (80.4))195 (79.9)FE, p=1.00Mastectomy30 (19.6)49 (20.1)Sentinel node biopsy (% yes)130 (85.0)197 (80.7)FE, p=.34Axillary lymph node dissection (% yes)50 (32.7)98 (40.3)FE, p=.14Breast reconstruction at the time of surgery (% yes)33 (21.7)53 (21.7)FE, p=.1.00Neoadjuvant chemotherapy (% yes)21 (13.7)58 (23.9)FE, p=.014Radiation therapy during the first 6 months (% yes)87 (56.9)137 (56.1)FE, p=.92				FE, p=.92
Gone through menopause (% yes) 96 (63.6) 151 (64.3) FE, p=.91 Stage of disease 29 (19.0) 44 (18.0) 44 (18.0) 0 29 (19.0) 44 (18.0) 48 (31.4) 92 (37.7) IIA and IIB 48 (31.4) 92 (37.7) 92 (37.7) IIIA, IIIB, IIIC, and IV 10 (6.5) 23 (9.4) 76 Surgical treatment 70 79.9 77.9 Breast conservation 123 (80.4) 195 (79.9) 77.9 Mastectomy 30 (19.6) 49 (20.1) 76 Sentinel node biopsy (% yes) 130 (85.0) 197 (80.7) 76.7 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) 76.7 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) 76.7 Neoadjuvant chemotherapy (% yes) 21 (13.7) 58 (23.9) 76.7 76.7 Radiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) 76.7		71 (46.4)		
Gone through menopause (% yes) 96 (63.6) 151 (64.3) FE, p=.91 Stage of disease 29 (19.0) 44 (18.0) 44 (18.0) 0 29 (19.0) 44 (18.0) 48 (31.4) 92 (37.7) IIA and IIB 48 (31.4) 92 (37.7) 92 (37.7) IIIA, IIIB, IIIC, and IV 10 (6.5) 23 (9.4) 76 Surgical treatment 70 79.9 77.9 Breast conservation 123 (80.4) 195 (79.9) 77.9 Mastectomy 30 (19.6) 49 (20.1) 76 Sentinel node biopsy (% yes) 130 (85.0) 197 (80.7) 76.7 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) 76.7 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) 76.7 Neoadjuvant chemotherapy (% yes) 21 (13.7) 58 (23.9) 76.7 76.7 Radiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) 76.7	Lives alone (% yes)	40 (26.5)	54 (22.4)	FE, p=.40
Stage of disease 29 (19.0) 44 (18.0) 0 29 (19.0) 44 (18.0) IIA and IIB 66 (43.1) 85 (34.8) U, p=.13 IIA and IIB, IIIC, and IV 10 (6.5) 23 (9.4) 10 Surgical treatment 123 (80.4) 195 (79.9) FE, p=1.00 Mastectomy 30 (19.6) 49 (20.1) 10 Sentinel node biopsy (% yes) 130 (85.0) 197 (80.7) FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) FE, p=.014 Radiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) FE, p=.92	Gone through menopause (% yes)	96 (63.6)	151 (64.3)	
0 29 (19.0) 44 (18.0) I 66 (43.1) 85 (34.8) U, p=.13 IIA and IIB 48 (31.4) 92 (37.7) U IIIA, IIIB, IIIC, and IV 10 (6.5) 23 (9.4) FE, p=1.00 Surgical treatment 123 (80.4) 195 (79.9) FE, p=1.00 Mastectomy 30 (19.6) 49 (20.1) FE, p=.34 Sentinel node biopsy (% yes) 130 (85.0) 197 (80.7) FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) FE, p=.014 Radiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) FE, p=.92	Stage of disease			·
IIA and IIB 48 (31.4) 92 (37.7) IIIA, IIIB, IIIC, and IV 10 (6.5) 23 (9.4) Surgical treatment 103 (80.4) 195 (79.9) Breast conservation 123 (80.4) 195 (79.9) Mastectomy 30 (19.6) 49 (20.1) Sentinel node biopsy (% yes) 130 (85.0) 197 (80.7) FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) FE, p=.014 Radiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) FE, p=.92		29 (19.0)	44 (18.0)	
IIIA, IIIB, IIIC, and IV 10 (6.5) 23 (9.4) Surgical treatment 123 (80.4) 195 (79.9) Breast conservation 123 (80.4) 195 (79.9) Mastectomy 30 (19.6) 49 (20.1) Sentinel node biopsy (% yes) 130 (85.0) 197 (80.7) FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) FE, p=.014 Neoadjuvant chemotherapy (% yes) 21 (13.7) 58 (23.9) FE, p=.014 Radiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) FE, p=.92	I	66 (43.1)	85 (34.8)	U, p=.13
Surgical treatment 123 (80.4) 195 (79.9) FE, p=1.00 Mastectomy 30 (19.6) 49 (20.1) FE, p=34 Sentinel node biopsy (% yes) 130 (85.0) 197 (80.7) FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) FE, p=.014 Radiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) FE, p=.92	IIA and IIB	48 (31.4)	92 (37.7)	
Breast conservation Mastectomy 123 (80.4) 30 (19.6) 195 (79.9) 49 (20.1) FE, p=1.00 Sentinel node biopsy (% yes) 130 (85.0) 197 (80.7) FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) FE, p=.014 Neoadjuvant chemotherapy (% yes) 21 (13.7) 58 (23.9) FE, p=.014 Radiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) FE, p=.92	IIIA, IIIB, IIIC, and IV	10 (6.5)	23 (9.4)	
Mastectomy 30 (19.6) 49 (20.1) Sentinel node biopsy (% yes) 130 (85.0) 197 (80.7) FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) FE, p=.100 Neoadjuvant chemotherapy (% yes) 21 (13.7) 58 (23.9) FE, p=.014 Radiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) FE, p=.92	Surgical treatment			
Sentinel node biopsy (% yes) 130 (85.0) 197 (80.7) FE, p=.34 Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) FE, p=.100 Neoadjuvant chemotherapy (% yes) 21 (13.7) 58 (23.9) FE, p=.014 Radiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) FE, p=.92	Breast conservation	123 (80.4)	195 (79.9)	FE, p=1.00
Axillary lymph node dissection (% yes) 50 (32.7) 98 (40.3) FE, p=.14 Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) FE, p=1.00 Neoadjuvant chemotherapy (% yes) 21 (13.7) 58 (23.9) FE, p=.014 Radiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) FE, p=.92	Mastectomy	30 (19.6)	49 (20.1)	-
Breast reconstruction at the time of surgery (% yes) 33 (21.7) 53 (21.7) FE, p=1.00 Neoadjuvant chemotherapy (% yes) 21 (13.7) 58 (23.9) FE, p=.014 Radiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) FE, p=.92	Sentinel node biopsy (% yes)	130 (85.0)	197 (80.7)	FE, p=.34
Neoadjuvant chemotherapy (% yes) 21 (13.7) 58 (23.9) FE, p=.014 Radiation therapy during the first 6 months (% yes) 87 (56.9) 137 (56.1) FE, p=.92	Axillary lymph node dissection (% yes)	50 (32.7)	98 (40.3)	FE, p=.14
Radiation therapy during the first 6 months (% yes)87 (56.9)137 (56.1)FE, p=.92	Breast reconstruction at the time of surgery (% yes)	33 (21.7)	53 (21.7)	FE, p=1.00
	Neoadjuvant chemotherapy (% yes)	21 (13.7)	58 (23.9)	FE, p=.014
Chemotherapy during the first 6 months (% yes) $36(235)$ 97 (39.8) FF p= 001	Radiation therapy during the first 6 months (% yes)	87 (56.9)	137 (56.1)	FE, p=.92
(10,0)	Chemotherapy during the first 6 months (% yes)	36 (23.5)	97 (39.8)	FE, p=.001

Abbreviations: FE=Fisher Exact test, SD = standard deviation, U=Mann Whitney U test

Table 3 - Differences in Demographic and Clinical Characteristics Between the Higher Energy (n=127) and Lower Energy (n=270) Classes

Characteristic	Higher	Lower	Statistic and
	Energy	Energy	p-value
	Class	Class	praide
	Ciabo	Clabo	
	n=127	n= 270	
	(31.9%)	(67.8%)	
	(0.1.0,0)	(011070)	
	Mean(SD)	Mean (SD)	
Age (years)	56.5 (10.8)	54.2 (11.8)	t=1.88, p=.061
Education (years)	15.7 (2.2)	15.7 (2.8)	t=0.01, p=.994
Karnofsky Performance Status score	95.4 (9.4)	92.2 (10.6)	t=3.06, p=.002
Self-administered Comorbidity Questionnaire score	3.6 (2.3)	4.6 (3.0)	t=-3.47, p=.001
Mean energy score at enrollment	6.1 (2.7)	4.4 (2.2)	t=-6.26, p<.0001
Number of breast biopsies in past year	1.5 (0.8)	1.5 (0.8)	U, p=.604
Number of positive lymph nodes	0.8 (2.0)	1.0 (2.3)	t=0.76, p=.450
Number of lymph nodes removed	5.0 (6.3)	6.1 (6.9)	t=-1.51, p=.132
	n (%)	n (%)	
Ethnicity			
White	86 (68.3)	169 (62.8)	
Black	10 (7.9)	30 (11.2)	X ² =1.75, p=.627
Asian/Pacific Islander	16 (12.7)	33 (12.3)	
Hispanic/Mixed ethnic background/Other	14 (11.1)	37 (13.8)	
Married/partnered (% yes)	50 (39.7)	114 (42.7)	FE, p=.586
Work for pay (% yes)	66 (52.4)	123 (45.9)	FE, p=.236
Lives alone (% yes)	29 (23.0)	65 (24.4)	FE, p=.801
Gone through menopause (% yes)	84 (68.3)	163 (62.0)	FE, p=.256
Stage of disease		, , ,	·
0	29 (22.8)	44 (16.3)	
I	51 (40.2)	100 (37.0)	U, p=.040
IIA and IIB	39 (30.7)	101 (37.4)	
IIIA, IIIB, IIIC, and IV	8 (6.3)	25 (9.3)	
Surgical treatment			
Breast conservation	100 (78.7)	218 (80.7)	FE, p=.686
Mastectomy	27 (21.3)	52 (19.3)	
Sentinel node biopsy (% yes)	103 (81.1)	224 (83.0)	FE, p=.673
Axillary lymph node dissection (% yes)	40 (31.7)	108 (40.0)	FE, p=.120
Breast reconstruction at the time of surgery (% yes)	28 (22.2)	58 (21.5)	FE, p=.896
Neoadjuvant chemotherapy (% yes)	22 (17.5)	57 (21.1)	FE, p=.421
Radiation therapy during the first 6 months (% yes)	75 (59.1)	149 (55.2)	FE, p=.515
Chemotherapy during the first 6 months (% yes)	34 (26.8)	99 (36.7)	FE, p=.054

Abbreviations: FE=Fisher Exact test, SD = standard deviation, U=Mann Whitney U test

Post-hoc contrasts of the difference in stage of disease between the Higher Energy and Lower Energy classes failed to identify the sub-groups that differed between the classes (p<.0083)

Predictor	Odds Ratio	Standard Error	95% CI	Z	p-value					
ADRB2 rs1042718	0.13	0.100	0.030, 0.582	-2.67	.008					
Age	0.80	0.052	0.707, 0.912	-3.39	.001					
KPS score	0.56	0.097	0.396, 0.783	-3.36	.001					
SCQ score	1.11	0.062	0.998, 1.243	1.92	.054					
Any chemotherapy	2.31	0.669	1.307, 4.072	2.88	.004					
Overall model fit: $\chi^2 = 59.87$, p <										
BDNF rs6265	0.50	0.149	0.278, 0.897	-2.32	.020					
Age	0.80	0.052	0.707, 0.910	-3.43	.001					
KPS score	0.57	0.101	0.406, 0.810	-3.16	.002					
SCQ score	1.13	0.063	1.010, 1.256	2.14	.032					
Any chemotherapy	2.50	0.727	1.414, 4.420	3.15	.002					
Overall model fit: χ^2 = 56.84, p <			•	•						
COMT rs9332377	0.48	0.158	0.256, 0.919	-2.22	.026					
Age	0.82	0.052	0.723, 0.928	-3.13	.002					
KPS score	0.55	0.095	0.389, 0.767	-3.49	<.0001					
SCQ score	1.13	0.063	1.011, 1.260	2.15	.031					
Any chemotherapy	2.41	0.697	1.370, 4.251	3.05	.002					
Overall model fit: χ^2 = 56.34, p <	$0001 \text{ R}^2 = 0.$	1392								
CYP3A4 rs4646437	0.48	0.157	0.253, 0.914	-2.24	.025					
Age	0.81	0.052	0.710, 0.914	-3.36	.001					
KPS score	0.55	0.098	0.392, 0.783	-3.34	.001					
SCQ score	1.12	0.063	1.005, 1.251	2.04	.041					
Any chemotherapy	2.40	0.691	1.365, 4.221	3.04	.002					
Overall model fit: $\chi^2 = 56.43$, p <.0001 R ² = 0.1394										
GALR1 rs949060	2.46	0.950	1.150, 5.244	2.32	.020					
Age	0.81	0.053	0.713, 0.920	-3.25	.001					
KPS score	0.58	0.100	0.413, 0.814	-3.15	.002					
SCQ score	1.12	0.063	1.007, 1.253	2.09	.037					
Any chemotherapy	2.55	0.738	1.444, 4.496	3.23	.001					
Overall model fit: $\chi^2 = 56.98$, p <	$0001 \text{ R}^2 = 0.$	1411								
GCH1 rs3783642	0.47	0.144	0.260, 0.859	-2.46	.014					
Age	0.81	0.052	0.713, 0.917	-3.31	.001					
KPS score	0.58	0.102	0.411, 0.818	-3.10	.002					
SCQ score	1.12	0.064	1.006, 1.256	2.07	.039					
Any chemotherapy	2.40	0.690	1.364, 4.216	3.04	.002					
Overall model fit: $\chi^2 = 57.66$, p <	$0001 \text{ R}^2 = 0.$	1424								
NOS1 rs9658498	0.45	0.164	0.223, 0.920	-2.19	.029					
NOS1 rs2293052	4.58	2.429	1.621, 12.953	2.87	.004					
Age	0.80	0.053	0.705, 0.913	-3.33	.001					
KPS score	0.54	0.095	0.383, 0.762	-3.51	<.0001					
SCQ score	1.11	0.063	0.991, 1.240	1.80	.072					
Any chemotherapy	2.45	0.721	1.373, 4.361	3.04	.002					
Overall model fit: $\chi^2 = 69.13$, p <			· ·	-						
NPYR1 Haplotype A04	1.77	0.346	1.207, 2.595	2.92	.003					
Age	0.81	0.052	0.711, 0.917	-3.31	.001					
KPS score	0.55	0.099	0.388, 0.784	-3.32	.001					
SCQ score	1.11	0.063	0.994, 1.241	1.85	.064					

Table 4 - Multiple Logistic Regression Analyses for Neurotransmitter Genes and Lower Fatigue Versus Higher Fatigue Classes

Any chemotherapy	2.58	0.756	1.454, 4.584	3.24	.001					
Overall model fit: χ^2 = 60.22, p <.0001 R ² = 0.1487										
SLC6A2 rs17841327	10.31	8.139	2.195, 48.439	2.96	.003					
Age	0.81	0.053	0.717, 0.924	-3.18	.001					
KPS score	0.56	0.101	0.395, 0.797	-3.23	.001					
SCQ score	SCQ score 1.13 0.064 1.007, 1.257 2.08 .037									
Any chemotherapy	2.68	0.784	1.514, 4.756	3.38	.001					
Overall model fit: $\chi^2 = 65.01$, p < .0001 R ² = 0.1606										

Multiple logistic regression analyses of candidate gene associations with Lower Fatigue versus Higher Fatigue classes (n=301). For each model, the first three principal components identified from the analysis of ancestry informative markers, as well as self-reported race/ethnicity, were retained in all models to adjust for potential confounding due to race/ethnicity (data not shown). For the regression analyses, predictors evaluated in each model included genotype (ADRB2 rs1042718: CC+CA versus AA; BDNF rs6265: GG versus GA+AA; COMT rs9332377: TT versus TC+CC; CYP3A4 rs4646437: CC versus CT+TT; GALR1 rs949060: GG+GC versus CC; GCH1 rs3783642: TT versus TC+CC; NOS1 rs9658498: TT+TC versus CC; NOS1 rs2293052: CC+CT versus TT; NPYR1 HapA04: haplotype composed of the rs9764 common T allele and the rs7687423 common G allele; SLC6A2 rs17841327: CC+CA versus AA), age (5 years increments), functional status (KPS score in 10 unit increments), number of comorbid conditions, and receipt of chemotherapy within six months after surgery.

Abbreviations: ADRB2 = adrenergic, beta-2 receptor, surface; any chemotherapy = receipt of chemotherapy within six months after surgery; BDNF = brain derived neurotrophic factor; CI = confidence interval; COMT = catechol-O-methyltransferase; CYP3A4 = cytochrome P450, family 3, subfamily A, polypeptide 4; GALR1 = galanin receptor 1; GCH1 = GTP cyclohydrolase 1; Hap = haplotype; KPS, Karnofsky Performance Status; NOS1 = nitric oxide synthase 1; NPYR1 = neuropeptide Y receptor Y1; SCQ = Self-administered Comorbidity Questionnaire; SLC6A2 = solute carrier family 6 (neurotransmitter transporter, noradrenaline) member 2

Predictor	Odds Ratio	Standard Error	95% CI	Z	p-value					
NOS1 rs471871	0.28	0.138	0.103,0.736	-2.57	.010					
KPS score	0.65	0.101	0.483, 0.884	-2.75	.006					
Any chemotherapy	1.73	0.479	1.002, 2.972	1.97	.049					
Overall model fit: χ^2 = 24.43, p = .0037 R ² = 0.0638										
SLC6A1 rs2675163	1.85	0.507	1.082, 3.166	2.25	.025					
SLC6A1 Haplotype D01	0.60	0.116	0.413, 0.880	-2.62	.009					
KPS score	0.68	0.105	0.503, 0.921	-2.49	.013					
Any chemotherapy	1.56	0.440	0.898, 2.714	1.58	.114					
Overall model fit: $\chi^2 = 30.86$, p	$=.0006 \text{ R}^2 =$	0.0810								
SLC6A2 rs36027	0.59	0.107	0.415, 0.844	-2.90	.004					
KPS score	0.66	0.102	0.484, 0.889	-2.72	.007					
Any chemotherapy	1.75	0.485	1.014, 3.010	2.01	.044					
Overall model fit: $\chi^2 = 26.25$, p	=.0019 R ² =	0.0686								
SLC6A3 rs37022	9.75	10.612	1.155, 82.302	2.09	.036					
KPS score	0.66	0.103	0.484, 0.895	-2.67	.008					
Any chemotherapy	1.75	0.487	1.017, 3.022	2.02	.043					
Overall model fit: $\chi^2 = 24.77$, p	$=.0032 \text{ R}^2 =$	0.0647								
SLC6A4 rs2020942	0.36	0.144	0.161, 0.787	-2.55	.011					
KPS score	0.66	0.103	0.488, 0.898	-2.65	.008					
Any chemotherapy	1.73	0.482	1.006, 2.991	1.98	.047					
Overall model fit: $\chi^2 = 24.16$, p	$=.0041 \text{ R}^2 =$	0.0631								
TAC1 rs2072100	2.11	0.718	1.083, 4.113	2.19	.028					
KPS score	0.67	0.102	0.498, 0.905	-2.61	.009					
Any chemotherapy										
Overall model fit: $\chi^2 = 22.78$, p = .0067 R ² = 0.0595										

Table 5 - Multiple Logistic Regression Analyses for Neurotransmitter Genes and Higher Energy Versus Lower Energy Classes

Multiple logistic regression analyses of candidate gene associations with Higher Energy versus Lower Energy classes (n=301). For each model, the first three principal components identified from the analysis of ancestry informative markers, as well as self-reported race/ethnicity, were retained in all models to adjust for potential confounding due to race/ethnicity. For the regression analyses, predictors evaluated in each model included genotype (NOS1 rs471871 genotype: AA +AT versus TT; SLC6A1 rs2675163 genotype: TT versus TC+CC; SLC6A1 HapD01 haplotype: composed of the rs10514669 common C allele, the rs2697138 common C allele, and the rs1062246 common A allele; SLC6A2 rs36027 genotype: AA versus AG versus GG; SLC6A3 rs37022 genotype: TT+TA versus AA; SLC6A4 rs2020942 genotype: GG+GA versus AA; TAC1 rs2072100 genotype: AA+AG versus GG), functional status (KPS score in 10 unit increments), and receipt of chemotherapy within six months after surgery.

Abbreviations: Any chemotherapy = receipt of chemotherapy within six months after surgery; CI = confidence interval; Hap = haplotype; KPS, Karnofsky Performance Status; NOS1 = nitric oxide synthase 1; SCQ = Self-administered Comorbidity Questionnaire; SLC6A1 = solute carrier family 6 (neurotransmitter transporter, GABA) member 1; SLC6A2 = solute carrier family 6 (neurotransmitter transporter, noradrenaline) member 2; SLC6A3 = solute carrier family 6 (neurotransmitter transporter, dopamine) member 3; SLC6A4 = solute carrier family 6 (neurotransmitter transporter, serotonin) member 4; TAC1 = tachykinin, precursor 1

Publishing Agreement

It is the policy of the University to encourage the distribution of all theses, dissertations, and manuscripts. Copies of all UCSF theses, dissertations, and manuscripts will be routed to the library via the Graduate Division. The library will make all theses, dissertations, and manuscripts accessible to the public and will preserve these to the best of their abilities, in perpetuity.

Please sign the following statement:

I hereby grant permission to the Graduate Division of the University of California, San Francisco to release copies of my thesis, dissertation, or manuscript to the Campus Library to provide access and preservation, in whole or in part, in perpetuity.

Author Signature

6-6-2014 Date