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Abstract
We prove nonemptyness of domains of proper discontinuity of Anosov groups of affine
Lorentzian transformations of R

n .

Keywords Discrete groups · Affine transformations
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1 Introduction

There is a substantial body of literature, going back to the pioneering work of Margulis [24],
on properly discontinuous non-amenable groups of affine transformations, see e.g. [1–3, 9,
10, 14, 25], and numerous other papers, in particular, the recent survey [11]. In this paper we
address a somewhat related question of nonemptyness of domains of proper discontinuity of
discrete groups acting on affine spaces:

Question 1 Which discrete subgroups � < A f f (Rn) have nonempty discontinuity domain
in the affine space R

n?

In this paperwe limit ourselves to the following setting: Suppose that� < R
n
�O(n−1, 1) <

A f f (Rn) is a discrete subgroup such that the linear projection � : � → O(n − 1, 1) is a
faithful representation with convex-cocompact image, see e.g. [6] for the precise definition.
Given a representation � : � → O(n−1, 1), the affine action of� is determined by a cocycle
c ∈ Z1(�, R

n−1,1
� ). Even in the case n = 3 and �(�) a Schottky subgroup of O(2, 1) (which

is the setting of Margulis’ original examples), while some actions are properly discontinuous
on the entire R

3 (as proven by Margulis, see also [14] for a general description of such
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actions), nonemptyness of domains of discontinuity for arbitrary c does not appear to be
obvious.1

The main result of this note is:

Theorem 2 Every subgroup � < R
n

� O(n − 1, 1) with faithful convex-cocompact linear
representation � : � → O(n − 1, 1), acts properly discontinuously on a nonempty open
subset of the Lorentzian space R

n−1,1.

We will prove this theorem by applying results on domains of discontinuity for discrete
group actions on flag-manifolds proven in [21]. More precisely, we will check that � is a
τmod -Anosov subgroup of the Lie group G = O(n, 2) for a suitable model simplex (actually,
a vertex) τmod ⊂ σmod . In section 4 we will equivariantly identify the Lorentzian space
R
n−1,1 and an open Schubert cell in a partial flag-manifold F1 = G/Pτmod of the group

G = O(n, 2). In [21] we proved that for each τmod -Anosov subgroup � of a semisimple Lie
group G and each fat thickening Th(�τmod (�)) ⊂ F1 of the τmod -limit set �τmod (�) ⊂ F1,
the group � acts properly discontinuously on the open subset �Th(�) = F1\Th(�τmod (�)).
In Sect. 5 of this paper we verify that �Th(�) �= ∅ in the context of τmod -Anosov subgroups
� < R

n
�O(n−1, 1) < O(n, 2) and themaximal thickening Th. This, in turn, will establish

nonemptyness of the domain of discontinuity of � in R
n−1,1.

2 Geometric preliminaries

Symmetric spaces of noncompact type and their visual boundaries For basics of symmetric
spaces and their visual boundaries we refer the reader to [4, 12].

Consider a symmetric space of noncompact type X = G/K , where G is a semisimple
Lie group (with finite center) and K is its maximal compact subgroup. Fix also a base-point
o ∈ X (the choice is ultimately irrelevant), fixed by K . We let d denote the Riemannian
distance function on X and ∠x (y, z) the Riemannian angle between nondegenerate geodesic
segments xy, xz emanating from x . The visual boundary ∂∞X of X , as a set, is identified
with the set of equivalence classes [ρ] of geodesic rays ρ : R+ → X in X , where two rays are
equivalent if and only if their images are at a finite Hausdorff distance from each other. One
says that every ray ρ representing ξ = [ρ] is asymptotic to ρ. The Tits angle ∠T its(ξ1, ξ2)

between points ξ1 = [ρ1], ξ2 = [ρ2] is defined as
sup
x∈X

∠x (ρ1(t), ρ2(t)),

where the supremum is taken over all pairs of rays ρ1, ρ2 representing ξ1, ξ2 such that
ρ1(0) = ρ2(0) = x . Since X is a symmetric space, there exists a flat F ⊂ X such that ξ1, ξ2
are represented by rays whose images are contained in F . The supremum in the definition
of ∠T its(ξ1, ξ2) is realized by pairs of such rays. The Tits angle defines the Tits metric on
∂∞X . This metric is invariant under the natural G-action on ∂∞X .

The visual boundary of X has two natural topologies. The first one is the visual topology:
Every ξ ∈ ∂∞X is represented by a unique unit speed geodesic ray emanating from o. Thus,
there is a natural bijection between ∂∞X and the unit sphere in the tangent space ToX . The
visual topology on ∂∞X is the one making this bijection a homeomorphism. The natural
G-action on ∂∞X is continuous with respect to this topology. This topology extends to a
visual compactification X = X ∪ ∂∞X : A sequence (xn) in X converges to ξ = [ρ] ∈ ∂∞X

1 The reaction to the question that we observed included: “clearly true”, “clearly false”, “unclear”.
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if
lim
n→∞ ∠o(xn, ρ(1)) = 0 and lim

n→∞ d(o, xn) = ∞,

where ρ(0) = o. For a subset A ⊂ X , the visual boundary of A is the intersection of ∂∞X
with the closure of A in X with respect to the visual topology.

The second, Tits topology, is the one defined by the Tits metric. With respect to this
topology, ∂∞X has the structure of a certain simplicial complex, the spherical (Tits) building
∂T its X , invariant under the action ofG.Wewill fix amodel chamber of ∂∞X , i.e. a facet σmod

of this spherical building, a model maximal flat Fmod ⊂ X , it is the unique maximal flat in
X whose visual boundary amod (the model apartment in ∂T its X ) is a subcomplex containing
σmod and such that o ∈ Fmod . The Euclidean Weyl chamber � of X is the cone in Fmod with
the tip o over σmod (the union of geodesic rays emanating from o and asymptotic to the points
of σmod ). TheWeyl group W of X is the image of K ∩ StabG(Fmod) in the isometry group of
the flat Fmod . Then � is a fundamental domain of theW -action on Fmod . The Weyl groupW
has a standard word-metric; we let w0 denote the unique longest element of W with respect
to this metric. Identifying Fmod with R

r (where r is the rank of X ), we get the opposition
involution ι = −w0 preserving σmod . In the case of symmetric spaces of type B, as in this
paper, w0 = − id and, accordingly, ι = id.

Antipodality. Two points ξ, η in ∂∞X are called opposite if∠T its(ξ, η) = π , equivalently,
if there exists a geodesic c in X whose opposite subrays are asymptotic to ξ and η respectively.
Equivalently, there exists a Cartan involution of X swapping ξ and η. Two simplices τ, τ̂

in ∂T its X are opposite (or, antipodal) if and only if they contain opposite generic points in
∂∞X . (A point in a simplex τ is generic if it does not belong to any proper face of τ .) Two
simplices in ∂T its X are opposite if and only if they are swapped by a Cartan involution of X .

Horoballs. For every point ξ = [ρ] in ∂∞X one defines the Busemann function bξ on X
(or, more precisely, a family of Busemann functions which differ by additive constants):

bξ (x) = lim
t→∞(d(ρ(0), x) − t).

Busemann functions satisfy the following equivariance condition with respect to the action
of isometries g of X :

bgξ = bξ ◦ g + Const .

Sublevel sets of Busemann functions bξ are called horoballs centered at ξ and denoted Hbo.
Busemann functions and, hence, horoballs, are convex. We will need the following lemma
that can be found in [4, Lemma 4.10] and [12, Proposition 3.4.3]:

Lemma 3 For each horoball Hbo in X centered at ξ , the visual boundary of Hbo equals
the closed π

2 -ball B̄(ξ, π
2 ) in ∂∞X centered at ξ , where the distance is computed in the Tits

metric on ∂∞X.

Parallel sets Fix two opposite points ξ, ξ̂ ∈ ∂∞X . The parallel set P(ξ, ξ̂ ) is a certain
symmetric subspace in X , which is the union of all geodesics l in X that are forward-
asymptotic to ξ ∈ ∂∞X and backward-asymptotic to ξ̂ ∈ ∂∞X . Suppose that ξ, ξ̂ are
generic points of two opposite simplices τ, τ̂ in ∂T its X . Then P(ξ, ξ̂ ) splits isometrically
as a direct product Fτ,τ̂ × Y , where Fτ,τ̂ is a flat in X of dimension dim(τ ) + 1 and Y is a
(totally-geodesic) symmetric subspace of noncompact type in X , called a cross-section of
P(ξ, ξ̂ ). In the case of interest to us, τ, τ̂ are vertices in ∂T its X , Fτ,τ̂ is 1-dimensional and
Y is a symmetric space of rank 1 (actually, the hyperbolic space). The pointwise stabilizer
Gτ,τ̂ of {τ, τ̂ } is a reductive subgroup of Pτ ; it splits off as a product GY × R

r , where R
r is

the group of transvections in G preserving the flat Fτ,τ̂ and GY is a semisimple Lie group,
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it is the stabilizer of Y in Gτ,τ̂ . The action of GY on Y (and P(ξ, ξ̂ )) may have a nontrivial
(but compact) kernel and the image of GY in the isometry group of Y is a subgroup of finite
index. The unipotent radical Uτ � Pτ is a normal subgroup such that Pτ = Uτ � Gτ,τ̂ . A
more refined form of this decomposition is

Pτ = (Uτ � GY ) � R
r .

The subgroup Uτ � GY preserves each horoball centered at ξ . See [22, §2.8, 2.10] for more
details.

For the material below we refer the reader to [18, 21].
For each point x ∈ X one defines the �-valued distance d�(o, x) as the unique point of

intersection Kx∩�. (This definition extends to general pairs of points in X byG-invaraince.)
Consider a face τmod of the spherical Weyl chamber σmod of X . These faces parameterize
standard parabolic subgroups Pτmod of G, their G-stabilizers. The τmod -boundary ∂τmodσmod

of σmod is the union of the faces of σmod which do not contain τmod . The open star ost(τmod)

of τmod in σmod is the complement σmod \ ∂τmodσmod . In the example relevant to us, when
σmod = [u, v] is a simplex with the vertices u, v and τmod is one of the vertices of σmod ,
say, u, ∂τmodσmod = {v} and ost(τmod) = [u, v) = σmod \ {v}. In general, one defines
V (∂τmodσmod) ⊂ � as the cone over ∂τmodσmod .

Stars at infinity The group G acts transitively on the set of facets of ∂∞X ; thus, a face τ

of ∂∞X is said to have the type τmod if they lie in the same G-orbit. One defines open stars
ost(τ ) of faces τ of ∂∞X : One first takes its star, st(τ ), the subcomplex in ∂T its X which
is the union of faces containing τ , and then removes from st(τ ) those faces which do not
contain τ . In the case of interest to us, ∂∞X is 1-dimensional (a connected graph of valence
continuum at each vertex), τ is a vertex of ∂∞X , st(τ ) is the union of edges (including their
respective vertices!) containing τ as an end-point and ost(τ ) is the interior of st(τ ) with
respect to the Tits topology, i.e. the topology of the graph ∂T its X . A point ξ ∈ ∂∞X is said
to be τmod -regular if it belongs to ost(τ ) for some τ ∈ Flagτmod

. One quantifies this notion
of regularity by taking a compact subset � ⊂ ost(τmod); a ξ ∈ ∂∞X is said to be �-regular
if its projection to σmod belongs to �.

Flag-manifolds Fix a model simplex τmod . The G-orbit Gτmod is naturally identified with
the quotient G/Pτmod . From the viewpoint of the Tits topology, this quotient is discrete, but,
it also has a natural manifold topology (the quotient topology of the Lie group G), making it
a partial flag-manifold Flagτmod

. Another way to describe this topology is to note that there
is a G-equivariant bijection between G/Pτmod and the orbit Gξ for a generic point ξ ∈ τmod .
This bijection is a homeomorphism from G/Pτmod to Gξ , where the latter is equipped with
the subspace topology inherited from the visual topology on ∂∞X .

ThickeningsWefix amodel face τmod of σmod . TheW -orbit of τmod in themodel apartment
amod is naturally identified with the quotientW/Wτmod , whereWτmod is the stabilizer of τmod

in W . The group W acts on W/Wτmod via the left multiplication. The strong Bruhat order ≤
on W descends to the folding (partial) order on W/Wτmod :

[w] ≤ [w′] if and only if representatives w,w′ or [w], [w′] ∈ W/Wτmod can be chosen so
that w ≤ w′.

An ideal in the poset (W/Wτmod ,≤) is a proper subset (i.e., a nonempty subset with
nonempty complement) I satisfying the property that with every [w] ∈ I , the ideal contains
all smaller elements of W/Wτmod . The poset (W/Wτmod ,≤) has a unique maximal element
[w0]wherew0 is the longest element ofW .Accordingly, (W/Wτmod ,≤)has a uniquemaximal
ideal J equal to the complement of {[w0]}. An ideal I is called fat if

I ∪ w0 I = W/Wτmod .
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For instance, the unique maximal ideal is fat.
For every pair of simplices τ, τ ′ ∈ Flagτmod

, there exist g ∈ G andw ∈ W such that g(τ ) =
τmod and g(τ ′) = ν = wτmod , a simplex in amod . The simplex ν is not uniquely determined
by this, but its Wτ -orbit is uniquely determined. Hence, we define the relative position
of τ ′ with respect to τ , pos(τ ′, τ ), as the Wτ -orbit of ν, equivalently, the corresponding
Wτmod -orbit in W/Wτmod (or, equivalently, the double coset of w in Wτmod \W/Wτmod ). Let
I ⊂ W/Wτmod be an ideal invariant under the left Wτmod -action. (For instance, the unique
maximal ideal satisfies this condition.) For a simplex τ ∈ Flagτmod

, we define the thickening
Th(τ ) = ThI (τ ) ⊂ Flagτmod

as the subset consisting of simplices τ ′ such that pos(τ ′, τ ) ⊂ I .
In other words, τ ′ ∈ Th(τ ) if and only if there exists g ∈ G such that g(τ ) = τmod and
g(τ ′) ∈ I . The thickening Th(τ ) is a certain closed subcomplex (a union of Schubert cycles)
in a cellular decomposition of Flagτmod

relative to τ . The thickenings Th(τ ) satisfy

Th(gτ) = g Th(τ ), g ∈ G.

Given a subset A ⊂ Flagτmod
and a Wτmod -invariant ideal I in (W/Wτmod ,≤), we define the

corresponding thickening of A as

Th(A) =
⋃

τ∈A

Th(τ ).

It is observed in [21] (see also [17, Lemma 8.18] and Lemma 18 of this paper) that for every
closed subset A ⊂ Flagτmod

and an ideal I , the corresponding thickening Th(A) is a closed
subset of Flagτmod

. A thickening is called fat if the corresponding ideal in W/Wτmod is fat. A
thickening is maximal if the corresponding ideal is the maximal ideal.

Regularity and flag-convergence A nondegenerate geodesic segment xy in X is said to be
τmod -regular if d�(x, y) ∈ ost(τmod).

A sequence (xn) in X is said to be τmod -regular if the sequence of vectors d�(o, xn) ∈ �

diverges away from V (∂τmodσmod) as n → ∞. In the example relevant to us, when G has
rank two and, accordingly, � is two-dimensional, and τmod is a vertex of an edge σmod ,
V (∂τmodσmod) is the null-set of a certain linear functional on �, a simple root α. Then
τmod -regularity of (xn) means that

lim
n→∞ α (d�(o, xn)) = ∞.

Asequence (xn) is said to be uniformly τmod -regular if the sequence of vectors d�(o, xn) ∈
� diverges away from V (∂τmodσmod) at a linear speed with respect to d(o, xn). In a more
quantitative way, one describes uniformly regular sequences as follows. Fix a compact subset
� ⊂ ost(τmod). A sequence (xn) is said to be �-regular if d(o, xn) → ∞ and for all but
finitely many members of the sequence, the geodesic rays ρn from o through d�(o, xn) are
asymptotic to points of �. Then a sequence (xn) is uniformly τmod -regular if and only if it
is �-regular for some compact � ⊂ ost(τmod).

The same definitions apply to sequences (gn) in G: A sequence (gn) is (uniformly) τmod -
regular if for some (equivalently, every) x ∈ X , the sequence xn = gn(x) is (uniformly)
τmod -regular.

In [23] we defined a partial compactification of X , X
τmod = X ∪ Flagτmod

. Below we will
only describe the notion of flag-convergence for τmod -regular sequences in X to points of
Flagτmod

with respect to the topology of X
τmod . If X has rank 1, then σmod is a singleton,

τmod = σmod and Flagτmod
= ∂∞X (with the visual topology). Accordingly, a sequence (xn)

converges to τ ∈ Flagτmod
if and only if it converges to τ ∈ ∂∞X in the visual topology.
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In higher rank, a ray geodesic oξn through xn need not even terminate in a face τn of ∂T its X
of type τmod . But, if it does, then xn → τ ∈ Flagτmod

if and only if τn → τ in Flagτmod
.

In general, one defines flag-convergence xn → τ ∈ Flagτmod
for τmod -regular sequences

(xn) in X as follows. Due to the τmod -regularity assumption on (xn), one finds (for all
sufficiently large n) a unique face τn of type τmod in Flagτmod

, such that ξn belongs to the
open star ost(τn) of τn . By the definition, xn → τ (the sequence (xn) flag-converges to τ ) if
and only if τn → τ in Flagτmod

.
If (xn) is uniformly τmod -regular (i.e., �-regular for a compact � ⊂ ost(τmod)) one can

also describe flag-convergence xn → τ as follows. First, note that a diverging sequence xn ∈
X converges to ξ ∈ ∂∞X with respect to the visual topology on X if and only if the sequence
(ξn) defined above converges to ξ in the visual topology on ∂∞X . Of course, the sequence
(ξn) need not converge, but (by compactness of ∂∞X ) it has convergent subsequences. In
view of the �-regularity of (xn), all subsequential limits of (ξn) in ∂∞X (equivalently, of
(xn) in X ) are �-regular points in ∂∞X . Then (xn) flag-converges to τ ∈ Flagτmod

if and
only if the accumulation set of (xn) in ∂∞X is contained in ost(τ ).

3 Regular and Anosov subgroups

Regular subgroups Inwhat follows,wefix an ι-invariant face τmod ofσmod . (For the symmetric
spaces appearing in this paper, the ι-invariance condition is automatically satisfied since
ι = id.) Importance of this invariance assumption comes from the fact that we will be
interested in accumulation points in X

τmod of �-orbits of τmod -regular subgroups � < G. For
a typical element γ ∈ �, if a sequence (γ n)n∈N is τmod -regular, then the inverse sequence
(γ −n)n∈N is ιτmod -regular. Hence, to have a satisfactory theory, it makes sense to assume
that τmod = ιτmod .

Remark 4 Wemust also note that the notion equivalent to τmod -regularity of subgroups� < G
and the τmod -limit set was first introduced by Benoist in his highly influential work [5, section
3.6]. For the benefit of an interested reader, his notation for the limit set was �� .

We refer the reader to [18, 21] for the detailed discussion of τmod -regular discrete sub-
groups � < G and their τmod -limit sets (denoted �τmod (�) in our papers), which are certain
closed �-invariant subsets of Flagτmod

.
Belowwe review the notions of regularity and limit sets. A (necessarily discrete) subgroup

� < G is said to be τmod -regular if every sequence of distinct elements γn ∈ � is τmod -
regular. Similarly, one defines uniformly τmod -regular subgroups of G. For instance, if X
has rank 1, then � is 1-dimensional, hence, uniform regularity of a subgroup is equivalent
to discreteness.

We next turn to the discussion of limit sets. Following [5], for a discrete (not necessarily
regular) subgroup � < G we define the visual limit set �(�) ⊂ ∂∞X as the accumulation
set of one (equivalently, every) �-orbit �x ⊂ X with respect to the visual compactification
of X . The next lemma is an immediate consequence of Lemma 3:

Lemma 5 Let � < G be a discrete subgroup preserving a horoball Hbo ⊂ X centered at a
point ξ ∈ ∂∞X. Then

�(�) ⊂ B̄(ξ,
π

2
),

the closed ball in ∂T its X, centered at ξ , of radius π
2 with respect to the Tits metric.
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The τmod -limit set �τmod (�) of a τmod -regular subgroup � < G is the accumulation set in
Flagτmod

⊂ X
τmod of some (equivalently, every) orbit �x ⊂ X . In other words, τ ∈ �τmod (�)

if and only if there exists a sequence (γn) in� such that the sequence (γn(x))flag-converges to
τ . Since flag-convergence is independent of the base-point, �τmod (�) is a closed �-invariant
subset of Flagτmod

.
By the construction, since �τmod = �τmod (�) is �-invariant, so is Th(�τmod ) ⊂ Flagτmod

for every τmod -invariant thickening Th = ThI . Since �τmod is closed in Flagτmod
, so is

Th(�τmod ). If � is uniformly τmod -regular then �τmod (�) has an alternative description:

�τmod (�) = {τ ∈ Flagτmod
: ost(τ ) ∩ �(�) �= ∅}, (6)

cf. the alternative description of flag-convergence in the end of the previous section.

Corollary 7 Under the hypotheses of Lemma 5, assume also that G is a simple Lie group of
type B2 (hence, ∂T its X is a graph with edges of length π/4), τmod is one of the two vertices
of σmod , ξ is a vertex of type τmod , and � < G is a uniformly τmod-regular subgroup. Then

�τmod (�) ⊂ B̄(ξ,
π

2
) ∩ Flagτmod

⊂ ∂T its X .

Proof Note that if η ∈ ∂T its X is a τmod -regular point, τ ∈ Flagτmod
⊂ ∂T its X , then η ∈ ost(τ )

if and only if ∠T its(η, τ ) < π
4 . By Lemma 5, �(�) ⊂ B̄(ξ, π

2 ). By combining these facts
with (6), we obtain

�τmod (�) ⊂
⋃

η∈�(�)

B(η,
π

4
) ∩ Flagτmod

⊂ B(ξ,
3π

4
) ∩ Flagτmod

⊂ B̄(ξ,
π

2
) ∩ Flagτmod

.

��
A key result used in this paper is Theorem 6.13 from [21]:

Theorem 8 Let Th be a fat thickening. Then for every τmod-regular subgroup � < G, the
�-action on

�Th(�) := Flagτmod
\ Th(�τmod (�))

is properly discontinuous.

Anosov subgroupsAn important class of τmod -regular discrete subgroups � < G consists
of τmod -Anosov subgroups. Anosov representations � → G, whose images are Anosov
subgroups, were first introduced in [26] for fundamental groups of closed manifolds of
negative curvature, then in [15] for arbitrary hyperbolic groups; we refer the reader to our
papers [17, 22, 23], for a simplification of the original definition as well as for alternative
definitions and to [18, 20] for surveys of the results.

Instead of a detailed discussion of Anosov subgroups, we limit ourselves here to a brief
description of their key properties used in this paper. Firstly, suppose that H is a rank one
Lie group and XH be the corresponding rank one symmetric space (the reader can assume
that H = O(n − 1, 1) and XH is the hyperbolic n − 1-space H

n−1). Then the Tits topology
on ∂∞XH is discrete. Accordingly, there is only one type of visual boundary simplices
τmod = τ H

mod and, as we noted earlier, a subgroup � < H is discrete if and only if it
is τmod -regular. The τmod -limit set �τmod (�) ⊂ ∂∞XH is the visual limit set �(�). A
subgroup � < H is Anosov (more precisely, τ H

mod -Anosov) if and only if it is convex-
cocompact, equivalently, if it is discrete, finitely-generated and one, equivalently, every, orbit
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map � → XH is a quasiisometric embedding of � (equipped with a word-metric) to the
symmetric space XH . See for instance, Theorem 1.1 in [22] and also [7].

Now consider the case of discrete subgroups of a semisimple Lie group G without any
restriction on rank; X = G/K is the associated symmetric space. Suppose that τmod is
an ι-invariant face of σmod . Below are two of the many characterizations of τmod -Anosov
subgroups � < G given in [17, 22, 23]:

Theorem 9 The following are equivalent for a subgroup � < G:

1. � is Gromov-hyperbolic, τmod-regular (as a subgroup of G), any two distinct limit points
in �τmod (�) ⊂ Flagτmod

are antipodal and there exists an equivariant homeomorphism
β : ∂∞� → �τmod (�). Here ∂∞� is the Gromov-boundary of �. The map β is called
the boundary map of �.

2. � is finitely generated, uniformly τmod-regular (as a subgroup of G) and is undistorted,
i.e. one (equivalently, every) orbitmap ox : � → �x ⊂ X is a quasiisometric embedding.

3. � < G is τmod-Anosov.

Images of rank 1 Anosov subgroups in higher rank lie groups Suppose thatG is a semisim-
ple Lie group (the reader can assume that G = O(n, 2)) and H → G is an embedding of
Lie groups (the reader can think of the natural inclusion O(n − 1, 1) → O(n, 2); it the one
given by the composition of the embeddings O(n − 1, 1) → GL,L̂ → G discussed in the
next section). For simplicity of the discussion (and because it is true in the main example of
interest), we assume that the opposition involution ι of the group G is the identity map. Let
X = G/K be the symmetric space of G, XH is the symmetric space of H and let XH → X
be a totally-geodesic embedding equivariant with respect to the embedding H → G. (In the
context of H = O(n − 1, 1) < G = O(n, 2), we will discus the embedding XH → X
in Sect. 5.) The embedding XH → X induces an isometric embedding of Tits boundaries
∂T its XH → ∂T its X (this embedding is not in general simplicial, but it will be simplicial in
the case of interest in this paper); wewill identify ∂∞XH with its image in ∂∞X . Accordingly,
for every point η ∈ ∂T its XH , there exists a unique smallest simplex τ := ξ(η) in ∂T its X con-
taining η. (In other words, η is a generic point of τ .) All the simplices τ = ξ(η) have the same
type, which we denote τmod . (In the case of interest, we will see that ξ(η) is always a vertex
of the type of an isotropic line, i.e. an element of the flag-manifold F1. Hence, in this case ξ

is the identity embedding.) The map ξ : ∂∞XH → Flagτmod
is continuous, where ∂∞XH is

equipped with the visual topology. It follows from the main definition of the τmod -regularity
and τmod -limit set that for a discrete subgroup � < H , its image in G (also denoted �) is
uniformly τmod -regular and that �τmod (�) = ξ(�(�)), where �(�), as we noted earlier, is
the limit set of � in the visual boundary of XH . Furthermore, it follows immediately from
every characterization of τmod -Anosov subgroups of G given in [22, 23] (see for instance
Theorem 9 above) that if � < H is convex-cocompact, then � < G is τmod -Anosov. This
fact was first observed by Labourie in [26, Proposition 3.1] in the Fuchsian case and then
in [15, Proposition 4.7] in full generality. We summarize these observations in the following
proposition:

Proposition 10 Let G be a semisimple Lie group, H < G is a rank 1 simple Lie subgroup, let
XH → X be a totally-geodesic embedding of the associated symmetric spaces, equivariant
with respect to the embedding H → G. Then there exists a model face τmod of ∂T its X such
that the following hold for every discrete subgroup � < H:

1. The image of � in G is uniformly τmod-regular.
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2. There exists a �-equivariant homeomorphism β : �(�) → �τmod (�) ⊂ Flagτmod
send-

ing each λ ∈ �(�) ⊂ ∂∞XH to the unique simplex of type τmod in ∂T its X containing
λ ∈ ∂∞XH ⊂ ∂∞X.

3. If � < H is convex-cocompact, then � < G is τmod-Anosov.

Note that the map β here is the restriction of the map ξ to �(�) ⊂ ∂∞XH . It can be
identified with the boundary map of the Anosov subgroup � < G as in Theorem 9 (the group
� acts cocompactly the Gromov-hyperbolic space which is the closed convex hullC of�(�)

in XH and, hence, ∂∞� can be identified with ∂∞C = �(�)).

4 Lorentzian space R
n−1,1 as an open Schubert cell in a partial

flag-manifold of the groupG = O(n, 2)

In this section we will construct an equivariant identification of the Lorentzian space R
n−1,1

with an open Schubert cell in a partial flag-manifold F1 of the group G = O(n, 2), namely,
the space of isotropic lines in V = R

n,2.
Consider the groupG = O(n, 2) and its symmetric space X = G/K , K = O(n)×O(2).

The group G has two partial flag-manifolds: the Grassmannian F1 of isotropic lines and
another partial flag manifold F2 of isotropic planes in V = R

n,2, where the quadratic form
on V is

q = x1y1 + x2y2 + z21 + .... + z2n .

We will use the notation 〈·, ·〉 for the associated bilinear form on V .
In the paper we will be using the the incidence geometry interpretation of ∂T its X , the Tits

boundary of the symmetric space of the group G = O(n, 2). The Tits boundary ∂T its X (as
a spherical building) has the structure of a metric bipartite graph whose vertices are labelled
lines and planes, these are the elements of F1 and F2 respectively. Two vertices L ∈ F1 and
p ∈ F2 are connected by an edge iff the line L is contained in the plane p. The edges of this
bipartite graph have length π/4. We refer the reader to [8, 13, 27].

The group G acts simply transitively on the set of edges of ∂T its X and we can identify
the quotient ∂T its X/G with σmod , the model spherical chamber of ∂T its X . Thus σmod is a
circular segment of the length π/4. This segment has two vertices, one of which we denote
τmod , this is the one which is the projection of F1. The flag-manifold F1 is the quotientG/PL ,
where PL is the stabilizer of an isotropic line L in G; this flag-manifold is n-dimensional.

Recall that two vertices of ∂T its X are opposite iff they are within Tits distance π from
each other. In terms of the incidence geometry of the vector space (V , q), two lines L, L̂ ∈ F1
are opposite iff the restriction of q to span(L, L̂) is nondegenerate, necessarily of the type
(1, 1). Two lines L, L ′ ∈ F1 are within Tits distance π/2 iff they span an isotropic plane in
V .

Consider a subgroup PL < G; it is a maximal parabolic subgroup of G; let U < PL be
the unipotent radical of PL . Choosing a line L̂ opposite to L , defines a semidirect product
decomposition PL = U�GL,L̂ , whereGL,L̂ is the stabilizer in PL of the line L̂; equivalently,

it is the stabilizer of the parallel set P(L, L̂).2 This subgroup is the intersection

GL,L̂ = PL ∩ PL̂ .

2 The parallel set P(L, L̂) splits isometrically as the product l × H
n−1, where H

n−1 is the cross-section of
P(L, L̂).
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The orthogonal complement VL,L̂ ⊂ V of the anisotropic plane span(L, L̂) is invariant
under GL,L̂ , hence,

GL,L̂
∼= R

× × O(VL,L̂ , q|VL,L̂
) ∼= R

× × O(n − 1, 1). (11)

The subgroup R+ < R
× acts via transvections along geodesics in the symmetric space X

connecting L and L̂ . The groupGL,L̂ acts on both (V ′, q ′) = (VL,L̂ , q|VL,L̂
) and onU , where

the action of R+ on V ′ = VL,L̂ is trivial. In order to simplify the notation, we set

O(q ′) = O(V ′, q ′).

In terms of linear algebra, R+ < R
× is the identity component of the orthogonal group

O(span(L, L̂), q|span(L,L̂)
) ∼= O(1, 1).

We will use the notation
G ′

L := U � O(q ′) < PL .

This subgroup is the stabilizer in PL of horoballs in X centered at L .
Our next goal is to describe Schubert cells in the Grassmannian F1. We fix L ∈ F1 and

define the subvariety QL ⊂ F1 consisting of all (isotropic) lines L ′ ⊂ V such that span(L, L ′)
is isotropic (the line L or an isotropic plane). In terms of the Tits’ distance, QL \ {L} consists
of lines L ′ ∈ F1 within distance π

2 from L . The complement

Lopp = F1\QL

consists of lines opposite to L . The group PL acts transitively on {L}, QL \ {L} and Lopp

and each of these subsets is an open Schubert cell of F1 with respect to PL and we obtain the
PL -invariant Schubert cell decomposition

F1 = {L} � (QL\{L}) � Lopp.

We next describe QL more geometrically. A vector v ∈ V spans an isotropic subspace
with L iff v ∈ L⊥ and satisfies the quadratic equation q(v) = 0. Since we are only interested
in nonzero vectors v �= 0 and their spans span(v), we obtain the natural identification

QL ∼= P(q−1(0) ∩ L⊥),

the right hand-side is the projectivization a singular quadric hypersurface in L⊥. Thus, QL

is a (projective) singular quadric and L ∈ QL is the unique singular point of the QL .
In the next lemma, by an ellipsoid in a real projective space RP

k−1 we mean the projec-
tivization E of a quadric in R

k given by a quadratic form of signature (k − 1, 1). (The reason
for the name is that in a suitable affine patch in RP

k−1, E becomes an ellipsoid.)

Lemma 12 Given two opposite isotropic lines L, L̂, the intersection of the quadrics

E = EL,L̂ := QL ∩ QL̂

is an ellipsoid in P(L⊥ ∩ L̂⊥). In particular, E ∩ {L, L̂} = ∅.
Proof As before, let V ′ ⊂ V denote the codimension two subspace orthogonal to both L, L̂ .
Then each L ′ ∈ E is spanned by a vector v ∈ V ′ satisfying the condition q(v) = 0. In other
words, E is the projectivization of the quadric

{v ∈ V ′ : q(v) = 0}.
i.e. is an ellipsoid, since q restricted to V ′ has signature (n − 1, 1). ��
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Our next goal is to (equivariantly) identify the open cell Lopp with the n-dimensional
Lorentzian affine space R

n−1,1 (where a chosen L̂ ∈ Lopp will serve as the origin), so
that the group PL is identified with the group of Lorentzian similarities, where the simply-
transitive action U � Lopp is identified with the action of the full group of translations of
R
n−1,1. In particular, for now, and until the end of the proof of Proposition 15, we fix isotropic

opposite lines L and L̂ . After the end of the proof of Proposition 15 we will allow the line L̂
to vary.

We fix nonzero vectors e ∈ L , f ∈ L̂ such that 〈e, f 〉 = 1. Then

V = span(e) ⊕ span( f ) ⊕ V ′.

We obtain an epimorphism η : PL → O(q ′) by sending g ∈ PL first to the restriction g|L⊥
and then to the projection of the latter to the quotient space V ′ ∼= L⊥/L (the quotient of
L⊥ by the null-subspace of q|L⊥). Hence, the kernel of this epimorphism is precisely the
solvable radical U � R+ of PL .

For each v′ ∈ V ′ we define the linear transformation (a shear) s = sv′ ∈ GL(V ) by its
action on e, f and V ′:

(1) s(e) = e.
(2) s( f ) = − 1

2q(v′)e + f + v′.
(3) For w ∈ V ′, s(w) = w − 〈v′, w〉e.

The next two lemmata are proven by straightforward calculations which we omit:

Lemma 13 For each s = sv′ the following hold:

1. s ∈ PL.
2. s lies in the kernel of the homomorphism η : PL → GL(V ′) and is unipotent. In

particular, s ∈ U for each v′ ∈ V ′.

Lemma 14 The map φ : v′ �→ sv′ is a continuous monomorphism V ′ → U, where we equip
the vector space V ′ with the additive group structure.

SinceU acts simply transitively on Lopp , it is connected and has dimension n. Therefore,
themonomorphismφ is surjective and, hence, a continuous isomorphism. Thus,φ determines
a homeomorphism h : V ′ → Lopp

h : v′ �→ sv′(L̂) = span

(
−1

2
q(v′)e + f + v′

)
,

so that in particular
h(0) = L̂.

The group GL,L̂
∼= R

× × O(V ′, q ′) acts on both Lopp and on U (via conjugation). The
center of GL,L̂ acts on V ′ trivially while its action on U is via a nontrivial character.

Proposition 15 The map h is equivariant with respect to these two actions of O(V ′, q ′).

Proof Consider a linear transformation A ∈ O(V ′, q ′); as before, we identify O(V ′, q ′)with
a subgroup of O(V , q) fixing e and f . For an arbitrary v′ ∈ V ′ we will verify that

sAv′ = Asv′ A−1.

It suffices to verify this identity on the vectors e, f and arbitrary w ∈ V ′. We have:
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1. For each v′ ∈ V ′, sv′(e) = e, while A(e) = A−1(e) = e. It follows that

e = sAv′(e) = Asv′ A−1(e) = e.

2.

sAv′( f ) = −1

2
q(Av′)e + f + Av′ = −1

2
q(v′)e + f + Av′

while (since Ae = e, A f = f )

Asv′ A−1( f ) = Asv′( f ) = A(−1

2
q(v′)e + f + v′) = −1

2
q(v′)e + f + Av′.

3. For w ∈ V ′,
sAv′(w) = w − 〈Av′, w〉e = w − 〈v′, A−1w〉e,

while

Asv′ A−1w = Asv′(A−1w) = A(A−1w − 〈v′, A−1w〉e) = w − 〈v′, A−1w〉e.
��

In view of this proposition we will identify V ′ with the open Schubert cell Lopp , which, in
turn, enables us to use Lorentzian geometry to analyze Lopp and, conversely, to study discrete
subgroups of PL using Theorem 8 on domains of discontinuity of τmod -regular group actions
on theflag-manifold F1.Under the identificationV ′ ∼= Lopp , for each L ′ ∈ Lopp (in particular,
for L ′ = L̂), the conic QL ′ ∩ Lopp becomes a translate of the null-cone of the form q ′ on V ′
(see Lemma 16 below) and the flag-manifold F1 becomes a compactification of V ′ obtained
by adding to it the “quadric at infinity” QL .

Lemma 16 For all v′ ∈ V ′, q ′(v′) = 0 iff q vanishes on span( f , h(v′)), i.e. iff h(v′) ∈ QL̂ .
In other words, QL̂ ∩ Lopp is the image under h of the null-cone of q ′ in the vector space V ′.

Proof Since f and sv′( f ) (spanning the line h(v′)) are null-vectors of q , the vanishing of q
on span( f , h(v′)) is equivalent to the vanishing of

〈 f , sv′( f )〉 = −1

2
q(v′).

��
Lemma 17 For each neighborhood N of L in QL there exists L ′ ∈ Lopp such that EL,L ′ ⊂ N.

Proof We pick L∞ ∈ F1 opposite to L and, as above, identify Lopp∞ with (V ′, q ′). Then for
a sequence Li ∈ Lopp∞ contained in the, say, future light cone of QL ∩ Lopp∞ and converging
radially to L , the intersections of null-cones EL,Li = QLi ∩ QL converge to L . Since
Li /∈ QL , they are all opposite to L . Taking L ′ = Li for a sufficiently large i concludes the
proof. ��

For each subset C ⊂ F1, we define the thickening of C :

Th(C) =
⋃

L∈C
QL .

This notion of thickening is a special case of the one discussed in Sect. 2: If we restrict to a
single apartment a in the Tits building of G, then for the vertex L ∈ a, Th(L) ∩ a = QL ∩ a
consists of three vertices within Tits distance π

2 from L . Thus, the thickening Th is maximal
and, hence, fat (see Sect. 2).
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Lemma 18 For every compact subset C ⊂ F1, the thickening Th(C) ⊂ F1 is compact.

Proof Compactness of thickenings (of closed subsets of general flag-manifolds) is a general
fact observed in [21, p. 193], a proof can be found in [17, Lemma 8.18], we add a proof here
for the sake of completeness (it is the same as in [17]). Compactness of Th(L) = QL for
each L ∈ F1 is clear. Observe that for g ∈ G, g Th(L) = Th(gL). Consider a closed subset
C ⊂ F1. Take a sequence Lk ∈ C converging to L0 ∈ C . There exists a sequence gk ∈ K such
that gk(L1) = Lk for all k ∈ N (since themaximal compact subgroup K < G acts transitively
on F1). In view of compactness of the subgroup K < G, without loss of generality, we may
assume that the sequence gk converges to some g0 ∈ K . Thus, the sequence of subsets
gk(L1) ⊂ Th(C) converges to g0(L1) with respect to the Hausdorff metric on the set of
nonempty closed subsets of F1. At the same time, the sequence gk(L1) = Lk converges
to L0, which implies that L0 = g0(L1). Thus, the limit of the sequence of thickenings
gk(Th(L1)) equals the thickening Th(L0) ⊂ Th(C). It follows that Th(C) ⊂ F1 is closed;
compactness of F1 implies compactness of Th(C).

Lemma 19 For any two opposite isotropic lines L, L̂ ∈ F1 and each compact subset C ⊂
QL̂ ∩ Lopp, the intersection Th(C) ∩ Lopp is a proper subset of Lopp.

Proof Let H ⊂ Lopp ∼= V ′ be an affine hyperplane in V ′ intersecting QL̂ only at L̂ . Then

C ′ := {L ′ ∈ H : QL ′ ∩ C �= ∅}
is compact in H . Next, observe that for L1, L2 ∈ F1, L1 ∈ QL2 ⇐⇒ L2 ∈ QL1 . Thus,
every L ′ ∈ H\C ′ does not belong to Th(C). ��
Lemma 20 For each compact C ⊂ QL \{L} the thickening Th(C) is a proper compact subset
of F1.

Proof Lemma 17 implies that there exists L∞ ∈ Lopp such that EL,L∞ is disjoint from C .
Thus, C is contained in Lopp∞ . In particular, Lemma 19 implies that Th(C) is a proper subset
of F1. Compactness of Th(C) was proven in Lemma 18. ��

5 Proof of themain theorem

We continue with the notation introduced in the previous section. Consider the subgroups
G ′

L < PL < G with G = O(n, 2). The subgroup H = O(n − 1, 1) < G stabilizes two
opposite points in ∂∞X , which are isotropic lines L, L̂ and, hence, preserves the parallel set
P(L, L̂) consisting of geodesics in X asymptotic to both L, L̂ . This parallel set splits as the
product R × Y , where Y is a totally-geodesic symmetric subspace in X (necessarily of rank
one) and for each y ∈ Y the product R×{y} is one of the geodesics in X asymptotic to L, L̂ .
The subgroup H preserves P(L, L̂); it also necessarily preserves the product decomposition.
The identity component H0 < H also necessarily preserves each {t} × Y (for otherwise, we
obtain a nontrivial isometric action of H on the real line). Moreover, since H preserves both
L and L̂ , the entire group H preserves each {t} × Y . Pick a point y ∈ Y and take a visual
boundary point η ∈ ∂∞Y . We have two geodesic rays in P(L, L̂) emanating from y: One is
asymptotic to L , another (contained in Y ) asymptotic to η. These rays are obviously contained
in a 2-dimensional flat in X and are orthogonal to each other. Hence, the Tits angle between
η, L equals π/2. Since the Tits boundary of X is a bipartite graph with edge-length π/4, and
L is a vertex of this graph, the point η is also a vertex and has the same type as L , i.e. the
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type of an isotropic line. Similarly, η has the Tits distance π/2 from L̂ . Since the subgroup
H = O(n − 1, 1) < G = O(n, 2) preserves each {t} × Y , there exists a totally-geodesic
isometric embedding of the symmetric space XH of H into {t} × Y . (Actually, (11) implies
that XH is the entire {t} × Y but we will not need this fact.)

From now on, τmod is a vertex of the Tits building ∂∞X which has the type of an isotropic
line. In view of Proposition 10, we conclude:

Lemma 21 Let � < H be a discrete subgroup. Then the image of � under the embedding
H → G is τmod-regular. Every τmod-limit point η of � is a vertex of ∂∞X of the type of an
isotropic line, which is at the Tits distance π/2 from both L, L̂. Accordingly, η belongs to the
intersection QL ∩ QL̂ .

Corollary 22 If � < H is a convex-cocompact subgroup, then its image in G is τmod-Anosov
and its τmod-limit set �τmod (�) is contained in QL ∩ QL̂ .

We next consider the slightly more general case of uniformly τmod -regular discrete
subgroups � < PL :

Lemma 23 The τmod-limit set�τmod (�) of every uniformly τmod-regular subgroup� < PL <

G is contained in QL.

Proof According to Corollary 7, �τmod (�) ⊂ B̄(L, π
2 ) ∩ F1. The latter intersection is QL

since both consist of isotropic lines L ′ ⊂ V such that span(L, L ′) is an isotropic subspace
of V . ��
Proposition 24 Suppose that � < G ′

L is a τmod-regular discrete subgroup whose τmod-limit
set does not contain L. Then Th(�τmod (�)) is closed in F1, Th(�τmod (�)) �= F1, and the
action

� � �Th(�) = F1\Th(�τmod (�))

is properly discontinuous.

Proof Since �τmod (�) is a compact subset of QL , the first statement of the proposition is a
special case of Lemma 20. The proper discontinuity statement is a special case of Theorem
8 since the thickening Th is fat. ��

We now describe certain conditions on τmod -regular discrete subgroups � < G ′
L which

will ensure that�τmod (�) does not contain the point L . Each subgroup� < G ′
L has the linear

part �0, i.e. its projection to O(q ′) ∼= O(n − 1, 1), which is identified with the semisimple
factor of the stabilizer in PL of some L̂ ∈ Lopp . We now assume that:

• �0 is a convex-cocompact subgroup of O(n − 1, 1).
• The projection

� : � → �0

is an isomorphism.

As we proved in Corollary 22, �0 < G is a τmod -Anosov subgroup ofG and�τmod (�0) ⊂
QL ∩ QL̂ . In particular, �τmod (�0) does not contain L by Lemma 12.

Given a subgroup �0 < O(q ′), the inverse ρ : �0 → � to � : � → �0 is determined by
a cocycle c ∈ Z1(�0, V ′) which describes the translational parts of the elements of �:

ρ(γ ) : v �→ γ v + c(γ ), v ∈ V ′ ∼= R
n−1,1.
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Pick some t ∈ R+; then tc is again a cocycle corresponding to the conjugate representation
ρt , where we identity t ∈ R+ with a central element of GL,L̂ . Sending t → 0 we obtain:

lim
t→0

ρt = id,

the identity embedding �0 → O(n − 1, 1) < PL . In view of stability of Anosov repre-
sentations (see [15, Theorem 5.13] and [19, Theorems 1.10, 1.11], [16, Corollary 6.14]) we
conclude that all representations ρt are τmod -Anosov and the τmod -limit sets of �t = ρt (�0)

vary continuously with t ; moreover,

t�τmod (�t1) = �τmod (�t2)

where t = t2/t1. In particular,
�τmod (�) ⊂ QL\{L}

is a compact subset. Proposition 24 now implies:

Corollary 25 For each � as above,

Th(�τmod (�)) �= F1

and the action
� � �Th(�) = F1\Th(�τmod (�))

is properly discontinuous.

Thus, we proved that each discrete subgroup � < PL as above has nonempty domain of
discontinuity in the vector space V ′. Theorem 2 follows. ��
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