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 9 

Abstract 10 

Rangelands are a key global resource, providing a broad range of ecological services 11 

and economic benefits. California’s predominantly annual rangelands cover ~40% of 12 

the state’s land area, and the forage production is highly heterogeneous, making 13 

balancing economic (grazing), conservation (habitat) and environmental 14 

(erosion/water quality) objectives a big challenge. Herein, we examined how climate 15 

and environmental factors regulate annual grassland forage production spatially 16 

across the state and among four ecoregions using machine learning models. We 17 

estimated annual forage production at a 30-m resolution over a 14-year period (2004-18 

2017) using satellite images and data fusion techniques. Our satellite-based estimation 19 

agreed well with independent field measurements, with a R2 of 0.83 and RMSE of 20 

682 kg/ha. Forage production (14-yr average) showed large spatial variability 21 

(2940±934 kg/ha/yr; CV=35%) across the study area. The gradient boosted regression 22 

tree with 11 feature variables explained 67% of the variability in forage production 23 

across the state. Precipitation amount, especially in November (germination) and 24 

April (rapid growth), was found as the dominant driver for spatial variation in forage 25 

production, especially in drier ecoregions and during drier years. Seasonal distribution 26 

of precipitation and minimum air temperature showed a relatively stronger control on 27 

forage production in wetter regions and during wet years. Additionally, solar energy 28 

became more important in wetter ecoregions. Drought reduced forage production 29 

from the long-term mean, i.e., a 33±19% decrease in production (2397±926 kg/ha/yr; 30 

CV=38%) resulting from a 29±5% decrease in precipitation. The machine learning 31 

based spatial analysis using “big data” provided insights on impacts of climate and 32 

environmental factors on forage production variation at various scales. This study 33 

demonstrates a cost-effective approach for rapid mapping and assessment of annual 34 

forage production with the potential for near real-time application.  35 

Keywords: Ecosystem productivity; Spatial variability; Rangelands; Remote sensing; 36 

Data fusion; Gradient boosted regression trees 37 

 38 

 39 

1. Background 40 
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 2 

Rangelands comprise more than 30% of global land area and provide a broad range of 1 

ecosystem services ‒ including food and forage production, soil and water resource 2 

protection, biodiversity and wildlife habitat (Parton et al., 2012; Schohr, 2014). 3 

California has more than 15 million hectares of annual rangelands, approximately 40% 4 

of the state’s land area, ranging from the North Coast to Southern Interior. Nearly 70% 5 

of the forage production in California is provided by annual rangelands (UC Rangeland, 6 

2017), supporting a $3.4-billion per year livestock industry (California Department of 7 

Food & Agriculture, 2015). However, unlike most perennial systems that can tap deep 8 

soil moisture, production of annual grasses/forbs is very sensitive to the water content 9 

in the shallow root zone (~30 cm depth), which relies on frequent precipitation for 10 

replenishment (Barbour, 2007). As a result, the recent 2012-2016 prolonged drought 11 

presented severe challenges to sustainable ranching operations and the ecological 12 

services rangelands provide. Most notably, severe drought lead to ecological shifts that 13 

significantly impacted forage production (Macon et al., 2016). Due to its diverse 14 

climate and topography, California’s forage production varies by as much as fourfold, 15 

both interannually at a given location and within a given year at different locations 16 

(Becchetti et al., 2016; Larsen et al., 2014). This spatial heterogeneity and temporal 17 

dynamics pose challenges for rangeland managers to balance economic (grazing), 18 

conservation (habitat) and environmental (erosion/water quality) objectives. Therefore, 19 

it is critical to quantify and understand the drivers of spatial/temporal variability in 20 

forage production across long- and short-term (e.g., extreme wet/dry) conditions.   21 

Growing-season precipitation is generally recognized as the primary driver of annual 22 

grassland forage production in the Mediterranean climate of California (Le Houerou, 23 

1984). Several studies developed regression equations linking precipitation and/or air 24 

temperature with peak annual forage production (Chaplin-Kramer & George, 2013; 25 

George et al., 1988, 1989; Murphy, 1970; Pitt & Heady, 1978). While, these studies 26 

found positive relationships between peak production and precipitation and air 27 

temperature, the relationship was not always simple and displayed considerable site-28 

specific variability. Additionally, an analysis of long-term, peak forage production 29 

across California documented above-mean production during years with low but well-30 

distributed precipitation (Becchetti et al., 2016), indicating that temporal variability of 31 

precipitation within a given year is also an important factor.  32 

At a local scale, topography and soil characteristics affect forage production by 33 

regulating solar energy and moisture availability. For example, south versus north 34 

slopes have contrasting microclimates that affect the length of the growing season, 35 

especially during years with limited rainfall (Hufstader, 1978; Liu et al., 2019). A recent 36 

microclimate-forage growth study on a California Central Coast grassland found that 37 

wetter topographic locations were more productive in a dry year (water limitation) 38 

while warmer topographic locations were more productive in a wet year (energy 39 

limitation) (Devine et al., 2019). Soil properties, such as texture, fertility and water 40 

holding capacity, also affect vegetation composition and growth characteristics 41 

(Bartolome et al., 2007), but are much less studied. 42 

Although previous studies examined relationships between forage production and its 43 

potential drivers, they were limited in spatial and temporal scale relative to the extent 44 

of California rangelands. Satellite remote sensing offers a powerful and cost-effective 45 
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 3 

approach for rangeland monitoring at large spatial and temporal scales (Jones et al., 1 

2018; Reeves et al., 2015). Landsat and MODIS satellites, for example, have collected 2 

land observations for resource management at 30˗500-m resolution for several decades. 3 

Empirical relationships between the Normalized Difference Vegetation Index (NDVI) 4 

and green plant photosynthetic activity during the active growing season have been 5 

developed and applied to estimate grassland productivity in Europe (Boschetti et al., 6 

2007), Asia (Xu et al., 2008), and America (Gaffney et al., 2018). A vegetation index-7 

based approach was also adopted in a global study to assess the effect of climate change 8 

on global grassland productivity from 1982 to 2011 (Gao et al., 2016). More recently, 9 

small Unmanned Aerial Systems (sUASs) have been used to estimate finer resolutions 10 

of forage production at a catchment scale (Liu et al., 2019). Despite their advantages, 11 

satellite remote sensing images are limited by frequent cloud cover during rainy seasons 12 

when grasslands are actively growing. For example, considering the 8˗16-day Landsat 13 

revisit cycle, an overcast day on the overpass date may lead to no useable images for as 14 

long as 32 days. However, data fusion techniques make it possible to obtain daily 30-15 

m resolution observations, by combining Landsat with other more frequent but coarser 16 

resolution satellite observations such as MODIS (Chen et al., 2015; Gao et al., 2006; 17 

Zhu et al., 2010).  18 

Previous studies reported that grassland forage production is highly dependent on water 19 

availability, which is often a function of a suite of climatic, topographic and edaphic 20 

factors (Fuhlendorf et al., 2017). However, most studies of grassland productivity tend 21 

to focus on the impact of one set of environmental drivers, either climate, topography 22 

or soil properties (Gao et al., 2016; Jin & Goulden, 2014; Willms, 1988), whereas a 23 

comprehensive analysis of how these drivers work together to shape production is still 24 

lacking. The lack of sufficient field measurements is often an impediment for using 25 

traditional statistical approaches. However, recent advances in machine learning 26 

methods provide a powerful tool for knowledge discovery from large datasets, by 27 

disentangling and visualizing complex relationships (Molnar, 2019).  28 

In this study, we mapped grassland forage production at 30-m resolution on California 29 

rangelands by fusing Landsat and MODIS satellite data from 2004 to 2017, and 30 

investigated how a suite of climate, topography and soil factors determined the spatial 31 

variability of the derived 14-yr mean forage production using Gradient boosted 32 

regression trees (GBRT) (Friedman, 2001). Specifically, we sought to answer the 33 

following questions: (1) What are the main drivers shaping the spatial patterns of forage 34 

production of California rangelands? (2) How do these environmental factors affect the 35 

production across the state and within each ecoregion? and (3) How do drought versus 36 

wet conditions alter these relationships? The results of this study will inform rangeland 37 

management and policy decisions and provide insights on productivity of California’s 38 

diverse rangelands and how their response to future climate change may vary depending 39 

on the spatial location within the state. 40 

2. Data & Methods 41 

2.1 Study Area 42 

This study focused on California rangelands, grasslands in particular, characterized by 43 

a Mediterranean climate with hot, dry summers and mild, moderately wet winters 44 
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 4 

(Becchetti et al., 2016). Our effective study area is ~24,000 km2, spanning from 33˚ to 1 

41˚ N and 118˚ to 124˚ W. It represents a mean precipitation gradient of 160 to 2290 2 

mm/yr and elevations from sea level to ~1200 m (Fig. 1a & b). The area was divided 3 

into four ecoregions, based on ECOMAP (Cleland et al., 2007): Northern California 4 

Coast Ranges (NCCR), Northern California Interior Coast Ranges (NCICR), Central 5 

Coast Ranges (CCR) and Sierra Nevada Foothills (SNF) (See Table S1 for land cover 6 

percentages). Precipitation fluctuates widely from year-to-year across the study area 7 

with 397±271 mm (mean ±std dev) in the driest year (2014) and 1158±654 mm in the 8 

wettest year (2017) of the study period. Annual grasses and forbs typically germinate 9 

with onset of the rainy season in late fall (November) and reach peak biomass in late 10 

spring as the rainy season ceases, typically in April (Larsen et al., 2014). 11 

Compositionally, forbs tend to be more prevalent in dry years while grasses are more 12 

dominant in wet years (Pitt & Heady, 1978).   13 

 14 

Figure 1. Topography (a) and precipitation (b) of the study area encompassing four 15 

ecoregions (MAP (mm/yr): CCR=406, NCICR=674, SNF=681 and NCCR=1278). 16 

Only grasslands (c) were included in the study by thresholding on the summer NDVI. 17 

 18 

2.2 Data  19 

To calibrate and validate satellite-based forage estimates, we measured monthly dry 20 

forage biomass at seven grazing exclosures (>60×60 m) during two contrasting growing 21 

seasons (November to May in 2017 and 2018) (Fig. 1c). Water year 2017 (>1000 mm/yr) 22 

was a wet year while 2018 (<500 mm/yr) was a relatively drier year. Our sites covered 23 

a large environmental gradient, from dry sites in the CCR to northern wetter sites. We 24 

clipped 15 to 36, 30 × 30 cm quadrats, within each exclosure, depending on exclosure 25 

size, and oven-dried the clippings at 60 ˚C for at least 48 hours. Site level biomass 26 

measurements were calculated by averaging the quadrat measurements. Sites were 27 

mowed or grazed to remove excess dry residual matter at the end of each growing 28 

season. In total, we collected 61 site-month measurements across all sites and time 29 

(Table S2). 30 

To estimate daily and annual forage production at 30-m across the entire study area, we 31 

combined remote sensing observations of surface reflectance in the red and near 32 
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 5 

infrared bands from Landsat and Moderate Resolution Imaging Spectroradiometer 1 

(MODIS) satellite instruments for the 2004-2017 period. We downloaded the surface 2 

reflectance and the associated quality assessment (PIXELQA) layers of Landsat 3 

Analysis Ready Data (ARD, series 5-8) from USGS earth explorer 4 

(https://earthexplorer.usgs.gov/). Landsat ARD dataset includes Landsat (4-8 series) 5 

observations at 30 m acquired from 1982 to present available every 8-16 days. The 6 

ARD datasets are geometrically and radiometrically consistent and have flagged non-7 

target features (e.g. clouds and cloud shadows) and poor quality observations, to  allow 8 

analysis with minimum user preprocessing (Dwyer et al., 2018).  At a higher temporal 9 

frequency, MODIS sensors have been collecting global multi-spectral images every day 10 

at moderate spatial resolutions since 2000. We obtained the MODIS collection 6 daily 11 

red and near infrared surface reflectance products at 250 m since 2003 from both Terra 12 

(MOD09GA) and Aqua (MYD09GA) instruments from NASA Earthdata 13 

(https://earthdata.nasa.gov/). Each MODIS product included the corresponding quality 14 

assurance (QA) layers.  15 

Normalized Difference Vegetation Index (NDVI) (Deering et al., 1975) is a widely used 16 

proxy for photosynthetic activity and primary production (Carlson & Ripley, 1997). We 17 

calculated NDVI from both Landsat and MODIS surface reflectance. Initial filtering 18 

removed low quality observations, i.e. those affected by clouds and cloud shadows, 19 

based on the corresponding QA layers. Invalid pixels in MODIS images were 20 

interpolated from temporally neighborhood images using a cubic interpolation method.  21 

We used Daymet climate data from the Oak Ridge National Laboratory Distributed 22 

Active Archive Center (ORNL DAAC) to assess drivers of spatial variation in forage 23 

production. The gridded daily surface weather parameters at a 1-km spatial resolution 24 

were interpolated from more than 8,000 meteorological stations, based on a digital 25 

elevation model (Thornton et al., 2016). We downloaded Daymet climate data during 26 

the same time period as the MODIS data (2004-2017). Compared to a longer historical 27 

time period (1986-2017), annual precipitation during 2004-2017 was 18 mm/yr lower 28 

and mean air temperature was 0.2 ℃ higher. We aggregated daily precipitation, 29 

min/max/mean air temperatures, and solar radiation to monthly averages. Seasonal 30 

averages that were potentially related to forage production were further derived as 31 

detailed in Table 1.  We calculated the Precipitation Concentration Index (PCI) (Oliver, 32 

1980) to depict precipitation variation between the driest and wettest month during the 33 

growing season (November to May) (Sloat et al., 2018) and growing degree days  using 34 

a baseline temperature of 4˚C. We chose to use 4°C as the baseline temperature because 35 

young annual plants in California grow very slowly at temperatures between 4.4 – 36 

10.5°C (Becchetti et al., 2016). For spatial analysis, we derived long-term means for 29 37 

variables from water year (Oct-Sept) 2004 to 2017 (Table 1). 38 

Shuttle Radar Topography Mission (SRTM) 1 Arc-second (30-m) global elevation data 39 

were used for topographic characterization. We derived aspect, slope and water flow 40 

direction (flow accumulation and curvature) using ArcMap 10.6.1. We also calculated 41 

illumination condition (IC), a widely used measure for topography-modulated lighting 42 

conditions: -1 (less light) to +1 (more light) (Tan et al., 2013).  43 

Grasslands mostly exist in well-drained areas below 1200-m elevation and occur on 44 
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 6 

diverse soil types (Jackson & Bartolome, 2007). We obtained the 800-m resolution 1 

aggregated and rasterized SSURGO soil property dataset from California Soil Resource 2 

Lab (https://soilmap2-1.lawr.ucdavis.edu/mike/soilweb/soil-properties/download.php). 3 

Rasterized SSURGO datasets were derived based on thickness-weighted average 4 

values to aggregate horizons within soil profiles and spatially-weighted averages of 5 

map units within grids (Beaudette et al., 2013; O’Geen et al., 2017). Selected soil 6 

properties for the 0˗25 cm layer (dominant rooting zone for grasses/forbs) that were 7 

expected to most strongly affect forage production were downloaded: clay, sand, silt, 8 

water holding capacity, bulk density and soil organic matter. The Daymet climate data 9 

and rasterized SSURGO data sets, originally at 1000- and 800-m spatial resolution, 10 

were resampled to 30 m using a cubic resampling method to match satellite and 11 

topographic data grids. 12 

2.3 Forage production estimation with satellite data fusion 13 

We estimated forage production as a function of absorbed photosynthetically active 14 

radiation (APAR) accumulated during the growing season (cAPAR) (Eq. 1, Fig. 2). 15 

𝐿𝑈𝐸 × 𝑠𝑢𝑚(𝐴𝑃𝐴𝑅) = 𝐿𝑈𝐸 × 𝑠𝑢𝑚(𝑃𝐴𝑅 × 𝑓𝑃𝐴𝑅)…… (1) 16 

PAR was estimated from daily shortwave incoming solar radiation at 2-km resolution 17 

(Hart et al., 2009), assuming a constant ratio of 0.5 (Akitsu et al., 2015; Blackburn & 18 

Proctor, 1983; Li et al., 2010; Papaioannou et al., 1993). The CIMIS program generates 19 

all sky shortwave incoming solar radiation for California, based on GOES satellite 20 

observations (Hay, 1993).  21 

We followed an approach introduced by Sellers et al. (1996) to calculate fPAR as a 22 

function of NDVI and simple ratio (SR) of NIR reflectance over red reflectance: 23 

 24 

𝑓𝑃𝐴𝑅 = 0.5 ∗ (𝑓𝑃𝐴𝑅𝑁𝐷𝑉𝐼 + 𝑓𝑃𝐴𝑅𝑆𝑅)…… (2)  25 

 26 

𝑓𝑃𝐴𝑅𝑁𝐷𝑉𝐼 =
(𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛)(𝑓𝑃𝐴𝑅𝑚𝑎𝑥−𝑓𝑃𝐴𝑅𝑚𝑖𝑛)

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
+ 𝑓𝑃𝐴𝑅𝑚𝑖𝑛……(3)  

 

 

𝑓𝑃𝐴𝑅𝑆𝑅 =
(𝑆𝑅 − 𝑆𝑅𝑚𝑖𝑛)(𝑓𝑃𝐴𝑅𝑚𝑎𝑥 − 𝑓𝑃𝐴𝑅𝑚𝑖𝑛)

𝑆𝑅𝑚𝑎𝑥 − 𝑆𝑅𝑚𝑖𝑛
+ 𝑓𝑃𝐴𝑅𝑚𝑖𝑛……(4) 

 

 

 27 

where the minimum and maximum fPAR (fPARmin = 0.001, fPARmax = 0.95) 28 

correspond to the lower and upper 2% of the NDVI histogram (NDVImin and NDVImax). 29 

NDVImin and NDVImax were set to 0.015 and 0.760, respectively, based on values 30 

derived in Los et al. (2000). We applied the same procedure for SRmin and SRmax 31 

generating values of 1.030 and 7.333, respectively. 32 

California rangelands grow rapidly during the rainy season, when clear sky satellite 33 

imagery is sometimes limited, especially for Landsat with a 16-day revisiting interval. 34 

We, therefore, implemented a Spatial and Temporal Adaptive Reflectance Fusion 35 

Page 6 of 31AUTHOR SUBMITTED MANUSCRIPT - ERL-109627.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t

https://soilmap2-1.lawr.ucdavis.edu/mike/soilweb/soil-properties/download.php


 7 

Model (STARFM) (Gao et al., 2006; Liu et al., 2019) to fully exploit the 1 

complementary resolutions of Landsat and MODIS data. The STARFM approach 2 

combines the spatial resolution of Landsat (30 m) with the temporal resolution of 3 

MODIS (daily at 250 m). The approach uses one or more pairs of concurrent Landsat 4 

and MODIS images to predict Landsat resolution images on days when Landsat data 5 

were unavailable. We used a 48-day time window when searching for image pairs, 6 

prioritizing dates with clean pixels and dates that were closer to the date of prediction. 7 

This fusion approach generated continuous daily NDVI images at 30-m resolution (Fig. 8 

S1a-c). We applied an enhanced Savitzky–Golay filter (Chen et al., 2004) to the fused 9 

NDVI time series to remove abnormal values. The filtered time series followed similar 10 

temporal patterns with those from MODIS data while keeping the spatial details from 11 

Landsat observations (Fig. S1d). To mask trees and other perennial vegetation, we only 12 

kept pixels where NDVI was smaller than 0.3 in mid-August (Fig. 1c), because annual 13 

herbaceous plants are senescent in August.  14 

The beginning and end of each growing season was estimated by fitting two sigmoidal 15 

curves stitching the fused daily NDVI time series (Zhang et al., 2003) (See appendix). 16 

The green-up and senescence dates were defined as the dates with the largest 17 

increase/decrease of NDVI based on the curvature of the simulated curves (Fig. S2). 18 

We then estimated the annual cumulative APAR (cAPAR) as the sum of daily APAR 19 

over the identified growing seasons for each 30-m pixel and for each year during 2004-20 

2017 (Fig. 2). We found a strong linear relationship between cAPAR and measured 21 

monthly dry biomass for all seven exclosures (R2=0.83) (Fig. 3a). A linear regression 22 

was developed to relate forage production with cAPAR, using 70% of the data for 23 

training and the remaining 30% for testing. The slope showed an average light use 24 

efficiency (LUE) of 0.55 g/MJ APAR. The estimated forage production explained 83% 25 

of variation with a RMSE of 681 kg/ha, when validated using the testing dataset (Fig. 26 

3b&c).  27 

We estimated annual forage production from the calibrated LUE over each 30-m pixel 28 

for the 14 growing seasons in this study (2004-2017). Long-term mean (LTM) forage 29 

production was generated for the entire 14-yr record, drought years (water years 2007-30 

09 and 2012-15) (Asner et al., 2016; Ghosh, 2019; Williams et al., 2015) and extremely 31 

wet years (water years 2005, 2006 and 2017) with >1000 mm/yr annual precipitation. 32 

We quantified the relative departure from the long-term production during the extreme 33 

dry and wet periods (departure normalized by LTM). It is important to note that 34 

California grasslands are predominantly a grazed landscape. Since our forage 35 

estimation is based on daily cumulative APAR throughout the active growing season, 36 

“forage production” carries different meanings in grazed vs. ungrazed areas. In 37 

ungrazed areas, forage production is equivalent to the peak forage production, whereas 38 

in grazed areas, it is the sum of standing crop and livestock consumption. 39 
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 1 

Figure 2. Flowchart for forage production estimation with data fusion. We first 2 

generated daily NDVI images at 30-m resolution by fusing Landsat and MODIS data. 3 

The fused NDVI was then converted to fPAR. We estimated forage production as a 4 

function of absorbed photosynthetically active radiation (APAR) accumulated during 5 

the growing season (cAPAR).   6 

 7 

Figure 3. Scatterplots of cumulative APAR from satellite versus forage production 8 

measurements over seven field sites (color coded) show a strong linear relationship 9 

(n=61) (a). Regression based on 70% of the randomly selected data (b) resulted in a R2 10 

of 0.83 and a RMSE of 682 kg/ha when validated using the other 30% of the data (c) 11 

(n=19). 12 

 13 

2.4 Gradient boosted regression trees and feature selection  14 

To understand the complex relationships between forage production and potential 15 

environmental drivers, we used the Gradient boosted regression trees (GBRT) machine 16 

learning model (Friedman, 2001) available at the “scikit-learn” library in Python 17 

(Pedregosa et al., 2011). GBRT fits regression trees sequentially, with each tree aimed 18 
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 9 

at minimizing the prediction residuals of its predecessors. To reduce correlations 1 

between trees, it uses a random subsample of the training data for fitting each tree, and 2 

only considers a portion of the input features at a time for each node. The final 3 

prediction is the sum of all regression trees multiplied by a learning rate (lr).  4 

We randomly sampled 10% of the pixels (n=2,600,000, Fig. S3) in our study area, 5 

which were further randomly split (70 vs. 30%) for model training and testing. We 6 

tuned the model hyperparameter by grid search, and set n=100, subsample = 0.6, 7 

max_depth = 6, max_features = 1.0, lr = 0.1 (see SI – Section 1). We started with 41 8 

independent variables and found a large degree of inherent autocorrelation (Fig. S4). 9 

Therefore, we grouped these variables into 11 features based on correlations, i.e. 10 

variables with r>0.7 were grouped (Table 1). Hereafter, “feature” refers to the 11 11 

independent variable sets, and “variable” refers to the 41-individual climatic, 12 

topographic and soil metrics (see SI – Section 2 for more information). 13 

We built ensemble models, by allowing only one variable in each feature group to be 14 

included in a GBRT model each time to reduce autocorrelation between variables. We 15 

first built a baseline model using the first variable within each feature as listed in Table 16 

1, and then another ten models were built by replacing the “GS_ppt” variable with the 17 

other 10 variables in feature group 1, one at a time. Finally, we looped through all 18 

feature groups that had more than one variable and built 30 additional models.  19 

Table 1. List of variables and feature groups used as predictors for the forage production 20 

models. Seasonal variables include averages during growing season (GS, November-21 

June), early, mid- and late seasons (November-January, January-March, March/April-22 

June), winter refers to December to February, which was further split into early and late 23 

winter (November-January and January-March).  24 

Group Feature type (unit) 
Variable names and 

abbreviations  

Data 

source/reference 

1 

(n=11) 

Precipitation amount 

(mm) 

Seasonal: GS_ppt, EarlyS_ppt, 

MidS_ppt, LateSApr_ppt, 

LateSMar_ppt 

Monthly: M11_ppt, M12_ppt, 

M01_ppt, M02_ppt, M03_ppt, 

M04_ppt,  

Daymet (Thornton et 

al., 2016) 

2 

(n=1) 

Precipitation 

distribution 

Precipitation concentration index 

(PCI) 

Daymet (Thornton et 

al., 2016; Oliver, 

1980) 

3 

(n=6) 

Minimum air 

temperature (˚C) 

GS_tmin, M11_tmin, M12_tmin, 

M01_tmin, M02_tmin, M03_tmin 

Daymet (Thornton et 

al., 2016) 

4 

(n=9) 

Mean air 

temperature1 (˚C) 

GS_tave, M11_tave, M12_tave, 

M01_tave, M02_tave, M03_tave, 

Winter_tave, WinterEarly_tave, 

WinterLate_tave 

Daymet (Thornton et 

al., 2016) 

5 

(n=2) 

Incoming solar 

radiation and 

maximum 

Temperature  

GS_srad (W/m2), GS_tmax (˚C), 
Daymet (Thornton et 

al., 2016) 

6 

(n=1) 
Elevation (m) Elevation 

SRTM (Rabus et al., 

2003) 
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 10 

7 

(n=2) 
Insolation Aspect2, Illumination condition, IC  

SRTM(Rabus et al., 

2003/Tan et al., 

2013) 

8 

(n=1) 
Slope (degree) Slope 

SRTM (Rabus et al., 

2003) 

9 

(n=1) 
Curvature Curvature 

SRTM (Rabus et al., 

2003; Zevenbergen & 

Thorne, 1987) 

10 

(n=1) 
Flow accumulation Flowaccumulation 

SRTM (Rabus et al., 

2003; Jenson & 

Domingue, 1988) 

11 

(n=6) 
Soil properties  

Water holding capacity (whc - 

cm), Clay, Sand & Silt (%), Bulk 

density (bd - g/cm3), Soil organic 

matter (som - kg/m3) 

Rasterized SSURGO 

(Beaudette et al., 

2013; O’Geen et al., 

2017) 
1Growing degree day variables were removed due to high correlation with mean air 1 

temperature. 2Aspect was converted to a continuous variable by cosine(aspect) where -1 2 

represents south and +1 represents north. 3 

2.5 Determinants of spatial variation in forage production  4 

We examined the relative contribution of each predictor to spatial patterns of forage 5 

production using feature importance, quantified by the mean decrease in the impurity 6 

by each input variable based on the GBRT models (Breiman et al., 1984). Impurity 7 

represents how poorly the observations at a given node fit the model, measured by the 8 

residual sum of squares within that node in a regression tree. For reduced models, we 9 

averaged feature importance by feature group and calculated the standard deviation 10 

within each group.  11 

Additionally, we used partial dependence plots (PDPs) to quantify how forage 12 

production varies spatially with each independent variable. Partial dependence 13 

marginalizes the machine learning model over the distribution of other independent 14 

variables, so that the remaining function shows the relationship between the targeting 15 

variable and dependent variable (Molnar, 2019). The y-axis of PDPs represents the 16 

difference between the marginalized prediction and the mean prediction. For example, 17 

a wide range on the y-axis indicates a strong sensitivity of forage production to the 18 

target predictor, suggesting a strong controlling effect with confounding factors 19 

excluded. A partial dependence curve with positive slope suggests a positive 20 

relationship and vice versa.  21 

3. Results 22 

We first report the overall spatial patterns of forage production (3.1) and performance 23 

of the GBRT models in capturing the spatial variability (3.2). The determinants of 24 

spatial variation in long-term mean production are presented in Section 3.3. Section 3.4 25 

further examined drought vs. wet year production. Within each section, we report 26 

results for the whole study area first, followed by results for each ecoregion.  27 

3.1 Spatial patterns in long-term forage production  28 

Estimated mean annual forage production (2940±934 kg/ha/yr) from satellite 29 

observations over the 2004-2017 study period showed large spatial variability, with a 30 
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 11 

CV of 35% across the study area (Fig. 4a). The Central Coast Ranges (CCR) had much 1 

lower production (2610±890 kg/ha, Table 2), where the driest areas of the ecoregion 2 

with precipitation less than 200 mm/yr (Fig. 1b) had a mean annual production of less 3 

than 2000 kg/ha (Fig. S5). In contrast, 11% of the study area had very high forage 4 

production (>4000 kg/ha/yr), including the northern tip of CCR, central Sierra Nevada 5 

Foothills (SNF), a large portion of North California Coast Ranges (NCCR) and several 6 

valleys in North California Interior Coast Ranges (NCICR). We found similar spatial 7 

patterns for production averaged over dry and wet years (Figs. 4b&c). However, 8 

drought-year production (2397±926 kg/ha/yr; CV=38%) was lower and had a higher 9 

spatial variability than wet-year production (3722±1080 kg/ha/yr; CV=29%).  10 

 11 

Figure 4. Spatial distribution of cAPAR-derived mean forage production averaged over 12 

(a) 2004-17, (b) drought years, and (c) wet years.  13 

 14 

3.2 GBRT model performance 15 

The GBRT model effectively captured the spatial variability of satellite-based LTM 16 

forage production at 30-m resolution across the entire study area. Predicted forage 17 

production was in good agreement with the estimated forage production in the 18 

randomly selected testing data (R2=0.70 and RMSE=507 kg/ha), when using all 41 19 

variables as input (Table 2, full model). Reduced models with 11 predictors, one 20 

variable from each of the 11 feature groups, had slightly reduced performance with a 21 

RMSE=535±4 kg/ha, explaining 67% (±0.5%) of spatial variability (Table 2; Table S3). 22 

The predicted forage production map (Fig. 5) showed very similar spatial patterns as 23 

those from the satellite-based estimates, even though the model was trained with 10% 24 

of the pixels (Fig. 4a). More than 84% of the area had an absolute percent error between 25 

modeled vs. satellite estimates lower than 20% (Fig. S6) and the mean absolute percent 26 

error was 11.8% averaged over the study area. Among ecoregions, the CCR ecoregion 27 

showed the highest prediction accuracy (Table 2). 28 

Models built specifically for mean production during drought years performed better 29 

than the LTM models (R2=0.74±0.004 and RMSE=425±4 kg/ha) (Table 2). In contrast, 30 

wet-year production models displayed larger uncertainty in capturing the spatial 31 

variability (R2=0.52±0.009 and RMSE=675±6 kg/ha). However, the mean and absolute 32 
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 12 

percentage errors were similar for drought vs. wet years (Table 2). 1 

Table 2. Model evaluation based on the independent testing data. GBRT models were 2 

built for the entire study area and specific ecoregions during the 2004-2017 study 3 

period, as well as wet (water years 2005, 2006 and 2017)  vs. dry (water years 2007-4 

09 and 2012-15) years. 5 

Region (N*) 
Time  

span 

Forage 

production** 

(kg/ha/yr) 

Precip. 

(mm/yr) 

Min air 

temp 

(˚C) 

R2 

RMSE 

(kg/ha/

yr) 

Mean 

% 

error 

Abs. 

% 

error 

Full model (with 41 

variables) 
 

Entire study 

area 

(~2.6 M) 

All 

years 

2940 

±934 

712 

±396 

3.8 

±1.3 
0.70 507 2% 12% 

Reduced models (with 11 

variables/features) 
       

Entire study 

area 

(~2.6 M) 

All 

years 

2940 

±934 

712 

±396 

3.8 

±1.3 

0.67 

 
536±4 2% 17% 

Entire study 

area 

(~2.6 M) 

Drou

ght 

years 

2397 

±911 

519 

±317 

3.8 

±1.3 

0.74 

 
425±4 1% 18% 

Entire study 

area 

(~2.6 M) 

Wet 

years 

3675 

±1076 

1053 

±539 

4.0 

±1.4 

0.52 

 
675±6 1% 18% 

Northern 

California 

Coastal Ranges 

(NCCR, 14K) 

All 

years 

3718 

±1230 

1274 

±294 

2.9 

±1.4 
0.61 771 3% 19% 

Sierra Nevada 

Foothills  

(SNF, ~3M) 

All 

years 

3430 

±794 

674 

±282 

3.8 

±1.5 
0.60 504 2% 11% 

Northern 

California 

Interior Coastal 

Ranges 

(NCICR, ~1M) 

All 

years 

3332 

±610 

753 

±185 

4.5 

±0.7 
0.43 460 2% 11% 

Central Coastal 

Ranges 

(CCR, ~1M) 

All 

years 

2610 

±890 

404 

±109 

4.2 

±1.0 
0.71 482 3% 14% 

*N represents the number of pixels for the domain. **Standard deviations associated with the 6 

reduced study area models were calculated from the ensemble models. R2 and RMSE were 7 

based on comparison with the corresponding independent test datasets. Mean percent error is 8 

the average of percent errors over all pixels, where percent error is actual error divided by the 9 

remote sensing estimation. Relative difference (absolute percent-errors) were calculated as the 10 

mean absolute percent error over all pixels, i.e., dividing the absolute difference between the 11 

GBRT predicted and remote sensing estimated forage production by remote sensing estimation. 12 
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 1 

Figure 5. Gradient boosted regression tree estimated long-term mean forage production 2 

map.  3 

3.3 Determinants of spatial variation in forage production 4 

Over the entire study area, total amount and monthly distribution of precipitation were 5 

the two most influential variables controlling the spatial variation in long-term forage 6 

production (Fig. 6). Together, these two features reduced more than 40% of impurity 7 

across all splits within each regression tree. Partial dependence plots (PDPs) showed 8 

that forage production increased rapidly with an increase in growing season 9 

precipitation before reaching a plateau at ~450 mm/yr (Fig. 7a). PDP distributions were 10 

skewed toward negative values, indicating that low precipitation amount has a stronger 11 

negative impact on forage production than a corresponding positive impact from high 12 

precipitation. For example, in the more arid regions, forage production was enhanced 13 

by 1000 kg/ha when precipitation increased from 300 to 450 mm/yr.  14 

November precipitation, in particular, had the strongest impact on forage variability 15 

(Fig. S7), with a ~1750 kg/ha difference in forage production when precipitation varied 16 

from the driest (15 mm) to the wettest regions (90 mm, Fig. S8a). In contrast, January 17 

precipitation had the weakest impact, with an 850 kg/ha difference in forage production 18 

across the driest (50 mm) to wettest regions (140 mm). Notably, April precipitation (Fig. 19 

S8b) showed the strongest per-unit precipitation influence on forage production. Every 20 

1-mm increase in April precipitation resulted in an average 29 kg/ha increase in annual 21 

forage production.  22 

Areas with more evenly distributed precipitation (i.e., lower PCI, concentrated in the 23 

SNF and NCICR, Fig. S9) had higher forage production than those with less evenly 24 

distributed precipitation (i.e., higher PCI, spreading across the southwestern CCR, Fig. 25 

S9), given the same amount of precipitation (Fig. 7b).The impact from precipitation 26 

distribution was more pronounced when PCI varied from 12 to 13.5 than at higher 27 

values. The difference in forage production was approximately 500 kg/ha between 28 

locations with the lowest and highest PCI values. 29 

Minimum temperature was the third most influential feature in regulating the spatial 30 
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variation of forage production (Fig. 6a). For example, a warmer minimum temperature 1 

during the growing season increased the production by 200 kg/ha beyond 4.3˚C (Fig. 2 

7c). We observed slightly higher forage production in colder areas (<3 ˚C), mostly at 3 

higher elevations in the NCCR region where precipitation is high (Fig. 7c; Fig. S10a). 4 

Elevation, mean air temperature and solar energy had intermediate impacts on forage 5 

production (~10% importance). Forage production steadily decreased as elevation 6 

increased from 150 to 900 m (Fig. 7d). Compared to the mean for the entire study area, 7 

forage production at 900 m elevation was 150 kg/ha lower but 100 kg/ha higher at 150 8 

m elevation. When everything else was held at their mean values, areas with cooler 9 

growing season mean air temperature were more productive than warmer areas (Fig. 10 

7e). The relationship between solar radiation and forage production showed an 11 

asymmetrical bell shape (Fig. 7f), peaking at 250 W/m2 (Fig. S10b). However, the 12 

lowering effect was more pronounced at higher values of solar radiation.  13 

The next most important feature was soil properties (Fig. 6a). Higher plant available 14 

water holding capacity enhanced forage production (Fig. 7g). As the 0˗25-cm available 15 

water holding capacity increased from 2.5 to 4.5 cm, forage production increased from 16 

100 kg/ha below to 75 kg/ha above the overall mean forage production, when all other 17 

predictors were held at their mean values. Slope contributed another ~5% of importance 18 

with steep slopes generally less productive (e.g., 300 kg/ha lower on a 25˚ slope) than 19 

those on flat areas (Fig. 7h). Variables related to insolation affected forage production 20 

slightly. For example, south-facing areas were generally less productive than north-21 

facing areas with an average difference of 140 kg/ha (Fig. 7i). Curvature and flow 22 

accumulation had very limited impact on forage production at the statewide level (Fig. 23 

6).  24 

At the sub-regional scale, the ecoregion-specific models showed different dominant 25 

controls for spatial variation in LTM forage production (Fig. 8). Overall, precipitation 26 

amount played a more important and dominant role in drier ecoregions (CCR & SNF, 27 

Table S4), whereas energy and temperature became more important in wetter 28 

ecoregions (NCCR & NCICR). In the wettest region (NCCR), for example, minimum 29 

air temperature (see PDP in Fig. S11) was the most important (15%), while all other 30 

non-topography related features plus elevation had a similar contribution (10%) (Fig. 31 

8c). Similarly, in the NCICR ecoregion (second wettest ecoregion), forage production 32 

variation was a mixed effect of climate, solar energy, elevation and soil properties, 33 

although precipitation amount became the most influential feature (Fig. 8d).  34 
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 1 

Figure 6. Feature importance of reduced models for different time periods: (a) 2004-17; 2 

(b) drought years; (c) wet years. Relative importance of precipitation amount differed 3 

under different water availability conditions.  4 

 5 
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 1 

Figure 7. Partial dependence of long-term mean forage production on (a) growing 2 

season total precipitation, (b) precipitation concentration index (PCI), (c) growing 3 

season minimum temperature, (d) elevation, (e) growing season mean temperature, (f) 4 

growing season mean solar radiation, (g) soil water holding capacity at 0-25 cm, (h) 5 

slope, and (i) cosine of aspect. Marks on the x-axis indicate the data distribution.  6 

 7 

Figure 8. Feature importance of reduced models for the four ecoregions. Drier regions 8 

are more influenced by precipitation amount while wetter regions receive a stronger 9 

influence from other factors.  10 

 11 
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3.4 Forage production under drought versus wet conditions 1 

Drought reduced forage production relative to the LTM, but not by the same magnitude 2 

across the state. For example, production was reduced by 612±315 kg/ha/yr (23±12%) 3 

across the study area, when the precipitation decreased from the LTM by 140±46 mm/yr 4 

(31±5%) during drought years (Fig. 9a). Larger departures occurred in less productive 5 

areas, such as a decrease by more than 40% on the west side of the Central Coast and 6 

~20% in lower foothills in dry years (Fig. 9a). During wet years, similar patterns were 7 

found for increased production, but with a higher departure, i.e., 882±521 kg/ha/yr 8 

(33±20%) due to a MAP increase of 245±89 mm/yr (56±12%) (Fig. 10b).  9 

 10 

Figure 9. The relative departure from long-term mean production during drought years 11 

(a) and wet years (b).   12 

We also found that areas that experienced a smaller forage reduction during drought 13 

years were likely to experience a smaller production increase during wet years (Fig. 14 

S12c). At a given location, every 1% increase in forage production during wet years 15 

corresponded to a 0.55% production reduction during drought years, although the 16 

percent increase in precipitation was usually higher in wet years than the percent 17 

decrease in drought years (Fig. S12d).  18 

The GBRT models, built separately for wet and dry years, showed different dominant 19 

factors controlling the spatial variation of forage productivity. Compared to drought 20 

years, the relative importance of precipitation amount decreased from 24 to 19% during 21 

wet conditions, while the distribution of precipitation became equally important with 22 

precipitation amount (Fig. 6b&c). Soil properties became relatively more important 23 

during wet years, i.e., 9.5% as compared to 7.0% in dry years.   24 

Elevation showed a negative impact on forage production under drought conditions, at 25 

a rate of -0.36 kg/ha/m (Fig. 10c). Under wet conditions, the reduction in forage 26 

production became greater with increasing elevation: -0.33 kg/ha/m at 150-450 m to -27 

0.67 kg/ha/m at 450-900 m (Fig. 10d). Similar to the analysis for the entire time period, 28 

lower growing season mean temperature was associated with higher forage production, 29 

under dry or wet conditions; however, the influence of growing season mean 30 

temperature was stronger for wet years (-336 kg/ha/˚C, Fig, 10f) than for drought years 31 
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(-146 kg/ha/yr/˚C, Fig. 10e). The negative influence was most pronounced in cooler 1 

regions (<16 ˚C, mostly higher elevations, Fig. S13) during wet years (Fig. 10f). 2 

 3 

Figure 10. Partial dependence of mean forage production during dry years (left) vs. wet 4 

years (right) on (a-b) precipitation concentration index, (c-d) elevation, and (e-f) 5 

growing season mean temperature. These three features show different relationships 6 

with forage production under drought versus wet conditions. Marks on the x-axis 7 

indicate the data distribution.  8 

 9 

4. Discussion 10 

4.1 Spatial controls on forage production  11 

California grassland forage production showed a large degree of spatial variability 12 
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associated with heterogeneity in environmental conditions. Across the state, climatic 1 

factors, especially the amount of precipitation received at the start and end of the 2 

growing season, exerted a stronger influence on spatial variability in forage production 3 

compared to topography- and soil-related factors. However, there was a strong interplay 4 

among factors, with the relative importance of each factor being dependent on local 5 

microclimate and climate conditions (Fig. 8).  6 

4.1.1 Climate 7 

Precipitation in California exhibits large interannual, latitudinal and topographic 8 

variation. Consistent with previous studies, our results showed that forage production 9 

was a strong function of the total amount and temporal distribution of annual 10 

precipitation (Bai et al., 2008; Duncan & Woodmansee, 1975; Sala et al., 1988). 11 

Previous studies also suggested that precipitation before November 20th was an 12 

important driver of peak forage production at a site in NCCR (Murphy, 1970), as well 13 

as demonstrating a significant correlation between peak forage production and 14 

November and April precipitation in SNF (Duncan & Woodmansee, 1975).  15 

Our results provide robust support for these previous site-level investigations based on 16 

14 years of forage production at 30-m resolution across four ecoregions spanning 17 

24,000 km2. At the statewide scale, our results indicated that November and April 18 

precipitation had strong positive impacts on peak forage production. Annual species in 19 

California typically germinate in October-November, depending on timing of the 20 

germinating rainfall event (Murphy, 1970). Therefore, sufficient precipitation during 21 

this period promotes germination and early-season biomass accumulation as residual 22 

soil heat and moderate air temperatures allow slow growth. This early season growth 23 

increases root and leaf area development that allows for more efficient capture of solar 24 

radiation and soil water once temperature and moisture conditions become more 25 

favorable later in the growing season (George et al., 2016). Additionally, establishment 26 

of early season soil cover may enhance rainfall infiltration into the soil (versus surface 27 

runoff), thereby increasing soil water storage for subsequent plant use. In April, as 28 

temperatures and solar radiation become more favorable, plants can rapidly accumulate 29 

biomass if soil water is available. Therefore, precipitation amounts in November and 30 

April appear to contribute a disproportionate increase to annual forage production. 31 

Ecoregion-specific modeling revealed precipitation distribution within the growing 32 

season as an important factor controlling peak forage production (Fig. 8).  33 

Mediterranean annual grasses senesce quickly when soil moisture depletes. Therefore, 34 

small but consistent precipitation events throughout the growing season are favorable 35 

to higher forage production (Duncan & Woodmansee, 1975). Forage production models 36 

for wet-dry endmember conditions revealed that when water is limited during drought 37 

years, a more uniformly distributed precipitation regime favors higher forage 38 

production (Fig. 10a). In contrast, when soil water is ample during wet years, regions 39 

with more uniformly distributed precipitation (PCI<10.8) produced somewhat less 40 

forage than regions with more variability in rainfall distribution (Fig. 10b). This 41 

observation is likely associated with plants having the highest growth potential when 42 

favorable conditions for temperature, solar radiation and precipitation coincide later in 43 

the growing season. Therefore, when overall precipitation is higher, greater forage 44 
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production is achieved when more precipitation occurs during the rapid growing stage, 1 

namely April.  2 

Temperature affects plant growth through its influence on evapotranspiration and 3 

respiration/photosynthetic rates (Vermeire et al., 2009). We found that given the same 4 

amount of precipitation, regions with lower daily mean air temperature (Tmean) during 5 

the growing season had higher forage production (Fig. 7e). This may result in part from 6 

warming-caused higher water loss through evaporation, reducing the proportion of 7 

‘effective precipitation’ available for photosynthesis. De Boeck et al. (2006) reported 8 

decreased production under warmer situations when comparing grass growth in 9 

climate-controlled chambers with ambient and warmer (+3˚C) temperatures. However, 10 

the daily minimum (mostly nighttime) air temperature (Tmin) showed an opposite effect 11 

from Tmean (Fig. 7c&e). At nighttime, most plants pause photosynthetic activity and 12 

only conduct respiratory activities, consuming carbohydrates. Thus, warmer night 13 

temperature increases respiratory C losses (Peraudeau et al., 2015) and photosynthetic 14 

capacity during the following day (Turnbull et al., 2002). Our results suggest that when 15 

4.3 ˚C < Tmin < 5.4˚C, photosynthetic capacity is more sensitive to changes in nighttime 16 

temperature than respiratory capacity, compared with areas with 2.5 ˚C < Tmin < 4.3 ˚C. 17 

Our results highlight the different relationships between forage production and air 18 

temperature metrics (Tmin vs. Tmean). 19 

4.1.2 Topography 20 

Landscape positions experiencing less environmental stress (e.g., soil water deficit) are 21 

reported to be associated with higher forage production at a ranch with a complex 22 

topography (Liu et al., 2019). Our large-scale study here showed that topography 23 

contributed only moderately to spatial variability in forage production. Elevation (150 24 

to 900 m) was the most influential topography-related factor, with more pronounced 25 

impact in the drier CCR and SNF ecoregions. Soil moisture is typically found lower in 26 

higher elevations than lower elevation regions at 5-10 cm (Porazinska et al., 2002) and 27 

at multiple depths (10 ̠  90 cm) (Bales et al., 2018) due to less soil development at higher 28 

elevations. Higher elevation regions also have higher solar radiation. Together, lower 29 

soil moisture and higher solar radiation may invoke additional water stress on forage 30 

growth in high elevation regions, and eventually lead to reduced forage production.  31 

Aspect and slope showed little impact on forage production, probably because their 32 

impacts on insolation are relatively muted prior to the spring solstice and only become 33 

more apparent in April, which may enhance the importance of April rainfall on forage 34 

growth. In addition to the role in regulating insolation, greater slopes are conducive to 35 

greater soil runoff, thereby decreasing water availability for plant use.  36 

4.1.3 Soil properties 37 

Few studies have considered the role of soil physical properties on California rangeland 38 

forage production. Strong impacts from soil pore size distribution and available water 39 

holding capacity have been reported for grasslands in the Great Plains (Reyes et al., 40 

2017). However, these grasslands are dominated by perennial species with deep root 41 

systems. In parts of California, site-level soil texture and available water holding 42 

capacity were reported to be not significantly related to forage production based on an 43 
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experiment conducted in the NCCR ecoregion (Jones et al., 1983). In our regional 1 

analysis, available water holding capacity showed a positive impact on forage 2 

production when other variables are held constant. However, spatial variation in soil 3 

properties showed a relatively weaker effect on the state-wide variation in long-term 4 

mean forage production, compared to climatic factors, solar energy and elevation. On 5 

the other hand, we did find soil properties became more important during wetter years 6 

(Fig. 6c and Figs 8b-d).  Finer textured soils that have higher available water holding 7 

capacity are able to retain more rainfall for plant growth (Weng & Luo, 2008). Our 8 

findings may be limited by the small variability of plant-available water holding 9 

capacity in the upper 25-cm of soils across the study area (e.g., interquartile range=2.7-10 

3.8 cm; CV=27%). Further, the rooting distribution of annual grasses/forbs is 11 

concentrated in the upper 15 cm with few roots extending below a depth of 30 cm, 12 

thereby limiting the importance of soil water storage in controlling overall annual 13 

forage production relative to more deeply rooted perennials (Gordon & Rice, 1992; 14 

Holmes & Rice, 1996).  15 

The weak relationship between soil properties and forage production is not equivalent 16 

to low importance of soil moisture. Soil moisture not only controls onset of the growing 17 

season (Bart, Tague, & Dennison, 2017), but also is positively related to annual forage 18 

production (Becchetti et al., 2016). Additionally, soil water storage serves as a water 19 

buffer to support plant growth between rainfall events; therefore, periodic rainfall 20 

events that are well distributed throughout the season are important for sustaining soil 21 

water and forage growth over longer time periods.  22 

4.2 Implications for land managers and policymakers 23 

Sustainable management of forage resources is a critical goal for rangeland livestock 24 

producers (Kachergis et al., 2013; Roche et al., 2015) and a key factor in adaptive 25 

rangeland decision-making (Roche, 2016). Stakeholders make decisions at different 26 

time scales, depending on their management goals (Brown et al., 2017). For example, 27 

strategic planning for ranch sustainability may require long-term mean and wet-dry year 28 

variability information, while tactical planning, such as rapid drought response, 29 

depends on near real time information. Annual forage forecasts could help land 30 

managers make decisions about grazing and stocking rate strategies, such as taking 31 

proactive actions before dry or drought conditions fully emerge. Our results suggest 32 

spatial variability in forage production is more responsive to precipitation received in 33 

November and April. Consequently, November precipitation could be used as an 34 

indicator to estimate potential annual forage production using our machine learning 35 

model, assuming other factors are at multiyear mean levels. Noting that for ranches in 36 

mesic regions (e.g., NCCR), accuracy of this method could be lower than in arid regions 37 

because precipitation amount is not the only factor influencing forage production.   38 

Annual forage prediction maps and identified key drivers from this study also inform 39 

policy decision-making. For example, the estimated forage production maps and 40 

modeling results at 30 m could inform drought-monitoring efforts in near real-time, 41 

providing a low cost, objective and large-scale assessment of California rangeland 42 

forage conditions. The US Drought Monitor (USDM, 43 

https://droughtmonitor.unl.edu/About/WhatistheUSDM.aspx) is a multi-institutional effort 44 
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that provides drought classification maps to assess and identify drought conditions each 1 

week across the country (Svoboda et al., 2002). Because of their coarse spatial 2 

resolution, USDM maps have limited utility for drought mitigation at more localized 3 

scales (Brown et al., 2008). The USDM approach is mostly based on weather data 4 

coupled with expert inputs from resource agencies (Svoboda et al., 2002), and does not 5 

explicitly consider differences in plant response to drought. Our study demonstrated 6 

large variations in forage production departure during drought years, suggesting the 7 

importance of including perspectives of plant sensitivity to drought when mapping 8 

drought intensity. The Vegetation Drought Response (VegDRI) tool provides a 9 

satellite-based indication of drought effects on vegetation health at 1-km resolution (J. 10 

F. Brown et al., 2008). VegDRI maps are limited by a lack of extensive ground truthing 11 

(e.g., green biomass), which could be remedied using our estimated forage production 12 

maps.  13 

Finally, this work can inform implementation of drought relief and disaster payment 14 

programs, such as the Livestock Forage Program (LFP) and Noninsured Crop Disaster 15 

Assistance Program (NAP) by USDA. The LFP is currently triggered by USDM ratings 16 

and duration of forage production loss at the county level. However, our results 17 

demonstrate that reductions in forage production vary significantly during drought 18 

within an individual county (Fig. 9).  Further, our calibrated cumulative APAR based 19 

LUE method could generate near real-time forage production maps at 30-m resolution. 20 

These maps provide finer spatial resolution information directly related to forage 21 

productivity. With this higher resolution information, it is possible to declare sub-22 

county production-based drought, which would allow disaster relief programs to better 23 

distribute resources (George et al., 2010). Our results also complement existing 24 

rangeland production monitoring tools, such as Grass-Cast (https://grasscast.unl.edu/), 25 

that are focused on the Great Plains and Southwest regions. Our quantified relationships 26 

between forage production and its key driver may provide opportunities to expand such 27 

tools to larger geographic areas. 28 

4.3 Implications for assessing climate change impacts 29 

Temperature is projected to warm 1.7-5.8 ˚C over the next century in California (Cayan 30 

et al., 2012), with much of the increase resulting from rising minimum temperatures 31 

(mostly nighttime) (Cordero et al., 2011). Our study indicated forage production 32 

responds differently to changes in minimum temperature (positive when Tmin >4.3˚C) 33 

versus average temperature (negative) (Fig. 7c&d). Therefore, an increase in minimum 34 

temperature and average temperature may produce contrasting site-specific effects on 35 

forage production. Previous studies forecasting climate change impacts on forage 36 

production did not account for different responses to rising minimum versus average 37 

temperatures (Zavaleta et al., 2003). A California annual grassland field study found 38 

experimental warming reduced canopy greenness (Zavaleta et al., 2003); however, 39 

these results may not reflect actual warming effects because the same intensity of 40 

warming was applied during both day and nighttime periods. A climate change impact 41 

modeling study for the San Francisco Bay area suggested that rangeland forage 42 

production may be enhanced by future temperature and precipitation conditions 43 

(Chaplin-Kramer & George, 2013). Yet, this conclusion was based on a growing 44 

degree-day model to forecast future forage production and did not account for 45 
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differential rising rates between maximum and minimum temperatures.  1 

Precipitation varies greatly from year-to-year in California and is expected to become 2 

more variable and unpredictable in the future (Cayan et al., 2012). Extremely wet and 3 

dry years are likely to appear more frequently in the future. Forage production showed 4 

different resilience towards extreme precipitation conditions across the study area. 5 

Mesic regions exhibited a smaller departure from the LTM than drier regions under 6 

drought or wet conditions (Fig. 10a&b). This spatially varying response to changes in 7 

precipitation suggest that forage production in more arid regions may get hit harder by 8 

climate change than more mesic regions. Our findings are in general agreement with 9 

previous climate change sensitivity analyses examining forage production under a 10 

Mediterranean climate (Golodets et al., 2013; Huxman et al., 2004). In the meantime, 11 

impacts from more frequent drought may be more severe than predicted because of the 12 

predicted rising temperature (Polley et al., 2017). Some ranchers may be forced to 13 

switch to livestock species that are more adapted to warm temperatures and drought, 14 

such as sheep or goats (Kay, 1997). 15 

5. Conclusion 16 

We investigated relationships between long-term mean forage production and key 17 

factors driving forage production across four California ecoregions (~24,000 km2). 18 

We explored 41 potential variables derived from climate, topography and soil 19 

properties that were reduced to 11 feature groups to avoid collinearity. Together, these 20 

11 features explained 67% of the variation in annual forage production across the 21 

study area. Precipitation was the dominant driver for forage production with high 22 

sensitivity to November (germination) and April (rapid growth period) precipitation 23 

amounts. The influence of precipitation amount was most pronounced during drought 24 

years and in drier ecoregions (CCR&SNF); in wet years and wetter ecoregions 25 

(NCCR&NCICR) other variables such as precipitation distribution and solar energy 26 

showed a relatively stronger control. Minimum air temperature showed an increased 27 

effect in wetter ecoregions, but not during wet years. Elevation showed the strongest 28 

impact among topography factors with higher elevations having lower forage 29 

production. Soil properties showed the least influence among predictor variables, 30 

which is possibly due to their small degree of variability across the study area. The 31 

quantified linkages and forage production maps provide important decision-making 32 

information for rangeland managers and state-wide drought-disaster relief programs. 33 

Our approach has the ability to forecast forage production in near real-time to provide 34 

rangeland managers with information to make proactive grazing decisions, especially 35 

with regard to drought-induced risks. We anticipate that future research will build 36 

upon this approach as new remote sensing platforms become available to monitor 37 

abiotic (e.g., soil moisture) and biotic controls of forage production in near real-time. 38 

This work also provides a foundation for predicting rangeland forage response to 39 

future climate change scenarios at regional scales.  40 
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