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Abstract

It has been suggested that children learn the meanings
of words by observing the regularities across different
situations in which a word is used. However, experi-
mental studies show that children are also sensitive to
the syntactic properties of words and their context at
a young age, and can use this information to find the
correct referent for novel words. We present a unified
computational model of word learning which integrates
cross-situational evidence with the accumulated seman-
tic properties of the lexical categories of words. Our
experimental results show that using lexical categories
can improve performance in learning, particularly for
novel or low-frequency words in ambiguous situations.

Learning the Meaning of Words

In the course of learning a language, children need
to learn mappings between words and their meanings,
mostly from noisy and ambiguous contexts. It has been
suggested that children learn the meanings of words by
observing the regularities across different situations in
which a word is used, or the cross-situational evidence
(Quine, 1960; Pinker, 1989). Experimental studies on
children and adult learners have shown that both groups
are sensitive to cross-situational evidence, and can effi-
ciently use it to deduce the correct meanings of novel
words in ambiguous situations (Smith & Yu, 2007; Mon-
aghan & Mattock, 2009). Moreover, many computa-
tional models have demonstrated that cross-situational
learning is a powerful and efficient mechanism for learn-
ing the correct mappings between words and meanings,
and can explain several behavioural patterns observed in
children (Siskind, 1996; Yu, 2005; Fazly et al., 2008).

Another valuable source of information for mapping
words to meanings is the syntactic structure of the sen-
tence that a word appears in. There is substantial evi-
dence that children are sensitive to the structural regu-
larities of language from a very young age, and that they
use these structural cues to find the referent of a novel
word (e.g. Naigles & Hoff-Ginsberg, 1995; Gertner et al.,
2006), a hypothesis known as syntactic bootstrapping
(Gleitman, 1990). The syntactic bootstrapping account
is in accordance with children’s early sensitivity to dis-
tributional properties of language: one-year-old infants
can recognize sentences from an artificial grammar af-
ter a short period of exposure (Gomez & Gerken, 1999),
and 2 to 3-year-olds demonstrate robust knowledge of
some of the abstract lexical categories such as nouns and
verbs (e.g., Gelman & Taylor, 1984; Kemp et al., 2005).

Therefore, it is likely that they draw on their knowledge
of the structural regularities of language (and of lexical
categories in particular) to facilitate word learning, es-
pecially in cases where cross-situational evidence is not
reliable. However, a coherent account of word learning
that explains the interaction between these two informa-
tion sources is lacking. Also, despite the extensive body
of experimental research on the role of syntactic knowl-
edge in semantics acquisition, few computational models
have been developed to explore the usefulness of lexical
categories in learning word meanings (but see Yu, 2006).

We present a probabilistic model of word learn-
ing which integrates cross-situational evidence and the
knowledge of lexical categories into a single learning
mechanism. We use an existing computational model of
cross-situational learning proposed by Fazly et al. (2008),
and augment it with the syntactic categories of words.
Our computational simulations show that such informa-
tion can improve the model’s performance in learning
words. Especially, the results suggest that the syntactic
category of a word and the context the word appears in
provide complementary information for the acquisition
of word–meaning mappings.

Related Computational Models

A number of computational word learning models have
used cross-situational learning as their core mechanism
for mapping words to meanings. The rule-based model
of Siskind (1996) and the probabilistic models of Yu
(2005) and Fazly et al. (2008) all rely on the regularities
of the co-occurrences of words and meaning elements,
successfully learning word meanings from noisy and am-
biguous data. Moreover, these models simulate several
behavioural patterns observed in children, such as vo-
cabulary spurt, fast mapping, and learning synonymy
and homonymy. However, all these models ignore the
syntactic properties of the utterances and treat them as
unstructured bags of words.

There are only a few existing computational models
that explore the role of syntax in word learning. Mau-
rits et al. (2009) has investigated the joint acquisition of
word meaning and word order using a batch model. This
model is tested on an artificial language with a simple
relational structure of word meaning, and limited built-
in possibilities for word order. The Bayesian model of
Niyogi (2002) simulates the bootstrapping effects of syn-
tactic and semantic knowledge in verb learning, i.e., the
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use of syntax to aid in inducing the semantics of a verb,
and the use of semantics to narrow down possible syntac-
tic forms in which a verb can be expressed. However, this
model relies on extensive prior knowledge about the as-
sociations between syntactic and semantic features, and
is tested on a toy language with very limited vocabulary
and a constrained syntax. Yu (2006) integrates informa-
tion about syntactic categories of words into his model of
cross-situational word learning, showing that this type of
information can improve the model’s performance. Yu’s
model also processes input utterances in a batch mode,
and its evaluation is limited to situations in which only
a coarse distinction between referring words (words that
could potentially refer to objects in a scene, e.g., concrete
nouns) and non-referring words (words that cannot pos-
sibly refer to objects, e.g., function words) is sufficient. It
is thus not clear whether information about finer-grained
categories (e.g., verbs and nouns) can indeed help word
learning in a more naturalistic incremental setting.

An Overview of Our Integrated Model

Consider a young language learner hearing the sentence
the kittie is playing with the yarn, and trying to find
out the meaning of yarn. Usually there are many pos-
sible interpretations for yarn based on the surrounding
scene, and the child has to narrow them down using some
learning strategy. One such method is to register the po-
tential meanings in the current scene, and compare them
to those inferred from the previous usages of the same
word (i.e., cross-situational learning). Another way to
make an informed guess about the meaning of yarn is to
pay attention to its syntactic properties. For example,
if the child has already heard some familiar words in a
similar syntactic context (e.g., daddy is playing with the
ball, the kittie is sniffing the slipper), she can conclude
that a group of words which can appear in the context
“is Xing the –” usually refer to physical objects. There-
fore yarn must refer to one of the objects present in the
scene, and not for example to an action or a property.

We present a computational model that combines
these two complementary approaches into a single mech-
anism of word learning. Our goal is to examine whether
using the knowledge of word categories in addition to
cross-situational observations can improve the perfor-
mance in word learning. We use the computational
model of Fazly et al. (2008) as the base model of cross-
situational learning: the model learns word meanings as
probabilistic associations between words and semantic
elements, using an incremental and probabilistic learning
mechanism, and drawing only on the word–meaning co-
occurrence statistics gradually collected from naturally-
occurring child-directed input. This model has been
shown to accurately learn the meaning of a large set
of words from noisy and ambiguous input data, and to
exhibit patterns similar to those observed in children in

a variety of tasks (see Fazly et al., n.d., for a full set of
experiments on this model).

In order to augment the base model with category
knowledge, we assume that an independent categoriza-
tion module can process each sentence and determine
the lexical category for each word, e.g., based on its sur-
rounding context. That is, we make the simplifying as-
sumption that prior to the onset of word learning, the
categorization module has already formed a relatively ro-
bust set of lexical categories from an earlier set of child-
directed data. This assumption is on the basis of pre-
vious empirical findings that young children gradually
form a knowledge of abstract categories, such as verbs
and nouns (e.g., Gelman & Taylor, 1984). In addition,
several computational models have been proposed for in-
ducing reliable categories of words by drawing on distri-
butional properties of their context (see, e.g. Parisien et
al., 2008). However, children’s acquisition of categories
is most probably interleaved with the acquisition of word
meaning, and these two processes must be studied simul-
taneously. As a first step, we investigate whether the
word learning process can benefit from the knowledge of
lexical categories, assuming that such knowledge exists.

In the next sections we sketch the base model of cross-
situational learning, and explain how we extend it to
integrate lexical categories as an alternative source of
guidance. During the course of learning in both models,
we use the feedback from the categorization model to de-
tect different senses of the same word. That is, the same
word types which belong to different categories are rep-
resented as separate lexical items. For example, the verb
sense and the noun sense of the word cry are mapped to
two independent meaning representations.

Cross-situational Learning

This section explains the details of the cross-situational
word learning model of Fazly et al. (2008), which we use
as our base model.

Representation of Input

The input to our word learning model consists of a set of
utterance–scene pairs that link an observed scene (what
the child perceives) to the utterance that describes it
(what the child hears). We represent each utterance as
a sequence of words, and the corresponding scene as a
set of semantic features, for example:

He hit the rabbit { animate, male person, act, mo-

tion, contact, force, animal, mammal, rabbit }

In the Evaluation section, we explain how the utterances
and the corresponding semantic features are selected.

Given a corpus of such utterance–scene pairs, our
model learns the meaning of each word w as a probability
distribution p(.|w) over the semantic features appearing
in the corpus. In this representation, p(f |w) is the prob-
ability of feature f being part of the meaning of word w.
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In the absence of any prior knowledge, all features can
potentially be part of the meaning of all words. Hence,
prior to receiving any usages of a given word, the model
assumes a uniform distribution over semantic features as
its meaning.

The Learning Algorithm

The model proposes a probabilistic interpretation of
cross-situational learning (Quine, 1960) through an in-
teraction between two types of probabilistic knowledge
acquired and refined over time. Given an utterance–
scene pair (U(t), S(t)) received at time t, the model first
calculates an alignment probability a for each w ∈ U(t)

and each f ∈ S(t), using the meaning p(.|w) of all the
words in the utterance prior to this time. It then revises
the meaning of the words in U(t) by incorporating the
alignment probabilities for the current input pair. This
process is repeated for all the input pairs, one at a time.

Step 1: Calculating the alignment probabilities.
For a feature f ∈ S(t) and a word w ∈ U(t), the higher the
probability of f being part of the meaning of w (accord-
ing to p(f |w)), the more likely it is that f is aligned with
w in the current input. In other words, a(w |f , U(t), S(t))
is proportional to p(t−1)(f |w). In addition, if there is
strong evidence that f is part of the meaning of an-
other word in U(t)—i.e., if p(t−1)(f |wk) is high for some
wk ∈ U(t) other than w—the likelihood of aligning f to
w should decrease. Combining these two requirements:

a(w |f , U(t), S(t)) =
p(t−1)(f |w)∑

wk∈U(t)

p(t−1)(f |wk )
(1)

Note that a feature can have a non-zero alignment
with more than one word in an utterance. For example,
if two concrete nouns occur in a sentence, they both need
to be aligned with the single feature artifact.

Step 2: Updating the word meanings. We need
to update the probabilities p(.|w) for all words w ∈ U(t),
based on the evidence from the current input pair re-
flected in the alignment probabilities. We thus add
the current alignment probabilities for w and the fea-
tures f ∈ S(t) to the accumulated evidence from prior
co-occurrences of w and f . We summarize this cross-
situational evidence in the form of an association score,
which is updated incrementally:

assoc(t)(w, f) = assoc(t−1)(w, f) + a(w|f,U(t),S(t))

where assoc(t−1)(w, f) is zero if w and f have not co-
occurred before. The model then uses these association
scores to update the meaning of the words in the current
input, as in:

p(t)(f |w) =
assoc(t)(f, w)∑

fj∈F

assoc(t)(fj , w)
(2)

where F is the set of all features seen so far. We use a
smoothed version of this formula to accommodate noisy
or rare input, as explained in Fazly et al. (n.d.).

Word Acquisition Score

To evaluate our model, we need to verify how accurately
the model learns the meaning of words. We thus define
the acquisition score of a word w at time t as an esti-
mation of how closely the meaning probability p(t)(.|w)
resembles the correct meaning of w, or Tw. The correct
meaning of a word is a set of semantic features accord-
ing to an input-generation lexicon.1 Ideally, a word is
accurately learned when its relevant semantic features
(those in Tw) are ranked at the very top of the distribu-
tion p(t)(.|w). We use average precision2 to measure how
well p(t)(.|w) separates the relevant features of w from
irrelevant ones.

Adding Lexical Categories to the Model

As mentioned before, we assume that prior to the on-
set of word learning, the child has formed a number of
lexical categories, each containing a set of word forms.
More formally, we assume that the word learning model
has access to a categorization function cat(w,U(t)) which
at any time t during the course of learning can deter-
mine the category of a word w in utterance U(t). We
do not make any assumptions about the details of the
categorization process, except that it does not rely on
the meaning of words in order to find their appropriate
category.

As the model learns meanings for words, the cate-
gories that these words belong to are implicitly assigned
a meaning as well. Once the word learning process be-
gins, we assign a meaning distribution to each category
on the basis of the meanings learned for its members.
Formally, we define the meaning of a category C as the
average of the meaning distributions of its members, as
in:

p(t)(f |C) =
1

|C|
∑
w∈C

p(t)(f |w) (3)

where |C| is the number of word forms in category C,
and p(t)(f |w) is the meaning probability of word w for
feature f at time t. Prior to observing any instances of
the members of a category in the cross-situational input,
we assume a uniform distribution over all the possible
meaning elements for each category.

1The model does not have access to this lexicon for learn-
ing; it is used only for input generation and evaluation.

2Precision is calculated as the proportion of the number of
features from Tw to the total number of features at each cut-
off point in the ranked list p(t)(.|w). The acquisition score is
the average over the precisions for all the cut-off points up
to the point where all the features in Tw are included in the
ranked list. Note that this score is 1 when the probabilities
assigned to all of the relevant features of w are higher than
those assigned to the irrelevant features.
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Using Categories in Alignment

Knowledge of word categories is integrated into the base
model in the alignment phase (i.e. Step 1 of the learning
algorithm), where we decide which semantic feature in
an observed scene must be aligned with which word(s)
in the accompanying utterance. Given a new utterance–
scene pair, we can align words in the utterance with the
semantic features in the observed scene based on the
cross-situational evidence that we have accumulated so
far. Alternatively, we can find the category for each word
and use the meaning associated with the word category
as a guide to align it with the best matching semantic
features from the scene. We can merge these two pieces
of information into an extended version of Eqn. (1):

a(w|f, U(t), S(t)) = weight(w) · aw(w|f, U(t), S(t))

+ (1− weight(w)) · ac(w|f, U(t), S(t))

The word-based alignment score aw(w|f, U(t), S(t)) is
calculated as in Eqn. (1). The category-based alignment
score ac(w|f, U(t), S(t)) is calculated in a similar fashion,
except it relies on the meaning of the word category:

ac(w|f, U(t), S(t)) =
p(t−1)(f |cat(w,U(t)))∑

wk∈U(t)

p(t−1)(f |cat(wk,U
(t)))

where the meaning probability p(t−1)(f |cat(wk,U
(t))) is

calculated as in Eqn. (3).
The relative contribution of the word-based versus the

category-based alignment is determined by the function
weight(w). It has been shown that cross-situational ev-
idence is a reliable cue for frequent words: Fazly et al.
(n.d.) show that once their model receives a few instances
of a word form, it can reliably align it with proper se-
mantic features. On the other hand, the category-based
score is most informative when the model encounters a
low-frequency word. Therefore, we define weight(w) as
a function of the frequency of w:

weight(w) =
freq(w)

freq(w) + 1

Once the overall alignment score is calculated for the
new input pair, the meaning probabilities of words are
updated through Step 2 of the original learning algo-
rithm, and the meaning of their corresponding categories
are updated accordingly.3

Evaluation

The training data for our model consists of a sequence
of utterances, each paired with a set of semantic fea-
tures. We extract utterances from the Manchester cor-
pus (Theakston et al., 2001) in the CHILDES database

3For each word w in U (t), the meaning distribution of
the corresponding category C is incrementally updated as
p(t)(f |C) = p(t−1)(f |C) + 1

|C| (p
(t)(f |w)− p(t−1)(f |w)).

ball
→ game equipment#1
→ equipment#1
→ instrumentality#3, instrumentation#1
→ artifact#1, artefact#1
→ ...

ball: { game equipment#1,equipment#1,instrumentality#3,artifact#1, ...

Figure 1: Semantic features for ball from WordNet.

(MacWhinney, 1995), which contains transcripts of con-
versations with children between the ages of 1;8 and 3;0.
We use the mother’s speech from transcripts of 6 chil-
dren, remove punctuation and lemmatize the words, and
concatenate the corresponding sessions as our test data.
We automatically construct a scene representation for
each utterance based on the semantic features of the
words in that utterance. For nouns, we extract the se-
mantic features from WordNet4 as follows: We take all
the hypernyms (ancestors) for the first sense of the word,
and add the first word in the synset of each hypernym to
the set of the semantic features of the target word (see
Figure 1 for an example). For verbs, we extract features
from WordNet as well as from a verb-specific resource,
VerbNet.5 For adverbs, adjectives and closed class words
we use the features of Harm (2002). Words not found in
these three resources are removed from the utterance.

To form the initial lexical categories, we use a non-
overlapping portion of the part-of-speech tagged version
of the Manchester corpus. The original corpus has 60
fine-grained tags, which we map to 11 coarser-grained
categories, such as Noun, Verb, and Preposition.6

Learning Curves

To understand whether category information improves
learning of word–meaning mappings, we compare the
pattern of word learning over time for two models: the
base model which only uses cross-situational evidence,
and the extended model which incorporates lexical cat-
egories into learning. For each model we measure the
average acquisition score (defined on page 3) of all words
that the model has encountered up to each point in time.

Figure 2 shows the learning curve for each model over
5000 time units (or processed input pairs). The curves
show that the extended model consistently outperforms
the base model. The improvement is more pronounced
as the model receives more input, since by learning more
about the meanings of words the model also forms a more
reliable knowledge about the meanings of categories and
can use them more efficiently in aligning the novel words
with their referents.

4http://wordnet.princeton.edu/
5http://verbs.colorado.edu/~mpalmer/projects/

verbnet.html
6We thank Chris Parisien for providing us with the coarse-

grained tagging of the corpus.
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Figure 2: Avg. acquisition score for all words over time,
with and without using lexical categories.

Categories and Context Familiarity

The learning curves presented above show an overall im-
provement when lexical categories are incorporated in
word learning. However, we expect the gain from in-
cluding categories to vary across different situations. For
example, experimental and computational studies have
shown that cross-situational learning can account for ac-
curate mapping of a novel word to a novel object in a
familiar context (see Fazly et al. (n.d.) for a discussion
on this phenomenon). The same pattern is expected in
our base model, where the alignment between a word
and a semantic feature is in part determined by what
the model has learned about the possible meanings of
the co-occurring context words (see Eqn.1). Therefore,
it can learn a lot about a novel word from a single expo-
sure if that word appears in a familiar context.

We hypothesize that categories can be particularly
helpful in cases where a novel word first appears in an
unfamiliar context (where not all words in the utterance
are accurately learned), or when an utterance contains
more than one novel word. To investigate this hypothe-
sis, we introduce a context familiarity measure CF as the
mean familiarity of all words that co-occur with a target
word, where the familiarity of a word is determined by
its frequency range. The mappings between familiarity
values and frequency ranges are as follows: 0 (0), 1 (1),
2 (2–4), 3 (5–9), 4 (10–29), and 5 (≥ 30), where the
numbers in parentheses specify the frequency range.

Figure 3 shows the average acquisition score of words
with high and low context familiarity (CF ≤ 3 vs. CF
> 3), and for novel words which appear in the company
of other novel words (this last condition is marked as
Multi-Novel in Figure 3). The average scores are calcu-
lated by both models after the first occurrence of each
word. As can be seen, the inclusion of categories leads
to a statistically significant improvement for words in all
three conditions (p < 0.05).7 However, the improvement
is much more pronounced for words with low context
familiarity, and particularly when an utterance includes
more than one novel word (i.e. a highly unfamiliar con-
text). These results support our hypothesis, and suggest

7The p-values are measured according to a two-sided sign
test for a confidence interval of 95%.
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Figure 3: Avg. acquisition score for words in contexts
with different degrees of familiarity.

that in learning the meaning of words, the context of a
word and its lexical category can be seen as complemen-
tary sources of knowledge.

Comparing Different Categories

To better understand the impact of lexical categories
on word learning, we examine the pattern of improve-
ment for words with different parts of speech. Lexical
categories differ in their frequency of occurrence and in
their semantic properties. For example, open-class cate-
gories such as Verb and Noun tend to have lower token
frequency, higher type frequency, and more within-class
meaning variability compared to closed-class categories
such as Determiner and Preposition.

Recall that words in our test corpus are tagged with
one of 11 coarse-grained parts of speech. Three of these
categories (Auxiliary, Infinitive and Negation) each con-
tain only a single word type, and one (Other) is not a
coherent and meaningful category. The average acqui-
sition score in both models for the remaining categories
are shown in Figure 4. Out of these seven categories, four
are open-class: Noun (599 word types), Verb (261), Ad-
jective (60), and Adverb (25), and three are closed-class:
Determiner (23), Preposition (17), and Conjunction (8).

Interestingly, we observe that category information
helps more with the acquisition of open-class words, in
particular Noun (p < 10−16) and Verb (p < 0.0001).
We believe this difference is due to the high token fre-
quency of closed-class words which makes them very easy
to learn, even for the base model that does not take into
account the information about their categories. More-
over, using categories does not significantly improve the
acquisition of adjectives and adverbs. We suspect that
this is a result of the small number and the inconsis-
tent meaning representations of these categories in the
resource of Harm (2002). In general, we predict that
using better resources for extracting semantic features
will boost the contribution of lexical categories in word
learning.

Conclusions and Future Directions
Our computational model of word learning demonstrates
the advantage of integrating lexical categories into a
cross-situational model of word learning. Drawing on
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the meaning probabilities of individual words, the model
gradually associates each lexical category with a mean-
ing representation, which in turn can boost learning of
novel words. Our simulations of the model over the
course of acquisition show that using lexical categories
consistently improves learning over a base model which
only relies on cross-situational evidence. Moreover, our
analyses of the results suggest that lexical categories can
have a significant impact on the acquisition of open-class
words which appear in less familiar context.

The model in its current form makes simplifying as-
sumptions that must be addressed in future work. It is
assumed that lexical categories are formed prior to the
onset of the word learning process, and that the category
of each word can be precisely determined upon its first
appearance in the input data. In the future, we intend
to use an incremental model of category induction to si-
multanously learn lexical categories and word meanings.
In fact, using a finer-grained set of categories induced
by such a model might be more suitable for our purpose,
since they can represent more specialized meanings (e.g.,
fruits and animals instead of nouns). Moreover, the cat-
egorization process can benefit from the integration of
word meanings in addition to the distributional context.
This extension will allow us to study how the early stages
of word learning and category formation interact.
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