
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Improved Timing Error Resilience of Microelectronic Computing Systems using Cross-layer
Optimizations

Permalink
https://escholarship.org/uc/item/8cz4n46x

Author
Jiao, Xun

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8cz4n46x
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Improved Timing Error Resilience of Microelectronic Computing Systems using
Cross-layer Optimizations

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Xun Jiao

Committee in charge:

Professor Rajesh K. Gupta, Chair
Professor Gert Cauwenberghs
Professor Ryan Kastner
Professor Sorin Lerner
Professor Julian McAuley

2018

Copyright

Xun Jiao, 2018

All rights reserved.

The dissertation of Xun Jiao is approved, and it is acceptable

in quality and form for publication on microfilm and elec-

tronically:

Chair

University of California, San Diego

2018

iii

DEDICATION

I dedicate this dissertation to my loving family. Without their everlasting

love and support this journey would not have been finished.

iv

EPIGRAPH

The word “impossible” is not in my dictionary.

Napoleon Bonaparte.

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

Acknowledgments . xii

Vita . xv

Abstract of the Dissertation . xvii

Chapter 1 Introduction . 1
1.1 Microelectronic Variability Causes Timing Errors 1
1.2 Challenges in Improving Timing Error Resilience 4

1.2.1 Inaccurate Error Modeling 4
1.2.2 High Correction Cost 5
1.2.3 Unacceptable Application Quality 6

1.3 Our Approach and Dissertation Organization 8

Chapter 2 Workload-aware Timing Error Prediction 11
2.1 Introduction . 11
2.2 Problem Formulation . 14
2.3 Cross-level Timing Error Prediction Model (CLIM) 15

2.3.1 Timing Error Extraction 16
2.3.2 Model Training . 17
2.3.3 Model Evaluation 23

2.4 Experimental Results . 24
2.4.1 Experimental Setup 24
2.4.2 Hardware Characterization 25
2.4.3 Bit-level CLIM . 27
2.4.4 Value-level CLIM 31
2.4.5 CLIM Efficiency 34
2.4.6 Discussion . 34

2.5 Chapter Summary . 35

vi

Chapter 3 Correcting Timing Errors Efficiently using Structural Errors . . . 36
3.1 Introduction . 36
3.2 Inexact Speculative Adders 37

3.2.1 Overall Architecture 38
3.2.2 Error Compensation Technique 39
3.2.3 Design Strategy . 39

3.3 Guardband Reduction with Bit-level Timing Error Prediction 40
3.3.1 Prediction Model Evaluation 41

3.4 Combining Structural and Timing Errors 42
3.4.1 Error Combination 42
3.4.2 Model Evaluation 44

3.5 Experimental Results . 45
3.5.1 General Considerations 45
3.5.2 Timing-error Prediction Evaluation 46
3.5.3 Results of Error Combination 47
3.5.4 Structural and Timing Error Balance 48

3.6 Chapter Summary . 50

Chapter 4 Instruction-based Timing Error Prevention 51
4.1 Introduction . 51
4.2 Instruction-Delay Prediction Model (WILD) 53

4.2.1 Dynamic Timing Analysis 54
4.2.2 Input Feature Extraction 55
4.2.3 Model Training . 56
4.2.4 Model Evaluation 58

4.3 Experimental Results . 59
4.3.1 Experimental Setup 59
4.3.2 Delay Distribution of Functional Units 59
4.3.3 Model Prediction Accuracy 61
4.3.4 Instruction-level Timing Margin Reduction 62

4.4 Discussion . 64
4.5 Chapter Summary . 65

Chapter 5 Application Vulnerability Assessment to Timing Errors 66
5.1 Introduction . 66
5.2 Background . 68

5.2.1 MLP Architecture 68
5.2.2 CNN Architecture 70
5.2.3 Error Tolerance of Neural Networks 70

5.3 Cross-layer Vulnerability Assessment 71
5.3.1 HW-layer: Timing Error Extraction 71
5.3.2 SW-layer: Timing Error Injection 72

5.4 Experimental Results . 73

vii

5.4.1 Experimental Setups 73
5.4.2 Accuracy under Timing Errors 73
5.4.3 Accuracy Versus Dynamic Variations 76

5.5 Discussion . 78
5.6 Chapter Summary . 78

Chapter 6 Enhancing Efficiency via Approximate Computation Reuse 79
6.1 Introduction . 79
6.2 Approximate Computation Reuse 81

6.2.1 Layer-based Pattern Matching 81
6.2.2 Approximate Pattern Matching 82

6.3 Bloom Filters . 84
6.4 Experimental Results . 85

6.4.1 Experimental Setup 85
6.4.2 Accuracy Loss . 86
6.4.3 Energy Savings . 87

6.5 Chapter Summary . 88

Chapter 7 Conclusion and Future Directions 90

Bibliography . 93

viii

LIST OF FIGURES

Figure 1.1: WID core-to-core maximum clock frequency variation for 80 cores
on a single chip [30]. 3

Figure 1.2: Dissertation organization. 8

Figure 2.1: CLIM model: a) Timing Error Extraction to examine the timing
errors and to generate output timing class labels; b) Model Training
to apply random forest classification (RFC) to construct CLIM; c)
Model Evaluation to evaluate CLIM prediction accuracy. 15

Figure 2.2: Bit-level timing error rate (%) under different input datasets. 26
Figure 2.3: (a) Original input image. (b) Error-free exact Sobel filter output

with PSNR = inf. (c) Error-injected approximate Sobel filter with
PSNR = 30dB. 29

Figure 2.4: Derive bit-level reliability specification for error-tolerant applica-
tions through fault injection. Pbit flip is a bit flip probability. 30

Figure 3.1: General block diagram of an Inexact Speculative Adder. Each spec-
ulative segment consists of a carry speculator (SPEC), a regular
adder (ADD) and an error compensation block (COMP). 38

Figure 3.2: Example of ISA addition arithmetic with 2-bit speculation, 1-bit
correction and 1-bit error reduction. 39

Figure 3.3: Bit-level timing error prediction model construction flow. 40
Figure 3.4: Example of additive errors (exact output ydiamond, exemplary er-

roneous outputs ygold and ysilver from ISA and over-clocked ISA,
respectively) . 43

Figure 3.5: Example of compensating errors 44
Figure 3.6: Pseudo-code computing the mean arithmetic error of over-clocked

ISAs with structural and timing errors. 44
Figure 3.7: Average bit-level prediction error rate (ABPER) under overclocking. 46
Figure 3.8: Average value-level predictive error (AVPE) under overclocking. . . 48
Figure 3.9: Relative error RMS of ISAs under 5 %, 10 % and 15 % overclocking. 48
Figure 3.10: Bit-level-equivalent error distribution in ISA (8,0,0,4) under 15 %

overclocking. 49

Figure 4.1: WILD model: a) Dynamic Timing Analysis to measure the dynamic
delay; b) Input Feature Extraction to extract useful “features”; c)
Model Training to use supervised learning to train the model. . . . 53

Figure 4.2: Delay distribution of INT ADD under three different input work-
load sets. 60

Figure 4.3: Delay distribution of INT MUL under three different input work-
load sets. 60

ix

Figure 4.4: Delay distribution of FP MUL under three different input workload
sets. 61

Figure 5.1: An example of 4-layer multi-layer perceptron neural network. . . . 68
Figure 5.2: The computation processes of an artificial neuron. 68
Figure 5.3: An illustration of a convolutional neural network. 69
Figure 5.4: The processes among a convolutional layer. 69
Figure 5.5: Cross-layer assessment flow with two stages: a) HW-layer: Timing

Error Extraction to extract the timing errors under different oper-
ating conditions; b) SW-layer: Timing Error injection into neural
network and perform inference. 71

Figure 5.6: MLP accuracy as a function of TER. 74
Figure 5.7: CNN accuracy as a function of TER. 75
Figure 5.8: TER of adder and multiplier under different operating conditions. . 75
Figure 5.9: HNN accuracy as a function of dynamic variations. 77

Figure 6.1: The hit rate of exact pattern matching. 82
Figure 6.2: The hit rate of approximate pattern matching. 83
Figure 6.3: The implementation of approximate pattern matching. 84
Figure 6.4: Neural network accuracy loss due to approximate pattern matching. 86
Figure 6.5: Energy Savings under different matching mode. 89

x

LIST OF TABLES

Table 1.1: Inverter delay for different PVT corners [45]. 2

Table 2.1: Prediction accuracy, training time, and testing time of four learning
methods. 23

Table 2.2: Bit-level CLIM on INT ADD for timing error prediction. 27
Table 2.3: Bit-level CLIM on FP ADD for timing error prediction. 27
Table 2.4: Bit-level CLIM on INT MUL for application quality prediction. . . 27
Table 2.5: Bit-level CLIM on FP MUL for application quality prediction. . . . 28
Table 2.6: value-level CLIM on INT ADD for timing error prediction. 31
Table 2.7: Value-level CLIM on FP ADD for timing error prediction. 32
Table 2.8: Value-level CLIM on INT MUL for reliability prediction using AE. . 32
Table 2.9: Value-level CLIM on FP MUL for reliability prediction using AE. . 32

Table 4.1: Five classes of dynamic delay (ps). 56
Table 4.2: Prediction accuracy, and total training and testing time of four learn-

ing methods. 57
Table 4.3: Prediction accuracy of three different classifier models. 62
Table 4.4: Average instruction-level timing delay(ps) using WILD compared to

existing instruction-level timing model [25]. 62

Table 5.1: HNN accuracy under dynamic variations. 76

Table 6.1: Energy savings and neural network accuracy across different BF set-
tings. 87

xi

ACKNOWLEDGMENTS

During the past five years as a Ph.D. student, I am so blessed to meet so many

great people — advisors, colleagues, family, friends, and God, without whom this dis-

sertation cannot be finished.

First and foremost, I was honored and fortunate to spend five years with my

Ph.D. advisor Professor Rajesh K. Gupta, who brought me to beautiful San Diego and

gave me the opportunity to conduct the research in an extremely free environment. I

dedicate my deepest gratitude for his guidance, encouragement, thoughts, and supports

that will remain in my heart forever. I would also like to thank my senior colleague, Dr.

Abbas Rahimi, who has walked and guided me through the initial stages of research. I

would also like to give special thanks to my brother and colleague, Dr. Yu Jiang, who

has been guiding me both in school work and personal life since the day I went to middle

school.

Besides my advisor and colleagues, I want to express my everlasting gratitude

to my parents, Zhaoqun Jiao and Xiaoli Hou. They have been giving me unconditional

love and believing in me in every choice that I have made in my life, which made this

dissertation possible. I would not be the person I am today without their love and faith in

me. To my wife, Yaxin Fu, who has sacrificed the stable life in China and courageously

moved all the way to the U.S. to marry me, I thank you for your love, care, and support.

Thanks for making me a better man. I owe everything to you.

I would also like to thank my committee members, Professor Gert Cauwen-

berghs, Professor Ryan Kastner, Professor Sorin Lerner, and Professor Julian McAuley,

for their advice and comments in my dissertation. I would also like to give special thanks

to my industry mentors, Professor Jose Pineda De Gyvez and Dr. Hamed Fatemi, who

have given me tremendous advice and support over the past years. I would also like to

thank Professor Lui Sha from UIUC, for his advice and support in my career. I am also

grateful to work with Vincent Camus and Professor Christian Enz from EPFL.

I am blessed to be surrounded by so many good friends and colleagues during

my Ph.D. time who made San Diego a truly unforgettable memory in my life. I thank

MESL group friends Muhammad Adnan, Bharathan Balaji, Manish Gupta, Atieh Lotfi,

Vahideh Akhlaghi, Zhou Fang, Jeng-Hau Lin, and many more. I thank my UCSD friends

xii

Chunbin Lin, Jianguo Wang, Hao Zhuang, Jingwei Lu, Ilgweon Kang, Jiajia Li, Weiting

Chan, Mulong Luo, Jiajun Lu, Xinchi Gu, and many more. I give my special thanks to

my brothers and sisters in church, Chee Yap, Jingxue Lu, Xiaowen Zhang, Jian Zhang,

Ye Tian, Zheng Fu, and many more.

Last but not least, I want to thank God for his unconditional love, which I know

will continue to be with me throughout my whole life.

The material in this dissertation is based on the following publications.

Chapter 2 contains reprints of Xun Jiao, Abbas Rahimi, Balakrishnan Narayanas-

wamy, Hamed Fatemi, Jose Pineda de Gyvez, and Rajesh Gupta, “Supervised Learning

Based Model for Predicting Variability-Induced Timing Errors”, Proc. IEEE Interna-

tional NEW Circuits And Systems (NEWCAS) conference, 2015. Xun Jiao, Yu Jiang,

Abbas Rahimi, and Rajesh Gupta, “SLoT: A Supervised Learning Model to Predict Dy-

namic Timing Errors of Functional Units”, Proc. IEEE/ACM Design, Automation, and

Test in Europe (DATE), 2017. Xun Jiao, Abbas Rahimi, Yu Jiang, Jianguo Wang, Hamed

Fatemi, Jose Pineda de Gyvez, and Rajesh Gupta, “CLIM: A Cross-level Workload-

aware Timing Error Prediction Model for Functional Units”, IEEE Transactions on

Computers (TC), 2017. The dissertation author is the primary author of the papers.

Chapter 3 contains reprints of Xun Jiao, Vincent Camus, Mattia Cacciotti, Yu

Jiang, Christian Enz, and Rajesh Gupta, “Combining Structural and Timing Error in

Overclocked Inexact Speculative Adders”, Proc. IEEE/ACM Design, Automation, and

Test in Europe (DATE), 2017. The dissertation author is the primary author of the paper.

Chapter 4 contains reprints of Xun Jiao, Yu Jiang, Abbas Rahimi, and Rajesh

Gupta, “WILD: A Workload-Based Learning Model to Predict Dynamic Delay of Func-

tional Units”, Proc. IEEE International Conference on Computer Design (ICCD), 2016.

The dissertation author is the primary author of the paper.

Chapter 5 contains reprints of Xun Jiao, Mulong Luo, Jeng-Hau Lin, and Rajesh

Gupta, “An Assessment of Vulnerability of Hardware Neural Networks to Dynamic

Voltage and Temperature Variations”, Proc. IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), 2017. The dissertation author is the primary author

of the paper.

Chapter 6 contains reprints of Xun Jiao, Vahideh Akhlaghi, Yu Jiang, and Rajesh

xiii

Gupta, “Energy-Efficient Neural Networks using Approximate Computation Reuse”,

Proc. IEEE/ACM Design, Automation, and Test in Europe (DATE), 2018. The disserta-

tion author is the primary author of the paper.

My coauthors (Yu Jiang, Abbas Rahimi, Vahideh Akhlaghi, Mulong Luo, Jeng-

Hau Lin, Jianguo Wang, Vincent Camus, Mattia Cacciotti, Christian Enz, Balakrishnan

Narayanaswamy, Hamed Fatemi, Jose Pineda de Gyvez, and Rajesh Gupta) have all

kindly approved the inclusion of the aforementioned publications in my dissertation.

xiv

VITA

1991 Born, Jinxian, Jiangxi, China

2013 B.Sc., Telecommunication Engineering and Management,
joint program between Beijing University of Posts and Telecom-
munications and Queen Mary University of London

2016 M.Sc., Computer Science (Computer Engineering),
University of California, San Diego

2018 Ph.D., Computer Science (Computer Engineering),
University of California, San Diego

• Xun Jiao, Abbas Rahimi, Yu Jiang, Jianguo Wang, Hamed Fatemi, Jose Pineda de

Gyvez, and Rajesh Gupta, “CLIM: A Cross-level Workload-aware Timing Error

Prediction Model for Functional Units”, IEEE Transactions on Computers (TC),

2017.

• Xun Jiao, Vahideh Akhlaghi, Yu Jiang, and Rajesh Gupta, “Energy-Efficient Neu-

ral Networks using Approximate Computation Reuse”, in Proc. IEEE/ACM De-

sign, Automation, and Test in Europe (DATE), 2018.

• Xun Jiao, Mulong Luo, Jeng-Hau Lin, and Rajesh Gupta, “An Assessment of

Vulnerability of Hardware Neural Networks to Dynamic Voltage and Temperature

Variations”, in Proc. IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), 2017.

• Xun Jiao, Vincent Camus, Mattia Cacciotti, Yu Jiang, Christian Enz, and Rajesh

Gupta, “Combining Structural and Timing Error in Overclocked Inexact Spec-

ulative Adders”, in Proc. IEEE/ACM Design, Automation, and Test in Europe

(DATE), 2017.

• Xun Jiao, Yu Jiang, Abbas Rahimi, and Rajesh Gupta, “SLoT: A Supervised

Learning Model to Predict Dynamic Timing Errors of Functional Units”, in Proc.

IEEE/ACM Design, Automation, and Test in Europe (DATE), 2017.

xv

• Xun Jiao, Yu Jiang, Abbas Rahimi, and Rajesh Gupta, “WILD: A Workload-

Based Learning Model to Predict Dynamic Delay of Functional Units”, in Proc.

IEEE International Conference on Computer Design (ICCD), 2016.

• Xun Jiao, Abbas Rahimi, Balakrishnan Narayanaswamy, Hamed Fatemi, Jose

Pineda de Gyvez, and Rajesh Gupta, “Supervised Learning Based Model for Pre-

dicting Variability-Induced Timing Errors”, in Proc. IEEE International NEW

Circuits And Systems (NEWCAS) conference, 2015.

xvi

ABSTRACT OF THE DISSERTATION

Improved Timing Error Resilience of Microelectronic Computing Systems using
Cross-layer Optimizations

by

Xun Jiao

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California, San Diego, 2018

Professor Rajesh K. Gupta, Chair

Microelectronic scaling has entered into the nanoscale era with tremendous ca-

pacity and performance advantages that continue to drive new devices and systems from

high-performance computing to ultra-low power Internet endpoints. This scaling, how-

ever, faces challenges due to serious effects of microelectronic variability that results in

significant variation in individual device parameters. The most common manifestation

of this variability is increased susceptibility to timing errors. Combating these errors

usually results in increased guardbands in the circuit and architectural design, thus re-

ducing the gains from process technology advances.

This dissertation focuses on methods to improve the timing error resilience of

microelectronic computing systems by reducing the guardbands which also results in

xvii

improved operational efficiency if microelectronic circuits. Timing errors can show at

various abstraction levels — the circuit layer, the architecture layer, and the software

layer. Accordingly, we have proposed error tolerance methods that correspond to the

layer where such errors manifest. Considering the interdependence of overall system

performance or application quality on the design choices made at various abstraction

levels, an integrated view of the overall effects of error tolerance strategies is necessary

to evaluate the effects of these approaches in the system or application layer. Cross-layer

optimizations are thus important in addressing the effects of timing errors. At the circuit

layer, we examine the root cause of “timing error” via analysis of dynamic path sensi-

tization of the circuit. We use machine learning methods to build a prediction model

for the timing errors based on the useful features extracted from computation history,

circuit workload, and circuit switching. Results show high prediction accuracy and fast

computing performance that make the model useful in early circuit reliability evalua-

tion. Second, at the architecture layer, by characterizing delay of various instructions,

we dynamically adjust the clock frequency, that reduces timing errors and improve the

operational efficiency. Finally, at the software layer, by utilizing the inherent “error-

tolerance” of emerging applications such as neural networks, we reduce design margins

under the premise that the application quality is acceptable. Specifically, we have in-

vestigated the vulnerability of emerging neural networks to timing errors and deliver

an approximate computing hardware for neural networks that achieves significant en-

ergy savings with negligible accuracy loss. Stemming from this dissertation, our future

research concerns building emerging high-performance, low-power, reliable, and intel-

ligent non-conventional computing systems.

xviii

Chapter 1

Introduction

The scaling of microelectronics into nanometer era with tremendous capacity

and performance advantages continues to drive new devices and systems ranging from

low-power Internet-of-Things (IoT) nodes to high-performance computing platforms.

However, with continuous scaling, microelectronic systems are increasingly susceptible

to timing errors that are caused by increased microelectronic variability, making them

a notable threat to circuit reliability. To protect circuits from timing errors, designers

typically use conservative timing margins acting as guardbands, computed from a multi-

corner worst-case analysis at design time.

In this section, we first introduce the sources of microelectronic variability and

its consequences on timing errors. Then, we discuss the state-of-art approaches to im-

prove the timing error resilience of microelectronic computing systems and their asso-

ciated challenges. Finally, we present our approach to improving timing error resilience

by applying cross-layer optimizations.

1.1 Microelectronic Variability Causes Timing Errors

The microelectronic variability arises from three broad sources: 1) Spatial vari-

ations: process variations induced by random dopant fluctuations and sub-wavelength

lithography can cause static variations in channel length (L) and threshold voltage (Vth).

Process variations can be either die-to-die (D2D) or within-die (WID) variations [8].

D2D variations affect all the computing devices equally on one die and WID variations

1

affect each device differently on one die [8]. 2) Temporal variations: Aging and wear-

out effects such as negative bias temperature instability (NBTI), electromigration, time-

dependent dielectric breakdown, gate oxide integrity, and thermal cycling can change

the electrical characteristics of devices, causing temporal degradation in hardware relia-

bility [57]. 3) Dynamic variations: This is often caused by environmental factors such as

supply voltage droop and temperature fluctuation. Voltage droop is known as dI/dt prob-

lem that voltage varies instantaneously with the current fluctuation on the power delivery

network (PDN). On the other hand, temperature fluctuation alters the circuit parameters

such as carrier mobility, threshold voltage, etc. Technology scaling is known to further

exacerbates the variations [3].

Table 1.1: Inverter delay for different PVT corners [45].

Process
Voltage (V) Temperature (◦C) Delay (ps)

NMOS PMOS

Fast Fast 1.0 -40 22.17

Fast Fast 1.0 125 22.54

Fast Fast 0.9 -40 27.21

Fast Fast 0.9 125 26.16

Slow Slow 1.0 -40 31.44

Slow Slow 1.0 125 30.63

Slow Slow 0.9 -40 42.78

Slow Slow 0.9 125 38.89

The most immediate manifestations of manufacturing variability are in power

and path delay variations. For instance, up to 13X variance in sleep power among 10

ARM Cortex M3 cores in the temperature range of 22-60◦C is seen in [77]. In this

dissertation, we mainly focus on the path delay variations.

The path delay variations can alter the path delay of a microelectronic element.

For example, Table 1.1 presents the inverter delay at different PVT corners. We can

observe up to 1.8X delay variation between the worst-case and best-case delay. We can

also observe that all three variation sources can affect the inverter delay. Going up to the

2

Figure 1.1: WID core-to-core maximum clock frequency variation for 80 cores on a
single chip [30].

system level, Fig. 1.1 shows the Within-Die (WID) core-to-core maximum clock fre-

quency (Fmax) variations among 80 cores in a 65nm processor. The measurement was

done at a fixed temperature at 50◦C with varying voltage at 1.2V, 0.9V and 0.8V respec-

tively. Within the same operating condition at 1.2V, maximum frequency at 7.3GHz and

minimum frequency at 5.7GHz could be observed, leading to a 28% Fmax variation.

Once the voltage downscales to 0.8V, the maximum frequency is below 4GHz for every

core, indicating the effects of voltage scaling on the path delay.

Delay uncertainty might prevent circuits from meeting its timing specification.

This violation eventually causes invalid state being stored in sequential elements result-

ing in timing errors in circuits. Such timing errors will propagate up from corrupted

state information to higher computing layers, leading to erroneous instructions or in-

valid computation results in software programs, that culminates in a degraded applica-

tion quality or even system corruption [64]. A cross-layer approach not only examines

the effects at various layers but also how their effects propagate to higher layers. Be-

fore presenting our approach, we review the state-of-art approaches that seek to improve

timing error resilience as well as their challenges in the next section.

3

1.2 Challenges in Improving Timing Error Resilience

To protect microelectronic systems from timing errors, designers typically use

conservative timing margins acting as guardbands, computed from a multi-corner worst-

case analysis. However, this results in loss of operational efficiency measured as perfor-

mance or energy efficiency of the circuits. Furthermore, increasing variability caused

by process, voltage, temperature, and aging (PVTA) in advanced processes exacerbates

this problem and increases the already-conservative guardbands. Attempting to improve

the timing error resilience while reducing such conservative guardbands, various meth-

ods have been proposed. In this section, we will be discussing three typical approaches,

error prevention, error correction, and error acceptance as well as their associated

challenges: inaccurate error modeling, high correction cost, and unacceptable ap-

plication quality. The observation of such challenges motivates our solutions, which

are the main content of this dissertation.

1.2.1 Inaccurate Error Modeling

This challenge is associated with error prevention approach, whose main idea

is to develop an accurate model that can predict the occurrences of timing errors, based

on which the system can proactively adjust the guardbands to prevent the timing er-

rors. The technique requires two mechanisms: 1) prediction of timing errors, which

is usually accomplished by a prediction model; 2) prevention of timing errors, which

is usually accomplished by dynamic adaptation of guardbands. For prediction, sev-

eral works predict timing errors at instruction-level [64] [79] [67]. They claim that

some instructions, which they call critical instructions, are more prone to timing er-

rors. They rely on large-scale gate-level simulations and determine critical instructions

based on their past behavior — if some instructions had timing errors in the past then

they are likely to have timing errors in the future. Other works use machine learning

to predict timing errors [63] [74]. A linear discriminant classifier predicts the timing

error rate of functional units by obtaining variation information and then adjust tim-

ing guardbands accordingly [63]. However, it overlooks the effect of input operands

by predicting errors purely based on PVTA parameters. B-Hive [74], predicts bit-level

4

timing errors for voltage-scaled functional units but also claims that incorporating input

operands does not improve the prediction accuracy significantly. For prevention, the

system typically adjusts the guardbands based on the timing error prediction model. For

example, [79] [67] extends the pipeline by one cycle in case of a positive timing error

prediction.

Challenge: The main challenge of this approach is that the current timing error

prediction model, or timing error behavior description, is inaccurate and pessimistic.

The main reason for this problem is that there has been a missing consideration of the

impact of input operands on timing error behaviors. For example, in [64] [79] [67],

timing errors are predicted based on a worst-case scenario of path sensitization, but in

reality, the instruction might not face timing errors because its input operands are not

sensitizing the critical path. This results in pessimistic modeling. Timing error predic-

tion models such as [63] [74] overlook the effects of input operands by predicting errors

purely based on variation and circuit parameters. In order to solve this problem, we use

the machine learning methods to establish a model that can predict timing error given

arbitrary input operands, thus establishing a model that can accurately depict timing er-

ror behavior (Chapter 2). This model can be used by circuits designers to evaluate the

guardbands configurations during design- or runtime.

1.2.2 High Correction Cost

This challenge is associated with error correction approach, whose main idea

is to actively reduce and even remove the guardbands, and then use a correction mech-

anism to correct the timing errors in the system in case of their occurrences. This

technique requires two mechanisms: 1) detection of timing errors, which is usually

accomplished by a shadow latch [32] [9] [72]; 2) correction of timing errors which is

usually accomplished by masking timing errors [9] [79] [23]. For detection, a shadow

flip-flop was used in [32] to detect timing errors induced by speculated voltage scaling.

Such shadow flip-flop approaches were also used in error-detection sequential circuit

(EDS) [9] Error-detection sequential circuit (EDS) [9] introduces in-situ monitors in the

critical path where it double samples the signal with a shadow latch. Once a mismatch

occurs between flip-flop value and latch sampled value, an error signal will be activated

5

to notify the incorrect operation. A less intrusive way would be using a tunable replica

circuits (TRC) [72] adopted in each pipeline stage to monitor the timing error. For cor-

rection, Razor [32], for example, once error detection signal is activated, the pipeline

is stalled for one cycle and replace the errant value with the correct value stored in Ra-

zor latch. A slack redistribution technique could help the timing speculation further to

leverage the guardband reduction on some specific target [51].

Challenge: The main challenge of this intrusive error detection and correction

approach is that it can lead to very high hardware overhead and performance penalty,

thereby (partially) offsetting the benefits of reducing the guardbands. First, the hard-

ware overhead can be large, e.g., 18% [61] and 21% [34] overheads in area, and 8% [17]

power overhead. Second, the performance penalty can be large and will increase mono-

tonically as the timing error rates increase. For example, when a timing error is detected

during an instruction execution, the Intel resilient core [10] prevents the errors from

propagating by flushing the pipeline and replaying the errant instruction multiple times

(multiple-issue instruction replay). The recovery penalty is 3 ∗N cycles where N is the

number of pipeline stages. In order to solve this challenge and reduce the cost of error

correction, we propose a method to proactively prevent timing error at the instruction

level, thus avoiding the cost of error correction (Chapter 4). We also design the ap-

proximate circuit and use the structure to efficiently correct the timing errors (Chapter

3).

1.2.3 Unacceptable Application Quality

This challenge is associated with error acceptance approach. The main idea is

that by utilizing intrinsic error tolerance at the application level, the system is allowed

to have occasional error occurrences as long as the output quality is still acceptable by

users. This makes it possible to reduce the system guardbands without violating the

users’ requirements, leading to an emerging computing paradigm referred to as approx-

imate computing. Some typical error-tolerant applications include multimedia applica-

tions, machine learning applications and emerging fields such as recognition, mining,

and synthesis (RMS) applications [16, 21, 33, 36, 59].

The approximation can be realized by designing approximate hardware or relax-

6

ing the operating constraints. An accuracy-configurable integer adder offers two oper-

ating modes: exact and approximate [50]. During the exact operating mode, error de-

tection and correction must be applied, while in the approximate mode the errors can be

ignored and left out uncorrected. Similarly, floating-point units can dynamically switch

between exact and approximate modes [66]. Its approximate mode ignores the timing

errors on the less significant N bits of the fraction part where N is a reprogrammable

memory-mapped register. Another technique is proposed for timing error acceptance

to improve the quality-energy tradeoff for DCT/IDCT components [40]. Rely [16], is

a language for expressing approximate computation that allows developers to define a

reliability specification, which identifies the minimum required probability with which

a program must produce an exact result. Chisel [59], further enhances the capabilities

of Rely by providing combined reliability and/or accuracy specification.

Challenge: The main challenge of this approach is to guarantee the application

quality after applying approximation techniques because the quality usually depends on

the input data. For a fixed hardware-level approximation, it is possible that the applica-

tion quality is acceptable under one input dataset but fails under another. To solve this

problem, we developed a “controllable” and “reconfigurable” approximation technique

that can change the approximation level to satisfy the quality requirements (Chapter 6).

Furthermore, the application developers and researchers are usually unclear about error

behavior of the underlying hardware and cannot accurately expose the approximation

errors to applications. This leads to either conservative or pessimistic approximation

level. Thus, we proposed a cross-layer assessment approach to expose the hardware

errors to applications (Chapter 5). And finally, application developers usually need a

hardware error model to help them estimate the application quality. For example, in

Rely [16] and Chisel [59], the accuracy specification determines a maximum acceptable

difference between the approximate and exact result values, while the reliability speci-

fication specifies the probability that a computation will produce an acceptably accurate

result. Meeting the latter specification is a challenge for the automatic model generation

since the model must provide reliable information about the possibility of an error oc-

currence under different workload conditions, i.e., accurate error prediction. To solve

this problem, we propose a supervised learning-based model to predict timing errors for

7

High Correction Cost

Unacceptable Applicat-
ion Quality

Inaccurate Error
Modeling

Challenges

• Chapter 3: Correcting timing errors efficiently using
structural errors

• Chapter 4: Instruction-based timing error prevention

• Chapter 5: Application vulnerability assessment to
timing errors

• Chapter 6: Enhancing efficiency via approximate
computation reuse

This Thesis

• Chapter 2: Workload-aware timing error prediction

Figure 1.2: Dissertation organization.

any given input workload (Chapter 2).

1.3 Our Approach and Dissertation Organization

To address the challenges in improving timing error resilience, this dissertation

presents cross-layer optimization techniques and methodologies. The manifestation of

timing errors at various abstraction levels — the circuit layer, the architecture layer,

and the software layer has motivated our approaches that span various levels. For ex-

ample, at the circuit layer, we examine the root cause of “timing error” via analysis of

dynamic path sensitization to build an error prediction model (Chapter 2). At the ar-

chitecture layer, we characterize delay of various instructions to dynamically adjust the

clock frequency (Chapter 4). Unlike hardware where correct execution is predicted at

each instruction or even gate level, software likely presents a greater resilience to nu-

merical errors depending upon their significance to the end application. Operating under

that hypothesis, we explore use of approximate hardware executions in Chapter 6.

Although these approaches focus on individual layers, it is important to consider

the interdependence of system performance or application quality on design choices at

8

each of these layers because the effects of timing errors can propagate to higher layers.

Cross-layer optimizations are thus important in addressing the effects of timing errors.

For example, at the circuit layer, we expose the predicted timing errors to software layer

to estimate the quality of error-tolerant applications (Chapter 2). At the architecture

layer, we evaluate the system performance improvement by performing instruction-level

dynamic frequency scaling (Chapter 4). At the software layer, we dynamically recon-

figure and control the approximation level of hardware to ensure acceptable application

quality (Chapter 6). Fig. 1.2 illustrates the scope and organization of this thesis, in which

each major challenge is addressed respectively.

To enable accurate error modeling, Chapter 2 presents the approach to integrate

the impact of input operands in the error modeling using machine learning methods. We

have proposed using machine learning methods to establish the relationship between

input workload and dynamic path sensitization that can be used in predicting timing

errors. We have used gate-level simulation to locate the key features in the input work-

load that determine the dynamic path sensitization and have used it as input features in

applying machine learning methods. We also utilized such model to estimate the circuit

reliability under different datasets. Compared to the state-of-art simulation tools, the

model can achieve significant execution acceleration.

To enable reduced correction cost, Chapter 3 describes a methodology to effi-

ciently correct the timing errors using the structural errors of inexact adders. By combin-

ing the structural errors and timing errors, we show that inexact adders are more resilient

to overclocking than conventional adders and the combination of speculation and over-

clocking is a complementary combination to maximize circuit robustness. Chapter 4

describes an approach to proactively prevent timing errors instead of correcting them.

We use supervised learning model to predict dynamic delay of instructions. Using the

model-directed dynamic frequency scaling (DFS), we are able to improve performance

while preventing timing errors proactively.

To enable acceptable application quality, Chapter 5 describes a cross-layer ap-

proach to assess the vulnerability of hardware neural networks to dynamic voltage and

temperature variations. We extract the timing errors from hardware using gate-level sim-

ulations and examine their effects in the software using error injections. Chapter 6 goes

9

beyond timing errors but also look into the tradeoff between errors due to approxima-

tion and energy efficiency. To utilize the inherent error-tolerance of neural networks, we

proposed a controllable and reconfigurable approximate computation reuse approach to

improve the energy efficiency of hardware neural networks, with insignificant accuracy

degradation.

Chapter 7 concludes the dissertation and gives future directions and ongoing

work.

10

Chapter 2

Workload-aware Timing Error

Prediction

In Chapter 1, we introduce the sources of timing errors and the typical ap-

proaches to combat timing errors and associated challenges. These approaches can be

broadly classified into three categories: error prevention, error correction and error

acceptance. Beginning with this chapter, we propose our approaches to combat these

challenges. This chapter takes on the challenge of inaccurate error modeling associ-

ated with error prevention approaches. We describe a method to integrate the impact

of input operands in the error modeling using machine learning methods and present

evaluation results.

2.1 Introduction

To protect circuits from timing errors, designers typically use a conservative

timing margin, that is, clocking circuits at speeds slower than what could be supported

by the underlying circuits. The additional margin on path delay provides a guardband

against varying delays caused by variability in manufactured chips. However, it leads

to operational inefficiency. This loss of efficiency is already approaching limits that it

compromises any performance gains enabled by migration to new process nodes. Thus,

it is critical to reduce this margin. Existing error prevention approaches reduce such

conservative margins by predicting the timing errors in advance and adjusting the clock

11

period adaptively. Several prior works have devised methods to predict the timing errors

via instruction-level models [25, 67, 79]. At their core, these methods rely upon identi-

fication of critical instructions, that is, instructions which are likely to fail in a reduced

margin operation, by estimating maximum path delays and using this information to

guide runtime adaptation of the clock speed. As an alternative, Rahimi et al. proposed

a timing error rate prediction model for functional units based on hardware variation

information [63].

A common limitation of these approaches is assumption of a worst-case scenario

for path sensitization that overlooks the effect of input operands, leading to pessimistic

modeling. In fact, during execution, the sensitized paths can vary with different input

workload [54]. An instruction or functional unit may exhibit a different delay under

different input operands, resulting in different timing error rates (TERs) [79]. Unfortu-

nately, due to the extremely large input space, incorporating input operands into timing

error modeling becomes very difficult, if not impossible. Our attempt to capture the

path sensitization behavior under arbitrary input workload and represent it in the error

modeling faces the following challenges:

Challenge 1: Dynamic path sensitization is affected by various parameters,

such as operand values, instruction types, and computation history. These become more

complex as we move up the level of abstraction in an attempt to identify useful “features”

from the input parameter space for effective timing error models.

Challenge 2: There might be numerous failed circuit paths in the design, and

the timing errors might be caused by any one of them. It is unclear how these features

will determine which paths to sensitize and, therefore, how they induce timing viola-

tions. More importantly, a detailed path analysis may not be possible since we often do

not have detailed circuit diagrams available. Further, under cryptographic assumptions

Probably Approximately Correct (PAC) learning of Boolean circuits is a difficult prob-

lem, even under uniform distribution over the inputs [53].

Proposed Approach: To overcome these challenges and provide an accurate er-

ror prediction model, we propose CLIM, a cross-level supervised learning-based model

to predict timing errors for a given input workload, clock period and functional unit

(FU) type. The key idea of CLIM is to establish a prediction model that can best explore

12

the relationship from input features to sensitized circuit paths by learning the existing

patterns and their corresponding output classes. For a given input data and clock period,

CLIM predicts output data to be one of two predefined classes–{timing correct, timing

erroneous} at two levels: bit-level and value-level.

First, we measure the timing errors at each cycle to generate output class labels

using gate-level simulation (GLS) of post-layout designs in TSMC 45nm technology.

We also perform a trial-and-error process to extract useful features from input data. Sec-

ond, we apply supervised learning methods to construct and train CLIM for four func-

tional units: (INT ADD, FP ADD, INT MUL, FP MUL) at two levels with extracted

input features and output class labels. Third, we evaluate the prediction accuracy of

CLIM by comparing its predicted results with simulation-based ground truth.

Contribution: We make following contributions:

1. We present a detailed bit-level and value-level timing error behavior characteriza-

tion using standard ASIC flow and gate-level simulation. We show that different

input operands lead to different error behavior. We then extract useful “features”

from input operands to train the model. We apply random forest tree on the train-

ing data to develop CLIM, an input workload-aware learning model to predict

bit-level and value-level timing errors.

2. We evaluate the performance of CLIM at two granularities under various datasets

and circuit parameters such as circuit structures and clock periods. CLIM demon-

strates average prediction accuracy of 95% and 97% at the value-level and at the

bit-level respectively, exceeding baseline models.

3. We quantify the degree of error tolerance of arithmetic operations in error-tolerant

applications by deriving their bit-level reliability specifications. By comparing

such bit-level reliability specifications with CLIM-predicted bit-level reliability,

we predict output quality of such applications into two classes: {acceptable, non-

acceptable}. This prediction is on average 97% consistent with simulation-based

classification. We also utilize CLIM to analyze the value-level reliability of func-

tional units, which exhibits deviation within 2.8% on average of detailed gate-level

simulation ground truth. We demonstrate the efficiency of CLIM by comparing it

13

to the execution speed of a gate-level simulation.

2.2 Problem Formulation

We represent the timing errors of a circuit as a function of circuit parameters

and the input workload. More specifically, we abstract a circuit as a mapping from an

input space I consisting of p circuit parameters (e.g., the circuit structure, and clock

speed) and m input bits, to create an input I . Suppose the function implemented by

an ideal circuit, without timing errors is φi and the function of the real physical circuit

is φr, which includes the effect of timing errors. The output value in error is ψ(I) =

φi(I)⊕ φr(I), where ⊕ is the XOR operator. Our goal is to learn (an approximation of)

ψ given a range of inputs and circuit parameters.

However, in general we do not know the structure of the ψ function – it is not

even clear a priori if the structure of ψ is similar to the structure of the circuit function

φ. We thus propose evaluating a sequence of non-parametric classification methods to

classify the inputs and thereby map them into different outputs as shown in Section 2.3.2.

We define x[t] as the input operands vector, y[t] as the gate-level simulation

output and y gold[t] as the pure-RTL simulation output value, all at cycle t. Note that

y[t] may contain timing errors while y gold[t] is always clean. We denote yi[t] and

y goldi[t] as ith bit position of the gate-level simulation and RTL simulation output

respectively, where i = 1, 2, ...N and N is the number of output bits. We define the two

classes for output value: Ce representing timing erroneous and Cc representing timing

correct, and we define the class of y[t] and yi[t] as C[t] and Ci[t] respectively. At cycle

t, if y[t] = y gold[t], then C[t] is marked as class Cc. If mismatched, then C[t] is marked

as class Ce. The same principle applies to bit-level to determine the bit-level timing

class. Our goal is to predict the output class C[t] (Ci[t]) at cycle t as a function of input

workload, clock period and functional unit type, denoted as follows:

C[t] = f(tclk, FUtype, x[t], x[t− 1], x[t− 2], ..., x[1]) (2.1)

Ci[t] = f(tclk, FUtype, x[t], x[t− 1], x[t− 2], ..., x[1]) (2.2)

14

where tclk is the clock period, FUtype is FU type, x[t], x[t − 1], ... x[1] are the input

workloads at cycle t, t − 1, ...1. The reason for putting the entire input stimuli history

is that we do not know whether previous input workload would set a circuit state and

thereby have an effect on the timing error behavior of current cycle t. In instruction-

level models [79] [25] [67], the effects of input workload are not considered. Therefore,

we later investigate the features from input data which affect the output timing error

behaviors, as shown in Section 2.3.2. This becomes a binary classification problem: for

a given input data and circuit parameters at cycle t, t− 1, ...1, CLIM predicts the output

C[t] (Ci[t]) to be one of two classes: Cc or Ce.

2.3 Cross-level Timing Error Prediction Model (CLIM)

RTL

Description

Synthesis

Place & Route

Gate-level

Simulation

TSMC

45nm

Gate-level

Netlist + SDF

STA

Variable

Parameters

Clock

Data pre-

processing

Applications

Arch-level

Simulation

GLS

Input Feature

Extraction

Supervised

Learning

Prediction

Accuracy

Random Data

Input Feature

Output Class

Label

Timing Error Extraction Model Training Model Evaluation

Unseen Data

Predicted

Result
Ground

Truth

Comparator

CLIM

Input

Figure 2.1: CLIM model: a) Timing Error Extraction to examine the timing errors and
to generate output timing class labels; b) Model Training to apply random forest clas-
sification (RFC) to construct CLIM; c) Model Evaluation to evaluate CLIM prediction
accuracy.

Model Overview: It is composed of three phases as shown in Fig. 2.1: Timing

Error Extraction, Model Training and Model Evaluation. a) The Timing Error Extrac-

tion phase implements the standard ASIC flow and uses gate-level simulation to gen-

15

erate timing class: Cc if matched, otherwise Ce. b) In the Model Training phase, we

preprocess the training data and extract useful features from them, which will then be

incorporated into modeling. We then apply RFC method to construct the model with the

input features and output timing class labels generated from last phase. c) In the Model

Evaluation phase, we use CLIM to predict the timing class of the functional unit out-

put value and then compare the predicted class with gate-level simulation ground truth

to compute prediction accuracy. More details about the three phases are illustrated as

follows.

2.3.1 Timing Error Extraction

We use both 32-bit integer and single-precision floating point units (FPUs) as

our experimental platforms: INT ADD, INT MUL, FP ADD, FP MUL, implemented

in VHDL. FPUs are fully compatible with the IEEE-754 standard and can provide more

complex structures compared to their integer counterparts. We change the data types and

circuit structures to better evaluate the robustness of our model. We extract the value-

level and bit-level timing errors through Timing Error Extraction module as illustrated

in Fig. 2.1, which is divided into several steps.

We use FloPoCo [28] to generate the synthesizable VHDL codes of combina-

tional circuits. We put wrappers at input and output ports to have better timing notations.

We then use Synopsys Design Compiler to synthesize the VHDL codes and use Synopsys

IC Compiler to generate post place-and-route netlist in TSMC 45nm technology. Next,

we use Synopsys PrimeTime to perform static timing analysis, generating a Standard De-

lay Format (SDF) file. Then, we vary clock periods to simulate the netlist with Mentor

Graphics Modelsim to do SDF back-annotation gate-level simulation to generate output

data y[t]. The input stimuli of simulation x[t], comes from two sources: Python-written

random data generator and the application input data profiled using Multi2Sim [75], a

cycle-accurate CPU-GPU heterogeneous architectural simulator. At cycle t, the input

stimuli vector x[t] is applied to gate-level simulation to generate output y[t] (yi[t]) and

compare with pure-RTL simulation result y gold[t] (y goldi[t]) to derive timing errors

as shown in Section 2.2.

16

2.3.2 Model Training

Data Preprocessing

To collect the training input data, we generate the random input data as stimuli

for simulations. For a 32-bit bit vector, we randomly set each bit independently to

produce the training data. But note that for test input data, which might come from

application profiling, its format could be in decimal format. We need to preprocess such

input data to convert it into the correct format, for example, 0.5 should be converted

to 00111111000000000000000000000000 if the functional unit is of IEEE-754 single-

precision format. The reason for doing this is that the functional unit accepts 32-bit

input vectors and each bit value could affect the dynamic path sensitization, hence the

final timing class. The decimal value cannot precisely represent the impact of each bit

location. Therefore, in our model training, we use each bit value to compose input

features rather than the decimal value alone.

As a matter of methodology, we remove the repetitive pair of {x[t− 1], x[t]} in

the dataset because the same pair of current and preceding input leads to same timing

class (as shown next). We also exclude an ambiguous case where the preceding input

x[t− 1] is the same with current input x[t], because even if a timing violation occurs at

cycle t, the output could still appear to be correct. We note that these two situations are

unlikely especially with randomly chosen 32-bit operands.

Feature Extraction

From the processed training input data, we need to find out the useful input

features that determine the output timing class. Empirically, the current cycle input

workload x[t] directly affects the dynamic path sensitization at cycle t, hence the final

output timing class. However, it is not clear whether the preceding input has impact on

the current cycle path sensitization and timing behavior. To explore the effect of history

input workload, we use a trial-and-error process, which iteratively varies the preceding

input while fixing the current input workload. We set the experiment as follows:

• Case 1: We fix the current input x[t] and randomly vary the preceding cycle input

x[t − 1], where we set cycle t = 10, 30, 50, 70, We use this to evaluate the

17

effects of immediately preceding input.

• Case 2: We fix both the current input x[t] and the immediately preceding input

x[t − 1], while randomly varying the preceding input of immediately preceding

input x[t − 2], where we set t as above. We use this to evaluate the effects of the

deeper history.

We use 100K cycles for simulation and use different clock periods. At value-level, in

Case 1, we found the timing class C[t] varies irregularly. More specifically, by com-

paring every two examined neighboring outputs, e.g., c[30] and c[50], we found 44% of

neighboring pairs exhibit different timing classes. In Case 2, we found all output timing

classes C[t] exhibit exactly the same behaviors, i.e., all Cc or Ce. At the bit-level, we

examine the hamming distance between every two examined neighboring timing class

outputs, where each output is a 32-bit vector of Ci[t], where i = 0, 1, ...31. The ham-

ming distance between two vectors is defined as the number of mismatched bit positions,

e.g., 10001 and 10000 has a hamming distance of 1. In case 1, we can see most pairs

have a positive hamming distance, indicating that the resulting output timing classes are

different. In case 2, the neighboring hamming distance is always 0, which means the

bit-level timing class output is exactly the same for every bit position.

This key observation shows that only the preceding and current cycle input vec-

tors x[t − 1], x[t] are accountable for timing errors in the current cycle t. For a combi-

national logic placed between sequential elements, it is natural that the preceding input

workload sets a state for the circuit, and then the current input toggles nets based on

the current state. Thus, the path sensitization depends on both the current circuit state

and current circuit input. However, since most previous works do not consider input

operands as features for timing error modeling [63] [79] and some work points out that

including a deeper history would increase the accuracy [74], we investigate the effects

of input operands and history. This key observation locates the source factors that deter-

mine the dynamic path sensitization and motivates an workload history-aware modeling

approach.

On the other hand, we explore circuit parameters that can reflect or partially

reflect the timing violation behaviors. One parameter that can be used is timing class

output. At the value-level, the circuit output timing errors occur if and only if at least one

18

output bit location faces a timing violation. The timing violation of a particular output

bit occurs only when there is at least one sensitized circuit path ending at that bit facing

violation. A sensitized path would have all of its nodes toggled [11]. Hence, the end

point, i.e., the output bit, should also be toggled. Thus, we also take the final output value

into our modeling as part of the input feature. By composing aforementioned features,

our final input features are {x[t − 1], x[t], y gold[t − 1], y gold[t]}. At bit-level, the

same principle applies and leads to the final input features are {x[t−1], x[t], y goldi[t−
1], y goldi[t]}.

Training Process

Since the model has two levels, we also need to train the model at two-levels re-

spectively. At the value-level, we set {x[t−1], x[t], y gold[t−1], y gold[t]} as the input

feature and Ct as output class labels; At the bit-level, we set {x[t− 1], x[t], y goldi[t−
1], y goldi[t]} as the input feature and Ci[t] as output class labels. Therefore, for a given

circuit with K-bit output, a set of K+1 binary classifiers is developed. Model Training

stage in Fig. 2.1 illustrates the process of constructing the model. First, we apply 500K

random data points as training input data. We extract the input feature through Feature

Extraction module and output labels through Timing Error Extraction stage. We then

apply and evaluate several supervised learning methods on these training data to train

CLIM.

While certain positive learnability results exist for specific classes of circuits

[58], they do not cover the circuits we consider here. In contrast to these aforemen-

tioned methods (which essentially learn a model of the circuit under consideration), we

focus on learning when a circuit does not work as desired, i.e., the circuit contains tim-

ing errors. Capturing the timing errors will require learning a binary classifier. Thus, we

evaluate four supervised learning methods for their increased sophistication and practi-

cal use: k-nearest neighbor (k-NN), support vector machine (SVM), logistic regression

(LR) and random forest tree (RFC) classifiers [6]. These learning methods are very

popular in classifying various kinds of tasks and we want to see whether they fit for

the timing error classification tasks. By comparing them we can also conclude why we

choose a particular method. The machine learning module is provided by Scikit learning

19

module [62] in Python, and we use the default configurations for the classifiers.

We evaluate k-NN because it provides useful theoretical properties [26] and has

limited parameters to train. Given an input vector x, k-NN classifier predicts a timing

error if the majority of the k nearest neighbors of x in the dataset D has timing errors.

However, in our case, K-NN finds its nearest neighbors based on hamming distance,

which actually overlooks the situations wherein different bit positions would have dis-

parity of significance on path sensitization. Thus, we would expect the k-NN model

perform badly. In addition to this, k-NN classifiers typically have sub-par generaliza-

tion performance (i.e., performance on new data) when available labeled data is limited,

which could potentially lead to appropriate feature normalization and scaling issues.

To address these problems, we evaluate LR and SVM because they can learn

weights w on each bit position, which considers the disparity of significance of different

bit positions.

In LR, we learn weights to compare the logic functions that perform well on the

training data D. In particular, for an input x we predict 1, or the timing error, if the ratio

of F (x)
1−F (x)

>= 1 where F (x) is given by

F (x) =
1

1 + e−w·x
(2.3)

In SVM, given labels yi for the N training data points xi, SVM learn w based

on the following large margin optimization problem:

minw,η,b
1

2
||w||2 + C

∑
i

ηi (2.4)

s.t. yi(w · xi + b) ≥ 1− ηi (2.5)

where w is weights and b is offset, which jointly determine a separating hyperplane.

Essentially, weights are learned that maximize the margin (ηi) by which examples are

classified correctly. Typically, input examples are mapped to a higher dimensional ker-

nel space (we use the popular Gaussian Radial Basis Function (RBF) kernel in our ex-

periments).

LR and SVM can learn the disparity of significance of different bit positions.

20

However, one potential limitation is that, they put a fixed weight on each bit position.

It is unclear whether each bit position contributes linearly to the final timing error, and

the contribution of each bit position might be changed along with the change of other

bit values. Think about an ”AND” gate – if one input is zero, then the final result will

always remain the same regardless of the value of the other input.

To address this problem, we propose to use RFC. RFC is an ensemble-learning

method that constructs multiple decision trees at training time and uses their averaging

to improve accuracy and control overfitting. Decision trees are a non-parametric su-

pervised learning method that aims to establish a tree-like model by learning decision

rules from training data. As a white box model, the decision rules are based on Boolean

logic; thus it is easy to understand and interpret. However, decision trees can easily

create overly complex trees and become very deep by learning many irregular patterns

with a large variance. This will lead to the notorious overfitting problem, which cannot

generalize the data well. RFC alleviates this problem by constructing multiple decision

trees. In our scenario, RFC can predict the timing errors based on the decision rules

it learned from the data patterns. This method emphasizes the disparity of different bit

positions and also considers the interaction between the input bits. Although it may

lose the opportunity to learn some ”irregular” patterns, overall it reduces overfitting and

boosts performance.

S =

f1A f1B f1C C[1]

f2A f2B f2C C[2]

...
...

...
...

fdA fdB fdC C[d]

(2.6)

S1 =

f5A f5B f5C C[5]

f10A f10B f10C C[10]

...
...

...
...

f100A f100B f100C C[100]

(2.7)

21

S2 =

f15A f15B f15C C[15]

f20A f20B f20C C[20]

...
...

...
...

f200A f200B f200C C[200]

(2.8)

SM =

f3A f3B f3C C[3]

f40A f40B f40C C[40]

...
...

...
...

f400A f400B f400C C[400]

(2.9)

We use equation 2.6 to equation 2.9 to illustrate the process of creating a random

forest classifier. Equation 2.6 is the original training dataset, where we have d input sam-

ples, each of which is composed of 3 features, that lead to a particular class C. We split

the entire training data intoM independent sub-sample datasets, S1, S2,...,SM . Then, we

use M decision tree classifiers to fit all sub-sample datasets. Hence, M decision trees

are developed. Finally, each decision tree predicts the class and we use the majority vote

of all M votes as the final prediction result. In the model construction, we need to tune

several important parameters such as number of trees in the forest, the depth of trees,

and the number of features to test at each node. Increasing these parameters could pos-

sibly improve the prediction accuracy but incurs more computational overhead. Thus,

we use the default settings recommended by Scikit learning module [62].

Table.2.1 presents the prediction accuracy, training and testing time of four meth-

ods using 100K random training data and 10K random test data under a computer con-

figuration of 2-core Intel(R) Xeon(R) CPU E5504@2.00GHz and 50GB memory. More

specifically according to the Table, LR is fastest because of its relatively easy computa-

tion process, which assigns weight to each bit position. However, it achieves the lowest

accuracy because the contribution of each bit position is not identical to the final output.

Although SVM achieves good accuracy, compared with the other three classifiers its

long running time impedes its use. Comparing to the other three baseline classifiers, we

22

can emphasize why RFC is the choice because it can interpret the difference at each bit

position (compared with KNN) as well as interactions among bits (compare with SVM

and LR). Finally, we choose RFC due to its high accuracy, fast computing time and su-

perior interpretability. Note that the training process is a one-shot activity, so the testing

time is more important for model usage.

Table 2.1: Prediction accuracy, training time, and testing time of four learning methods.
method Accuracy Training Time Testing Time

LR 85% 42.8s 0.21s

KNN 87% 4224s 849s

SVM 92% 18600s 1968s

RFC 93% 94.74s 0.26s

2.3.3 Model Evaluation

We evaluate the model performance by comparing with gate-level simulation

under various functional units, clock periods, and datasets.

Evaluation Metrics

Prediction Accuracy: Prediction accuracy is an intuitive measurement of how

accurate the predictions are. We define mean bit-level prediction accuracy (MBPA) and

mean value-level prediction accuracy (MVPA) as follows:

MBPA[clk] =

∑
bit i

(∑
cycle t

|C(pred)
clk,i,t==C

(real)
clk,i,t|

#cycles

)
#bit positions

(2.10)

MVPA[clk] =

∑
cycle t

|C (pred)
clk,t == C (real)

clk,t|

#cycles
(2.11)

where C (pred)
clk,i,t and C (real)

clk,i,t are the predicted and real timing classes (1 for timing-

erroneous and 0 for timing-correct) for bit position i at a given clock period clk and cycle

t. C (pred)
clk,t and C (real)

clk,t are the predicted and real timing classes (1 for timing-erroneous and

23

0 for timing-correct) for the entire value at a given clock period clk and cycle t. Its best

value is 0 and worst value is 1.

Comparison Methods

We compare CLIM against following baseline methods, which can help us eval-

uate the true performance of our model:

• rand [69]: This model is adopted from [69]. We call it rand model because it

predicts the timing class with random guessing without considering the effects of

input operands.

• fixed [25, 67, 79]: This model is adopted from [25] [67] [79]. We call it fixed

model because it always predicts a fixed timing class based on the pre-characterized

information, i.e., it predicts Cc (Ce) when the clock period does (not) meet the

measured maximum instruction-level timing delay. At the bit-level, it always pre-

dicts the particular timing class that has more instances in training data. For ex-

ample, if in the training data more data are timing correct than erroneous, then

this model always predicts timing correct. Note that this model can lead to high

prediction accuracy if the dataset is heavily biased, e.g., 99% of the output data is

Cc. Then its prediction accuracy is 99% by always predicting timing correct.

2.4 Experimental Results

In this section, we first describe our experimental setup. Second, we characterize

the hardware timing behavior. Third, we evaluate CLIM performance at both the bit-

level and the value-level. Lastly, we examine CLIM efficiency.

2.4.1 Experimental Setup

We characterize timing error rate (TER) as the ratio of #erroneous cycles and

#total cycles. To explore a range of timing errors, we set the experimental clock period

for each functional unit (FU) so that their value-level timing error rate (TER) reaches

10%, 20%, and 30% under random data approximately. Through the rest of this chapter,

24

we refer to the clock period reduction (CPR) as a 3-tuple, {CPR1, CPR2, CPR3}m that

leads to three corresponding timing error rates. Note that such CPR pair values are

different for each functional unit.

Using a trial-and-error gate-level simulation to compute CPR is time-consuming

since we need to iterate clock periods until the target timing error rates is met. This

process could take exponentially large number of gate-level simulations as the number

of functional units grows. Therefore, we derive such clock periods through the charac-

terization of dynamic delays of all simulation cycles. We know a timing error occurs if

the clock period is less than the dynamic delay for a given cycle period. Therefore we

only need to sort all the dynamic delays and find the top 10%, 20%, and 30% dynamic

delay as the {CPR1, CPR2, CPR3}. To do this, we first extract all the dynamic delays;

we parse the value change dump (VCD) file that is generated by gate-level simulation

at a relatively slow clock period to make sure there are no timing violations. The VCD

file records the toggled endpoints of each circuit path at each cycle. Second, for each

clock cycle, we use the last toggle event time of the input pin of all sequential elements

(flip-flop, registers, etc.) to subtract the last positive clock edge arrival time to get the

maximum delay at that cycle. For example, at cycle N the positive clock edge occurs

at time t, and the very last toggled event at the data input pin of all sequential elements

occurs at time t′, then the dynamic delay at this cycle is t′ − t. Third, we sort all the

dynamic delays in a descending order, and locate the delay at the top 10%, 20%, and

30% position.

We use three datasets to evaluate and utilize the model: random data, Sobel filter

and Gaussian filter. The two image processing applications are adopted from AMD APP

SDK [1]. The openCL code of these applications are simulated by Multi2Sim to profile

input data. The images are adopted from Caltech-UCSD Birds 200 vision dataset [78].

2.4.2 Hardware Characterization

As mentioned earlier, timing errors are caused by the violations of circuit timing

specification where the sensitized path delay is larger than the clock period. Thus, the

key to modeling timing errors is to model the path sensitization behavior. We demon-

strate the effect of input operands on timing errors using gate-level simulations and

25

0 5 10 15 20 25 30
Bit Position

0

2

4

6

8

10

12

Ti
m

in
g

Er
ro

r R
at

e
(%

)

random_data
sobel_data
gauss_data

(a) INT ADD

0 5 10 15 20 25 30
Bit Position

0

5

10

15

20

Ti
m

in
g

Er
ro

r R
at

e
(%

)

random_data
sobel_data
gauss_data

(b) FP ADD

0 5 10 15 20 25 30 35 40 45 50 55 60
Bit Position

0

10

20

30

40

50

Ti
m

in
g

Er
ro

r R
at

e
(%

)

random_data
sobel_data
gauss_data

(c) INT MUL

0 5 10 15 20 25 30
Bit Position

0

1

2

3

4

5

6

7

8

9

Ti
m

in
g

Er
ro

r R
at

e
(%

)

random_data
sobel_data
gauss_data

(d) FP MUL

Figure 2.2: Bit-level timing error rate (%) under different input datasets.

characterize the timing error rates of different functional units. We depict bit-level tim-

ing errors at CPR3 under different input datasets as illustrated in Fig. 2.2, where we

observe several important facts.

First, under the same input dataset, different bit positions exhibit different tim-

ing error rates. This is because different output bits lie on different paths with different

delays. Second, under a different input dataset, the same bit positions exhibit differ-

ent timing error rates. For example, in Fig. 2.2(c), some bit positions under the sobel

and gauss datasets exhibit a nearly zero timing error rate while those same bits under

random dataset exhibit up to a 20% timing error rate. This is because different input

data exercise different paths towards an output bit, thus causing different delays. Third,

some bit positions might exhibit similar timing error rates under different datasets. For

26

example, in Fig. 2.2(d), some bit positions exhibit a similar timing error rate under three

datasets. From this observation, we infer that the path sensitization behavior in FP MUL

is relatively similar under these three input datasets, thus resulting in similar timing er-

ror rates. These observations of the effects of input workload on timing error behavior

has motivated us to develop an workload-aware model.

2.4.3 Bit-level CLIM

Table 2.2: Bit-level CLIM on INT ADD for timing error prediction.

datasets
CPR1 CPR2 CPR3

CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 96.7% 92.8% 50.0% 96.1% 92.3% 49.9% 95.6% 88.7% 50.0%

sobel 99.8% 99.9% 49.9% 99.9% 99.9% 49.9% 99.9% 99.8% 50.0%

gauss 99.9% 99.9% 49.9% 99.9% 99.9% 49.9% 99.9% 99.9% 49.9%

Table 2.3: Bit-level CLIM on FP ADD for timing error prediction.

datasets
CPR1 CPR2 CPR3

CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 97.6% 91.1% 49.8% 95.5% 88.6% 50.1% 94.8% 87.9% 50.0%

sobel 96.3% 93.4% 49.9% 94.4% 89.4% 50.0% 93.5% 88.6% 49.9%

gauss 98.7% 97.5% 50.0% 98.1% 96.7% 49.9% 98.1% 96.2% 50.0%

Table 2.4: Bit-level CLIM on INT MUL for application quality prediction.

datasets
CPR1 CPR2 CPR3

CLIM fixed rand CLIM fixed rand CLIM fixed rand

sobel 100% 100% 3.1% 100% 100% 3.1% 100% 100% 3.1%

gauss 100% 100% 4.6% 100% 100% 4.6% 98.4% 95.3% 4.6%

We first evaluate the bit-level model of CLIM on four functional units and com-

pare with baseline models.

27

Table 2.5: Bit-level CLIM on FP MUL for application quality prediction.

datasets
CPR1 CPR2 CPR3

CLIM fixed rand CLIM fixed rand CLIM fixed rand

sobel 100% 68.7% 87.5% 100% 68.7% 87.5% 96.8% 68.7% 87.5%

gauss 96.8% 75.0% 78.1% 93.7% 75.0% 78.1% 93.7% 75.0% 78.1%

Table 2.2 and Table 2.3 present the MBPA of CLIM for INT ADD and FP ADD,

where we can observe several facts. For INT ADD, CLIM exhibits prediction accuracy

between 95.6%-99.9% across three datasets and CPRs. Meanwhile, fixed can deliver

prediction accuracy between 88.7%-99.9% and rand almost always achieves 50% ac-

curacy. More specifically, fixed only achieves 99.9% accuracy when the input dataset is

sobel or gauss. These two datasets are heavily biased with almost zero TERs, according

to Fig. 2.2(a). For rand dataset, which is more representative, CLIM achieves 96.2% ac-

curacy while fixed achieves 91.3% accuracy on average. For FP ADD, CLIM exhibits

prediction accuracy between 93.5%-98.7% across three datasets and CPRs. Meanwhile,

fixed can deliver prediction accuracy between 87.9%-97.5% and rand almost always

achieves 50% accuracy. On average, CLIM achieves 96.3% accuracy and fixed achieves

92.1% accuracy. Under mild TERs, fixed classifier can almost always achieve decent ac-

curacy, perhaps leading one to doubt whether it is necessary and worthwhile to develop

CLIM. In fact, fixed classifier has no ability to identify any positive output because it

always predicts outputs to be Cc. This will severely hurt system reliability as it assumes

no error when an error could occur. Thus, we further compare these models on more

functional units by using them to predict the output quality of approximate computing

applications as presented in Table 2.4 and Table 2.5. Before getting to the result, we first

introduce bit-level reliability specification of approximate computing applications.

Bit-level Specification The error-tolerant applications used in the approximate

computing field exhibit enhanced error resilience at the application-level when multiple

valid output values are permitted. Instead of a single output value, the output value is

associated within an application-specific quality metric, such as peak signal-to-noise ra-

tio (PSNR). Therefore, if execution is not numerically precise, the application can still

appear to execute correctly from the users’ perspective. We focus on error-tolerant appli-

28

(a) Original Input (b) Exact Output (c) Approximate Output

Figure 2.3: (a) Original input image. (b) Error-free exact Sobel filter output with PSNR
= inf. (c) Error-injected approximate Sobel filter with PSNR = 30dB.

cations mainly from the image processing domain, including Sobel filter and Gaussian

filter. In image processing applications, a PSNR larger than 30dB is generally consid-

ered as acceptable to users [66]. As illustrated in Fig. 2.3, it is hard to tell the difference

between exact output and approximate output.

We quantify the degree of error tolerance of arithmetic operations in these appli-

cations by defining the notion of bit-level reliability specification. Similar with Rely [16]

described in Section 2.1, it defines the minimum required probability with which the

arithmetic operation output bit must be correct so that the application can deliver an ac-

ceptable output. For example, if we say reliability specification of 20th bit of FP MUL

operation is 70%, it means if the reliability of this bit is lower than 70%, the application

output quality is not acceptable.

We compute the reliability specification for each bit of interested arithmetic op-

erations through an iterative fault injection process as shown in Fig. 2.4. First, we flip

the one output bit of our interested operation (e.g., INT MUL) with an initial probabil-

ity that is small enough so that the application output quality is acceptable. This fault

injection is done using our-modified version of Multi2Sim [75] simulator. Second, we

check the output quality (PSNR) of the resulted application using Matlab. Third, if the

output quality is acceptable, we increase the bit flip probability and repeat step 1 and 2

until the output quality is not acceptable, then we use the last acceptable probability as

the threshold probability. After these steps, we calculate the reliability specification as

1−threhold probability. We repeat such fault injection processes for every bit position

29

across multiple arithmetic operations and error-tolerant applications.

Increase

Pbit_flip

Arch-level

Simulation

Acceptable

NO

YES

Last Pbit_flip

Pbit_flip

Output

Quality

Figure 2.4: Derive bit-level reliability specification for error-tolerant applications
through fault injection. Pbit flip is a bit flip probability.

Quality Estimation We then use CLIM to predict the error-tolerant applica-

tion quality into two classes: {acceptable, non-acceptable} with the following process.

First, we obtain the bit-level reliability specification of each bit position. Second, we use

CLIM to predict the bit-level TER of each bit position, and then use 1− TER to derive

bit-level reliability. We then compare the predicted reliability with reliability specifica-

tion. If the predicted reliability is greater than the specification, then CLIM will predict

the application quality is acceptable; otherwise it is unacceptable. For example, if the

predicted reliability for 20th bit of FP MUL is greater than 70%, then CLIM will predict

the application quality is acceptable. Third, we use gate-level simulation to compute the

ground-truth reliability for each bit position. Then we use such reliability to determine

whether the application quality is acceptable by comparing it with reliability specifica-

tion, as with the second step. Finally, gate-level simulation will produce a ground truth

result on whether an application quality is acceptable or not. Fourth, we then compare

the prediction result of CLIM with gate-level simulation ground truth and compute the

prediction accuracy across all the bit positions. We repeat the same process for fixed

30

and rand classifier.

Table 2.4 and Table 2.5 compare the accuracy of the three models. For INT MUL,

both CLIM and fixed achieve high prediction accuracy because according to Fig. 2.2(c),

sobel and gauss have almost zero TERs. Thus, the real reliability is close to 100% which

matches the fixed classification. The rand achieves low accuracy because its predicted

reliability is close to 50% while the real reliability is close to 100%. For most bit posi-

tions, the bit-level specification is between 50% and 100%, thus rand has a different pre-

diction than ground truth, resulting in low accuracy. For FP MUL, CLIM achieves ac-

curacy between 93.7%-100% while fixed and rand achieves 68.7%-75.0% and 78.1%-

87.5% respectively. The low accuracy of fixed is due to the fact that most bit positions

of FP MUL have non-zero TERs. For example, for bit position 21 under sobel dataset

whose bit-level specification is 99%, its ground-truth reliability is 96.7% as computed

by gate-level simulation, making the quality non-acceptable. Since CLIM-predicted re-

liability is 95.5%, fixed-predicted reliability is 100% and rand-predicted reliability is

50%, both CLIM and rand correctly predict non-acceptable while fixed predicts accept-

able, leading to a misprediction. CLIM demonstrates robustness across functional units

and datasets regardless of whether it is biased, while fixed achieves low accuracy due to

its inability to identify erroneous instances.

2.4.4 Value-level CLIM

Table 2.6: value-level CLIM on INT ADD for timing error prediction.

datasets
CPR1 CPR2 CPR3

CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 96% 9.9% 49.7% 93.5% 19.0% 50.0% 91.2% 29.6% 49.8%

sobel 99.3% 0.7% 49.9% 99.0% 0.8% 49.8% 98.4% 1% 50.0%

gauss 99.9% 0.1% 50.0% 99.9% 0.1% 50.0% 99.0% 0.1% 49.9%

Table 2.6 and Table 2.7 present the MVPA of CLIM for INT ADD and FP ADD.

For INT ADD, CLIM exhibits average prediction accuracy at 97.4% across three datasets

and CPRs. Meanwhile, fixed delivers average prediction accuracy at 6.8% and rand al-

31

Table 2.7: Value-level CLIM on FP ADD for timing error prediction.

datasets
CPR1 CPR2 CPR3

CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 95.6% 9.7% 50.2% 93.2% 20.1% 50.1% 92.3% 67.0% 49.8%

sobel 95.3% 33.8% 49.9% 88.8% 39.9% 50.1% 92.2% 48.8% 49.9%

gauss 97.1% 9.6% 49.9% 94.2% 11.9% 50.0% 93.3% 15.6% 49.8%

Table 2.8: Value-level CLIM on INT MUL for reliability prediction using AE.

datasets
CPR1 CPR2 CPR3

CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 0.9% 89.9% 49.9% 0.6% 79.4% 29.4% 0.5% 70.2% 20.3%

sobel 2.4% 91.6% 41.6% 1.8% 84.4% 34.4% 4.6% 69.2% 19.2%

gauss 0.6% 89.8% 39.8% 3.1% 81.6% 31.5% 4.7% 65.1% 15.0%

Table 2.9: Value-level CLIM on FP MUL for reliability prediction using AE.

datasets
CPR1 CPR2 CPR3

CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 3.3% 89.9% 39.9% 3.9% 79.9% 29.9% 3.3% 70.5% 20.5%

sobel 0.4% 89.7% 39.7% 4.0% 80.0% 30.0% 0.5% 69.9% 19.9%

gauss 4.2% 89.9% 39.9% 5.8% 79.5% 29.5% 6.2% 70.9% 20.9%

32

most always achieves 50% accuracy. For FP ADD, CLIM exhibits average prediction

accuracy at 93.6% across three datasets and CPRs. Meanwhile, fixed delivers average

prediction accuracy at 28.5% and rand almost always achieves 50% accuracy. The low

accuracy of fixed classifier is due to the fact that at instruction-level, it always predicts

Ce for all cycles because examined clock periods are all smaller than instruction-level

timing delay. It only considers the worst-case scenario to set its instruction-level timing

delay. Since fixed always predicts Ce when the examined clock period is smaller than

instruction-level delay, its predicted value-level reliability is always close to 0. This

will severely deviate from the ground truth reliability when the TER is mild. Thus, we

further compare these models on more functional units by utilizing them to predict the

reliability as presented in Table 2.8 and Table 2.9.

Before getting to the result, we introduce the evaluation metric on assessing the

accuracy of reliability predictions: absolute error, as follows

AE = |relipred − religls| (2.12)

where relipred is the predicted reliability while religls is the ground truth relia-

bility derived by gate-level simulation. This metric defines the difference between the

predicted value and the ”true” value, so a smaller value means a better performance.

Table 2.8 and Table 2.9 compare the accuracy of three models. For INT MUL,

CLIM achieves AE between 0.5%-4.7% while fixed and rand achieve 65.1%-91.6% and

15.0%-49.9% respectively. For FP MUL, CLIM achieves AE between 0.4%-6.2% while

fixed and rand achieve 69.9%-89.9% and 19.9%-39.9% respectively. The low accuracy

of fixed is due to the fact that at the three CPRs, the TERs are approximately 10%,

20%, and 30% respectively and fixed always predicts 0 reliability, leading to a huge

difference. This indicates that only considering the worst-case instruction-level delay to

predict timing errors could lead to a huge deviation from the real scenario, which might

be even worse than a random guess. Meanwhile, CLIM demonstrates its robustness with

average AE at 2.8%.

33

2.4.5 CLIM Efficiency

We compare the CLIM speed with gate-level simulation. On average across

all datasets and functional units, CLIM computes 173X faster than gate-level simula-

tion. The more complex the circuit structure, the slower speed for simulation. But this

might not apply to CLIM, because it processes input data according to its own rule,

which might not scale up with the complexity of the circuit structure. For previous

instruction-level models [79], the authors claim that the gate-level simulation is very

time-consuming and becomes a bottleneck for research purpose. Thus, CLIM provides

a faster alternative way to examine reliability without performing time-consuming con-

ventional gate-level simulation.

2.4.6 Discussion

Potential Usage: The machine learning approaches can also be used to pre-

dict the timing errors for a different implementation of circuits, such as approximate

adders [47]. On the other hand, the model could be utilized online to guide dynamic

frequency scaling (DFS) with an efficient physical implementation. Recently, a voltage-

droop induced delay prediction model has been implemented using SVM to guide online

DFS [81], whose hardware overhead is 1.5% for today’s processor design. We expect

the overhead of CLIM is less than such a model, since by comparison Table 2.1 shows

that SVM computing time is more than 7000X of RFC model.

Potential Limitation: The main limitation of such a learning-driven method

is that it only works for arithmetic functional units. It is unclear whether it can work

for other micro-architecture parts such as memory. This is because the advantage of

machine learning is that it can learn the path sensitization based on input data pattern,

which is the main factor that determine timing errors. But for memory, there is not a

clear clue as to the source factors of its timing errors.

34

2.5 Chapter Summary

This chapter presents CLIM, a supervised learning-based model to predict tim-

ing errors of functional units at two levels: the bit-level and the value-level. It considers

the impact of input operands on dynamic path sensitization (and hence timing errors).

We perform gate-level simulation on a post-layout netlist to extract timing errors and

useful “features” from input data and circuit activity. We then apply a random forest

classification method to construct the model with extracted input features and output

labels. We consider input workload, computation history, and circuit toggling as input

features to construct CLIM. For a given input data and circuit parameter, CLIM predicts

the output to be one of two classes: {timing correct, timing erroneous}. On average

across several functional units and clock periods, its bit-level and value-level prediction

accuracy are 97% and 95% respectively, far more accurate than existing models without

considering the effects of input workload. We utilize CLIM in estimating error-tolerant

application output quality, achieving an average of 97% accuracy. CLIM-based reliabil-

ity estimation is within 2.8% deviation on average of detailed gate-level simulation. Our

ongoing work seeks to improve the efficiency of model building by using efficient and

more advanced learning methods.

Chapter 2 contains reprints of Xun Jiao, Abbas Rahimi, Balakrishnan Narayanas-

wamy, Hamed Fatemi, Jose Pineda de Gyvez, and Rajesh Gupta, “Supervised Learning

Based Model for Predicting Variability-Induced Timing Errors”, Proc. IEEE Interna-

tional NEW Circuits And Systems (NEWCAS) conference, 2015; Xun Jiao, Yu Jiang,

Abbas Rahimi, and Rajesh Gupta, “SLoT: A Supervised Learning Model to Predict Dy-

namic Timing Errors of Functional Units”, Proc. IEEE/ACM Design, Automation, and

Test in Europe (DATE), 2017; Xun Jiao, Abbas Rahimi, Yu Jiang, Jianguo Wang, Hamed

Fatemi, Jose Pineda de Gyvez, and Rajesh Gupta, “CLIM: A Cross-level Workload-

aware Timing Error Prediction Model for Functional Units”, IEEE Transactions on

Computers (TC), 2017. The dissertation author is the primary author of the papers.

35

Chapter 3

Correcting Timing Errors Efficiently

using Structural Errors

In the last chapter, we propose a workload-aware timing error prediction model

to combat the inaccurate error modeling challenge associated with error prevention

approaches. In this chapter, to combat the high correction cost challenge associated

with the error correction approaches, we propose a method to efficiently correct timing

errors using the structural errors of inexact (approximate) circuits.

3.1 Introduction

Typical error correction approaches actively reduce and even remove the guard-

bands, and then use a correction mechanism to correct the timing errors in the system

in case of their occurrences [10, 22, 32, 34]. As discussed in Chapter 1, such techniques

could incur significant silicon overhead for online monitoring [17, 34, 61] and perfor-

mance penalty [10].

In this chapter, we show how timing errors can be corrected efficiently using

structural modifications to circuits such as in the design of Inexact Speculative Adders

(ISA). The structural modification is used by a redesign of the adder architecture that

shortens the critical path and performs carry speculation. Such structural modifica-

tion can cause errors, referred to as structural errors. However, these errors can be

controlled with the selection of design parameters such as the selection of speculation,

36

error-correction and error-reduction mechanisms. On the other hand, we use overclock-

ing to reduce conservative guardbands at the risk of introducing new timing errors. We

build a methodology to combine both structural and timing errors and analyze their in-

terplay with each other to limit the joint errors. We apply machine learning methods to

predict timing errors of overclocked Inexact Speculative Adders.

Our contributions are as follows:

• We build a bit-level timing-error prediction model for overclocked ISA evaluating

arithmetic effects of errors.

• We develop a methodology to combine both structural and timing errors and to

show their joint contribution on the average relative error.

• We characterize the trade-off between structural and timing errors for different

overclocked ISA designs.

• We analyze the distribution of both types of errors and how they interplay with

each other in an overclocked ISA.

3.2 Inexact Speculative Adders

Since adders are the most common arithmetic blocks used in DSPs, many at-

tempts have been made to design approximate versions of them [14, 70, 71, 83]. To

this purpose, carry speculation is an interesting technique, exploiting the fact that in

additions, carry propagate sequences are typically short [83]. Hence, it is possible to es-

timate, more or less accurately, an intermediate carry using a limited number of previous

stages. This allows to splits the carry chain into two or more shorter paths, relaxing the

constraints over the entire design and pushing energy, delay and area beyond the limits

imposed by traditional design.

Many speculative adders have been proposed in literature based on the ETAII

concept [83]. Among them, the Inexact Speculative Adder [13] has generalized and

optimized the architecture for speculative compensated addition to minimize speculation

overhead and by implementing a dual-direction compensation mechanism. Moreover,

37

An-2x-1-An-3x
Bn-2x-1-Bn-3x

Sn-2x-1-Sn-3x

ADD

An-1-An-x
Bn-1-Bn-x

Sn-1-Sn-x

Ax-1-A0
Bx-1-B0

Sx-1-S0

SPEC

COMP

ADD

An-x-1-An-2x
Bn-x-1-Bn-2x

Sn-x-1-Sn-2x

SPEC

COMP

ADD

SPEC

COMP

ADD

Figure 3.1: General block diagram of an Inexact Speculative Adder. Each speculative
segment consists of a carry speculator (SPEC), a regular adder (ADD) and an error
compensation block (COMP).

it has already been successfully verified and integrated in multiplier circuits [15]. The

following subsections presents the ISA in details.

3.2.1 Overall Architecture

The block diagram of an ISA is depicted in Fig. 3.1. It splits the carry chain

in multiple paths executed concurrently, each of them consisting of a carry speculator

block (SPEC), a sub-adder block (ADD) and an error compensation block (COMP).

The SPEC generates a partial carry signal from a limited number of operand

bits using a carry look-ahead approach. When a propagate chain covers the full block,

the exact carry cannot be speculated from the partial product and the output carry is

guessed. The ADD calculates local sums from the speculated carry. The COMP de-

tects the speculation faults by comparing the carry generated from the SPEC with the

carry-out coming from the previous ADD. It then compensates faulty sums either by

attempting to correct a few bits of the local sum or by reducing relative error over a

few bits of the preceding sum. This allows to avoid massive errors generated from an

internal overflow caused by an inconsistent carry. Intuitively, the first speculative path,

i.e. the one operating on the least significant bits (LSBs) of the adder, does not have

SPEC or COMP blocks since it uses directly the adder carry-in.

38

3.2.2 Error Compensation Technique

The achieved addition arithmetic is illustrated in Fig. 3.2. The COMP’s error-

correction technique consists in incrementing or decrementing only a small group of

LSBs of the local sum to compensate for the erroneous speculated carry. In most cases,

it can fully resolve carry errors, but if those stages are all in propagate modes, correction

is impossible as it would lead to an internal overflow. In this situation, the uncorrected

bits ensure a low relative error of the result, since they have a higher significance than

the error bit. The COMP also uses error balancing to flip a small group of MSBs of the

preceding sum to further reduce the relative error.

Thus, using the COMP block reduces simultaneously error rate and relative error.

Moreover, as the correction hardware is executed concurrently to the local addition, this

technique has a minimal impact on the critical path.

3.2.3 Design Strategy

Inexact Speculative Adders can easily be designed with a delay-accuracy ap-

proach: the adequate delay tradeoff is obtained by sizing SPEC and ADD blocks, prin-

cipal slack elements of the ISA, while the sizing of the COMP techniques can then be

used to tune the mean accuracy and limit the worst-case error. Thanks to a custom

sizing of each speculative path and each speculative path block, the ISA architecture

allows very precise tuning of multiple error characteristics while optimizing circuit per-

formance and efficiency.

BalancingCorrecting

2‐bit carry chains
speculated at 0

Compensated sum

P G P PPP

Block sums with
limited carry chain

Operands

Figure 3.2: Example of ISA addition arithmetic with 2-bit speculation, 1-bit correction
and 1-bit error reduction.

39

SimulationInput Operands

Netlist&SDFSynthesisRTL Code

Bit Timing

Class

RFC

Training

Feature

Extraction

Prediction

Model

Data Collection

Model Training

Figure 3.3: Bit-level timing error prediction model construction flow.

3.3 Guardband Reduction with Bit-level Timing Error

Prediction

The bit-level timing-error prediction model for guardband reduction uses binary

classification method to predict timing errors for a given clock reduction and input load.

It captures the dynamic circuit path sensitization behaviors by learning the mapping re-

lationship between input workload and bit-level timing errors. For each bit position, a

binary classifier is trained to predict if it is timing-erroneous. The overall model con-

struction flow, containing two parts, Data Collection and Model Training, is illustrated

in Fig. 3.3.

Data Collection:First, we synthesize the RTL code into a netlist and extract the

corresponding standard delay format (SDF) file. Second, using random data as input

operands, we perform SDF-annotated gate-level simulations to generate output data at

unsafe clock periods. At each cycle, a new input vector is fed into the simulation. We

define x[t] as the input vector, yRTL[t] as pure-RTL output and y[t] as gate-level output,

at cycle t. For an output bit position n at cycle t, we define the timing class of yn[t]

40

as cn[t], which is one of two timing classes: {timing-correct, timing-erroneous} based

on whether it has a timing error. If yn[t] matches yRTLn[t], then cn[t] is timing-correct,

otherwise timing-erroneous.

Model Training: First, we extract the useful feature vectors from input data. At

cycle t, the output y[t] is jointly determined by current input x[t] and preceding cycle

input x[t − 1]. Besides, we also consider output bit value {yRTLn[t − 1], yRTLn[t]} as

input feature because the timing error (bit flip) can only occur when these two bits are

different [20]. If these two bits hold same value, the latched value is correct to users

even if the clock period does not meet the sensitized path delay. Thus, we consider

{x[t], x[t− 1], yRTLn[t− 1], yRTLn[t]} as our input feature and the cn[t] as output label.

For each bit position, we train a binary classifier using supervised learning meth-

ods. We use Random Forest tree Classification (RFC) as our learning method to balance

the prediction accuracy and training cost. RFC is an ensemble method composed of a

number of decision trees (DT), which learn a set of decision rules based on the pattern of

input and their possible outcomes. DT considers the joints effects of different bit posi-

tions but could incur overfitting problem. RFC alleviates overfitting issue by developing

more than one decision tree and use their average result as final prediction. It may lose

the opportunity to learn some “irregular” patterns, overall it reduce the overfitting and

boost performance.

3.3.1 Prediction Model Evaluation

To evalutate the model prediction accuracy for a selected overcloking rate, we

define the average bit-level prediction error rate (ABPER) as follows:

ABPER[clk] =

∑
bit n

(∑
cycle t

|TC(pred)
clk,n,t−TC

(real)
clk,n,t|

||#cycles||

)
||#bit positions||

(3.1)

where TC (pred)
clk,n,t and TC (real)

clk,n,t are the predicted and real timing classes (0 for timing-

erroneous and 1 for timing-correct) at a given clock period clk, bit position n and cycle

t. This metric is a good indicator of bit-level model prediction accuracy.

41

3.4 Combining Structural and Timing Errors

All previous works have discussed individual use of either approximate circuit

design, such as speculative compensated architectures, or guardband-reduction (over-

clocking) timing-error prediction. But those two approaches targeting different abstrac-

tion levels could intuitively be the perfect and

It is possible to combine structural errors due to speculation and timing errors

due to guardband reduction to maximize circuit performances and robustness. Indeed,

timing errors occur on the critical paths, which would be split into multiple shorter

paths in a speculative circuit. The timing errors would thus be distributed among all

outputs—instead of only degrading MSBs in conventional circuits—but at the cost of

structural errors due to speculation. Parameters of the speculative structure and levels

of guardband reduction can be adjusted together in order to find an optimum between

timing and structural errors.

This study focuses on the case of binary addition based on the use of ISA adders

synthesized for 3.3 GHz in a 65 nm technology. The methodology adopted is the fol-

lowing:

• Several ISA adders have been selected and implemented with design parameters

optimizing error and circuit costs.

• Timing-error prediction has been adapted to predict timing errors on these circuits

for different overclocking levels.

3.4.1 Error Combination

A new error model needs to be developed to distinguish and combine correctly

the error contributions from both abstraction layers. First, at behavioral level, structural

errors are caused by the design of the ISA architecture. Those deterministic errors

vary with the selection of design parameters such as the selection of speculation, error-

correction and error-reduction mechanisms. Structural errors are obtained by comparing

the outputs from the designed circuit from exact addition results. Then, at gate level,

timing errors occur when overclocking the ISA circuit, thus are obtained by comparing

42

the over-clocked circuit to the same inexact but properly-clocked circuit. Those errors

vary with different clock periods and are less predictable as they also depend from the

previous circuit state or inputs.

To simplify the three type of output values used to compute those errors, we

define the following types of output values:

• ysilver, the silver output obtained from the over-clocked ISA circuit, containing

both structural and timing errors.

• ygold, the golden output the expected value from the implemented circuit, contain-

ing the structural errors only.

• ydiamond, the diamond output ideal output value from an exact addition or conven-

tional adder circuit.

Thus, we compute the arithmetic error (E) from each abstraction level as:

Estruct = yg − yd Etiming = ys − yg , (3.2)

whereas the relative error (RE), both contributions being calculated with respect to the

exact result, is defined as:

REstruct =
ygold − ydiamond

ydiamond
REtiming =

ysilver − ygold
ydiamond

. (3.3)

Despite this study only considers unsigned computations, it is important for arithmetic

and relative errors to be kept signed. Indeed, if both error contributions are in the same

directions, they would add to each other to increase the overall error, such as in Fig. 3.4:

output values error contributions

ydiamond 1000 8 REstruct
6−8
8

= −2
8

ygold 0110 6 REtiming
4−6
8

= −2
8

ysilver 0010 4 REjoint −2
8
− 2

8
= −4

8

Figure 3.4: Example of additive errors (exact output ydiamond, exemplary erroneous
outputs ygold and ysilver from ISA and over-clocked ISA, respectively)

But if two errors happening simultaneously are in opposite directions, they could com-

pensate each other and reduce the overall error, such as in Fig. 3.5:

43

output values error contributions

ydiamond 1000 8 REstruct
6−8
8

= −2
8

ygold 0110 6 REtiming
7−6
8

= +1
8

ysilver 0111 7 REjoint −2
8

+ 1
8

= −1
8

Figure 3.5: Example of compensating errors

Fig. 3.6 depicts the flow used to combine ISA errors with timing errors in the

case of arithmetic errors for example.

3.4.2 Model Evaluation

Although the ABPER is a good metric for bit-level prediction accuracy, it does

not represent the misprediction effect on the output arithmetic value of the adder. Thus,

we define another metric using output arithmetic error values instead of bit timing

classes, the average value-level predictive error (AVPE):

AVPE[ISA, clk] =

1 inputs: set of ISA architectures, input set, clock periods
2 outputs: mean arithmetic errors
3 foreach ISA ∈ ISA architectures do
4 foreach x ∈ input vectors do
5 compute ydiamond[x]
6 compute ygold[x, ISA]
7 compute Estruct[x, ISA] = ygold[x, ISA]− ydiamond[x]
8 foreach clk ∈ clock periods do
9 compute ysilver[x, ISA, clk]

10 compute Etiming[x, ISA, clk]
= ysilver[x, ISA, clk]− ygold[x, ISA]

11 compute Ejoint[x, ISA, clk]
= Etiming[x, ISA, clk] + Estruct[x, ISA]

12 compute means of |Ejoint[x, ISA, clk] | over inputs

Figure 3.6: Pseudo-code computing the mean arithmetic error of over-clocked ISAs
with structural and timing errors.

44

∑
cycle t

| (pred)ysilver [ISA, clk, t]− (real)ysilver [ISA, clk, t] |
(real)ysilver [ISA, clk, t]

||#cycles||

(3.4)

where (pred)ysilver and (real)ysilver are the predicted and real arithmetic output values of a given

ISA, clock period clk and at cycle t.

Note that the model does not directly generate arithmetic values, it only gener-

ates timing-class vectors, which are arrays of bit-flip positions, and deduces the corre-

sponding ys compared to the expected output yg.

3.5 Experimental Results

3.5.1 General Considerations

Twelve different ISA designs have been selected from [12], they are the best

implementations fitting the 0.3 ns timing constraints. All ISA have regular structures

with uniformly sized blocks (i.e. parallel paths of 2x16, 4x8, 8x4 bits only) and are

denoted by quadruples of bit-widths: (block size, SPEC size, correction, reduction).

They have been confronted to an exact adder, also constrained at 0.3 ns.

Approximate circuits are commonly characterized and validated through the

simulation of random sets of inputs. As a matter of fact, the presented results are statis-

tical estimations depending on the random sample distribution (occurrence of specific

patterns initiates errors in specific adders). Adders are characterized using a sample

of ten million unsigned random inputs. The main metric considered is the Root Mean

Square (RMS) of the relative error RE as it is independent of the adder bit-width and

proportional to the SNR, which it interesting for many applications, particularly in mul-

timedia processing.

Circuits have been synthesized with Synopsys Design Compiler in an industrial

65 nm technology from high-level descriptions in order to benefit from the compiler’s

optimization libraries and most favorable architecture choices. Delay-annotated gate-

level simulations have been run with Mentor Modelsim in order to extract timing errors

for three delays: 0.285 ns, 0.27 ns and 0.255 ns, corresponding to 5, 10 and 15 % of

45

(8,0,0,0)
(8,0,0,2)

(8,0,0,4)
(8,0,1,4)

(8,0,1,6)

(16,0,0,0)

(16,1,0,0)

(16,1,0,2)

(16,2,0,4)

(16,2,1,6)

(16,7,0,8)
exact

10-6

10-5

10-4

10-3

10-2

10-1

100

AB
PE

R

0.255ns
0.27ns
0.285ns

Figure 3.7: Average bit-level prediction error rate (ABPER) under overclocking.

overclocking from the safe-clock period of 0.3 ns. Machine learning methods used to

construct the model come from the Scikit-learn Python package [62].

3.5.2 Timing-error Prediction Evaluation

Fig. 3.7 presents the ABPER for each ISA at three overclocking points: 5,

10 and 15 %. From this figure, we firstly observe that almost all ABPER values are

around or less than 1 %, demonstrating a high prediction accuracy of the model. Sec-

ond, ABPER at higher overclocking is always larger than that at less overclocking. For

example, the third ISA (8,0,0,4), has ABPER around 0.1% at 0.285ns (5% overclock-

ing), and has ABPER around 1% for 10% and 15% overclocking. This is because more

paths violating timing specification resulting in more timing errors, which makes model

harder to track all path sensitization behaviors. Some ABPER can reach 0 if there is no

timing error, such as ISA (8,0,0,0) at 0.285 ns and 0.27 ns. We use 10−6 as ABPER in

this case.

Fig. 3.8 presents the AVPE for each ISA at three overclocking points. From

this figure, we observe that although bit-level prediction accuracy are always good but

the mispredicted bits could sometimes cause a large arithmetic error. For example, the

eighth ISA (16,1,0,2) at 0.255 ns and 0.27 ns causes a AVPE around 5. This is because

many mispredicted bits are among most significant bits that can cause a large deviation

up to 232 from original value. While for most ISA, the third ISA (8,0,0,4) for example,

46

has AVPE less than 0.1% for all three overclocking points, showing the misprediction

effect on arithmetic value is negligible. Similar with Fig. 3.7, we neglect AVPE value

when it is lower than 10−6. Overall, most AVPE are lower than 10−2, indicating that

misprediction on arithmetic error is tolerable for most ISA designs.

3.5.3 Results of Error Combination

Fig. 3.9 shows the structural and timing relative error RMS as well as their re-

sulting joint contribution for ISA designs under the three overclocking points.

At the lowest overclocking rate of 5 % (Fig. 3.9a), we immediately observe that

the exact adder circuit (rightmost of the figure) is subject to large timing errors which

make it the worst adder of the group in terms of overall joint error RMS. We find that

for most ISA adders, the joint error is dominated by the structural-error contribution

coming from the speculative architecture. Low and medium-accuracy ISA circuits (on

the left part of the figure) seem very robust to timing errors, having negligible tim-

ing errors compared to structural errors. Among the high-accuracy ISA designs, only

ISA (16,2,0,4) has succumbed to a massive amount of timing errors. Though, if this

specific ISA has a low sensitivity threshold to timing errors, it is still better than the

exact adder in terms of joint error.

At 10 % overclocking (Fig. 3.9b), timing-error contributions strongly increase,

but stay lower than structural-error contributions for low-accuracy ISA adders. Two

additional high-accuracy ISA circuits have fallen to timing errors: ISA (16,0,0,0) and

(16,1,0,2) ISA circuits. Yet, they are still operating slightly better than the exact adder,

whose average error, entirely due to timing, has been multiplied by 3 compared to 5 %

overclocking.

At the highest overclocking of 15 % (Fig. 3.9c), all the selected high-accuracy

ISA designs have fallen to timing errors. Yet, some of these designs still exhibits de-

cent overall accuracy such as ISA (16,2,1,6). This latter relegates to the second place

ISA (16,7,0,8), which has a more accurate architecture but is found less resilient to ag-

gressive overclocking. Understanding this variability in timing-error robustness as well

as the difference of threshold between structural and timing errors could be highly ben-

eficial to low-power and time-constrained circuit design. This would require a deeper

47

(8,0,0,0)
(8,0,0,2)

(8,0,0,4)
(8,0,1,4)

(8,0,1,6)

(16,0,0,0)

(16,1,0,0)

(16,1,0,2)

(16,2,0,4)

(16,2,1,6)

(16,7,0,8)
exact

10-6

10-5

10-4

10-3

10-2

10-1

100

101

AV
PE

0.255ns
0.27ns
0.285ns

Figure 3.8: Average value-level predictive error (AVPE) under overclocking.

(8
,0

,0
,0

)
(8

,0
,0

,2
)

(8
,0

,0
,4

)
(8

,0
,1

,4
)

(8
,0

,1
,6

)
(1

6,
0,

0,
0)

(1
6,

1,
0,

0)
(1

6,
1,

0,
2)

(1
6,

2,
0,

4)
(1

6,
2,

1,
6)

(1
6,

7,
0,

8)
ex

ac
t10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Re
la

tiv
e

er
ro

r R
M

S
(%

)

Structural error
Timing error
Joint error

(a) 5%

(8
,0

,0
,0

)
(8

,0
,0

,2
)

(8
,0

,0
,4

)
(8

,0
,1

,4
)

(8
,0

,1
,6

)
(1

6,
0,

0,
0)

(1
6,

1,
0,

0)
(1

6,
1,

0,
2)

(1
6,

2,
0,

4)
(1

6,
2,

1,
6)

(1
6,

7,
0,

8)
ex

ac
t10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Re
la

tiv
e

er
ro

r R
M

S
(%

)

Structural error
Timing error
Joint error

(b) 10%

(8
,0

,0
,0

)
(8

,0
,0

,2
)

(8
,0

,0
,4

)
(8

,0
,1

,4
)

(8
,0

,1
,6

)
(1

6,
0,

0,
0)

(1
6,

1,
0,

0)
(1

6,
1,

0,
2)

(1
6,

2,
0,

4)
(1

6,
2,

1,
6)

(1
6,

7,
0,

8)
ex

ac
t10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Re
la

tiv
e

er
ro

r R
M

S
(%

)

Structural error
Timing error
Joint error

(c) 15%

Figure 3.9: Relative error RMS of ISAs under 5 %, 10 % and 15 % overclocking.

analysis combining more speculative designs to better cover the design space offered by

inexact speculative circuits.

For low-accuracy ISA overclocked with 15 % overclocking (left part of Fig. 3.9c),

it is particularly interesting to note the high balance between timing and structural er-

rors. This compromise between the two error contributions gives generally a better

overall accuracy than adders designed with high structural accuracy.

3.5.4 Structural and Timing Error Balance

In order to better understand how the two types of errors interplay with each

other, Fig. 3.10 displays the internal distribution of structural and timing errors within

48

0 4 8 12 16 20 24 28 32
Bit-position equivalent

0.00

0.02

0.04

0.06

0.08

0.10

In
te

rn
al

 e
rr

or
 ra

te

structural errors
timing errors

Figure 3.10: Bit-level-equivalent error distribution in ISA (8,0,0,4) under 15 % over-
clocking.

the example of 15 %-overclocked ISA (8,0,0,4) since this configuration shows the best

balance between errors (c.f. Fig. 3.9c). Arithmetic structural errors have been translated

into their equivalent bit-level positions. Note that the timing errors distribution is not as

regular as the structural errors distribution. While it is easy to distinguish when several

arithmetic speculative errors occur simultaneously on different speculative paths and

translate independent errors into bit positions, timing errors might span over various

outputs.

Structural errors are immediately recognizable on three speculative paths (the

first speculative path, operating from the LSB, uses directly the adder carry-in so doesn’t

have errors). As this ISA only has 4-bit error reduction (no error correction), it only

introduces errors on the preceding sub-adder sums, that is why structural-error peaks

are slightly shifted on the left of the figure.

In a conventional adder, overclocking would dangerously degrade MSBs. In this

ISA, despite causing structural errors, the 4-path speculative structure leads to a split

of critical path, distributing the timing errors over those paths instead of the MSBs.

Those errors mainly occur on the 4-bit error reduction block, last logic element in the

critical path. This trade-off between structural and timing errors demonstrates the good

resilience of ISA architectures against conventional circuits.

49

3.6 Chapter Summary

This Chapter presents a method to efficiently correct timing errors using the

structural errors in Inexact Speculative Adders. We show that speculative adders are

more resilient to overclocking than conventional adders because the structural errors and

timing errors compensate each other. Indeed, the effects of combination of both errors

are controllable since the speculative structure induces a split in the critical path that

balances timing errors and distribute them along all outputs instead of only degrading

MSBs in conventional circuits.

Chapter 3 contains reprints of Xun Jiao, Vincent Camus, Mattia Cacciotti, Yu

Jiang, Christian Enz, and Rajesh Gupta, “Combining Structural and Timing Error in

Overclocked Inexact Speculative Adders”, Proc. IEEE/ACM Design, Automation, and

Test in Europe (DATE), 2017. The dissertation author is the primary author of the paper.

50

Chapter 4

Instruction-based Timing Error

Prevention

In the last chapter, we used structural errors of inexact circuits to efficiently

correct timing errors so as to reduce the correction cost, a challenge we identified earlier

with error correction approaches. In this chapter, focusing on the same challenge, we

elevate our abstraction level from circuit level to instruction level and model the delay

of instructions. Based on the delay model, we propose an instruction-based timing error

prevention approach to avoid the correction cost.

4.1 Introduction

As mentioned in Chapter 1, error prevention is a less-intrusive method than

error correction in the sense that it avoids the performance penalty when correcting

errors. For example, Roy et al. propose a method to predict critical instructions based

on instruction types [67]. Upon the identification of critical instructions, the pipeline

is stalled one or two cycles to allow enough timing margin to finish the instruction

execution. However, they are not able to consume all available timing slack as they lack

in knowledge of absolute value of instruction timing requirements. It also overlooks the

effect of input operands on the path sensitization behavior, leading to a less efficient or

pessimistic modeling of hardware timing.

There is, of course, a correlation between the input workload and timing vio-

51

lations because of its direct effect on dynamic path sensitization. During execution,

the sensitized paths strongly vary with different input workload [54]. This is seen in

different instruction-level timing delay as a function of the operands to instructions.

Proposed approach: In this chapter, we explore the use of a workload-dependent

predictive model for instruction-level timing management. We propose WILD, a super-

vised learning model to predict the dynamic delay of functional units based on input

workload (operands). First, we extracted useful input features from input workload by

analyzing the variations of circuit timing delay, measured dynamically each cycle under

different input operands. We employ a switching activity file obtained from a post-layout

gate-level simulation on TSMC 45nm technology. Then, we use supervised learning

methods to construct and train the model, evaluate and compare with the baseline mod-

eling in terms of prediction accuracy. We evaluate various commonly used machine

learning techniques and chose logistic regression as our modeling method due to its

high prediction accuracy and efficient computing time. Furthermore, we have applied

our prediction model to three different datasets, random data, Sobel filter and Gaus-

sian filter, and achieve prediction accuracy ranging between 96.2–99.8%. Using WILD-

directed dynamic frequency scaling (DFS), the average instruction-level timing delay

could be reduced for three different instructions (Int ADD, Int MUL and FP MUL). In

addition, our model executes 60X faster compared with gate-level simulation to compute

dynamic delay for 200k data.

Contributions: We make the following contributions:

• We develop an accurate dynamic timing delay measurement methodology based

on switching activity derived through gate-level simulation. We analyze the sources

of delay variations and the effect of input workload on timing delay.

• We propose WILD, a supervised learning model to predict the dynamic delay of

functional units based on input workload (operands) using supervised learning

methods.

• The evaluation results demonstrate the robustness and accuracy of WILD in pre-

diction and its effectiveness in system performance increase. We profile the test

input workload from real-world applications and achieve 96.2–99.8% prediction

52

accuracy, which is 3.6X and 1.5X higher compared to two baseline models. Fur-

ther, by using WILD-directed dynamic frequency scaling, the instructions can

achieve 13–44% operation speed up compared with the state-of-art instruction-

level timing model directed dynamic frequency scaling [25, 67].

4.2 Instruction-Delay Prediction Model (WILD)

Application
Architecture

Simulator

Workload

Signature

RTL

Description

Synthesis

Place & Route
Gate-level

Simulation

Feature

Extraction

TSMC

45nm

Gate-level

Netlist

Switching

Activity

Dynamic Timing

Analysis

Model

Training
b) Input Feature

Extraction

a) Dynamic Timing Analysis

Random Data

Generator

Dynamic Delay

c) Model Training

Input Feature

Figure 4.1: WILD model: a) Dynamic Timing Analysis to measure the dynamic de-
lay; b) Input Feature Extraction to extract useful “features”; c) Model Training to use
supervised learning to train the model.

It is comprised of three phases as shown in Fig. 4.1: Dynamic Timing Analysis,

Input Feature Extraction and Model Training. a) The Dynamic Timing Analysis phase

implements the standard ASIC flow and uses gate-level simulation to generate switching

activity file. Then, our Python-written dynamic timing analysis script will analyze the

switching activity file to generate the dynamic delay under different input workload.

b) In the Input Feature Extraction, we generate the input training data in two ways:

using a random data generator and profiling of functional unit input operands in real-

world applications using architectural-level simulator. Then, the workload signature of

training data is pre-processesed and useful features are extracted from the training data,

53

such as bit locations and input history, which are then incorporated into model training.

c) In the Model Training phase, the model is trained with the previous collected data

using different supervised learning algorithms. We classify the output dynamic delay

into different classes and the model will predict the class to which the output delay

belongs for a given input data. More details about the three phases are illustrated as

follows.

4.2.1 Dynamic Timing Analysis

We focus on three different types of functional units, 32-bit integer adder and

multiplier, and 32-bit single-precision floating point multiplier. The floating point units

(FPUs) are compatible with IEEE-754 standard, and can provide more complex circuit

structures compared to their integer counterparts. We vary the circuit structures not only

by function types but also by data types to assess the robustness of our model.

We use FloPoCo [28] to generate the synthesizable VHDL codes of functional

units with wrapper at input and output ports. Synopsys Design Compiler is used to

synthesize the VHDL codes and Synopsys IC Compiler is used to do place&route to

generate post-layout netlist in TSMC 45nm technology. Synopsys PrimeTime is used to

do static timing analysis to generate Standard Delay Format (SDF) file. Then, we use

Mentor Graphics Modelsim to do SDF-back-annotation gate-level simulation to gener-

ate value change dump (VCD) file as a switching activity file. The stimuli input comes

from two sources: random data generator script written in Python and the application

input data profiled using Multi2Sim [75], a cycle-accurate CPU-GPU heterogeneous ar-

chitectural simulator.

Next, unlike static timing analysis which can only give us the static timing of

path delay, we use the switching activity file to do the dynamic timing analysis. The

VCD file records the toggled nets at each cycle thus giving us the dynamic path sensi-

tization information. To extract the dynamic delay based on sensitized critical path, we

are only interested in the endpoints of every timing path. We run the simulation at a rel-

atively slow clock period to make sure there is no timing violation. For each clock cycle,

we use the last toggle event time of the input pin of all sequential elements (flip flop,

registers, etc) to subtract the last positive clock edge arrival time to get the maximum

54

delay at that cycle. For example, at cycle N the positive clock edge occurs at time t, and

the very last toggled event at the data input pin of all sequential elements occurs at time

t′, then the dynamic delay at this cycle is t′ − t. We run a large simulation and probe

all toggled events at data input pins of sequential elements, and then parse the VCD file

using our dynamic timing analysis tool that can provide us the dynamic delay at each

cycle under different input workload. Note that when the input operands are the same

for two consecutive cycles, there is no toggled nets, resulting a zero dynamic delay.

4.2.2 Input Feature Extraction

Having said before, there are extremely high number of possible input combina-

tions. Given two 32-bit operands, there are 264 different combinations. Thus, it is not

feasible to apply all 264 input patterns for training. To cover a large range of input space,

we use the homogeneous distribution of two operands over 2D input space used in [74].

By applying these training input to the dynamic timing analysis module, we obtain the

dynamic delay corresponding to each input workload. Then, for the training purpose,

we need to find out the useful input features, i.e., the source factors which determine

the dynamic delay. Intuitively, the current input workload directly affects the path sen-

sitization. However, the preceding history input might also affect path sensitization of

current cycle because the preceding input will set a state of the circuit and affect the

signal transition between two cycles. In order to investigate the effect of history input

workload, we use a trial-and-error process to iteratively vary the history input workload

while keeping the current input fixed. We set the experiments as follows:

• Scenario 1: we only fix the current input while varying the immediate preceding

input. We use this to evaluate the effect of immediately preceding input.

• Scenario 2: we fix both current and immediately preceding input while varying

the preceding input of the immediately preceding one. We use this to evaluate

effect of deeper history.

We perform 100K gate-level simulation to assess the effect of workload history

and it turns out the dynamic delay of scenario 1 varies without irregularly while the

scenario 2 results in constant dynamic delay. Therefore, we conclude that only the

55

immediately preceding input will have effect on the dynamic delay of current cycle.

This is expected as only the immediately preceding input and current input determine

the signal transition which determines the path sensitization.

Next, we need to do data preprocessing to clean the training data. First of all,

the decimal format of input data needs to be converted into binary vector representation.

The reason behind this conversion is that, the circuit uses 32-bit vectors as input format

and the 0/1 value at each bit location could affect different paths thus inferring different

path sensitization behaviors. Meanwhile, the decimal format cannot precisely reflect

the significance of each bit position. Therefore, we convert the decimal format to binary

format. The next step is to clean the training data by removing the repetitive data patterns

resulting the same delay, and excluding the cycles with a zero dynamic delay which

could happen when both preceding cycle and current cycle have same input operands

and no nets are toggled. These two scenarios need to be excluded to save meaningless

training efforts. After preprocessing the training data, we need to extract the useful

features of input vectors: history input and bit location, to train the model accurately

and efficiently.

4.2.3 Model Training

Table 4.1: Five classes of dynamic delay (ps).
500 > delay ≥ 0 1000 > delay ≥ 500 1500 > delay ≥ 1000 2000 > delay ≥ 1500 2500 > delay ≥ 2000

Cex low Clow Cmed Chigh Cex high

First, the output dynamic delay is classified into five different classes. Since

2.5ns is the clean clock period under which no timing violations occur for all of our

designs, we use 500ps as step size, resulting in five different classes: Cex low, Clow,

Cmed, Chigh and Cex high based on their delay range as shown in Table. 4.1. The reason

of using five classes is that clock controller circuit (CGU) in DFS can only use a limited

number of phase locked loops (PLLs) [73], each with a pre-configured fixed frequency.

Empirically, we assume five PLLs are used in CGU to balance the tradeoff between

frequency resolution and hardware overhead.

Then, we set the previously extracted input features, {x[t], x[t − 1]} as input

56

feature and C[t] as output labeled class, where x[t] and x[t-1] are input binary vectors

at cycle t and t − 1, and C[t] ∈ {Cex low, Clow, Cmed, Chigh, Cex high}. The input train-

ing data comes from two sources: one is from random generated data and the other is

from the input operands profiled from real world applications. The input workload is

then applied to gate-level simulation and dynamic timing analysis to obtain the dynamic

delay value for each input workload, which is then classified into C[t]. With the input

features and output labels, the four supervised learning methods are applied to construct

a multi-classification model.

Table 4.2: Prediction accuracy, and total training and testing time of four learning meth-
ods.

method Accuracy Time (s)

KNN 0.932 233.35

SVM 0.975 2478.38

LR 0.974 1.82

DT 0.952 4.08

Finally, we evaluate the aforementioned four different supervised learning meth-

ods: k-nearest neighbor (k-NN), support vector machine (SVM), logistic regression

(LR) and decision tree (DT) classifiers by using 50K random training data and 10k ran-

dom testing data across three functional units. As shown in Table 2.1, we observe that

LR is the fastest method with high prediction accuracy. DT is also fast but achieves

low prediction accuracy. k-NN takes several minutes to finish with this small scale of

training and testing data. Actually, when the training data size becomes 100k, k-NN

takes several hours to perform classification, due to that for every given test data, k-NN

needs to calculate the distance with respect to each training vector and find the nearest

neighbors from the entire training space. This implies that the training size affects the

classification time of k-NN. Meanwhile in LR, the size of training data does not affect

classification time because LR model outputs only the weight vectors, which are then

used to operate with test features. That is, the training size only affects the value of

weight vectors hence the classification result, but not the classification time. Although

SVM achieves highest prediction accuracy, its training and testing takes more than half

an hour, which is highest among four methods. Therefore, we finally choose LR due

57

to its high prediction accuracy and better computing efficiency. The machine learning

modules are provided by Scikit-learn package written in Python [62].

4.2.4 Model Evaluation

For a given input workload, our model will predict the class to which it belongs

among the five classes. We use prediction accuracy as our evaluation metric and com-

pare this with two baseline models.

Evaluation Metric

We evaluate the prediction accuracy of prediction model by comparing predic-

tion result with golden output generated by gate-level simulation:

prediction accuracy =
#matched cycles

#total cycles
(4.1)

where #total cycles is the number of total simulation cycles, and #matched cycles is

the number of cycles at which predicted result equals to golden result.

Comparison Methods

Since there are no previous works on predicting dynamic delay of functional

units, we compare WILD against following baseline methods which can help us evaluate

the true performance of our model:

• rand: predict the dynamic delay class among the non-empty classes which con-

tain at least one instance randomly. Some classes might have no instance , for

example, Cex low in Fig. 4.4, thus we ignore those empty classes.

• naive: use a naive class to always predict the class which contains most instances.

If the dataset is heavily biased, e.g., 99% of the data belongs to one class, then

even a trivial class can achieve 99% prediction accuracy by always predicting that

class.

58

4.3 Experimental Results

In this section, we present the dynamic delay distribution of three functional

units under three different input datasets. Then, we present the prediction accuracy of

LR-directed model and compare with the baseline model using particular evaluation

metric. Finally, we utilize LR model-directed dynamic frequency scaling (DFS) to ad-

just instruction-level operating frequency to achieve instruction execution speedup.

4.3.1 Experimental Setup

We choose two image processing applications from AMD APP SDK v2.5 [2],

Sobel filter and Gaussian filter. The OpenCL codes of these applications are simulated

by our modified version of Multi2Sim to profile input workloads of interested functional

units. We choose 10 images in Caltech-UCSD Birds 200 vision dataset [78] as input

image for these applications to profile test data. We select the operating voltage to be

0.85V and temperature to be 50◦C.

4.3.2 Delay Distribution of Functional Units

We use the dynamic timing analysis described in Section 4.2.1 to investigate the

dynamic timing delay of the three functional units under the datasets generated from:

random data described in Section 4.2.2, Sobel filter and Gaussian filter described in

Section 4.3.1. Fig. 4.2 – Fig. 4.4 present the delay distribution of functional units under

three different input datasets, from which we observe several important facts.

First, for all figures, it is clearly seen that functional units exhibit noticeably dif-

ferent dynamic delay under different input workload. In particular, we observe up to 5X

difference of delay in INT ADD and INT MUL. Hence, all prior works on functional

units and instruction-level timing modeling that ignore the effect of input workloads suf-

fer from inaccuracy. Second, we observe that some functional units experiences a large

deviation of dynamic delay. In particular, the INT MUL presents a non-regular delay

distribution for Sobel filter and Gaussian filter while the others all present Guassian-

like distribution. This is because the critical paths in INT MUL sensitized by these two

applications exhibit vastly different timing delay. Third, by observing delay behavior

59

200 400 600 800 1000 1200 1400 1600 1800
Delay (ps)

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty

Delay Distribution Histogram

random
sobel
gauss

Figure 4.2: Delay distribution of INT ADD under three different input workload sets.

0 500 1000 1500 2000 2500
Delay (ps)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ili

ty

Delay Distribution Histogram

random
sobel
gauss

Figure 4.3: Delay distribution of INT MUL under three different input workload sets.

60

0 500 1000 1500 2000 2500
Delay (ps)

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ili

ty

Delay Distribution Histogram

random
sobel
gauss

Figure 4.4: Delay distribution of FP MUL under three different input workload sets.

resulted from each dataset individually, we find majority of them exhibits a Gaussian-

like distribution. This is because some critical paths are more frequently sensitized by

input workload, for that the conventional design strategies tend to produce a so-called

wall of slack [51], which contains a large number of near-critical paths. In particular,

the INT ADD, for example, the sum of two highest bins are accounted nearly 50% of

the delay data. Fourth, comparing with random data, we can see the delay from Sobel

filter and Gaussian filter exhibit a more dense distribution. This is because there is a

data locality phenomena in these applications, resulting in a high commonality in path

sensitization [67]. In addition, the mean value of delay of Sobel filter and Gaussian

filter are less than the one derived from random data. This is because a large number

of real-world input operands for these functional units are small size operands, resulting

small delays. Thus, the random dataset produced the largest delay variance and hence

can be used as the most representative dataset to evaluate prediction accuracy.

4.3.3 Model Prediction Accuracy

Table. 4.3 presents the prediction accuracy of dynamic delay of three func-

tional units under three different datasets using three models: WILD, rand and naive.

61

Table 4.3: Prediction accuracy of three different classifier models.

random dataset Sobel filter dataset Gaussian filter dataset

WILD rand naive WILD rand naive WILD rand naive

Int Add 0.974 0.333 0.319 0.966 0.330 0.954 0.998 0.334 0.999

Int Mul 0.962 0.201 0.146 0.976 0.163 0.363 0.992 0.091 0.303

FP Mul 0.983 0.332 0.841 0.985 0.332 0.890 0.993 0.333 0.914

Average 0.973 0.288 0.435 0.975 0.275 0.736 0.994 0.253 0.739

WILD exhibits the prediction accuracy ranging between 96.2–99.8% and achieves av-

erage prediction accuracy 98.0% over all functional units under all datasets. The rand

model achieves average prediction accuracy at 27.2% while naive can achieve 63.6%

on average. Thus, compared to these baseline models, WILD exhibits 3.6X and 1.5X

higher prediction accuracy. We notice that, the prediction accuracy is affected by the de-

lay distribution of different datasets. The prediction accuracy of Gaussian filter dataset

is higher than that of random dataset. This is because the data in Gaussian filter dataset

is so biased that its delay distribution is among a very small range then even a naive

classifier can have a high prediction accuracy.

Table 4.4: Average instruction-level timing delay(ps) using WILD compared to existing
instruction-level timing model [25].

Sobel filter dataset Gaussian filter dataset

WILD existing reduction WILD existing reduction

Int Add 521 826 33% 502 897 44%

Int Mul 1370 2187 37% 1654 2241 26%

FP Mul 2112 2438 13% 2057 2482 17%

4.3.4 Instruction-level Timing Margin Reduction

The existing instruction-level timing models [67] [25] measure the instruction

delay under the worst case assumption of input operands. However, the instruction-

level timing delay during runtime depends on the actual input workload and it can be

changed from time to time. Thus, the dynamic frequency scaling (DFS) enabled by the

62

existing instruction-level models leads to pessimistic operating timing margin. DFS is

an architectural technique that adjusts operating frequency on-the-fly to improve perfor-

mance. To address such problem, we use WILD-directed DFS to enable a finer-grained

frequency adjustment as it can provide an specific delay value for a given input work-

load. As a result, the circuit can run at a higher frequency compared to existing model-

directed DFS.

For a given instruction, the existing models uses the worst case instruction-level

timing delay measured to set the operating frequency which will be used in DFS, e.g.,

826ps, 2187ps and 2438ps for Int ADD, Int MUL and FP MUL in Sobel filter as shown

in Fig. 4.2–Fig. 4.4. On the other hand, WILD incorporates the input workload with the

instruction and predicts the class of the resulted dynamic delay and uses the upper bound

of that class to set the operating frequency to provide a safe operating frequency. For

example, if the predicted class is Cex low, then the DFS will use 500ps as clock period to

execute the instruction. However, the predicted class could be wrong, which could fall

into one of the two categories:

• False positive: this will still ensure the circuit safety but incurs performance

penalty because it uses larger clock period than needed.

• False negative: this will result in timing violation in the circuit. We assume the

detection-and-correction is used here to correct the timing violations by using

instruction replay [27], which will flush the pipeline.

We calculate the average timing delay of an instruction as:

average delayinst =
total running timeinst

#inst running
(4.2)

where the total running timeinst is the sum of running clock period of each instruc-

tion instance in the application execution, including the false positive and false negative

induced cycle penalty, and #inst running is the total number of instruction instances

executed in the application. We compare the WILD-directed DFS with the DFS di-

rected by existing instruction-level model [25] in Table. 4.4. We observe that by using

WILD directed DFS, the average instruction-level timing delay can be reduced 13–44%

63

compared to the existing model. This timing margin reduction can be further utilized

online with DFS to accelerate the program execution.

4.4 Discussion

Implementation of DFS: Dynamic frequency scaling (DFS) has been used to

adjust operating frequency according to real-time circuit delay during runtime to im-

prove performance [25, 63, 64], implemented by a clock generation unit (CGU). CGU

is a fast adaptive clock controller circuit that can be designed using a couple of phase-

locked loop (PLL) circuits, each of which is running at a fixed frequency independently,

and a multiplexer is used to select one specific frequency within a single cycle [73].

Moreover, a compact all-digital phase-locked loop (ADPLL) clock generator has been

proposed in [43] with a ultra-low overhead in power and area, which can provide fre-

quency switching arbitrarily in a wide range within a single clock cycle. However in

reality, the frequency can only scale in discrete steps, so the operating frequency can

only be selected within a fixed number of options. We consider five different classes

of dynamic delay of a circuit to adjust the operating frequency, which can then be im-

plemented by a 5-PLL CGU design. More details of DFS implementation can refer

to [64, 73, 81].

Overhead of WILD: Although the on-chip model can aid the DFS to achieve

better performance, the hardware overhead of implementing the learning model does

need special care. An on-chip Gaussian-kernel based SVM is proposed using an analog

circuit [52]. Recently, a voltage-droop induced circuit delay prediction model has been

implemented using SVM to augment online DFS, whose hardware overhead is 1.5% for

today’s processor design [81]. We expect the overhead of WILD model is less than SVM

since LR is less complex than SVM. In our experiment, the SVM classification time is

more than 100X of LR model. Besides, the WILD model runs remarkably faster than

gate-level simulation. To compute 200k test data for dynamic delay, WILD is 60X faster

than gate-level simulation. Our future work focuses on developing machine learning

model that has more efficient computing time and higher prediction accuracy.

64

4.5 Chapter Summary

This chapter presents an approach to proactively prevent timing errors using dy-

namic frequency scaling. We construct WILD, a workload-based supervised learning

model to predict the dynamic delay of functional units for a given input workload. To

calibrate its effectiveness, we perform dynamic timing analysis on a post-layout netlist

and extract useful “features” that affect the circuit dynamic path sensitization, and hence

the dynamic delay. The model is trained using logistic regression with training data from

random generation and application profiling, and tested using unseen data from three

different datasets. Across three functional unit types and three datasets, WILD exhibits

high prediction accuracy up to 99.8% (average 98.0%) and achieves a prediction accu-

racy of 3.6X and 1.5X higher compared to two baseline models. Compared with the

state-of-art instruction-level timing model enabled dynamic frequency scaling (DFS),

with WILD-directed DFS, the average instruction-level timing delay could be reduced

by 13%–44%.

Chapter 4 contains reprints of Xun Jiao, Yu Jiang, Abbas Rahimi, and Rajesh

Gupta, “WILD: A Workload-Based Learning Model to Predict Dynamic Delay of Func-

tional Units”, Proc. IEEE International Conference on Computer Design (ICCD), 2016.

The dissertation author is the primary author of the paper.

65

Chapter 5

Application Vulnerability Assessment

to Timing Errors

In Chapter 2, Chapter 3, and Chapter 4, we propose methods to combat the

challenges associated with the error prevention and error correction approaches. Be-

ginning with this chapter, we focus on challenges associated with error acceptance ap-

proaches. In particular, we consider methods to combat the unacceptable application

quality. The error acceptance approaches typically utilize the intrinsic error tolerance

of applications to allow occasional error occurrences in the system to trade for improved

operational efficiency. Although applications such as neural networks exhibit intrinsic

error tolerance, we need to examine carefully if the resulting application quality is ac-

ceptable against competing less expensive algorithmic solutions compared to gains from

designing approximate hardware or relaxing the operating constraints. It is thus impor-

tant to expose the hardware errors due to approximation to software execution. In this

chapter, for the applications of neural networks, we propose a cross-layer approach to

examine the hardware errors under relaxed operating conditions jointly with the quality

of inference by the neural networks to assess their vulnerability to timing errors.

5.1 Introduction

As a problem solving method, neural network algorithms have found use in a

wide range of applications such as medical diagnostics [80], image classification [55],

66

speech recognition [42], and natural language processing [24]. This versatility has led

to their implementation on a variety of hardware platforms: GPU [19], FPGA [41], and

ASIC [18].

Due to the ability to adapt their learning parameters, neural networks have an

inherent resilience to errors. Thus, one would expect that the quality of results produced

by hardware neural networks (HNNs) to be relatively insensitive to the rising timing

error rates caused by increased variation, thus opening doors for opportunistic reduction

of guardbands to increase the operational efficiency of hardware. There is a need for a

quantitative assessment here to explore the extent to which guardbands can be reduced

in HNNs. In this chapter, we investigate this question as to whether and how much

accuracy of HNNs could be affected by dynamic variations. To do this, we capture and

represent variations from low-level hardware, and then expose them to neural networks

inferences.

Approach and Contributions: We propose a cross-layer approach to assess

the vulnerability of HNNs to dynamic voltage and temperature variations, in which we

extract the timing errors from hardware layer using gate-level simulations and examine

their effects in the software layer using error injections. To evaluate the soundness of

this approach, we measure the timing errors using gate-level simulations of post-layout

circuits in TSMC 45nm technology. We vary the voltage and temperature in a wide

range to examine the effects of variations. Then, we represent and inject these timing

errors to neural networks during their inference. Finally, we examine the resilience of

two neural networks, MLP and CNN, by testing them on MNIST dataset [56].

We make the following contributions:

• We extract the circuit level timing errors caused by voltage and temperature vari-

ations from twenty different operating conditions using gate-level simulations.

• We inject such timing errors back into neural network inference and evaluate the

accuracy on MNIST dataset at different conditions.

• Using two frequently used neural networks (MLP and CNN), our results show

that variations can significantly affect the inference accuracy.

67

Figure 5.1: An example of 4-layer multi-layer perceptron neural network.

…

x0

x1

x2

xn

w0k

w1k

w2k

wnk

∑
Sk ∂(Sk) yk

Input Weights

Activation
Function Output

Figure 5.2: The computation processes of an artificial neuron.

5.2 Background

Modeled after biological neuronal processing, neural networks are a family of

problem-solving methods in machine learning. Among different types of neural net-

works, two of them are most widely used: multi-layer perceptron (MLP) and convolu-

tional neural network (CNN).

5.2.1 MLP Architecture

Fig. 5.1 depicts a typical MLP architecture. As one of the simplest neural net-

work model, MLP has one input layer, one output layer, and several hidden layers. All

68

Convolutional

layer

Convolutional

layer

Convolutional

layer

Subsampling

layer

Subsampling

layer

Fully

Connected layer

Figure 5.3: An illustration of a convolutional neural network.

Figure 5.4: The processes among a convolutional layer.

layers except the input layer are composed of artificial neurons that perform the basic

computations as illustrated in Fig. 5.2. A typical neuron performs a linear process-

ing part followed by a non-linear processing part. In the linear processing part, inputs

are multiplied with corresponding weights, and then all products are accumulated. In

the non-linear processing part, an activation function is applied to the weighted sum.

Common activation functions include logistic sigmoid, hyperbolic tangent, or rectilin-

ear unit, whose purpose is to enable a neural network to be a universal function approx-

imator [39]. The activation function is usually implemented by a lookup table in hard-

ware [31]. Finally, the output yk of neuron k is computed as yk = δ(
∑n

j=1 xjwjk − θ),

where xj is the jth input, wjk is the synaptic weight connecting jth input and neuron k,

θ is the bias, and δ is the activation function.

69

5.2.2 CNN Architecture

Recently, CNNs have grown in popularity in various applications such as im-

age/video recognition due to its better performance. A CNN applies convolution oper-

ations to a restricted part of the input data for each neuron in the convolutional layer.

A typical CNN consists of an input and an output layer, as well as multiple hidden lay-

ers. The hidden layers can be either convolutional, pooling or fully connected. Fig. 5.3

depicts a typical CNN architecture that consists of six layers, where the first, third, and

fifth layer are convolutional, while the second, fourth are pooling layers, and the sixth

layer is a fully connected layer. Fig. 5.4 depicts the internal processes in a convolutional

layer with 9 kernels, each of which consists of three filters. The convolution operation

models the hardwired bonding between the neurons on adjacent layers. It uses a slid-

ing filter to perform dot-products of the filter and uses a portion of the input image to

generate an output image, namely the feature map. Since the convolution operations

are differentiable, the filters can be trained to capture the features of the input images

with backward propagation [68]. Pooling is used to reduce the size of a feature map

by selecting the maximum pixel strength or averaging several pixel strengths. It bene-

fits the transformation invariance because it drops unnecessary minor information and

preserves the most dominant features for the overall classification task.

5.2.3 Error Tolerance of Neural Networks

The robustness of a neural network comes from many aspects. From a higher

level point of view, the training process of a neural network model is simply an ensem-

ble of multiple linear or logistic regressions working in parallel. The regression itself

ignores minor noises of the data and yields a model for the most likely distribution of

the given data. The regularization process inside a neural network also contributes to

robustness because no matter how deterministically penalties on weights are added or

how stochastically certain partials of the model are dropped, the weights are trained to

accommodate the majority of the data with a simplest probable distribution.

Hardware variations could impact HNNs through timing errors in both com-

putation logic and control logic. The errors in control logic could lead to catastrophic

70

results but fortunately, most critical paths lie in computation logic, which is mainly com-

posed of additions and multiplications, two of the most frequently used operations. Both

the forward and backward propagation require intensive additions and multiplications.

Thus, we mainly focus on the timing errors that occur in addition and multiplication.

5.3 Cross-layer Vulnerability Assessment

RTL

Description
Synthesis Place & Route STA

Gate-level

Netlist + SDF

Gate-level

Simulation

TSMC

45nm

Voltage

Temp

Variable

Parameters

Input

Variable

Parameters

Timing ErrorsError Injection
Neural

Networks
Prediction

Accuracy

HW-layer: Timing Error Extraction1

SW-layer: Timing Error Injection2

Inference

Figure 5.5: Cross-layer assessment flow with two stages: a) HW-layer: Timing Error
Extraction to extract the timing errors under different operating conditions; b) SW-layer:
Timing Error injection into neural network and perform inference.

The cross-layer vulnerability assessment is comprised of two phases as shown

in Fig. 5.5: Timing Error Extraction and Timing Error Injection. a) The Timing Error

Extraction phase implements the standard ASIC flow and uses gate-level simulation to

generate timing errors at each operating condition. b) In the Timing Error Injection

phase, we inject the timing errors into neural networks and then perform inference.

We vary the neural network genres and operating conditions to examine the resulted

accuracy. More details about the two phases are illustrated as follows.

5.3.1 HW-layer: Timing Error Extraction

We extract the timing errors through Timing Error Extraction module as illus-

trated in Fig. 5.5, which is divided into several steps. Note that we focus on dynamic

variation-induced timing errors of computation units. We extract timing errors from

the adder and the multiplier, which are the two most frequently used computation units

71

in neural networks computation. We use FloPoCo [28] to generate the synthesizable

VHDL codes of floating point units. We use Synopsys Design Compiler to synthe-

size the Verilog codes and use Synopsys IC Compiler to generate post place-and-route

netlist in TSMC 45nm technology. Next, we use Synopsys PrimeTime to perform static

timing analysis, generating Standard Delay Format (SDF) files at different operating

conditions. To do this, we use the voltage temperature scaling features of Synopsys

PrimeTime for the composite current source approach of modeling cell behavior. We

consider twenty operating conditions as shown in Fig. 5.9, which could introduce both

mild and aggressive timing errors. Then, we use Mentor Graphics ModelSim to do SDF

back-annotation gate-level simulations under nominal frequency to generate output data

at different operating conditions. To extract timing errors, we compare the gate-level

simulation output y[t] with a pure-RTL simulation result y gold[t], which is free from

timing errors because there is no delay annotation. If there is a mismatch, then we define

it as a timing error.

5.3.2 SW-layer: Timing Error Injection

We inject the timing errors extracted by the Timing Error Extraction phase to

the neural networks by using second phase Timing Error Injection. During the forward

propagation in the neural network inference, we inject the errors into the computations

(addition and multiplication). For a circuit, different input could excite different paths,

resulting in an input-specific timing error behavior. To mimic this, an exhaustive look-

up table containing the entire input space for each bit position of each computation

unit under all operating conditions needs to be implemented. Then, the computations

need to look up the table to check whether it has a match on any input operands in the

input space. This makes the inference process prohibitively slow. To approximate the

situation, we inject the timing errors as [69]: let the computation units return a random

value each time they have timing errors. We inject the error into the computation with a

TER extracted from the Timing Error Extraction phase to mimic the time error behavior.

For example, if adder has a TER at 10%, we inject errors to 10% of the total additions.

This probability is determined by operating conditions and computation logic (addition

or multiplication), which can represent the impact of timing errors on computation logic.

72

We vary the error injection probability for each operating condition.

5.4 Experimental Results

In this section, we measure timing errors under twenty operating conditions.

Then, we measure HNNs accuracy as a function of varying timing error rates. Finally,

we characterize the HNNs accuracy under dynamic variations using MLP and CNN.

5.4.1 Experimental Setups

We use tiny-dnn [4], a header only, dependency free deep learning library written

in C++, as our deep learning platform. This platform is light weighted, and is designed

for deep learning on limited computational resource, such as embedded systems and IoT

devices. For CNN, we use LeNet-5 like architecture and replace LeNet-5’s RBF layer

with normal fully-connected layer. For MLP, we use 3-layer MLP with a hidden layer

of 60 neurons. We use MNIST (Mixed National Institute of Standards and Technology)

database of handwritten numbers [56] as our dataset to evaluate the neural network

accuracy. This dataset is a well-known dataset for evaluating the performance of neural

network classifiers. The dataset is split into training set and test set with 60,000 and

10,000 28 × 28 images. We vary the voltage from 0.81V to 0.90V with a step at 0.01V

and the temperature from 50◦C to 100◦C.

5.4.2 Accuracy under Timing Errors

We assess the accuracy for both MLP and CNN under the TER at 0, 0.00001,

0.0001, 0.001, 0.01, 0.1, 0.5, and 0.9 at three configurations as shown in Fig. 5.6 and

Fig. 5.7; add only means we only inject timing errors to adder, mul only means we only

inject timing errors to multiplier and both means we inject errors to adder and multiplier

at the same time. We observe that for both MLP and CNN, as the TER increases, the

accuracy drops monotonically. When the TER is 0.00001, the HNN can still deliver a

decent accuracy close to original accuracy. Once the TER of adder reaches 0.0001, the

accuracy drops to around 90% and continue dropping to 60% when the TER of adder

73

0 0.00001 0.0001 0.001 0.01 0.1 0.5 0.9
Timing Error Rate

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

mul_only
add_only
both

Figure 5.6: MLP accuracy as a function of TER.

reaches 0.001. In contrast, the multiplier exhibits much less significant impact on HNN

accuracy: the HNN can still deliver 90% accuracy even when the TER of multiplier

reaches 0.001. In fact, for all examined TERs, the mul only resulted accuracy is always

higher than that of add only. Moreover, the accuracy under both configuration is almost

identical to that of add only configuration, suggesting that adders-induced errors con-

tribute to most of the accuracy drop. One main reason for this is that the accumulated

convolution sum or dot-product sum are fed into a nonlinear activation function. The

errors from multipliers will be averaged, but the errors from adders directly impact the

input of the activation function. This suggests that more hardware design effort should

be made on the adder to ensure its low TER. On the other hand, the worst accuracy

of both NN genres is around 10%, when either add only or mul only is 0.1. We can

observe that such an accuracy drop starts saturating at 0.1 TER, almost identical to a

random guess, and stays almost the same when TER continues increasing. Such obser-

vations show that even though neural networks have inherent error resilience, the timing

errors still can significantly affect neural network accuracy and motivate this approach.

74

0 0.00001 0.0001 0.001 0.01 0.1 0.5 0.9
Timing Error Rate

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

mul_only
add_only
both

Figure 5.7: CNN accuracy as a function of TER.

(0.90V, 5
0°)

(0.90V, 1
00°)

(0.89V, 5
0°)

(0.89V, 1
00°)

(0.88V, 5
0°)

(0.88V, 1
00°)

(0.87V, 5
0°)

(0.87V, 1
00°)

(0.86V, 5
0°)

(0.86V, 1
00°)

(0.85V, 5
0°)

(0.85V, 1
00°)

(0.84V, 5
0°)

(0.84V, 1
00°)

(0.83V, 5
0°)

(0.83V, 1
00°)

(0.82V, 5
0°)

(0.82V, 1
00°)

(0.81V, 5
0°)

(0.81V, 1
00°)

Operating condition

10-5

10-4

10-3

10-2

10-1

100

Ti
m

in
g

er
ro

r r
at

e

add
mul

Figure 5.8: TER of adder and multiplier under different operating conditions.

75

Table 5.1: HNN accuracy under dynamic variations.
HNN (0.90V, 50◦C) (0.90V, 100◦C) (0.89V, 50◦C) (0.89V, 100◦C) (0.88V, 50◦C) (0.88V, 100◦C)

MLP 96.79% 96.03% 94.90% 87.93% 75.56% 57.76%

CNN 98.37% 97.31% 95.87% 85.15% 70.34% 48.64%

HNN (0.87V, 50◦C) (0.87V, 100◦C) (0.86V, 50◦C) (0.86V, 100◦C) (0.85V, 50◦C) (0.86V, 100◦C)

MLP 25.67% 15.89% 10.45% 10.33% 9.42% 9.91%

CNN 18.85% 11.13% 9.81% 9.80% 9.81% 9.81%

HNN (0.85V, 50◦C) (0.85V, 100◦C) (0.84V, 50◦C) (0.84V, 100◦C) (0.83V, 50◦C) (0.83V, 100◦C)

MLP 9.89% 9.80% 9.72% 9.60% 10.15% 9.60%

CNN 9.75% 9.81% 9.89% 9.80% 9.91% 9.84%

5.4.3 Accuracy Versus Dynamic Variations

We then use the real dynamic operating conditions to obtain realistic timing error

rates and thereby characterize the vulnerability of HNNs to dynamic variations.

First, we use the Timing Error Extraction described in Section 5.3.1 to character-

ize the timing error behavior of 32-bit floating point adder and multiplier under different

operating conditions as shown in Fig. 5.8. The selected operating conditions cover a

wide range of TERs: at the best condition (0.90V, 50◦C), no timing errors are injected

for both computations; at the worst condition (0.81V, 50◦C), 50% and 100% TER are

found in adders and multipliers respectively. The TER of adder reaches 0.01 when the

operating condition is around 0.86V. Based on Fig. 5.6 and Fig. 5.7, the accuracy drop

starts to saturate when the TER of adder reaches 0.01, thus we expect to see a worst

accuracy starting at around 0.86V.

We then present the accuracy of both MLP and CNN under twenty operating

conditions, as shown in Fig. 5.9 and Table. 5.1, where we observe several important

facts. First, the lowest accuracy under worst-case operating conditions is around 10%.

By looking into the prediction results, we found CNN is able to identify more than 90%

of the 0 digits even under worst condition.

Second, the 10% accuracy has been observed across multiple conditions from

(0.86V, 50◦C) to (0.81V, 100◦C). (For better space utilization, we do not present the

accuracy under 0.81V and 0.82V in Table. 5.1, where the accuracy of both is around

10%.) This is expected as we can see from Fig. 5.6 and Fig. 5.7 where the accuracy

drops to 10% when the TER of either unit reaches 0.1.

76

Third, Table. 5.1 shows that under the condition between (0.86V, 50◦C) and

(0.90V, 100◦C), where the TER of adder is less than 0.01, the accuracy drop of MLP to

its original accuracy is less than that of CNN, indicating MLP might be more resilient

than CNN within a certain TER. Part of the reason for this is that given the same TER,

the amount of errors in CNN is larger than MLP because CNN has more arithmetic

operations.

Last but not least, we find the voltage and temperature both play an important

role in determining the inference accuracy. By fixing the temperature at 100◦C, reducing

the voltage by 0.01V from 0.89V to 0.88V results an accuracy drop from 85.15% to

48.64%; by fixing the voltage as 0.88V, increasing the temperature by 50◦C results an

accuracy drop from 70.34% to 48.64%. By comparing the accuracy at (0.90V, 50◦C) and

(0.86V, 50◦C), we find the accuracy drops to worst case at around 10% from best case at

around 98% by a voltage reduction of 0.04V. Such observations indicate there is a huge

impact of dynamic variations on hardware neural networks accuracy and motivate the

necessity of protecting HNN against variations.

(0.90V, 50°)

(0.90V, 100°)

(0.89V, 50°)

(0.89V, 100°)

(0.88V, 50°)

(0.88V, 100°)

(0.87V, 50°)

(0.87V, 100°)

(0.86V, 50°)

(0.86V, 100°)

(0.85V, 50°)

(0.85V, 100°)

(0.84V, 50°)

(0.84V, 100°)

(0.83V, 50°)

(0.83V, 100°)

(0.82V, 50°)

(0.82V, 100°)

(0.81V, 50°)

(0.81V, 100°)

Operating condition

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

si
fic

at
io

n
Ac

cu
ra

cy

MLP
CNN

Figure 5.9: HNN accuracy as a function of dynamic variations.

77

5.5 Discussion

Threats to Validity: We mainly focus on variation-induced timing errors in com-

putation logic. However, the timing errors could also occur in control logic, which might

lead to more severe accuracy drop or malfunction. Fortunately, it was observed that con-

trol logic only contributes a small set of critical paths [76], making it less vulnerable to

timing errors.

Future Work: We focus on assessing the effects of hardware variations on

neural network performance. The next question is how we can mitigate such timing

errors. For the future work, we focus on integrating the timing errors as a vector for

backpropagation to enable an adaptive training method. Moreover, we plan to design

a reconfigurable architecture that can automatically select suitable weights for a given

voltage and temperature from a set of pre-stored weights.

5.6 Chapter Summary

This chapter presents a cross-layer approach to assess the effects of dynamic

voltage and temperature variations on the performance of hardware neural networks.

We first extract the timing errors of post place-and-route computation units under twenty

different operating conditions through gate-level simulations. We then inject such errors

to neural network inference phase and evaluate the resulted accuracy. Using two fre-

quently used neural networks, MLP and CNN, we demonstrate that dynamic voltage

and temperature variations can cause significant drop in inference accuracy.

Chapter 5 contains reprints of Xun Jiao, Mulong Luo, Jeng-Hau Lin, and Rajesh

Gupta, “An Assessment of Vulnerability of Hardware Neural Networks to Dynamic

Voltage and Temperature Variations”, Proc. IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), 2017. The dissertation author is the primary author

of the paper.

78

Chapter 6

Enhancing Efficiency via Approximate

Computation Reuse

In the last chapter, to deliver an acceptable application quality associated with

the error acceptance approaches, we assess the quality of neural networks by expos-

ing the timing errors caused by relaxed operating condition to software execution. The

results show that it is unrealistic to save energy by lowering the voltage because small

voltage drop can lead to the unacceptable quality of results. In this chapter, for the ap-

plications of neural networks, we propose a controllable and reconfigurable hardware

approximation approach that can guarantee acceptable application quality while achiev-

ing significant energy savings.

6.1 Introduction

Energy consumption is an important metric for neural networks implementation

in an increasingly broad range of computing platforms. Neural network computations

are dominated by additions and multiplications. Due to their cost and latency, multipli-

cations have been a natural target for optimization in hardware. Approximate comput-

ing has been used in recent literature to address the intensive computational workloads

thus creating a tradeoff between accuracy and energy [31, 60]. Approximate computa-

tion units have been shown to have better energy efficiency than the exact ones [46].

For instance, in [31], the authors substitute the normal multipliers with inexact mul-

79

tipliers that provide inexact logic but with less hardware cost. Mrazek et al. further

optimize approximate multiplier design with a uniform structure suitable for hardware

implementation [60].

While the adaptability of neural networks in its applications is naturally suited

to use approximation [48], in practice it also requires retraining the network to mitigate

accuracy loss caused by logic errors from inexact design. Moreover, once the design has

been physically implemented in hardware, it is not possible to reconfigure the design to

control the approximation level entirely in hardware. Thus, it is hard to guarantee the

quality of results after applying such hardware approximation design.

To overcome these limitations, we propose using a reconfigurable and control-

lable approximation technique in neural networks by exploiting the computation reuse

opportunities. Computation reuse has been adopted in various applications where value

locality and similarity are observed [65]. To enable computation reuse, we rely on tight

integration of Bloom filters (BFs) with the computation units in hardware, a data struc-

ture that supports approximate set membership queries with a tunable rate of errors to

store frequent computation patterns and return the results without actual execution of

energy-intensive float point units (FPUs).

To ensure the effectiveness of computation reuse using Bloom Filters, we use

a set of techniques. First, we perform approximate pattern matching instead of exact

pattern matching in neural networks. This is done in the context of arithmetic operations

on floating point numbers. We thus explore matching operations under limited precision

of operands. This is done via a reconfigurable BF architecture that can do approximate

pattern matching with hashing for data items that feature varying bit width. Second, we

perform layer-based pattern matching instead of global pattern matching. That is, we

detect and store different set of input patterns for each layer separately. The reason is that

in neural networks, each layer has its own set of functions thus may experience different

input workloads. Accordingly, we configure BFs for each layer separately. Third, we

implement the BFs with resistive memory elements to provide energy efficient storage

for saving the frequently used patterns [5].

We make the following contributions:

• We explore and use computation reuse opportunities in neural networks and en-

80

hance them with layer-based approximate pattern matching.

• We design a reconfigurable Bloom filter unit that can perform approximate pat-

tern matching, increasing the computation reuse opportunities while leading to a

controllable approximation level for neural networks.

• We demonstrate the effectiveness of the approximate BFs by reducing 47.5% en-

ergy consumption of multiplication operations in 45nm technology while incur-

ring only 1% accuracy degradation.

6.2 Approximate Computation Reuse

In this section, we explore the computation reuse opportunities in neural net-

works that can avoid the energy overhead due to re-execution, and propose optimization

techniques that improve the reuse opportunities. Based on this, we propose a novel

architecture that can enable flexible control over computation reuse.

6.2.1 Layer-based Pattern Matching

To maximize the energy savings, we need to maximize the computation reuse

opportunities. Since we need to store a set of pre-calculated computations, we aim to

store most frequent input patterns to maximize the computation reuse opportunities. To

do this, we use several steps. First, we profile the input operands of multiplications

using some training input. Second, in the profiled input, we look for the most frequent

input patterns and calculate their results.

In this process, we use two strategies to look for the most frequent input patterns:

global-based and layer-based. Global-based means we look for the most frequent input

patterns from all the multiplication operations in neural network inferences, regardless

of their locations. Layer-based means we look for the frequent input patterns for each

layer separately. That is, for each layer, we find the most frequent patterns from the

input operands of multiplications profiled from that specific layer. For example, to find

the most frequent patterns for the third convolutional layer, we profile all input operands

81

10 20 30 40 50
Number of stored patterns for each layer

0

5

10

15

20

Hi
t r

at
e

(%
)

global-based
layer-based

Figure 6.1: The hit rate of exact pattern matching.

of multiplications in that layer and find the most frequent patterns in this set of input

operands.

Third, we then check the hit rate of the chosen frequent patterns using another

set of data. We also vary the number of stored input patterns for each layer. Note that,

for the sake of simplicity, we always use the same number of stored patterns for each

layer. As shown in Fig. 6.1, we can see that layer-based matching leads to higher hit

rate than global-based matching. From now on, we conduct all of our experiments using

layer-based approach. We also observe that as the number of stored patterns increases,

the hit rate also increases. However, the hit rate still remains low, at around 10%, even

if we store 50 patterns for each layer. Thus, we improve the hit rate by developing

approximation techniques as described in the next section.

6.2.2 Approximate Pattern Matching

As shown in Fig. 6.1, even if we use layer-based pattern matching, the hit rate is

still low. Thus, we propose the use of approximate pattern matching for floating point

numbers instead of exact matching, i.e., we only match for limited bit width. For exam-

82

ple, there are two floating point numbers 0.45 and 0.451, with their IEEE 754 format as

00111110111001100110011001100110 and 00111110111001101110100101111001. If

we use exact matching, then 0.451 would not match 0.45. However, if we use 9-bit

matching, then 0.451 would match 0.45-because their first 9 bits (sign bit and exponen-

tial bits) match. In this case, their first 16 bits (sign bit, exponential bits and 7 mantissa

bits) are identical so they will match even under 16-bit matching mode. We use four

different approximate matching modes to measure the hit rate: 9-bit, 10-bit, 11-bit, and

exact matching, as illustrated in Fig. 6.2. We can see that as we increase the approxima-

tion level, the hit rate also increases significantly even by 1 bit. For example, by storing

50 patterns (for each layer), a 10-bit approximation can have hit rate at 57.1% while

9-bit approximation can have hit rate at 82.6%, which is 56% higher.

10 20 30 40 50
Number of stored patterns for each layer

0

10

20

30

40

50

60

70

80

90

Hi
t r

at
e

(%
)

9bit match
10bit match
11bit match
exact match

Figure 6.2: The hit rate of approximate pattern matching.

But note that the increased hit rate does come with a cost. Rather than returning

the exact computation result, the approximate pattern matching will return an inexact

result. And as we increase the approximation level, the extent of inaccuracy will also

increase. We explore several different approximate matching modes in Section 6.4.2 by

varying the matching bit width and number of stored patterns to maximize the energy

83

savings while keeping the accuracy loss minimal.

6.3 Bloom Filters

To implement approximate pattern matching at the hardware level, we employ

BFs. The detected frequent patterns are stored in a set of BFs, and the BFs are integrated

to the multiplier. The number of BFs equals to the number of distinct output values

generated by the frequent patterns. Each BF stores the patterns corresponding to its

assigned output value.

BFs are known as compact storage units that provide an approximate response

to the membership queries. A BF consists of a number of hash functions and a Bloom

vector (BV). To store a set of inputs in the BF, the hash functions are executed for each

input generating addresses to the BV. For each input, the corresponding bits of the BV

determined by the hash functions are set to 1. To search for a given input in the BF, the

same hash functions generate addresses for an incoming input, and the corresponding

bits are checked in the BV. If all the bits are 1, the input is stored in the BF. Otherwise,

the input does not exist. The overall architecture of using BF for approximate pattern

BV

Hash Function 1

Hash Function 2

Hash Function k

.

.

.

match

in
p 1[

0:
ap

x_
bi

t]+
in

p
2[

0:
ap

x_
bi

t]

inp
1
[0:31]

inp
2
[0:31]

Figure 6.3: The implementation of approximate pattern matching.

matching is shown in figure 6.3. In order to enable the approximate pattern matching,

we store approximated input patterns in the BF. We resize each input of the multiplier

to apx bit bits by selecting its apx bit most significant bits and concatenate them into a

single vector. The obtained vector forms an input to the hash functions which determine

84

bits to be set in the BFs. Similarly, to investigate the approximate pattern matching

of incoming inputs to the multiplier, the inputs are re-sized and concatenated before

going to the hash functions. Then, the bits in the BV specified by the hash functions

determine whether the incoming pattern of the multiplier is matched or not. In case of

matching, the multiplier is clock-gated to avoid the re-execution and the output in the

register corresponding to the BF is returned as the output of the multiplier.

Due to the characteristics of hash functions and the limited size of the BV, BF

has a false positive (FP) error where BF wrongly confirms the presence of an input.

However, the rate of the false positive, which is shown in equation 6.1, is dependent

on several parameters such as the number of input operands stored in the BF (n), the

number of hash functions (k) and the size of the BV (m) [29] [7]. Therefore, FP can be

tuned by properly setting the mentioned parameters.

FP = (1− e−
nk
m)k (6.1)

Since most of today’s applications such as neural networks demonstrate toler-

ance to the controlled imprecision in computations, BFs are adapted to implement ap-

proximate pattern matching and recall the computations in neural networks. To further

improve the energy consumption of the computations, we employ resistive memory el-

ements to implement Bloom vectors, which exhibit significant energy savings than its

CMOS counterparts [5]. Moreover, resistive memory consumes little area overhead as

it can be implemented on top of the chip [44].

6.4 Experimental Results

6.4.1 Experimental Setup

We use tiny-dnn [4], a header only, dependency free deep learning library writ-

ten in C++, as our evaluation platform. For CNN, we use LeNet-like architecture as

illustrated in Fig. 5.3. We use MNIST (Mixed National Institute of Standards and Tech-

nology) database of handwritten numbers [56] as our dataset to evaluate the accuracy.

The dataset is split into a training set and a test set with 60,000 and 10,000 28 × 28

85

8bit 9bit 10bit 11bit exact
Approximation level

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Figure 6.4: Neural network accuracy loss due to approximate pattern matching.

images. We randomly select 5% of the training input data to profile the frequent in-

put operands. To estimate the energy consumption of the proposed design, we imple-

ment the hash functions using Verilog, and we extract the Verilog implementation of a

six-stage pipelined floating point multiplier using FloPoCo [28]. Then, the implemen-

tations are synthesized using Synopsys Design Compiler, with 45 nm standard CMOS

library. The operating voltage is set to 1.0V and the clock period is 1.5 ns. In addition,

Bloom vectors (BV) are designed with resistive 1T1R cells using HSPICE, where RON

is set to 1K Ω and ROFF to 1M Ω [82]. Bloom filters can be used in different hardware

platforms, including CPU [35], FPGA [29], and GPU [5].

6.4.2 Accuracy Loss

As described in Section 6.2.2, the BF will return an inexact result due to ap-

proximate pattern matching. Thus, we investigate here on how the approximation level

impacts the neural network accuracy. We vary the approximate pattern matching mode

from 8-bit matching to 11-bit matching and store 10 most frequent patterns for each of

the approximation modes with a FP rate of 0.001. Fig. 6.4 shows the accuracy under

each configuration. The baseline accuracy is 98.5% without any approximations. The

8-bit matching introduces aggressive approximation because it does not cover the last bit

in the exponent bits, which leads to only 60.6% accuracy. Starting from 9-bit matching,

the accuracy loss is insignificant. Note that 9-bit matching covers the sign bit and ex-

ponent bits for floating point numbers. This indicates the high error-tolerance of neural

86

networks to data imprecision.

According to Fig. 6.2, 9-bit matching gives us the highest hit rate among the

approximation modes which introduces little drop on neural network accuracy. Thus,

using 9-bit matching as our approximation mode, we then investigate how the accuracy

will vary with the number of stored frequent patterns. As shown in Table 6.1, various

number of stored patterns under 9-bit matching have little impact on neural network

accuracy. The lowest accuracy is 97.2% under the (9, 50) configuration, meaning that

we use 9-bit approximate pattern matching and store 50 input patterns.

Table 6.1: Energy savings and neural network accuracy across different BF settings.
Matching Mode (BV size, #Hash Fn, #inp BF) Hit Rate NN Accuracy Esave

(8, 10) (64, 2, 1) 66.9% 60.6% 58.9%

(9, 5) (64, 2, 1) 28.9% 97.5% 24.9%

(9, 10) (64, 2, 1) 45.7% 97.4% 37.9%

(9, 20) (64, 2, 1) 60.7% 97.9% 45.4%

(9, 30) (64, 2, 1) 70.6% 97.4% 47.5%

(9, 30) (32, 3, 1) 70.6% 97.4% 41.6%

(9, 40) (64, 2, 1) 77.3% 97.3% 47.3%

(9, 50) (64, 2, 1) 82.3% 97.2% 44.7%

(10, 10) (64, 2, 1) 30.4% 98.3% 22.3%

6.4.3 Energy Savings

We use several different matching modes and BF configuration to compute the

energy savings and the resulting neural network accuracy as shown in Table 6.1. The

matching mode (appx bit,#inp) refers to how many bits we use for approximate pattern

matching and the number of patterns we store. The BF setting (BV size, #hash Fn,

#inp BF) refers to BV size in bit length (m), number of hash functions (k) and number

of input patterns stored in each BF (n). For example, the BF setting at (64, 2, 1) means

that we set the BV size as 64 bits, use 2 hash functions and store 1 input pattern for each

BF. To satisfy the FP rate which can lead to acceptable accuracy, we carefully select BF

configurations.

Table. 6.1 exhibits several important facts. First, 9-bit matching is the optimal

matching mode here. By comparing with 8-bit matching and 10-bit matching, we find

that 8-bit matching achieves the most energy saving at 58.9%, but its resulted neural

87

network accuracy is only 60.6%, a significant accuracy drop over baseline accuracy

of 98.5%. 10-bit matching achieves higher accuracy than 9-bit because it introduces

smaller approximation errors into the neural network than 9-bit matching but its re-

sulting energy saving is only at 22.3%, which is less than the one obtained with 9-bit

matching mode. Thus, 9-bit matching achieves the better balance between neural net-

work accuracy and energy savings.

Second, after we fix 9-bit matching mode, we then look for the optimal number

of patterns to store. We vary the number of stored patterns from 5 to 50. Note that all 9-

bit matching modes, regardless of the number of stored patterns, achieve accuracy close

to the baseline. Thus, we focus on locating the best energy saving setting. As shown

in Fig. 6.5, we found that the energy saving increases as the number of stored patterns

increases from 5 to 30 (we call it the first stage), however the energy saving starts to

decrease as the number of stored patterns increases from 30 to 50 (second stage). This is

because in the first stage, the hit rate increases as the number of stored patterns increases,

which will reduce the use of multipliers. In the second stage, although the hit rate still

increases, the energy consumption of BFs increases as the number of stored patterns

increases, which dominates the energy consumption. Thus, we find that the optimal

matching mode is (9, 30).

Third, we also try different settings of BV size and hash functions. To satisfy

the FP error rate of 0.001, we use two realistic BF settings, (64, 2, 1) and (32, 3, 1). The

BF setting at (32, 3, 1) consumes more energy than that of (64, 2, 1) because it uses 3

hash functions, which is the main source of energy consumption of BFs. The optimal

configuration is (9, 30) as matching mode and (64, 2, 1) as BF setting. This leads to a

neural network accuracy of 97.4% and energy saving of 47.5%.

6.5 Chapter Summary

This chapter presents a controllable and reconfigurable approximate computa-

tion reuse approach to improve the energy efficiency of hardware neural networks. We

exploit the computation reuse opportunities in neural networks and enhance such oppor-

tunities by performing approximate pattern matching. We design an approximate Bloom

88

(9, 5) (9, 10) (9, 20) (9, 30) (9, 40) (9, 50)
Matching Mode

0

10

20

30

40

50

En
er

gy
 S

av
in

g
(%

)

Figure 6.5: Energy Savings under different matching mode.

filter architecture to physically implement the approximate pattern matching function

and tightly integrate it with computation units. By storing the frequent computation

patterns, Bloom filters can recall the computation results to avoid the overhead due to

redundant executions on computation units. The experimental results show 47.5% en-

ergy reductions of multiplication operation with classification accuracy degradation at

1% for convolutional neural networks. Our future works focus on investigating whether

the variances of datasets and neural network types and architectures have an impact on

the computation reuse opportunities. If so, then we may design a neural network that

can maximize the computation reuse opportunities.

Chapter 6 contains reprints of Xun Jiao, Vahideh Akhlaghi, Yu Jiang, and Rajesh

Gupta, “Energy-Efficient Neural Networks using Approximate Computation Reuse”,

Proc. IEEE/ACM Design, Automation, and Test in Europe (DATE), 2018. The disserta-

tion author is the primary author of the paper.

89

Chapter 7

Conclusion and Future Directions

This dissertation focuses on improving timing error resilience of microelectronic

computing systems. We have reviewed and classified existing approaches into three

categories — error prevention, error correction, and error acceptance. We have then

identified associated technical challenges: inaccurate error modeling, high correction

cost, and unacceptable application quality. For each of these challenges, we proposed

our corresponding solutions.

To combat the inaccurate error modeling challenge, Chapter 2 presents a method

to integrate the impact of input operands in the error modeling using machine learning

methods. To combat the high correction cost challenge, Chapter 3 presents an approach

to efficiently correct timing errors using the structural errors of inexact (approximate)

circuits. Chapter 4 presents an instruction-based timing error prevention approach to

avoid the correction cost. To combat the unacceptable application quality challenge,

Chapter 5 presents a cross-layer approach to expose the hardware errors under relaxed

operating conditions to the software execution to assess application vulnerability to tim-

ing errors. Chapter 6 presents a controllable and reconfigurable hardware approximation

approach that can guarantee acceptable application quality while achieving significant

energy savings.

Looking beyond this dissertation, the following outlines our thinking for future

work in the area:

Energy-efficient Hardware Neural Networks Artificial neural networks have

shown broad success for medical applications, speech recognition, and natural language

90

processing but their hardware implementation exhibit significant energy consumption.

Such acceleration demands new methods that effectively combine computational effi-

ciency with low power consumption. For instance, one can use voltage scaling on the

computation units of hardware neural networks to save energy. Unfortunately, voltage

scaling can save energy but increase the sensitivity to timing errors, which might affect

the accuracy of neural networks. To address this, we can explore efficient timing error

tolerance mechanisms at various layers. For instance, due to the adaptation of neural

network parameters, error-aware retraining can be used to enable the self-healing of

neural networks. Our work on CLIM [49] is a starting point for further work in the area.

Resilient Cyber-physical Systems A cyber-physical system (CPS) is a strongly

interconnected embedded computing system with tight integration of computational and

physical components. Given the proliferation of computing, sensing capabilities, these

systems are beginning to be used critical infrastructures such as energy and transporta-

tion. The complexity and fragility of these systems due to ongoing interactions of com-

puting with physical processes presents new challenges in system resilience and reli-

ability. We believe these can only be addressed through a “cross-layer” perspective,

that is, design and analytic methods that consider a deep (if not, full) stack of hardware

and software from circuits to software services and protocols. To be specific, consider

systems deployed in harsh environments of battlefield or space. Increased rate of soft

errors or the impact of these errors on mission demands new models and methods for

carrying out vulnerability analysis and devise robust protocols and runtime verification

techniques to improve resilience. Such a work would require collaborations with experts

from different fields including computer architecture and formal verification methods.

Energy-efficient Heterogeneous Microprocessors Multicore heterogeneous ar-

chitecture has been a promising solution to enhance energy-efficiency of embedded sys-

tems. With the increasing complexity of applications, techniques for workload distribu-

tion on different cores and components are the key to achieving energy savings while

satisfying performance and quality constraints [37,38]. I plan to explore energy-efficient

multicore heterogeneous microprocessor architectures by exploring a suitable runtime

environment that can assign the workload to the core that matches its resource needs.

For example, we can design each core to be optimized at different process corners and

91

assign different instructions or instruction sequences to different cores based on their

timing slack requirements. We can also explore the tradeoff between reliability and

energy efficiency in heterogeneous microprocessors.

92

Bibliography

[1] Amd app sdk v2.5. available: http://www.amd.com/stream.

[2] Amd app sdk v2.5. [online]. available: http://www.amd.com/stream.

[3] The itrs website: http://www.itrs.net/links/2011itrs/home2011.htm.

[4] tiny-dnn: https://github.com/tiny-dnn/tiny-dnn.

[5] Vahideh Akhlaghi, Abbas Rahimi, and Rajesh K. Gupta. Resistive bloom filters:
from approximate membership to approximate computing with bounded errors.
In Proceedings of the 2016 Conference on Design, Automation & Test in Europe,
2016.

[6] Christopher M. Bishop. Pattern recognition and machine learning. springer, 2006.

[7] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrah, Sushil Singh, and George
Varghese. Beyond bloom filters: from approximate membership checks to approx-
imate state machines. In Proceedings of the conference on Applications, technolo-
gies, architectures, and protocols for computer communications, SIGCOMM ’06,
pages 315–326, 2006.

[8] Keith Bowman, Steven G. Duvall, and James D. Meindl. Impact of die-to-die and
within-die parameter fluctuations on the maximum clock frequency distribution for
gigascale integration. Solid-State Circuits, IEEE Journal of, 37(2):183–190, 2002.

[9] Keith Bowman, James W. Tschanz, Nam Sung Kim, Janice C. Lee, Chris B.
Wilkerson, Shih-Lien L Lu, Tanay Karnik, and Vivek De. Energy-efficient and
metastability-immune resilient circuits for dynamic variation tolerance. IEEE
Journal of Solid-State Circuits, 44(1):49–63, 2009.

[10] Keith Bowman, James W. Tschanz, Shih-Lien L. Lu, Paolo Aseron, Muham-
mad M. Khellah, Arijit Raychowdhury, Bibiche M. Geuskens, Carlos Tokunaga,
Chris B. Wilkerson, Tanay Karnik, and Vivek De. A 45 nm resilient micropro-
cessor core for dynamic variation tolerance. IEEE Journal of Solid-State Circuits,
46(1):194–208, 2011.

93

[11] Michael Bushnell and Vishwani Agrawal. Essentials of electronic testing for digi-
tal, memory and mixed-signal VLSI circuits, volume 17. Springer Science & Busi-
ness Media, 2004.

[12] Vincent Camus, Jeremy Schlachter, and Christian Enz. Energy-efficient digital
design through inexact and approximate arithmetic circuits. In New Circuits and
Systems Conference (NEWCAS), 2015 IEEE 13th International, pages 1–4. IEEE,
2015.

[13] Vincent Camus, Jeremy Schlachter, and Christian Enz. Energy-efficient inexact
speculative adder with high performance and accuracy control. In Circuits and
Systems (ISCAS), 2015 IEEE International Symposium on, pages 45–48. IEEE,
2015.

[14] Vincent Camus, Jeremy Schlachter, and Christian Enz. A low-power carry cut-
back approximate adder with fixed-point implementation and floating-point pre-
cision. In Design Automation Conference (DAC), 2016 53rd ACM/EDAC/IEEE,
2016.

[15] Vincent Camus, Jeremy Schlachter, Christian Enz, Michael Gautschi, and Frank K.
Gurkaynak. Approximate 32-bit floating-point unit design with 53% power-area
product reduction. In European Solid-State Circuits Conference (ESSCIRC), pages
465–468, 2016.

[16] Michael Carbin, Sasa Misailovic, and Martin C Rinard. Verifying quantitative
reliability for programs that execute on unreliable hardware. In ACM SIGPLAN
Notices, volume 48, pages 33–52. ACM, 2013.

[17] Kwanyeob Chae, Saibal Mukhopadhyay, Chang-Ho Lee, and Joy Laskar. A dy-
namic timing control technique utilizing time borrowing and clock stretching. In
Custom Integrated Circuits Conference (CICC), 2010 IEEE, pages 1–4. IEEE,
2010.

[18] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning. In International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), pages 269–
284. ACM, 2014.

[19] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling
Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. Dadiannao: A
machine-learning supercomputer. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 609–622. IEEE Computer
Society, 2014.

94

[20] Hari Cherupalli and John Sartori. Graph-based dynamic analysis: Efficient char-
acterization of dynamic timing and activity distributions. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, pages 729–735.
IEEE Press, 2015.

[21] Hyungmin Cho, Larkhoon Leem, and Subhasish Mitra. Ersa: Error resilient sys-
tem architecture for probabilistic applications. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, 31(4):546–558, 2012.

[22] Mihir R. Choudhury, Vishal Chandra, Robert Aitken, and Kartik Mohanram. Time-
borrowing circuit designs and hardware prototyping for timing error resilience.
Computers, IEEE Transactions on, 63(2):497–509, 2014.

[23] Mihir R. Choudhury and Kartik Mohanram. Masking timing errors on speed-paths
in logic circuits. In Design, Automation & Test in Europe Conference & Exhibition
(DATE)., pages 87–92. IEEE, 2009.

[24] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from
scratch. Journal of Machine Learning Research, 12(Aug):2493–2537, 2011.

[25] Jeremy Constantin, Lai Wang, Georgios Karakonstantis, Anupam Chattopadhyay,
and Andreas Burg. Exploiting dynamic timing margins in microprocessors for
frequency-over-scaling with instruction-based clock adjustment. In Proceedings
of the 2015 Design, Automation & Test in Europe Conference & Exhibition, pages
381–386. EDA Consortium, 2015.

[26] Thomas M. Cover and Peter E. Hart. Nearest neighbor pattern classification. In-
formation Theory, IEEE Transactions on, 13(1):21–27, 1967.

[27] Shidhartha Das, Carlos Tokunaga, Sanjay Pant, Wei-Hsiang Ma, Sudherssen
Kalaiselvan, Kevin Lai, David M Bull, and David T Blaauw. Razorii: In situ error
detection and correction for pvt and ser tolerance. IEEE Journal of Solid-State
Circuits, 44(1):32–48, 2009.

[28] Florent De Dinechin and Bogdan Pasca. Designing custom arithmetic data paths
with flopoco. IEEE Design & Test of Computers, 28(4):18–27, 2011.

[29] Sarang Dharmapurikar, Praveen Krishnamurthy, Todd Sproull, and John W. Lock-
wood. Deep packet inspection using parallel bloom filters. In Proceedings of IEEE
Symposium on High Performance Interconnects, HotI03, pages 44–51, 2003.

[30] Saurabh Dighe, Sriram R. Vangal, Paolo Aseron, Shasi Kumar, Tiju Jacob, Keith
Bowman, Jason Howard, James Tschanz, Vasantha Erraguntla, Nitin Borkar, and
Vivek De. Within-die variation-aware dynamic-voltage-frequency-scaling with op-
timal core allocation and thread hopping for the 80-core teraflops processor. Solid-
State Circuits, IEEE Journal of, 46(1):184–193, 2011.

95

[31] Zidong Du, Avinash Lingamneni, Yunji Chen, Krishna V Palem, Olivier Temam,
and Chengyong Wu. Leveraging the error resilience of neural networks for design-
ing highly energy efficient accelerators. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 34(8):1223–1235, 2015.

[32] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan
Pham, Conrad Ziesler, David Blaauw, Todd Austin, Krisztian Flautner, and Trevor
Mudge. Razor: A low-power pipeline based on circuit-level timing speculation. In
Annual IEEE/ACM International Symposium on Microarchitecture, 2003., pages
7–18. IEEE, 2003.

[33] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural accel-
eration for general-purpose approximate programs. In Proceedings of the 2012
45th Annual IEEE/ACM International Symposium on Microarchitecture, pages
449–460. IEEE Computer Society, 2012.

[34] Matthew Fojtik, David Fick, Yejoong Kim, Nathaniel Pinckney, David Harris,
David Blaauw, and Dennis Sylvester. Bubble razor: An architecture-independent
approach to timing-error detection and correction. In Solid-State Circuits Confer-
ence Digest of Technical Papers (ISSCC), 2012 IEEE International, pages 488–
490. IEEE, 2012.

[35] Masayoshi Fujii, Yuuki Sato, Tomoaki Tsumura, and Yasuhiko Nakashima. Ex-
ploiting bloom filters for saving power consumption of auto-memoization proces-
sor. In Computing and Networking (CANDAR), 2016 Fourth International Sympo-
sium on, pages 354–360. IEEE, 2016.

[36] Manish Gupta, Abbas Rahimi, Daniel Lowell, John Kalamatianos, Dean Tullsen,
and Rajesh Gupta. Asar: Application-specific approximate recovery to mitigate
hardware variability. SELSE (Silicon Errors in Logic, System Effects), 2017.

[37] Manish Gupta, David Roberts, Mitesh Meswani, Vilas Sridharan, Dean Tullsen,
and Rajesh Gupta. Reliability and performance trade-off study of heterogeneous
memories. In Proceedings of the Second International Symposium on Memory
Systems, pages 395–401. ACM, 2016.

[38] Manish Gupta, Vilas Sridharan, David Roberts, Andreas Prodromou, Ashish
Venkat, Dean Tullsen, and Rajesh Gupta. Reliability-aware data placement for
heterogeneous memory architecture. In High Performance Computer Architecture
(HPCA), 2018 IEEE International Symposium on, pages 583–595. IEEE, 2018.

[39] G Gybenko. Approximation by superposition of sigmoidal functions. pages 303–
314, 1989.

[40] Kai He, Andreas Gerstlauer, and Michael Orshansky. Circuit-level timing-error
acceptance for design of energy-efficient dct/idct-based systems. Circuits and Sys-
tems for Video Technology, IEEE Transactions on, 23(6):961–974, 2013.

96

[41] S. Himavathi, D. Anitha, and A. Muthuramalingam. Feedforward neural network
implementation in fpga using layer multiplexing for effective resource utilization.
IEEE Transactions on Neural Networks, 18(3):880–888, 2007.

[42] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath,
and Brian Kingsbury. Deep neural networks for acoustic modeling in speech recog-
nition: The shared views of four research groups. IEEE Signal Processing Maga-
zine, 29(6):82–97, 2012.

[43] Sebastian Hoppner, Holger Eisenreich, Stephan Henker, Dennis Walter, Georg
Ellguth, and René Schuffny. A compact clock generator for heterogeneous gals
mpsocs in 65-nm cmos technology. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 21(3):566–570, 2013.

[44] Mohsen Imani, Shruti Patil, and Tajana Rosing. Approximate computing using
multiple-access single-charge associative memory. IEEE Transactions on Emerg-
ing Topics in Computing, 2016.

[45] Kwangok Jeong, Andrew B Kahng, and Kambiz Samadi. Impact of guardband
reduction on design outcomes: A quantitative approach. Semiconductor Manufac-
turing, IEEE Transactions on, 22(4):552–565, 2009.

[46] Honglan Jiang, Cong Liu, Leibo Liu, Fabrizio Lombardi, and Jie Han. A review,
classification, and comparative evaluation of approximate arithmetic circuits. ACM
Journal on Emerging Technologies in Computing Systems (JETC), 13(4):60, 2017.

[47] Xun Jiao, Vincent Camus, Mattia Cacciotti, Yu Jiang, Christian Enz, and Rajesh K
Gupta. Combining structural and timing errors in overclocked inexact speculative
adders. In 2017 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 482–487. IEEE, 2017.

[48] Xun Jiao, Mulong Luo, Jeng-Hau Lin, and Rajesh K. Gupta. An assessment of
vulnerability of hardware neural networks to dynamic voltage and temperature
variations. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Irvine, USA, 2017.

[49] Xun Jiao, Abbas Rahimi, Yu Jiang, Jianguo Wang, Hamed Fatemi, Jose Pineda
de Gyvez, and Rajesh K. Gupta. Clim: A cross-level workload-aware timing error
prediction model for functional units. IEEE Transactions on Computers, 2017.

[50] Andrew B. Kahng and Seokhyeong Kang. Accuracy-configurable adder for ap-
proximate arithmetic designs. In Proceedings of the 49th Annual Design Automa-
tion Conference, pages 820–825. ACM, 2012.

97

[51] Andrew B. Kahng, Seokhyeong Kang, Rakesh Kumar, and John Sartori. Slack
redistribution for graceful degradation under voltage overscaling. In Design Au-
tomation Conference (ASP-DAC), 2010 15th Asia and South Pacific, pages 825–
831. IEEE, 2010.

[52] Kyunghee Kang and Tadashi Shibata. An on-chip-trainable gaussian-kernel analog
support vector machine. IEEE Transactions on Circuits and Systems I: Regular
Papers, 57(7):1513–1524, 2010.

[53] Michael Kharitonov. Cryptographic hardness of distribution-specific learning. In
STOC. ACM, 1993.

[54] Veit B. Kleeberger, Petra R. Maier, and Ulf Schlichtmann. Workload-and
instruction-aware timing analysis: The missing link between technology and
system-level resilience. In Proceedings of the 51st Annual Design Automation
Conference, pages 1–6. ACM, 2014.

[55] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012.

[56] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of
handwritten digits, 1998.

[57] Xiaojun Li, Jin Qin, and Joseph B. Bernstein. Compact modeling of mosfet
wearout mechanisms for circuit-reliability simulation. IEEE Transactions on De-
vice and Materials Reliability, 8(1):98–121, 2008.

[58] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier
transform, and learnability. Journal of the ACM (JACM), 40(3):607–620, 1993.

[59] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin Rinard.
Chisel: reliability-and accuracy-aware optimization of approximate computational
kernels. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, pages 309–328. ACM,
2014.

[60] Vojtech Mrazek, Syed Shakib Sarwar, Lukas Sekanina, Zdenek Vasicek, and
Kaushik Roy. Design of power-efficient approximate multipliers for approximate
artificial neural networks. In International Conference On Computer Aided Design
(ICCAD), 2016.

[61] Patrick Ndai, Nauman Rafique, Mithuna Thottethodi, Swaroop Ghosh, Swarup
Bhunia, and Kaushik Roy. Trifecta: A nonspeculative scheme to exploit common,
data-dependent subcritical paths. IEEE Trans. VLSI Syst., 18(1):53–65, 2010.

98

[62] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, and Jake Vanderplas. Scikit-learn: Machine learning in python.
The Journal of Machine Learning Research, 12:2825–2830, 2011.

[63] Abbas Rahimi, Luca Benini, and Rajesh K. Gupta. Hierarchically focused guard-
banding: an adaptive approach to mitigate pvt variations and aging. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2013, pages 1695–
1700. IEEE, 2013.

[64] Abbas Rahimi, Luca Benini, and Rajesh K. Gupta. Application-adaptive guard-
banding to mitigate static and dynamic variability. IEEE Transactions on Comput-
ers, 63(9):2160–2173, 2014.

[65] Abbas Rahimi, Amirali Ghofrani, Miguel Angel Lastras-Montano, Kwang-Ting
Cheng, Luca Benini, and Rajesh K. Gupta. Energy-efficient gpgpu architec-
tures via collaborative compilation and memristive memory-based computing. In
Design Automation Conference (DAC), 2014 51st ACM/EDAC/IEEE, pages 1–6.
IEEE, 2014.

[66] Abbas Rahimi, Andrea Marongiu, Rajesh K. Gupta, and Luca Benini. A
variability-aware openmp environment for efficient execution of accuracy-
configurable computation on shared-fpu processor clusters. In International Con-
ference on Hardware/Software Codesign and System Synthesis. IEEE, 2013.

[67] Sanghamitra Roy and Koushik Chakraborty. Predicting timing violations through
instruction-level path sensitization analysis. In Proceedings of the 49th Annual
Design Automation Conference, pages 1074–1081. ACM, 2012.

[68] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning in-
ternal representations by error propagation. CALIFORNIA UNIV SAN DIEGO LA
JOLLA INST FOR COGNITIVE SCIENCE, 1985.

[69] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. Enerj: Approximate data types for safe and general
low-power computation. In ACM SIGPLAN Notices, volume 46, pages 164–174.
ACM, 2011.

[70] Jeremy Schlachter, Vincent Camus, and Christian Enz. Near/sub-threshold cir-
cuits and approximate computing: The perfect combination for ultra-low-power
systems. In VLSI (ISVLSI), 2015 IEEE Computer Society Annual Symposium on,
pages 476–480. IEEE, 2015.

[71] Jeremy Schlachter, Vincent Camus, Christian Enz, and Krishna V. Palem. Auto-
matic generation of inexact digital circuits by gate-level pruning. In Circuits and
Systems (ISCAS), 2015 IEEE International Symposium on, pages 173–176. IEEE,
2015.

99

[72] James Tschanz, Bowman, Steve Walstra, Marty Agostinelli, Tanay Karnik, and
Vivek De. Tunable replica circuits and adaptive voltage-frequency techniques for
dynamic voltage, temperature, and aging variation tolerance. In 2009 Symposium
on VLSI Circuits, 2009.

[73] James Tschanz, Nam Sung Kim, Saurabh Dighe, Jason Howard, Gregory Ruhl,
Sriram Vangal, Siva Narendra, Yatin Hoskote, Howard Wilson, Carol Lam,
Matthew Shuman, Carlos Tokunaga, Dinesh Somasekhar, Stephen Tang, David
Finan, Tanay Karnik, Nitin Borkar, Nasser Kurd, and Vivek De. Adaptive fre-
quency and biasing techniques for tolerance to dynamic temperature-voltage vari-
ations and aging. In Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of
Technical Papers. IEEE International, pages 292–604. IEEE, 2007.

[74] G Tziantzioulis, AM Gok, SM Faisal, N Hardavellas, S Ogrenci-Memik, and
S Parthasarathy. b-hive: a bit-level history-based error model with value corre-
lation for voltage-scaled integer and floating point units. In Proceedings of the
52nd Annual Design Automation Conference, page 105. ACM, 2015.

[75] Rafael Ubal, Byunghyun Janscikitg, Perhaad Mistry, Dana Schaa, and David Kaeli.
Multi2sim: a simulation framework for cpu-gpu computing. In Proceedings of
the 21st international conference on Parallel architectures and compilation tech-
niques, pages 335–344. ACM, 2012.

[76] Ying Wang, Jiachao Deng, Yuntan Fang, Huawei Li, and Xiaowei Li. Resilience-
aware frequency tuning for neural-network-based approximate computing chips.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017.

[77] Lucas Wanner, Rahul Balani, Sadaf Zahedi, Charwak Apte, Puneet Gupta, and
Mani Srivastava. Variability-aware duty cycle scheduling in long running em-
bedded sensing systems. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2011, pages 1–6. IEEE, 2011.

[78] Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff,
Serge Belongie, and Pietro Perona. Caltech-ucsd birds 200. 2010.

[79] Jing Xin and Russ Joseph. Identifying and predicting timing-critical instructions
to boost timing speculation. In Proceedings of the 44th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pages 128–139. ACM, 2011.

[80] Hongmei Yan, Yingtao Jiang, Jun Zheng, Chenglin Peng, and Qinghui Li. A mul-
tilayer perceptron-based medical decision support system for heart disease diag-
nosis. Expert Systems with Applications, 30(2):272–281, 2006.

[81] Fangming Ye, Farshad Firouzi, Yang Yang, Krishnendu Chakrabarty, and Mehdi B
Tahoori. On-chip droop-induced circuit delay prediction based on support-vector
machines. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 35(4):665–678, 2016.

100

[82] M. Zangeneh and A. Joshi. Design and optimization of nonvolatile multibit 1t1r
resistive ram. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
22(8):1815–1828, Sept 2013.

[83] Ning Zhu, Wang Ling Goh, and Kiat Seng Yeo. An enhanced low-power high-
speed adder for error-tolerant application. In Integrated Circuits, ISIC’09. Pro-
ceedings of the 2009 12th International Symposium on, pages 69–72. IEEE, 2009.

101

