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ARTICLE

State-specific alterations in the neural computations underlying
inhibitory control in women remitted from bulimia nervosa
Laura A. Berner 1✉, Katia M. Harlé2,3, Alan N. Simmons2,3, Angela Yu2,4, Martin P. Paulus 2,5, Amanda Bischoff-Grethe2,
Christina E. Wierenga2,3, Ursula F. Bailer2,6 and Walter H. Kaye2

© The Author(s), under exclusive licence to Springer Nature Limited 2023

The neurocomputational processes underlying bulimia nervosa and its primary symptoms, out-of-control overeating and purging,
are poorly understood. Research suggests that the brains of healthy individuals form a dynamic internal model to predict whether
control is needed in each moment. This study tested the hypothesis that this computational process of inhibitory control is
abnormally affected by metabolic state (being fasted or fed) in bulimia nervosa. A Bayesian ideal observer model was fit to
behavioral data acquired from 22 women remitted from bulimia nervosa and 20 group-matched controls who completed a stop-
signal task during two counterbalanced functional MRI sessions, one after a 16 h fast and one after a meal. This model estimates
participants’ trial-by-trial updating of the probability of a stop signal based on their experienced trial history. Neural analyses
focused on control-related Bayesian prediction errors, which quantify the direction and degree of “surprise” an individual
experiences on any given trial. Regardless of group, metabolic state did not affect behavioral performance on the task. However,
metabolic state modulated group differences in neural activation. In the fed state, women remitted from bulimia nervosa had
attenuated prediction-error-dependent activation in the left dorsal caudate. This fed-state activation was lower among women with
more frequent past binge eating and self-induced vomiting. When they are in a fed state, individuals with bulimia nervosa may not
effectively process unexpected information needed to engage inhibitory control. This may explain the difficulties these individuals
have stopping eating after it begins.

Molecular Psychiatry; https://doi.org/10.1038/s41380-023-02063-6

INTRODUCTION
Bulimia nervosa is the second most prevalent eating disorder [1]
and is one of the most common psychiatric conditions in women
[2]. Mortality rates are significantly elevated in bulimia nervosa,
and symptoms persist in over 60% of patients who receive first-
line treatments [3, 4]. However, the neurobiological mechanisms
that drive the core symptoms of out-of-control overconsumption
of food (i.e., binge eating) and subsequent compensatory
behaviors, like self-induced vomiting, remain poorly understood.
Data from healthy adults suggest that the regulation of food
intake is influenced by inhibitory-control-related processes and by
metabolic state—whether one has been recently fed or fasted [5].
Individuals with bulimia nervosa alternate between extremes of
overcontrolled intake, including dietary restriction and fasting, and
disinhibited intake, including binge eating, suggesting a poten-
tially aberrant interaction between cognitive control and meta-
bolic factors that has not yet been specifically examined.
Both adults and adolescents with bulimia nervosa show

moderately elevated inhibitory control error rates [6] and reduced
activation in frontostriatal regions during response inhibition [7–9]
compared with healthy individuals. However, our understanding
of the cognitive neuroscience of inhibitory control is rapidly

evolving. Computational models frame inhibitory control as an
adaptive process that requires moment-to-moment decision-
making about whether to engage in or stop a behavior, and
using experience to update beliefs about how likely it is that
inhibition will be required in the subsequent moment [10].
Integrating computational models with behavioral and neural data
through model-based functional magnetic resonance imaging
(fMRI) enables more precise and quantitative characterization of
this inhibitory-control-related predictive processing, decision-
making, and updating [11]. To date, model-based fMRI has been
used to demonstrate a likely role for altered reward-based
learning and prediction errors in bulimia nervosa; [12] however,
the potential contribution of alterations in the dynamic predictive
processing underlying inhibition to bulimic symptoms remains
unknown. In addition, alterations in inhibitory control may be
influenced by metabolic state, as some data from healthy adults
suggest reductions in control after acute fasting [13–17]. In
bulimia nervosa, it is still unclear whether disturbances in
inhibitory control may be exaggerated in a particular metabolic
state.
To identify more precise components of the inhibition process

that might underlie bulimic symptoms, we conducted a model-
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based analysis of fMRI data collected from healthy women and
women with past bulimia nervosa who were scanned twice: after
an acute period of fasting and after eating. We studied
participants in remission from bulimia nervosa to avoid the
potentially confounding effects of electrolyte disturbances or
recent extreme and symptom-related fluctuations in metabolic
state in currently symptomatic individuals. Despite symptom
remission, our prior work has detected altered neural responses
among women with a history of bulimia nervosa [18–21].
We used a well-characterized Bayesian ideal observer model to

understand adaptive inhibitory control on a stop signal task (SST).
This model was originally developed to capture behavior in
healthy individuals [10, 22], but it has since been used to identify
neural correlates and predictors of clinical outcome in substance
use disorders [23–27]. Substance use disorders and bulimia
nervosa are characterized by intermittent bouts of maladaptive
behavior, deficits in cognitive and behavioral control, and
frontostriatal dysfunction [28, 29]. Given these similarities, the
same computational neuroimaging approach may be useful for
both conditions. We focused our analyses on control-related
Bayesian prediction errors that have been repeatedly implicated in
the development and persistence of substance use disorders
[23–26]. The first type, unsigned prediction errors (UPE), capture
the absolute magnitude of discrepancy, without directionality,
between the predicted probability that inhibition would be
required (P(stop)) and the actual occurrence or non-occurrence
of this demand. A large UPE can be understood as an individual’s
“surprise” that control was or was not needed. It indicates that the
individual’s model of the environment is less accurate, and that
the need to stop is more difficult to predict. The overall
expectancy violation tracked by UPE may play a central role in
preparing to adaptively switch to a different behavioral strategy
when changes in internal or external states occur [30]. Because
fasting and eating involve dramatic state changes, appropriate
tracking via UPEs may be critical for normalized eating. The
second type of prediction errors, signed prediction errors (SPE),
indicate whether the need to stop was unexpectedly present [i.e.,
1 - the predicted probability that inhibition was required
(P(stop))= positive SPE] or unexpectedly absent [i.e., 0 - P(stop)=
negative SPE], thereby influencing directional belief updating and
model updating. SPE activation may help individuals predict
specific appropriate actions. Both UPEs and SPEs play important
roles in learning (e.g., [31]).
We anticipated that like individuals with addiction, women

remitted from bulimia nervosa would show altered activation
associated with UPEs, specifically in the dorsal caudate and lateral
prefrontal cortices [26]. These regions have been linked con-
sistently with reward and control-related prediction errors in food
and non-food-specific paradigms [32–35]. Such findings would
suggest that bulimia nervosa is associated with aberrant proces-
sing of the discrepancy between expected and observed control-
related demands. However, we hypothesized that in remitted
bulimia nervosa, these alterations would be modulated by the
fasted or fed internal state of the individual. Because SPE
activation has also been linked to substance-use risk and relapse
[23, 25], additional analyses examined potential state-dependent
alterations in SPE activation. Finally, we explored group × state
effects on neural activation associated with control-related
expectations, regardless of trial type or accuracy (i.e., P(stop)
activation).

MATERIALS AND METHODS
Participants
Data from 22 women remitted from DSM-IV-TR bulimia nervosa, purging
subtype [36] and 20 controls were included in analyses (see data exclusion
details in Supplement). Remission was defined by maintaining above 85%
of ideal body weight, regular menstrual cycles, and abstinence from binge

eating, purging, and restrictive eating for at least 1 year [37]. Women who
met criteria for a current Axis I diagnosis were excluded from both groups,
and controls with any eating disorder history were excluded. The study
was approved by the University of California, San Diego (UCSD) Institutional
Review Board, and all participants provided written informed consent (see
the Supplement for additional details regarding participants and assess-
ment tools).

Procedure
Participants performed a SST [23–26, 38–42] during fMRI on two
counterbalanced visits scheduled 24 h apart and in the early follicular
menstrual phase. Participants stayed at the UCSD Clinical & Translational
Research Institute for 72 h during the study, and all meals were provided.
Imaging data were acquired on one of two 3 T scanners at 9:00 AM on
both scan days, and each participant was scanned on the same scanner
for both scans (see Supplement). On the fasted-state scan day,
participants fasted for 16 h before scanning. On the fed-state scan day,
participants consumed a standardized breakfast (30% of overall daily
caloric needs, calculated as 30 kcal/kg body weight, ~450–500 kcal; 53%
carbohydrates, 32% fat, and 15% protein) at 7 AM (see Supplement for
additional detail).
During the SST, participants were instructed to press a button in

response to Xs and Os (go stimuli) but to withhold responding when they
heard a tone (stop signal). To discourage participants from waiting for stop
signals to occur, scripted instructions told participants, “If you wait too long
and press the button after the maximum time on go trials, your response
will be counted as an error, and the next trial will automatically start
immediately after.” Participants’mean reaction time (RT) on go trials from a
brief version of the task completed before scanning on both days was used
to individually calibrate the stop-signal delay across six levels of difficulty
(Fig. 1A; 23, 24–26, 39–43). This design permits a variable stop-signal delay
that is not predictable to participants (see Supplement for additional SST
design rationale). Likert-type scales (0–7) assessed hunger and thirst before
and after scanning (Fig. 2).

Statistical analysis
Model-agnostic behavioral analyses. Hierarchical generalized linear mixed-
effects models (LMEs) with subject as a random effect and a logit-link
function examined effects of group, metabolic state, stop-signal delay, and
their interaction on the trial-wise likelihood of a stop-trial error vs. correct
inhibition. Hierarchical LMEs tested effects of P(stop), group, state, and their
interactions on go-trial RT and explored effects on stop signal reaction time
(SSRT; see Supplement for calculation) and post-error slowing.

Computational modeling. SST data were analyzed with a previously used
Bayesian ideal observer model to generate computational regressors for
fMRI analysis [22–26]. This approach provides a way to infer latent
cognitive variables associated with individuals’ inhibitory control perfor-
mance, including the trial-by-trial predicted probability for the need to
inhibit (P(stop)) and the associated Bayesian control prediction errors
(Fig. 1B; see Supplement for details). Given our model parameters and the
pseudo-randomized trial sequence experienced by all participants, we
computed the corresponding sequence of P(stop) values, as well as UPE
values [i.e., |outcome- P(stop)|] and SPE values [i.e., outcome – P(stop)] on
each trial.

MRI analyses
Functional images were preprocessed and analyzed using Analysis of
Functional NeuroImages (AFNI) software (http://afni.nimh.nih.gov/afni/)
and FSL (http://fsl.fmrib.ox.ac.uk/fsl/).Group-level analyses were performed
using the lme4, oro.nifti, MASS, and abind packages in R (http://www.r-
project.org; see Supplement). Our analytic approach mirrored that of
papers using the SST and the described computational model for model-
based fMRI analyses in substance use disorders [23–25].

First-level fMRI analyses
All regressors were convolved with a canonical hemodynamic response
function (see Supplement for regressors of no interest included in each
model below).

Bayesian expectancy violations (prediction errors). Primary first-level
general linear models (GLMs) assessed neural activation modulated by
Bayesian prediction errors. Given high collinearity between Bayesian UPE
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( | outcome-P(stop)|) and SPE (outcome-P(stop); VIFs > 20), we ran separate
models for each type of prediction error. GLM 1 (the UPE model) included
trial-by-trial UPE as the regressor of interest. SPE residualized with respect
to UPE was included a regressor of no interest in GLM 1. GLM 2 (the SPE
model) included SPE as the regressor of interest and UPE residualized with
respect to SPE as a regressor of no interest (see Supplementary Methods
for further detail).

Prediction of inhibitory demand (P(stop)) and model-agnostic inhibitory
control. As in prior model-based fMRI analyses in substance use disorders
[23–25], to explore activation associated with P(stop) across trial types and
controlling for response accuracy, GLM 3 included categorical trial types
(i.e., go, successful stop, failed stop) as well as each trial type parametrically

modulated by P(stop) (i.e., go × P(stop), successful stop × P(stop), and failed
stop × P(stop)).

Group-level fMRI analyses
Bayesian expectancy violations (prediction errors). Neural group × state
interactions were tested at the voxel-wise level in R. Our primary group-
level analyses were voxel-wise, whole-brain LMEs to test for group × state
(fasted or fed) interaction effects on neural activation associated with
prediction errors (from GLMs 1 and 2). A UPE is equal to the absolute value
of 0- P(stop) (i.e., P(stop)) on go trials, and 1-P(stop) on stop trials.
Therefore, to truly encode UPEs, a cluster’s activation should be positively
correlated with mean P(stop) activation on go trials and negatively

Fig. 1 Schematic representations of the stop signal task and Bayesian ideal observer model used in the current study. A Participants
completed 288 total trials, including 72 stop trials, divided into six blocks of 48 trials (with 25% stop trials per block). Each trial was 1300 ms
separated by a 200 ms blank-screen interstimulus interval. Trial order was pseudorandomized. Before scanning on each day, participants
performed a brief version of the task to individually calibrate the stop-signal delay across six levels of difficulty. Stop signals occurred between
0 and 500 ms before the participant’s mean reaction time (MRT) in intervals of 100 ms (stop signals presented closer to a participant’s MRT are
more challenging). Go stimuli disappeared from the screen when participants responded. This provided a subject-specific jittered reference
function. Participants were instructed to press the left button in response to X and the right button in response to O, but to avoid pressing
either button if they heard a tone during a trial (the stop signal). B The computational model computes trial-by-trial estimates about the
predicted likelihood of needing to stop. The model assumes that experiencing stop trials increases the expected likelihood of encountering a
stop trial (P(stop)), and experiencing go trials decreases P(stop). Changes in P(stop) update the individual’s decision-making policy such that
the “optimal responder” slows their reaction time to go trials in a linear fashion as P(stop) increases to increase the likelihood of correctly
stopping on a stop trial [22]. The expected probability of needing to inhibit on trial k (Pk(stop)) is compared with the experienced outcome
(0 = go, 1 = stop). This comparison generates a prediction error (signed prediction error = outcome – P(stop), unsigned prediction error =
|outcome – P(stop)| as displayed in blue boxes). This prediction error is combined with the prior to produce an updated prior for the
subsequent trial.

Fig. 2 Hunger and thirst ratings before and after scanning. A A main effect of state in a group × state (fasted, fed) × time point (pre-scan,
post-scan) linear mixed-effects model, with subject as a random effect, indicated that all participants reported higher levels of hunger during
the fasted relative to the fed state (B= 3.86, SE= 1.16, p= 0.001). There were no other main effects or interactions. B For thirst, there was only
a main effect of time point, such that in both states, all participants reported higher levels of thirst at the post-scan relative to the pre-scan
assessment (B= 1.10, SE= 0.29, p= 0.0002). There were no other main effects or interactions that were statistically significant.
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correlated with mean P(stop) activation on stop trials. Areas showing
deactivations associated with UPE (i.e., negative UPE) should show the
opposite P(stop) activation pattern—negative correlations with P(stop) on
go trials and positive correlations with P(stop) on stop trials. In contrast,
SPE is equal to 0 - P(stop)=− P(stop) on go trials, and 1- P(stop) on stop

trials. Therefore, clusters showing positive SPE activation should show
activation negatively correlated with P(stop) on both go and stop trials.
Areas showing deactivations associated with SPE (i.e., negative SPE) should
show the opposite pattern—positive correlations with P(stop) on both go
and stop trials. Therefore, to confirm their consistency with expected
patterns, we extracted and plotted mean P(stop)-modulated go- and stop-
trial activation (from GLM 3) from clusters that showed group x state
interactions for UPE or SPE [22–26]. Consistent with all the prior imaging
studies that have used this SST in individuals with or at risk for substance
use disorders and individuals with posttraumatic stress disorder
[22–26, 41], we interpret results in clusters where the P(stop) activation
pattern was consistent with activation from the prediction-error model
across groups and states (see Supplement for further detail).

Bayesian prediction of inhibitory demand (P(stop)). To explore state-
dependent group differences in P(stop) activation, as in prior work [23–26],
we conducted one LME that assessed for the significance of group × state
interaction effects on P(stop) activation while controlling for trial type (i.e.,
group × state+ trial type (go or stop)), and one LME that assessed for the
significance of group × state interaction effects on P(stop) activation while
controlling for accuracy (i.e., group × state+ stop accuracy (successful or
failed stop)).
All group-level LMEs included scanner as a within-subjects random

effect. Intrinsic smoothness was estimated using the spatial autocorrelation
function (ACF) option in AFNI’s 3dFWHMx. Minimum cluster sizes were
calculated with 3dClustSim to guard against false positives across the
whole brain (voxel-wise p < 0.001, corrected for multiple comparisons at
familywise error rate p < 0.05, bi-sided with first nearest neighbor
clustering requiring voxel faces to touch; minimum cluster size= 6 voxels,
162mm3) [43]. The normality and homoscedasticity of residuals were
visually checked.

Association with clinical variables
Within the remitted bulimia nervosa group, exploratory negative binomial
regressions examined associations of mean activation tracking prediction
errors in each state and worst past binge eating and self-induced vomiting
frequency. All participants in the remitted bulimia nervosa group had a
history of purging behavior, but our method of past symptom assessment
precluded the calculation of a composite score representing worst past
total purging frequency per week. Since all but three of the participants
engaged in self-induced vomiting, we examined self-induced vomiting as a
clinical correlate to replicate the approaches of the limited prior
neuroimaging research focused on inhibitory control in bulimia nervosa
[8, 9]. Huber robust regressions tested associations of mean activation
tracking prediction errors in each state with durations of bulimia nervosa
and remission. Alpha was set at 0.006 to Bonferroni adjust for the number
of tests.
Post-hoc exploratory analyses examined the potential impact of past

comorbidities, lowest BMI, and current depressive and anxiety symptoms
on our findings (see Supplement).

RESULTS
Participants in the two groups did not differ on BMI, IQ, or
education (Table 1). Since women remitted from bulimia nervosa
were older than controls, between-group analyses included the
fixed main effect of age. Both groups reported greater hunger
during the fasted state compared with the fed state but groups
did not differ on ratings of hunger or thirst (Fig. 2).

Task performance
Accuracy. All participants had a higher likelihood of error on stop
trials with a longer stop-signal delay (χ21= 1754.7, p < 0.001), and
higher P(stop) estimates were associated with lower stop error
likelihood (χ21= 3.95, p= 0.047). Adding a fixed effect of state
slightly improved model fit (χ21= 6.10, p= 0.014), but there was
no state × stop-signal delay interaction, no additional fixed effect
of group or age, and no interactions of group with age, stop-signal
delay, P(stop), or state (ps > 0.414).

Reaction time. There was a positive association between go RTs
and trial-wise P(stop) model estimates across all participants

Table 1. Participant characteristics.

Characteristic Healthy
control group
(n= 20)

Remitted
bulimia
nervosa
group
(n= 22)

N % N % p

Scanner 0.385

GE Signa Excite 10 50.0 11 45.5

GE MR 750 10 50.0 11 45.5

Self-reported Race 0.493

Hispanic 2 10.0 1 4.5

Self-reported
Ethnicity

0.521

White 13 16

Asian 6 3

Black/African
American

1 1

Pacific Islander 0 1

American Indian/
Alaska Native

0 0

Other 0 1

Mean SD Mean SD p

Age (years) 25.3 5.0 28.3 5.6 0.039

BMI (kg/m2) 22.2 2.2 22.6 1.8 0.743

Duration of illness
(months)

73.0 47.1

Duration of remission
(months)

50.5 45.5

Education (years) 15.9 1.3 16.6 2.5 0.059

FSIQ 111.1 10.3 114.8 7.8 0.266

N % N %

Past Diagnoses

Major Depressive
Disorder

0 0 12 54.5

Any Anxiety
Disorder

0 0 2 9.1

Substance Use
Disorder

0 0 3 13.6

Alcohol Use
Disorder

0 0 5 22.7

Anorexia Nervosaa 0 0 12 54.5

Mean SD Mean SD p

Self-Reported
Symptomsb

Trait Anxiety (STAI) 23.6 3.4 27.4 7.8 0.548

Depression (BDI) 0.3 0.5 1.9 2.8 0.012

BMI body mass index, FSIQ full-scale IQ estimated from the Wechsler
Abbreviated Scale of Intelligence Full-Scale IQ, STAI Spielberger State-Trait
Anxiety Inventory, BDI Beck Depression Inventory.
aBulimia nervosa was the most recent eating disorder diagnosis for all
women remitted from bulimia nervosa.
bOne healthy control did not complete clinical assessments.
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(χ21= 66.60, p < 0.001), and within each group across states
(ps < 0.001; Fig. S1). The model of the association between P(stop)
and RT that best fit the data included a main effect of state
(χ21= 56.26, p < 0.001), but did not include a main effect of age or
group, and the slopes of the P(stop) and RT relationship did not
differ across states or between groups (ps > 0.145). In line with
recent suggested guidelines for the SST [44], we confirmed that no
subjects had an average RT on failed stop trials that was greater
than their average RT on go trials. There were no differences by
group, state, or group × state interactions for SSRT, post-stop-error
go RT (i.e., “post-error slowing”), or stop error RT (ps > 0.082; see
Supplement).

fMRI results
Bayesian expectancy violations (prediction errors). A significant
and large group × state interaction for UPE in the left dorsal
caudate indicated that whereas healthy controls showed activa-
tion negatively associated with UPE in the fasted state and
positively associated with UPE in the fed state, the remitted
bulimia nervosa group showed activation positively associated
with UPE in the fasted state, and a blunted UPE response in the
fed state (R2β= 0.22, 95% CI= 0.09, 0.38; Fig. 3A). In other clusters
showing group × state interactions for UPE and in those showing
interactions for SPE, prediction-error activation patterns were
inconsistent with P(stop)-modulated stop- and go-trial activation
patterns (see Supplement).

Bayesian prediction of inhibitory demand (P(stop)). There were no
group × state interactions for brain activation associated with P(stop)
when controlling for variance correlated with trial type or accuracy.

Associations with clinical variables
Lower fed-state activation tracking UPE in the left dorsal caudate
was associated with more frequent past binge eating
(z=−2.998, p= 0.003) and self-induced vomiting (z= 3.350,
p < 0.001; Fig. 3B) in women remitted from bulimia nervosa.
Fasted-state caudate signal was unrelated to these past bulimic
symptoms (ps > 0.470). No associations with duration of illness
or remission survived correction for multiple comparisons.
Results of exploratory sensitivity analyses are presented in the
Supplement.

DISCUSSION
Little is known about the pathophysiology of the episodic, out-of-
control overeating and purging that characterize bulimia nervosa.
This investigation tested the hypothesis that metabolic state
(being fed or fasted) abnormally affects the computational process
of inhibitory control in individuals who have had this eating
disorder. Specifically, we used “Bayesian surprise” to examine how
women with past bulimia nervosa and healthy comparison
women update their internal model to prepare to inhibit behavior
when they are in fasted and fed states. A group x state interaction
suggested that women remitted from bulimia nervosa showed
attenuated activation related to “Bayesian surprise” in the left
dorsal caudate in the fed state. This activation tracking Bayesian
surprise after eating was lowest among women with more
frequent past binge eating and self-induced vomiting. Research
in symptomatic individuals is needed. However, these findings
support the hypothesis that metabolic state-dependent altera-
tions in inhibitory-control processing contribute to the clinical
characteristics of bulimia nervosa. Moreover, they suggest that the
integration of computational approaches and neuroimaging can
identify brain-based processes that could be targets for future
interventions or markers for disease severity in bulimia nervosa.
The dorsal caudate has been associated previously with

stimulus-outcome learning, value-based decision-making, predic-
tion and processing of performance feedback, and tracking
expectation violations [45, 46]. Via anatomical connections to
the prefrontal cortex [47], the dorsal caudate may play a central
role in cognitive control by updating control-related predictions
[48, 49]. In line with our left-lateralized findings, left dorsal caudate
connections with the ventral and dorsolateral prefrontal cortices
have been specifically implicated in the implementation of
proactive inhibition [50]. Prior research has documented reduced
dorsal caudate activation during behavioral inhibition in bulimia
nervosa [7, 8]. We detected a state-dependent group difference in
dorsal caudate activation tracking the magnitude of control-
related expectancy violations (Bayesian UPE). However, we did not
detect state-dependent group differences in signals tracking
whether the need to stop was unexpectedly present vs.
unexpectedly absent (Bayesian SPE), or in activation associated
with the expected likelihood that inhibition would be required for
each trial (P(stop)). This UPE-specific finding suggests that bulimia

Fig. 3 Group differences in the influence of eating on neural tracking of inhibitory control-related expectancy violation. A Neural
activation in the left dorsal caudate associated with Bayesian unsigned prediction errors (UPE) depended on an interaction
between group and metabolic state (voxel-wise p < 0.001, corrected for multiple comparisons at familywise error rate p= 0.05; two-
tailed cluster-based correction at the whole-brain level). Plot bars represent mean activation associated with UPE in the fasted and fed
state. Error bars indicate standard error of the mean. B Negative binomial regressions within the remitted bulimia nervosa group indicated
that lower fed-state activation tracking UPE in the left dorsal caudate was associated with more frequent past binge eating and self-
induced vomiting.
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nervosa is linked to altered tracking of the overall discrepancy
between model-based expectations about control and experience,
rather than an overall failure to predict stop events, altered
tracking of expectancy violations that are specific to particular
actions, or altered belief updating (see [30]).
Prior work has shown that attenuated neural activation for

control-related Bayesian prediction errors in the caudate and
lateral prefrontal and anterior cingulate cortices predict the onset
of and relapse to problematic substance use [23–25]. Similar to
findings in the left dorsal caudate in individuals with metham-
phetamine dependence [26], the current results suggest that
women with a history of bulimia nervosa show reduced left dorsal
caudate activation for unexpected demands in the realm of
inhibitory control. However, in remitted bulimia nervosa, this
alteration was observed specifically after the state change
introduced by eating. Our previous research demonstrated that
the neural response to taste in reward-related regions is
abnormally high after eating in women remitted from bulimia
nervosa [18]. We speculate that abnormally low activation tracking
of the degree of control expectancy violation may leave these
elevated reward signals and high urges to continue eating
unchecked. Specifically, because the left caudate plays a central
role in inhibition, and UPE signaling is thought to prepare
individuals to adaptively adjust behavior, blunted caudate
activation for UPE after eating starts may make it difficult for
individuals with bulimia nervosa to adjust their control-related
strategy to stop eating. It could also promote subsequent out-of-
control behaviors like self-induced vomiting. Consistent with this
possibility, lower fed-state activation associated with UPE was
most pronounced in women with the most frequent past binge
eating and purging.
The only other research to date to apply model-based fMRI to

bulimia nervosa found attenuated reward prediction-error signals
for sucrose tastes in the insula and ventral striatum that were
similarly associated with more frequent weekly binge-purge
episodes [12]. Therefore, blunted striatal tracking of information
about the discrepancy between expectations and experience in
both reward and control domains may promote bulimic
symptoms.
In addition, our results suggest that metabolic state changes

could have opposite effects on this component of inhibitory-
control processing in women remitted from bulimia nervosa and
healthy controls. We speculate that eating may facilitate adaptive
adjustment to inhibit behavior in healthy controls [30], but may
have the inverse effect in women remitted from bulimia nervosa.
Studies integrating the current methods with more complex tasks,
within-task self-report assessments, and neurotransmitter and
neuroendocrine measures could help to delineate the underlying
mechanisms and consequences of aberrant metabolic state
influences in bulimia nervosa. For example, studies incorporating
pupillometry, self-reported P(stop) estimates, and confidence
ratings for those estimates during SSTs could help to determine
whether reduced neural tracking of the predictive accuracy of
P(stop) increases individuals’ subjective uncertainty about their
internal model of how much control is needed after eating.
With regard to behavioral performance, it is possible that the

current version of the SST may have failed to detect true group x
state effects or group differences. However, some studies find no
inhibitory control deficits in symptomatic bulimia nervosa [6, 7]. In
particular, two out of the three studies using the SST to study
bulimia nervosa to date have found no differences from healthy
controls in behavioral accuracy [51]. In addition, the remitted
status of our bulimia nervosa group may have contributed to their
intact behavioral performance. As impairments in response
inhibition are more pronounced on tasks using disorder-relevant
stimuli in binge-type eating disorders [51], future studies should
investigate the effects of metabolic state on SSTs with food-
specific images. Nevertheless, the detected group-by-state

interaction in activation associated with Bayesian UPEs and the
observed link between altered UPE activation and past symptom
severity highlight the utility of model-based neuroimaging in
isolating a more precise component of the inhibition process that
may go awry in bulimia nervosa.
This study is the first to examine the effects of fasting and

eating on inhibitory control-related processes in eating disorders,
and the first to apply model-based fMRI to the study of control in
eating disorders. Pre-scan nutritional status was monitored and
manipulated in a standardized environment, and the tightly
controlled repeated-measures design is a major methodological
strength. Moreover, our use of the same task and modeling
approach as prior studies permits direct comparison of our
findings to those in addiction [22–26].
Despite these strengths, study limitations highlight additional

directions for future work. The sample size was relatively modest
and included only adult females and individuals who had the
purging subtype of bulimia nervosa, limiting the generalizability
of our findings. Results of sensitivity analyses suggest that our
findings were not better accounted for by anxiety or depressive
symptoms or by past comorbidities. However, future research
should directly compare individuals with bulimia nervosa to
those with substance use, mood, or anxiety disorders in various
states to test whether reduced striatal activation for control-
related surprises represents a transdiagnostic alteration. Finally,
because our participants were remitted from bulimia nervosa,
we cannot determine whether we detected a trait-level (but
state-specific) disturbance, a scar of the illness, or a contributor
to recovery. Activation tracking UPE in the fed state was
unrelated to duration of illness or to duration of remission, and
Altered neural activation associated with inhibition has been
previously detected before bulimic symptom onset [52] and
early in the course of bulimia nervosa [9]. In our sample,
activation tracking UPE in the fed state was unrelated to
duration of illness or to duration of remission, perhaps
supporting the hypothesis that the observed metabolic state-
specific findings represent a premorbid abnormality. If so,
changes in other control-related abilities not studied here (e.g.,
planning) may have been required to compensate for fed-state
UPE alterations and support the normalized SST performance
and normalized eating behavior observed in our remitted
sample. In addition, past dietary restraint and restriction were
not measured, limiting our ability to interpret fasted-state
activation patterns. An ongoing investigation of the influences
of fasting and eating on the neural computations of inhibitory
control in an actively symptomatic sample (R01MH132786) aims
to build on the current findings to more precisely link state-
specific changes in the neural computations underlying cogni-
tive control to the severity and the frequency of current binge
eating, purging, and dietary restriction in bulimia nervosa.

Conclusions and implications for intervention
After receiving first-line interventions, most patients with bulimia
nervosa remain symptomatic [53], and a limited understanding of
the neural mechanisms underlying bulimic symptoms has
thwarted treatment development efforts. Our results are the first
to suggest that bulimia nervosa is associated with an altered
striatal response for control-related surprises that is modulated by
metabolic state. The cognitive-behavioral model of bulimia
nervosa [54] proposes that restriction and fasting promote binge
eating, and self-control depletion models [55] of bulimia nervosa
suggest that restriction drives binge eating specifically by
decreasing inhibitory control. As a result, current treatments for
bulimia nervosa focus first on eliminating periods of restriction.
However, if a blunted signal for control-related surprises makes
inhibition more difficult after eating in currently symptomatic
individuals, treatments that focus on the fed state may prove
fruitful. For instance, interventions that can enhance control

L.A. Berner et al.

6

Molecular Psychiatry



(e.g., non-invasive brain stimulation, behavioral skills practice
[56, 57]) may be most effective if delivered during or immediately
after food consumption.

CODE AVAILABILITY
The code used for modeling and analysis is available upon request.
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