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ABSTRACT OF THE DISSERTATION

Safe and Efficient Concurrency

for Modern Programming Languages

by

Lun Liu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2020

Professor Todd D. Millstein, Chair

Safe languages provide programming abstractions, like type and memory safety, to improve

programmer productivity. Unfortunately, in the domain of concurrent programming, main-

stream safe languages instead choose to adopt complex and error-prone semantics by default

in the name of performance. A memory consistency model defines the possible values that

a shared-memory read may return in a multithreaded programming language. Languages

today like Java and Julia have adopted a relaxed (or weak) memory model that is designed to

admit most traditional compiler optimizations and obviate the need for hardware fences on

most shared-memory accesses. The downside, however, is that programmers are exposed to a

complex and unintuitive semantics and must carefully declare certain variables as volatile in

order to enforce program orderings that are necessary for proper behavior. Not only does

this performance-by-default approach conflict with the design philosophy of “safe” languages,

but also surprisingly, very little is actually known about the practical performance cost of a

stronger memory model.

In this thesis, I define the safe-by-default and performant-by-choice volatile-by-default

semantics for Java and other JVM-based languages. volatile-by-default provides sequential

consistency (SC) by default, while still allows expert programmers to avoid fence overheads on

performance-critical libraries. I present VBD-HotSpot and VBDA-HotSpot, modifications of

Oracle’s HotSpot JVM that enforce the volatile-by-default semantics on Intel X86 hardware
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and ARM hardware. I then present a novel speculative technique to optimize language-level

SC. Finally, I have implemented an SC enforcing Julia compiler that guarantees SC for Julia

by default. Through evaluations of the above projects, I show that it is possible to measure

the practical cost of strong and simple semantics for concurrent programming, and with

optimizations, it is possible to have a simpler semantics for concurrent programming at a

reasonable cost for certain languages.
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CHAPTER 1

Introduction

Safe languages like Java and Julia provide programming abstractions, like type and memory

safety, to improve programmer productivity. While some unsafe languages also provide

such abstractions, safe languages protect these abstractions, ensuring that an unintentional

programmer error cannot violate them. Doing so usually requires safe languages to pay the

associated runtime costs, such as compiler-inserted bounds-checks, by default. Performance-

minded programmers still have the flexibility to selectively use unsafe code fragments where

the programmer, not the language, is responsible for ensuring safety.

Unfortunately, in the domain of concurrent programming, mainstream safe languages

instead choose to adopt complex and error-prone semantics by default in the name of

performance, breaking fundamental programming abstractions and failing to provide baseline

guarantees for programmers. In this thesis, I focus on the problems with memory consistency

models.

1.1 Problems with Memory Models of Today’s Languages

A memory consistency model (or simply memory model) of a programming language defines

the possible values that a shared-memory read may return in that language. One of the most

intuitive strong memory models is sequential consistency (SC) [Lam79]. It guarantees that

all memory reads and writes agree on a global order, and the global order is consistent with

the per-thread program order. With SC, programmers can always view the execution of their

program as a sequential interleaving of the instructions from each thread.

Most mainstream languages today either have a memory model weaker than SC by default,
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or don’t even have a memory model. For example, Java [MPA05] only guarantee SC for

certain “well- annotated” programs, and Julia does not have a well-defined memory model.

The reasoning behind such decisions usually points to performance. Achieving SC requires

the compiler to disable some common optimizations, and on current hardware platforms it

further requires the compiler to restrict hardware optimizations by emitting expensive fence

instructions on shared-memory accesses.

The downside of having a weak memory model, however, is that programmers must care-

fully annotate/write their programs in order to enforce the per-thread program orderings that

are required for proper behaviors, otherwise programs are exposed to the relaxed/undefined

semantics of the memory models, which is complex, unintuitive, and can violate critical

program invariants. For example, under the current Java Memory Model (JMM) [MPA05] an

object can be accessed before its constructor has completed, accesses to longs and doubles

are not guaranteed to be atomic, and some programming idioms, such as double-checked

locking [SH97, BBB17], are not guaranteed to behave correctly. This possibility is not just

theoretical: errors caused by Java’s weak memory model can be found across a range of

widely used Java applications.

This performance-by-default approach to memory models is acceptable for and consistent

with the design philosophy of languages like C and C++ [BA08]. However, I argue that

such an approach conflicts with the design philosophy of “safe” languages like Java and Julia.

Indeed, when it comes to type and memory safety, they instead employ a safe-by-default

and performance-by-choice approach: in Java, for example, type and memory safety are

provided by default, but there is a library of type-unsafe operations meant for use by expert

programmers in performance-critical code [MPM15]; Julia uses bounds checking to ensure

memory safety when access arrays, but @inbounds macro can be used to elide such checks in

a tight loop.

Not only does the performance-by-default approach conflict with the design philosophy of

“safe” languages, but also surprisingly, very little is actually known about the performance cost

of a stronger memory model. Surely, there have been studies regarding such costs, but they

are in unrealistic settings, like whole-program compilation [SS88, SFW05, KSY05]. Nobody
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knows the cost of a practical implementation of SC for a modern language.

Considering the lack of measurement of the cost of a safer semantic, the decision to choose

performance over programmability needs to be revisited. Essentially, choosing a memory

model for a language involves an inherent performance-programmability trade-off, and such

decision shouldn’t be made without a better sense of what the cost of a stronger memory

model like SC really is on modern hardwares for modern programming languages.

1.2 Thesis Statement

My thesis states the following:

Thesis statement It is possible to measure the cost of strong and simple semantics for

concurrent programming on modern hardwares for modern languages with modern

language implementation techniques, and with optimizations, it is possible to have a

simpler semantics for concurrent programming at a reasonable cost for certain languages.

I support the above statement by 1) implementing and evaluating the cost of SC for

two different modern programming languages, and 2) developing language VM and compiler

techniques to reduce such cost.

I propose a simpler and stronger memory model called volatile-by-default for Java.

volatile-by-default provides SC for all programs by default, while at the same time, expert

programmers retain the freedom to build performance-critical libraries that violate the SC

semantics. I have implemented the volatile-by-default semantic on Oracle’s HotSpot JVM

and demonstrate through comprehensive empirical evaluation that the volatile-by-default

semantics is arguably acceptable for a predominant use case for Java today — server-side

applications running on Intel X86 architectures. I have also shown that the overhead of

volatile-by-default semantics is much less than people have expected for applications

running on a weaker architecture like ARM.

I also present a speculative approach to implement volatile-by-default which further

reduces the average and maximum overhead of volatile-by-default on ARM. Additionally,
3



I have devised an orthogonal optimization that reduces the number of fences required to

enforce the volatile-by-default semantics for ARM. Those two optimizations reduce the

overhead of enforcing the volatile-by-default semantics by roughly 1/3 combined.

Besides Java, I have explored ways to provide SC for Julia. I have implemented an SC

enforcing Julia compiler that guarantees SC and measured the cost of SC for Julia. I have

further analyzed different factors that might affect the cost of SC and explored possibilities

of using annotations to reduce the cost of SC.

1.3 Thesis Organization

The thesis is organized as follows: Chapter 2 provides some background information related

to the projects. Chapter 3 focuses on volatile-by-default semantics that provides SC for

Java by default. It also covers how I implement it for HotSpot JVM and the measurement of

the performance of volatile-by-default on both X86 and ARM. Chapter 4 describes the

optimizations including a speculative compilation optimization I propose and develop to

reduce the cost of volatile-by-default on ARM and its evaluations. Chapter 5 talks about

my work to provide an SC enforcing Julia compiler and interesting finds from performance

evaluations. Chapter 6 discusses about related work. Chapter 7 concludes.
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CHAPTER 2

Background

In this chapter, I will give an overview on memory models and its relation with compil-

er/hardware optimizations, discuss in details about the memory models of Java and Julia,

and provide some information on the HotSpot JVM and the Julia compiler.

2.1 Memory Models and Compiler/Hardware Optimizations

A memory consistency model (or simply memory model) of a programming language defines

the possible values that a shared-memory read may return in that language. Different kinds

of memory models allow different kinds of reorderings of memory access. Stronger memory

models limit more memory reorderings, and thus provide stronger guarantees of the program

execution to the programs. Weaker (or relaxed) memory models allow more memory access

reorderings to admit more optimizations, but in turn expose the programmers to a more

complex and unintuitive semantics.

One of the most intuitive strong memory models is sequential consistency (SC) [Lam79].

It guarantees that all memory reads and writes agree on a global order, and the global order

is consistent with the per-thread program order. With SC, programmers can always view the

execution of their program as a sequential interleaving of the instructions from each thread.

Compiler optimizations that may reorder memory accesses such as common subexpression

elimination (CSE), code motion, and dead store elimination may violate SC. Hardware

optimizations like write buffers may also produce program executions that does not follow

SC. In order to achieve SC, both the hardware and the compiler will need to disable such

optimizations.
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2.1.1 The Java Memory Model

The Java memory model was defined more than a decade ago [MPA05] and attempts to strike

a practical balance among programmer understandability, implementation flexibility, and

program safety.

programmer understandability The JMM designers considered sequential consistency

to be “a simple interface” and “the model that is easiest to understand” [MPA05].

However, largely due to SC’s incompatibility with standard compiler and hardware

optimizations, the JMM adopts a weak memory model based on the DRF0 style [AH90],

whereby SC is only guaranteed for data-race-free programs. A memory race occurs when

two threads concurrently access the same memory location and at least one of those

accesses is a write. A program is considered to be data-race-free if all instance variables

that participate in a memory race are declared volatile.1 The JMM guarantees SC

semantics for volatile variables, which requires implementations to disable many

compiler optimizations and to emit fence instructions that prevent the hardware from

violating SC through out-of-order execution.

implementation flexibility The SC memory model does not allow instructions to appear

to be reordered. However, several important optimizations, for example out-of-order

execution in hardware and common subexpression elimination in compilers, have the

effect of instruction reordering. By guaranteeing SC only for data-race-free programs,

the JMM can admit most traditional optimizations.

program safety The JMM strives to ensure safety for all programs, even ones with data

races. The JMM’s notion of program safety is centered around the idea of preventing “out-

of-thin-air reads” [MPA05]. In the presence of data races, some compiler optimizations

can in principle lead to a situation whereby multiple program transformations justify

one another in a cycle. Such transformations can introduce values in the program that

would never otherwise occur, which creates a potentially serious security concern. The

1Local variables are thread-local and hence can never participate in a memory race.
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JMM prevents out-of-thin-air reads by defining a complex causality requirement on the

legal executions of incorrectly synchronized programs, which imposes some restrictions

on the optimizations that a compiler may perform [MPA05].2

Because the JMM guarantees SC for data-race-free programs, programmers “need only

worry about code transformations having an impact on their programs’ results if those

programs contain data races” [MPA05]. However, data races are both easy to introduce

and difficult to detect; it is as simple as forgetting to grab a lock, grabbing the wrong lock,

or omitting a necessary volatile annotation. Therefore in practice many programs are

exposed to the effects of compiler and/or hardware optimizations, which can cause a variety

of surprising behaviors and violate critical program invariants:

non-atomic primitives Writes to doubles and longs are not atomic under the JMM, but

rather are treated as two separate 32-bit writes. Therefore, in the presence of a data race

readers can see values that are a combination of two different writes. Understanding this

to be problematic, the Java Language Specification states that “implementations of the

Java Virtual Machine are encouraged to avoid splitting 64-bit values where possible.”3

partially-constructed objects Consider the following example, where one thread tries

to safely publish an object to another thread (assuming d and ready are respectively

initialized to null and false):

Thread 1 Thread 2

d = new Data(); if (ready)

ready = true; d.use();

Under the JMM, it is possible for the second thread to read the value true for ready

but incur a null pointer exception on the call d.use(). More perniciously, d may be

2The JMM’s causality is known to disallow some optimizations that it was intended to allow, notably
common subexpression elimination [CKS07, SA08]. Nonetheless, current Java virtual machines continue to
perform this optimization. While there is no evidence that today’s JVMs in fact admit out-of-thin-air reads,
this issue must be resolved to prevent the possibility in the future.

3https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html
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non-null at that point but its constructor may not yet have completed, so the object is

in an arbitrary state of partial construction when use is invoked.4

broken synchronization idioms The publication idiom above is one example of a custom

synchronization idiom that is not guaranteed to work as expected in the JMM in the

presence of data races. Other examples include double-checked locking [SH97] and

Dekker’s mutual exclusion algorithm.

2.1.2 Missing-annotation bugs

The misbehaviors above are instances of what I call missing-annotation bugs. In these

examples, the synchronization protocol intended by the programmer is correct and need not

be changed. Rather, the error is simply that the programmer has forgotten to annotate certain

variables as volatile. This omission allows compiler and hardware optimizations to violate

intended program invariants. Adding volatile annotations forces the Java implementation

to disable those optimizations and thereby restore the desired invariants. For example, a

double or long field that is declared volatile will have atomic reads and writes. Similarly,

declaring ready as volatile in my publication idiom above ensures that the second thread

will only ever see a fully constructed object.

Missing-annotation bugs are easy to make and hence it is not surprising that they

are common in Java applications. A quick search on the Apache Software Foundation’s

issue-tracking system found more than 100 issues where the fix required annotating a

field as volatile. I report the first twenty here: SOLR-13465, YARN-10185, SHIRO-

762, CASSANDRA-2490, HDFS-566, OAK-3638, YARN-8323, HDFS-4106, AMQ-6251,

ARTEMIS-1945, SPARK-4282, SLIDER-101, SPARK-3567, LOG4J2-247, POOL-11, HDFS-

1207, CASSANDRA-11984, AMQ-6495, APEXMALHAR-1887, OWB-529.5 These errors

occur in popular systems such as the Cassandra database, the HDFS distributed file system,

4Java does guarantee that the final fields of d will be properly initialized when use is invoked.

5Each bug contains the project name and the bug ID. Its details can be found at https://issues.apache.
org/jira/browse/<ProjectName>-<BugID>. The twenty issues listed here are returned by a search in the
issues tracker as of 05/12/2020.
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and the Spark system for big-data processing6 and can thereby impact the applications that

employ these systems.

Missing-annotation bugs contrast with data races that violate program invariants due to

the programmer’s failure to implement the necessary synchronization protocol. Examples of

the latter errors include atomicity violations that arise from failing to hold a lock or holding

the wrong lock, and ordering violations that arise when threads fail to signal one another

properly. Yet as Boehm et al. [Boe11] points out, missing-annotation bugs are far from

“benign” but rather can cause surprising and harmful behaviors. For instance, exposing a

partially constructed object, as shown above, can have serious security implications [TSM17].

2.1.3 The Julia Memory Model

The Julia programming language is a new and emerging dynamic language aims to provide the

flexibility of a dynamic language, while retaining good performance comparable to traditional

static languages. It is open-sourced and is under active development.

Recently, Julia announced the addition of composable multi-threaded parallelism in the

language [BNP]. It does not, however, provides a memory model, meaning that its memory

model is implicit in the optimizations that the compiler and hardware perform. As a result,

the actual behavior of its memory model is similar to that of the LLVM, which is inspired by

C++0x memory model and is weaker than SC.

As a result, many surprising behaviors and violations of critical program invariants

described above that can happen in Java also exist in Julia. For example, Figure 2.1 shows

an implementation of the Dekker’s mutual exclusion algorithm in Julia that is not guaranteed

to work as expected.

Assume we have two threads both want to enter a critical section. Before they enter the

critical section, they will call setAndRead() to signal their intent to enter the critical section

by setting the corresponding element in lockArr, and check if the other thread has done so

by checking the other element in lockArr. Under SC, the algorithm can work correctly, i.e.,

6Spark is implemented in Scala, which compiles to Java bytecode and inherits Java’s memory model.
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1 import Base . Threads . @spawn

2 import Pr in t f . @pr int f

3

4 lockArr = Int32 [ 0 ; 0 ]

5 waitArr = Int32 [−1; −1]

6

7 function setAndRead ( threadNo )

8 i f threadNo == 1

9 lockArr [ 1 ] = 1

10 waitArr [ 1 ] = lockArr [ 2 ]

11 else

12 lockArr [ 2 ] = 1

13 waitArr [ 2 ] = lockArr [ 1 ]

14 end

15 end

16

17 function t e s t ( )

18 g l oba l lockArr = [ 0 ; 0 ]

19 g l oba l waitArr = [−1;−1]

20 r1 = @spawn setAndRead (1 )

21 r2 = @spawn setAndRead (2 )

22 wait ( r1 )

23 wait ( r2 )

24

25 i f waitArr [ 1 ] == 0 && waitArr [ 2 ] == 0

26 # Both threads ente r c r i t i c a l s e c t i o n .

27 p r i n t l n ( "SC Vio l a t i on ! " )

28 return fa l se

29 end

30 end

Figure 2.1: An implementation of Dekker’s mutual exclusion algorithm in Julia which is not

guaranteed to work correctly
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we will never see both elements in waitArr to be 0. However, it is possible with the current

Julia runtime that test() returns 0, which means it would allow both threads to enter the

critical section.

2.2 The HotSpot Java Virtual Machine

The Oracle’s HotSpot JVM is an implementation of the Java Virtual Machine Specifica-

tion [Jav17]. It is widely used and part of the OpenJDK — the official reference implementa-

tion of Java SE. 7

To execute Java bytecode instructions, HotSpot employs just-in-time (JIT) compilation.

In this style, bytecodes are first executed in interpreter mode, with minimal optimizations.

During execution, HotSpot identifies parts of the code that are frequently executed (“hot

spots”) and compiles them to optimized native code for better performance.

The HotSpot JVM has one interpreter, but its behavior depends on the underlying

hardware platform being used. HotSpot includes two just-in-time compilers. The client

compiler, also called C1, is fast and performs relatively few optimizations. The server

compiler, also called C2 or opto, optimizes code more aggressively and is specially tuned for

the performance of typical server applications. I have been focusing on modifying the C2

compiler in my work.

2.2.1 The HotSpot JVM Interpreter

The HotSpot JVM uses a template-based interpreter for performance reasons. In this style

a TemplateTable maps each bytecode instruction to a template, which is a set of assembly

instructions (and hence platform-specific). The TemplateTable is used at JVM startup

time to create an interpreter in memory, whereby each bytecode is simply an index into the

TemplateTable.

7My work is based on OpenJDK 8u. All specific descriptions of any technical details in this thesis is based
on this version.
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Figure 2.2: Interpretation example of bytecode putfield

Figure 2.2 illustrates how the template-based interpreter works. The bytecode pointer

(BCP) is currently pointing at the bytecode putfield (181). The interpreter uses this

bytecode as an index in the TemplateTable (right side of the figure) to find the address of

the corresponding template. The interpreter then jumps to this address to begin executing

the template (left side of the figure). After writing to the field, the last four lines of the

template show how the interpreter reads the next BCP index, increments the BCP, and

jumps to the next code section. In this example, we add 3 to BCP (%r13) to point to the

next bytecode, because the length of the putfield instruction is 3 bytes: a 1-byte opcode

and a 2-byte index representing the field.

2.2.2 The HotSpot JVM Compiler

When the JVM identifies a “hot spot” in the code, it compiles that portion to native code. As

mentioned earlier, I have modified HotSpot’s high-performance server compiler, which consists

of several phases. First a hot spot’s bytecode instructions are translated into a high-level

graph-based intermediate representation (IR) called Ideal. The compiler performs several

local optimizations on Ideal-graph nodes as it creates them. It then performs more aggressive
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optimizations on the graph in a subsequent optimization phase. Next the optimized Ideal

graph is translated to a lower-level platform-specific IR, and finally machine code is generated

in the code generation phase. Optimizations are performed during each of these last two

phases as well.

2.3 The Julia Compiler

Like Java, Julia also has its runtime with JIT compilation. After the code has been loaded,

the Julia runtime will use simple heuristics to decide if the code needs to be interpreted by

its interpreter or be compiled by its compiler.

The Julia compiler is built using the LLVM toolchain [LA04]. LLVM is a compiler

infrastructure that can provide compiler writers easy access to a collection of industrial

strength compiler techniques. The Julia compiler can function as an LLVM front-end: if the

Julia code needs to be compiled, the compiler will first generate a Julia level IR and perform

some simple optimizations. After that, the Julia compiler will transform the Julia level IR

into an LLVM IR.

The LLVM execution engine will execute a sequence of different LLVM passes to analyze,

optimize, and generate the native instructions to execute. The subset of passes and the

ordering of how they are executed are specified by the Julia compiler. Julia also implements

their own LLVM passes and include them in the pass pipeline.
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CHAPTER 3

volatile-by-default JVMs for Server Applications

3.1 Introduction

A memory consistency model (or simply memory model) defines the possible values that

a shared-memory read may return and thus plays a central role in the semantics of a

multithreaded programming language. Choosing a memory model for a language involves

an inherent performance-programmability trade-off. sequential consistency (SC) [Lam79]

provides an intuitive programming model by ensuring that a program’s instructions (appear

to) execute in a global total order consistent with the per-thread program order. But achieving

SC requires the compiler to disable some common optimizations, and on current hardware

platforms it further requires the compiler to restrict hardware optimizations by emitting

expensive fence instructions on shared-memory accesses.

To avoid this cost, the Java language [MPA05] has adopted a relaxed (or weak) memory

model that is designed to admit most traditional compiler optimizations and obviate the need

for hardware fences on most shared-memory accesses. The Java Memory Model (JMM) is

based on the DRF0 style [AH90], whereby SC is only guaranteed for data-race-free programs.

A program is considered to be data-race-free if all instance variables that participate in a

memory race are declared volatile.1 The JMM guarantees SC semantics for volatile

variables, which requires implementations to disable many compiler optimizations and to

emit fence instructions that prevent the hardware from violating SC through out-of-order

execution.

The downside, however, is that programmers must carefully declare certain variables as

1Local variables are thread-local and hence can never participate in a memory race.
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volatile in order to enforce the per-thread program orderings that are required for proper

behavior. If a programmer does not annotate the necessary variables as volatile, programs

are exposed to the relaxed semantics of the JMM, which is complex, unintuitive, and can

violate critical program invariants. For example, under the JMM an object can be accessed

before its constructor has completed, accesses to longs and doubles are not guaranteed to

be atomic, and some programming idioms, such as double-checked locking [SH97, BBB17],

are not guaranteed to behave correctly. This possibility is not just theoretical: errors due to

the failure to annotate certain variables as volatile, which I term missing-annotation bugs,

can be found across a range of widely used Java applications.

This performance-by-default approach to memory models is acceptable for and consistent

with the design philosophy of languages like C and C++ [BA08]. However, I argue that such

an approach conflicts with the design philosophy of “safe” languages like Java. Indeed, when

it comes to type and memory safety, Java instead employs a safe-by-default and performance-

by-choice approach: type and memory safety are provided by default, but there is a library

of type-unsafe operations meant for use by expert programmers in performance-critical

code [MPM15].

In the same vein, I propose a safe-by-default and performance-by-choice approach to

enforcing per-thread program order in Java. This approach involves a conceptually simple

change to the memory model: every variable has volatile semantics by default, but the

language allows a programmer to tag certain classes, methods, or variables as relaxed and

provides the current JMM semantics for these portions of code. This volatile-by-default

semantics provides a natural form of sequential consistency for Java by default, at the

bytecode level: bytecode instructions (appear to) execute atomically and in program order.

This also implies that all Java primitive values, including (64-bit) doubles and longs, are

atomic irrespective of the bit-width of the underlying architecture. At the same time, expert

programmers retain the freedom to build performance-critical libraries that violate this

semantics, and they are responsible for protecting clients from any weak behaviors that can

result.
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volatile-by-default JVMs for X86 and ARM At the outset, it is unclear if the

volatile-by-default semantics is practical for Java, given the cost of memory fences on today’s

hardware platforms. One should deem the volatile-by-default approach as unacceptable if

the only way to make programs reasonably efficient is to declare large portions as relaxed.

In fact, current conventional wisdom about the cost of these fences and the associated

cost of providing SC to the programmer strongly points against the volatile-by-default

approach. For instance, Kaiser et al. (2017) say that SC is “woefully unrealistic” due to “the

significant performance costs ... on modern multi-core architectures” [KDD17] and Demange

et al. (2013) say that “SC would likely cripple performance of Java programs on all modern

microprocessors.” [DLZ13] I first demonstrate, through comprehensive empirical evaluation,

that the volatile-by-default semantics is in fact acceptable for a predominant use case for

Java today — server-side Java applications running on Intel X86 architectures. I then show

that on another widely used hardware platform today, ARM, where both reads and writes

can be reordered by hardware [FGP16], volatile-by-default semantics also has a much lower

overhead than people have expected.

The straightforward way to implement the volatile-by-default semantics is through a

source-to-source translation that adds the appropriate volatile annotations. The advantage

of this approach is that it is independent of the JVM, allowing us to evaluate the cost of

volatile-by-default semantics on various JVMs and hardware architectures. Unfortunately,

neither Java nor the Java bytecode language provides a mechanism to declare array elements

as volatile. Thus, such an approach fails to provide the desired semantics. I considered

performing a larger-scale source-to-source rewrite on array accesses, but it would be difficult

to separate the cost of this rewrite from the measured overheads. Finally, once I settled

on changing an existing JVM implementation, I considered doing so in a research virtual

machine [AAB05]. But it was not clear how the empirical observations from such a JVM

would translate to a production JVM implementation.

Therefore I implemented the volatile-by-default semantics by directly modifying Oracle’s

HotSpot JVM which is part of the OpenJDK version 8u [Ope17]. I call my modified version for

X86 and ARM VBD-HotSpot and VBDA-HotSpot respectively. To the best of my knowledge,
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they are the first implementations of SC for a production Java virtual machine (JVM)

that includes the state-of-the-art implementation technology, such as dynamic class loading

and just-in-time (JIT) compilation. This in turn enables me to provide the first credible

experimental comparison between SC and the JMM. This is also the first comprehensive

study of the cost of providing SC for any language on ARM.

I implemented VBD-HotSpot and VBDA-HotSpot by reusing mechanisms already in

place for handling volatile variables in the interpreter and compiler. This provides me

two advantages. First and foremost, the correctness of VBD-HotSpot mostly follows from

the correctness of the HotSpot JVM’s implementation of volatile semantics. Second, I

automatically obtain the benefits of optimizations that HotSpot already employs to reduce

the overhead of volatile accesses. VBD-HotSpot is open-source and available for download

at https://github.com/SC-HotSpot/VBD-HotSpot. VBDA-HotSpot is also open-sourced

and can be found at https://github.com/Lun-Liu/schotspot-aarch64.

Results For the DaCapo benchmarks [BGH06] on a modern X86 server, with no relaxed

annotations, the overhead of VBD-HotSpot versus the unmodified HotSpot JVM is 28% on

average, with a maximum of 81%. Given that VBD-HotSpot potentially inserts a fence on

every heap store, I believe that this overhead is less than commonly assumed. My experiments

show that the benchmarks that incur the highest overheads are either single-threaded or

mostly-single-threaded. Excluding these benchmarks reduces the average overhead to 21%.

Experiments on my baseline implementation for ARM, VBDA-HotSpot, show that the

volatile-by-default semantics incurs a considerable performance penalty on ARM, as ex-

pected. However, I observe that the performance overhead crucially depends on the specific

fences used to implement the volatile semantics. With the default fences that HotSpot

employs to implement volatile loads and stores on ARM, VBDA-HotSpot incurs average

and maximum overheads of 195% and 429% (!) on the DaCapo benchmarks for a modern

8-core ARM server. But employing an alternative choice of ARM fences reduces the average

and maximum overheads on that machine respectively to 73% and 129%. I also find similar

results on a 96-core ARM server, with VBDA-HotSpot incurring an average and maximum
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overhead of 57% and 157% with the alternative fences.

Another common assumption is that the cost of SC increases with the number of processor

cores and sockets. For instance, a fence on x86 stalls the processor until it has received read

invalidations from all processors that have a shared copy of addresses in its pending store

buffer. One expects these stalls to be longer when there are more threads in the program,

and when it is running across a larger number cores and sockets. However, my evaluation

shows that this assumption is not true, at least in my experimental setting. The overhead

of SC improves with increased concurrency and with the number of sockets; apparently the

increased cost of fences is compensated by the increased cost of regular memory accesses.

3.2 volatile-by-default Semantics for Java

Under the JMM, the onus is on programmers to employ the volatile annotation everywhere

that is necessary to protect the program from compiler and hardware optimizations that

can reorder instructions. By doing so, the JMM can allow most compiler and hardware

optimizations. I argue that this performance-by-default approach is not consistent with Java’s

design philosophy as a “safe” programming language. Instead I advocate a safe-by-default

and performance-by-choice approach to Java’s concurrency semantics.

To that end, I propose the volatile-by-default semantics for Java, which makes one

conceptually simple change: all instance variables are treated as if they were declared

volatile. In this way, missing-annotation bugs cannot occur and all Java programs are

guaranteed SC semantics by default. With this change, the volatile annotation becomes

semantically a no-op. Instead, I introduce a relaxed annotation that allows a programmer

to tag variables, methods, or classes that should employ the current JMM semantics. Expert

programmers can use this annotation in performance-critical code to explicitly trade off

program guarantees for increased performance.

Precisely defining the SC semantics requires one to specify the granularity of thread

interleaving, which has been identified as a weakness of the SC memory model [AB10].

The volatile-by-default semantics does this in a natural way by providing SC at the

18



bytecode level: bytecode instructions (appear to) execute atomically and in program order.

This also implies that all Java primitive values, including (64-bit) doubles and longs, are

atomic irrespective of the bit-width of the underlying architecture. The volatile-by-default

semantics provides a clean way for programmers to understand the possible behaviors of their

concurrent programs, provided they understand how Java statements (such as increments)

are translated to bytecode.

Of course, “safety” is in the eye of the beholder, and there are many possible definitions. I

argue that the volatile-by-default semantics is a natural baseline guarantee that a “safe”

language should provide for all programs. The volatile-by-default memory model clearly

satisfies the JMM’s desired programmability and safety goals. In terms of programmability,

volatile-by-default is strictly stronger than the JMM, so all program guarantees provided

by the JMM are also provided by volatile-by-default. In terms of safety, the volatile-by-

default semantics prevents all cyclic dependencies and hence rules out the particular class of

such cycles that can cause out-of-thin-air reads. Moreover, volatile-by-default eliminates

all missing-annotation bugs.

Further, the volatile-by-default semantics provides a more general notion of safety by

protecting several fundamental program abstractions [MMM15]. First, all primitives are

accessed atomically. Second, sequential reasoning is valid for all programs. This ensures, for

example, that an object cannot be accessed until it is fully constructed (unless the program

explicitly leaks this during construction), and more generally that program invariants that

rely on program order are guaranteed regardless of whether the program has data races.

Finally, I note that though the volatile keyword is semantically a no-op in the volatile-

by-default semantics, it is still useful as a means for programmers to document their intention

to use a particular variable for synchronization. Indeed, volatile annotations can make the

code easier to understand and can be used by tools to identify potential concurrency errors.

However, under the volatile-by-default semantics, and in sharp contrast to the JMM, an

accidental omission or misapplication of volatile annotations will never change program

behavior.
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3.3 volatile-by-default JVMs for X86 and ARM

The straightforward way to implement the volatile-by-default semantics is through a

source-to-source translation that adds the appropriate volatile annotations. The advantage

of this approach is that it is independent of the JVM, allowing us to evaluate the cost of

volatile-by-default semantics on various JVMs and hardware architectures. Unfortunately,

neither Java nor the Java bytecode language provides a mechanism to declare array elements

as volatile. Thus, such an approach fails to provide the desired semantics. I considered

performing a larger-scale source-to-source rewrite on array accesses, but it would be difficult

to separate the cost of this rewrite from the measured overheads. Finally, once I settled

on changing an existing JVM implementation, I considered doing so in a research virtual

machine [AAB05]. But it was not clear how the empirical observations from such a JVM

would translate to a production JVM implementation.

Therefore, I opted to instead implement the volatile-by-default semantics through a

direct modification to the Java virtual machine, which executes Java bytecode instructions. I

chose to modify Oracle’s HotSpot JVM, which is widely used and part of the OpenJDK — the

official reference implementation of Java SE. In particular I modified the version of HotSpot

that is part of the OpenJDK 8u for both X86 and ARM. The modified version for X86,

called VBD-HotSpot, adds a flag -XX:+VBD that allows users to obtain volatile-by-default

semantics. The ARM version, VBDA-HotSpot, has a similar flag -XX:+SC.

As mentioned in Section 2.2, to execute Java bytecode instructions, HotSpot employs

just-in-time (JIT) compilation. In this style, bytecodes are first executed in interpreter mode,

with minimal optimizations. During execution, HotSpot identifies parts of the code that

are frequently executed (“hot spots”) and compiles them to optimized native code for better

performance.

The HotSpot JVM has one interpreter and two just-in-time compilers. I have implemented

the volatile-by-default semantics for Java server applications, which are a dominant use

case in practice. Accordingly I have modified the HotSpot interpreter as well as the HotSpot

server compiler. I have implemented volatile-by-default semantics for both X86 and ARM,
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the two most common hardware architectures nowadays.

I implemented VBD-HotSpot and VBDA-HotSpot by reusing mechanisms already in

place for handling volatile variables in the interpreter and compiler.

3.3.1 volatile-by-default Interpreter

Since the interpreter is platform-specific, different fence instructions are used for VBD-HotSpot

and VBDA-HotSpot. I will first talk about how I make the interpreter volatile-by-default

on X86, and then present my modifications to the interpreter on ARM.

Figure 2.2 shows how the HotSpot JVM handles accesses to volatile variables on

X86. The SC semantics for volatile accesses is achieved by inserting the appropriate

platform-specific fences before/after such accesses. In the case of X86, which has the relatively

strong total store order (TSO) semantics [OSS09], a volatile read requires no fences and a

volatile write requires only a subsequent StoreLoad barrier, which ensures that the write

commits before any later reads [JSR18]. In the figure, %edx is already loaded with the field

attribute for volatile. Instruction (1) tests if the field is declared volatile. If so, the lock

instruction (2) will be executed, which acts as a StoreLoad barrier on X86; otherwise the

lock instruction is skipped.

To implement my volatile-by-default semantics for X86, I therefore modified the template

for putfield to unconditionally execute the lock instruction. This is done by removing

instruction (1) and the following jump instruction je. I also added the lock instruction to

the templates for the various bytecode instructions that perform array writes (e.g., aastore

for storing objects into arrays, bastore for storing booleans into arrays, etc.).

I manually inspected the template instructions for the interpreter’s implementation of

all bytecodes that read from or write to memory: getfield, putfield, fast_xgetfield,

fast_xputfield, and fast_xaccess. The latter three bytecodes are used internally by the

HotSpot JVM as special, more efficient versions of getfield and putfield. The template

code for each bytecode checks the volatile attribute of the given field and adds the necessary

fences if the attribute is set. In VBD-HotSpot, I elide the check of the volatile attributes

21



and always adds the necessary fences.

Inserting memory-barrier instructions ensures that the hardware respects SC, but it

does not prevent the interpreter itself from performing optimizations that can violate SC.

The interpreter performs optimizations through a form of bytecode rewriting, including

rewriting bytecodes to new ones that are not part of the standard Java bytecode language.

For example, on encountering a putfield bytecode and resolving the field to which it refers,

the interpreter rewrites the bytecode into a “fast” version (fast_aputfield if the field is

an Object, fast_bputfield if the field is a boolean, etc.) The next time the interpreter

executes the enclosing method, it will execute the faster version of the bytecode, avoiding the

need to resolve the field again.

I manually inspected all of the interpreter’s bytecode-rewriting optimizations and found

that they never reorder the memory accesses of the original bytecode program. In other

words, the interpreter does not perform optimizations that violate SC. However, to ensure SC

semantics I had to modify the templates for all of the fast_*putfield bytecodes in order to

unconditionally execute the lock instruction, as shown earlier for putfield.

Finally, the interpreter treats a small number of common and/or special methods, for

example math routines from java.lang.Math, as intrinsic: the interpreter has custom

assembly code for them. However, I examined the X86 implementations of these intrinsics

and found that none of them contain writes to shared memory, so they already preserve SC.

Similar to X86, for ARM, I manually inspected the template instructions in the ARM

interpreter for the bytecodes that read from or write to memory, such as getfield and

putfield. The template code for each bytecode checks the volatile attribute of the

given field and adds the necessary fences if the attribute is set. In VBDA-HotSpot, I have

modified this template code to unconditionally add the necessary fences, thereby treating all

memory reads and writes as volatile. Interestingly, the template code for getfield already

unconditionally adds the necessary fences without checking the volatile attribute of the field,

so it did not require any modification. I also treat accesses to array elements as volatile

by inserting the appropriate fences in the template code for the corresponding bytecodes,
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such as aaload and aastore. Additionally, I examined and modified bytecode-rewriting

optimizations and intrinsics in the interpreter in VBDA-HotSpot the same way I treated

VBD-HotSpot.

To implement the semantics of volatile on ARM, the interpreter must insert a load-load

and load-store barrier after a volatile load, providing acquire semantics for the load; a store-

store barrier and a load-store barrier before a volatile write, providing release semantics

for the write; and a store-load barrier after a volatile write. The interpreter uses ARM’s

dmb (data memory barrier) instruction for this purpose. In particular, it needs a dmb ishld

instruction to enforce acquire semantics after a load, dmb ish to enforce release semantics

before a store, and dmb ish to enforce store-load dependencies after a store.

However, the baseline HotSpot JVM has a bug of inserting an overly weak barrier before

volatile writes in the interpreter. Specifically it inserts a dmb ishst instruction, which

performs a store-store barrier but not also a load-store barrier; obtaining both barriers instead

requires a dmb ish instruction.2 I have fixed this bug and use the fixed version of the baseline

HotSpot JVM in all of our experiments. Interestingly, the use of dmb ishst before writes

suffices for VBDA-HotSpot, because the preceding memory operation must end in a dmb ish

(for stores) or a dmb ishld (for loads), both of which act as load-store barriers.

3.3.2 volatile-by-default Compiler

When the JVM identifies a “hot spot” in the code, it compiles that portion to native code. As

mentioned earlier, I have modified HotSpot’s high-performance server compiler, which consists

of several phases. First a hot spot’s bytecode instructions are translated into a high-level

graph-based intermediate representation (IR) called Ideal. The compiler performs several

local optimizations on Ideal-graph nodes as it creates them. It then performs more aggressive

optimizations on the graph in a subsequent optimization phase. Next the optimized Ideal

graph is translated to a lower-level platform-specific IR, and finally machine code is generated

2This bug has been confirmed and fixed by the developers: http://hg.openjdk.java.net/jdk/jdk/rev/
e2fc434b410a
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in the code generation phase. Optimizations are performed during each of these last two

phases as well.

Figure 3.1: Ideal graph sections for volatile loads (left) and stores (right).

At the Ideal graph level, the semantics of volatile is implemented by three kinds of

memory-barrier nodes, each of which represents a specific combination of the four basic

memory barriers: LoadLoad, LoadStore, StoreLoad, and StoreStore. Figure 3.1 shows snippets

of the Ideal graph for volatile loads and stores. Each volatile load is followed by a

MemBarAcquire node, which enforces “acquire” semantics: subsequent instructions (both load

and store) cannot be reordered before the barrier node. Each volatile store is preceded

by a MemBarRelease node, which enforces “release” semantics: prior instructions cannot be

reordered after the barrier node. Each volatile store is also followed by a MemBarVolatile

node, which prevents subsequent volatile memory accesses from being reordered before the

barrier node.3

The memory-barrier nodes in the Ideal graph are translated to their counterparts in the

3On the POWER processor [MMS12], which is not multi-copy atomic, a MemBarVolatile also precedes
each volatile load, but this is not necessary for X86.
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lower-level IR. When generating machine code, they are finally translated into the appropriate

assembly instructions. On X86 both the MemBarAcquire and MemBarRelease nodes become

no-ops, since TSO already enforces those instruction orders. On ARM, MemBarAcquire

becomes a dmb ish ld, and both MemBarRelease and MemBarVolatile become dmb ish.

However, it is critical to keep these memory-barrier nodes in the code until the point of code

generation, in order to prevent the compiler from performing optimizations that violate their

semantics.

Given this structure, I chose to implement the volatile-by-default semantics by modifying

the phase that creates the Ideal graph. Specifically, I modified that phase to emit the

appropriate memory-barrier nodes around all loads and stores, rather than only volatile

ones. As in the interpreter, this was done both for accesses to instance variables and to array

elements.

An additional complication is that the server compiler treats many methods as intrinsic,

providing a custom Ideal graph for each one. I carefully examined the implementation and doc-

umentation of these intrinsics to ensure volatile-by-default semantics. First, some intrinsics,

for example math routines from java.lang.Math, only access local variables and hence need

not be modified. Second, I added appropriate memory-barrier nodes in the implementations

of many intrinsics that perform memory loads and/or stores. For example, getObject from

sun.misc.Unsafe loads an instance variable or array element directly by offset. I modified its

Ideal-graph implementation to include a subsequent MemBarAcquire node, as is already done

for the getObjectVolatile intrinsic from the same class. Finally, for some intrinsics, specif-

ically certain string operations, I simply set the flag -XX:-OptimizeStringConcat, which

causes the methods to be compiled normally instead of using the intrinsic implementations.

Modifying the compiler at this early stage ensures that I need not worry about the

potential for any downstream compiler optimizations to violate SC, since those optimizations

already respect the semantics of memory-barrier nodes. This holds true even for the local

optimizations that are performed during Ideal-graph construction. For example, the local

optimizations on a Store node, such as redundant store elimination, already take into account

the presence of any preceding memory-barrier nodes, which is necessary to avoid violating
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the semantics of volatile stores. The ideal graph is also platform independent, I then rely

on the X86 and aarch64 backend to compile the memory-barrier nodes appropriately.

3.3.3 Optimizations

Another important benefit of implementing the volatile-by-default semantics in the Ideal

graph is that it allows us to take advantage of the optimizations that the server compiler

already performs on memory-barrier nodes at different phases in the compilation process.

For example, the compiler performs an optimization to remove redundant memory-barrier

instructions. In this way, the optimizations that the server compiler already performs to

optimize volatile accesses are automatically used to lower the cost of SC semantics.

I also added an optimization to the compiler that removes memory barriers for accesses

to objects that do not escape the current thread. The HotSpot JVM already performs an

escape analysis, which I simply reuse. In fact, earlier versions of the HotSpot JVM performed

this optimization for a subset of non-escaping objects called scalar-replaceable objects, but

it seems to have been accidentally removed in version 8u: the code for the optimization is

still there but it was modified such that it never actually removes any memory barriers. I

updated this code to properly remove MemBarAcquire and MemBarVolatile nodes for all

non-escaping objects.4

Finally, the HotSpot JVM inserts a MemBarRelease node at the end of a constructor if

the object being constructed has at least one final field, in order to ensure that clients

only see the initialized values of such fields after construction. In VBD-HotSpot, this

MemBarRelease node is unnecessary, because each individual field write in the constructor is

already surrounded by appropriate memory-barrier nodes. Therefore, VBD-HotSpot does

not insert memory barriers after constructors.

4Removing MemBarRelease nodes is trickier to implement, so I have not done it though it would be safe
to do.
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3.3.4 Correctness

My main implementation technique, in both the VBD-HotSpot and VBDA-HotSpot inter-

preter and compiler, is to simply reuse the existing mechanisms for handling accesses to

volatile variables. Therefore, the correctness of VBD-HotSpot and VBDA-HotSpot largely

hinges on the correctness of those existing mechanisms, which have been in wide use as well as

refined and debugged over more than a decade. I also validated VBD-HotSpot’s correctness

in several ways. First, I added a VBDVerify phase in the server compiler after the creation

of the Ideal graph, which traverses the Ideal graph to check that all loads and stores are

surrounded by appropriate memory-barrier nodes. Second, I created a suite of several litmus

tests that sometimes exhibit non-SC behavior under the unmodified HotSpot JVM, such as a

version of Dekker’s mutual exclusion algorithm. I have run these litmus tests many times on

the VBD-HotSpot and VBDA-HotSpot compiler and they have never exhibited a non-SC

behavior, which helps lend confidence in my implementation.

3.3.5 volatile-by-default for Java and Scala

Finally, I note that VBD-HotSpot ensures volatile-by-default semantics for Java bytecode,

but that does not immediately provide a guarantee in terms of the original Java source

program. However, I have manually examined the widely used javac compiler that is part

of the OpenJDK, which compiles Java source to bytecode, and ensured that it performs

no optimizations that have the effect of reordering memory accesses. Hence compiling a

Java program with javac and executing the resulting bytecode with VBD-HotSpot provides

volatile-by-default semantics for the original program. I also examined the scalac compiler

that compiles Scala source to Java bytecode5 and found no optimizations that reorder memory

accesses, so the same guarantees hold for Scala programs running on VBD-HotSpot.

5http://www.scala-lang.org/download
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3.4 Performance Evaluation of volatile-by-default

3.4.1 Performance Evaluation of VBD-HotSpot

In this section I describe my experiments that provide insight into the performance cost

of SC for JVM-based server applications on X86, which are a dominant use case today. I

compared the performance of VBD-HotSpot to that of the original HotSpot JVM on several

benchmark suites.

3.4.1.1 DaCapo Benchmarks

The DaCapo benchmarks suite is a set of open-source Java applications that is widely used

to evaluate Java performance and represents a range of application domains [BGH06]. I used

the DaCapo 9.12 distribution. I excluded five of the benchmarks: batik and eclipse are not

compatible with Java 8; tradebeans and tradesoap fail periodically, apparently due to an

incompatibility with the -XX:-TieredCompilation flag6, which VBD-HotSpot employs (see

below); and lusearch has a known concurrency error that causes it to crash periodically.7

I ran the DaCapo benchmarks on my server machine and used the default workload and

thread number for each benchmark. I used an existing methodology for Java performance

evaluation [GBE07]. For each JVM invocation, I ran each benchmark for 20 iterations, with

the first 15 being the warm-up iterations, and I calculated the average running time of the

last five iterations. I ran a total of 10 JVM invocations for each test and calculated the

average of the 10 averages.

6https://bugs.openjdk.java.net/browse/JDK-8067708

7Interestingly, I observed the crash when executed on the original JVM but never on VBD-HotSpot,
though I cannot be sure that the bug will never manifest under SC.
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Figure 3.2: Execution time in milliseconds of VBD-HotSpot on the DaCapo bench-

marks. “original JVM” means running the baseline HotSpot JVM without addi-

tional flags; “-XX:-TieredCompilation” means running the baseline HotSpot JVM with

-XX:-TieredCompilation; “VBD-HotSpot” shows results of running VBD-HotSpot.

Figure 3.3: Relative execution time of VBD-HotSpot on the DaCapo benchmarks
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Figures 3.2 and 3.3 respectively show the absolute and relative execution times of VBD-

HotSpot versus the baseline HotSpot JVM. By default the HotSpot JVM uses tiered com-

pilation, which employs both the client and server compilers. Since I only modified the

server compiler, VBD-HotSpot employs the -XX:-TieredCompilation flag to turn off tiered

compilation and employ only the server compiler. Therefore I also present the results for

running the original HotSpot JVM with this flag.

The geometric mean of all relative execution times represents a slowdown of 28% versus the

original JVM, and the maximum slowdown across all benchmarks is 81%. The results indicate

that SC incurs a significant cost on today’s JVM and hardware technology, though perhaps

less than is commonly assumed. The -XX:-TieredCompilation baseline is slightly slower

than the default configuration for all but one benchmark (jython), which has a significant

speedup. Because of jython’s speedup, the geometric mean of the overhead of VBD-HotSpot

increases by 2%. However, the maximum overhead for any benchmark decreases by 3%. In

the rest of my experiments I present results relative to the default configuration of HotSpot,

with tiered compilation enabled.

Interestingly, the three benchmarks that are mostly single-threaded incur some of the

highest overheads. Specifically, fop is single-threaded, most of the tests for the jython

benchmark are single-threaded, and luindex is single-threaded except for a limited use of

helper threads that exhibit limited concurrency; all other benchmarks are multithreaded.8

Ignoring the three benchmarks that are largely single-threaded, the geometric mean of VBD-

HotSpot’s relative execution time versus the original JVM is only 1.21 (i.e., a 21% slowdown)

with a maximum overhead of 44%.

I conjecture that this difference in the cost of VBD-HotSpot for single-threaded and

multithreaded programs is due to the fact that multithreaded programs already must use

synchronization in order to ensure desired program invariants and prevent data races. Hence

the overhead of such synchronization might mask the cost of additional fences and also allow

some of VBD-HotSpot’s inserted fences to be safely removed by HotSpot’s optimizations. On

8http://dacapobench.org/threads.html
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the other hand, for single-threaded programs every fence I add incurs additional overhead.

Of course, if the programmer is aware that her program is single threaded (or has limited

concurrency such that it is obviously data-race-free), then she can safely run on the unmodified

JVM and still obtain volatile-by-default semantics. Programmers can choose to do that in

VBD-HotSpot simply by not setting the -XX:+VBD flag.

3.4.1.2 Spark Benchmarks

Big-data analytics and machine learning are two common and increasingly popular server-

side application domains. To understand the performance cost of the volatile-by-default

semantics for these domains, I evaluated VBD-HotSpot on two benchmark suites for Apache

Spark [ZXW16], a widely used framework for data processing. Specifically, I employ two

sets of Spark benchmarks provided by Databricks as part of the spark-perf repository9:

spark-tests includes several big-data analytics applications, and mllib-tests employs

Spark’s MLlib library [MBY15] to perform a variety of machine-learning tasks. These

experiments also illustrate how VBD-HotSpot can extend the volatile-by-default semantics

to languages other than Java that compile to the Java bytecode language, since Spark is

implemented in Scala.

I ran Spark in standalone mode on a single machine: the driver and executors all run

locally as separate processes that communicate through specific ports. Since running Spark

locally reduces the latency of such communication versus running Spark on a cluster, this

experimental setup allows us to understand the worst-case cost of the volatile-by-default

semantics. In my experiments, the executor memory is 4GB and the driver memory is 1GB.

The spark-perf framework runs each benchmark multiple times and calculates the median

execution time. Similar to the DaCapo tests, I ran spark-perf framework for 10 invocations

and calculated the average of the median execution time.

9The original repository is at https://github.com/databricks/spark-perf; I used an updated version
that is compatible with Apache Spark 2.0 at https://github.com/a-roberts/spark-perf.
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Figure 3.4: Median execution time in seconds for spark-tests

Figure 3.5: Relative execution time of VBD-HotSpot over the baseline JVM for spark-tests

Figure 3.4 shows the median execution times for the eight spark-tests benchmarks when

run on the original HotSpot JVM as well as on VBD-HotSpot, with 95% confidence intervals.
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Figure 3.5 shows the same results but as a relative execution time of VBD-HotSpot over

the baseline HotSpot JVM. The geometric mean of the overhead of VBD-HotSpot is 79%,

which is significantly higher than the average overhead of VBD-HotSpot on the Da Capo

benchmarks. I surmise that the large overhead for Spark benchmarks is due Spark’s use of

the resilient distributed dataset (RDD) abstraction, which is an in-memory, immutable data

structure. Each Spark operation potentially incurs many memory operations in order to read

its input RDDs and write its output RDDs.

Figures 3.6 through 3.9 show the results for the mllib benchmarks.10

Figure 3.6: Average of 10 median execution times in seconds with 95% confidence intervals

for mllib-tests (part 1 of 4)

10Note that several benchmarks use the same application code but with different arguments. Also note
that the y-axis of Figure 3.6 has a different scale than that of the other figures, due to the longer execution
times of its benchmarks.
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Figure 3.7: Average of 10 median execution times in seconds with 95% confidence intervals

for mllib-tests (part 2 of 4)

Figure 3.8: Average of 10 median execution times in seconds with 95% confidence intervals

for mllib-tests (part 3 of 4)
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Figure 3.9: Average of 10 median execution times in seconds with 95% confidence intervals

for mllib-tests (part 4 of 4)

Figure 3.10 shows these results in a histogram. I excluded four benchmarks that failed

on the original JVM (als, kmeans, gmm, and pic). The geometric mean of VBD-HotSpot’s

relative execution time is 1.67, or a 67% slowdown. These results are consistent with those

for the spark-tests benchmarks shown above.
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Figure 3.10: Histogram and cumulative % of relative execution time for mllib-tests

3.4.1.3 Scalability Experiments

I performed two experiments to understand how the cost of the volatile-by-default semantics

changes with the number of threads/cores available. My server machine has six physical

cores per socket and two sockets, for a total of 12 physical cores. Further, the server has

hyperthreading, which provides two logical cores per physical one, for a total of 24 logical

cores. I were interested to understand how the cost of VBD-HotSpot would change with

increased concurrency in general, as well as the cost difference on cores within one socket

versus cores across multiple sockets.

For these experiments I used the -t option in DaCapo to set the number of driver threads

for each test and Linux’s taskset command to pin execution to certain cores. The -t

option in DaCapo does not apply to the three largely single-threaded benchmarks that were

mentioned in Section 3.4.1.1. It also does not apply to avrora and pmd — though these

benchmarks use multithreading internally, they always use a single driver thread. Therefore

my experiments only employed the remaining four DaCapo benchmarks.

First I tested the overhead of the four benchmarks with 1, 3, 6, 9, 12, and 24 driver
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Figure 3.11: Relative cost of VBD-HotSpot with different numbers of threads/cores

threads. For the experiment with N driver threads I pin the execution to run on cores 0

through N − 1, where cores 0-5 are different physical cores on one socket, cores 6-11 are

different physical cores on the other socket, and cores 12-23 are the logical cores enabled by

hyperthreading.

The results of my experiment are shown in Figure 3.11. The y-axis shows the relative

execution time of running on VBD-HotSpot versus the baseline HotSpot JVM on each

benchmark, and the x-axis provides this result for differing numbers of driver threads.

Figure 3.12 provides the results in a different way, showing the absolute execution times in

milliseconds with different numbers of driver threads. As the number of driver threads/cores

increases from 1 to 12, there is a trend of improved performance for VBD-HotSpot relative

to the original HotSpot JVM. The relative execution time then is flat or decreases modestly

at 24 driver threads. These results belie a common assumption that SC performance suffers

with increased concurrency. They also accord with an experiment by a previous work [Boe12]

showing that a lock-based version of a particular parallel algorithm scales better than a

version with no synchronization.

37



Figure 3.12: Scalability graph with different numbers of threads/cores

Second, I performed an experiment to specifically understand the performance difference

for VBD-HotSpot when running on cores within the same socket versus on cores across

sockets. I ran the DaCapo benchmarks with 6 driver threads in two different configurations:

one using cores 0-5, which are all on the same socket, and one using cores 0-2 and 6-8, so

that I have two sockets and three cores per socket.

Figure 3.13 shows the relative execution times for each configuration on VBD-HotSpot

versus that same configuration executed on the original HotSpot JVM. The overhead of

VBD-HotSpot in the multiple-sockets configuration is uniformly lower than that in the

single-socket configuration, sometimes significantly so. This is an interesting result because

in my experience SC is assumed to be more expensive cross-socket, due to the increased

overhead of fences. However, it appears that the cross-socket configuration slows the rest of

the execution down to a greater degree, thereby offsetting the additional cost of fences.
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Figure 3.13: Cost of VBD-HotSpot within socket and cross-socket

3.4.1.4 Relaxed Execution

I also performed experiments to gauge the potential for judicious usage of relaxed annotations

to improve the performance of VBD-HotSpot. I profiled four of the five Da Capo benchmarks

that incur the most overhead for VBD-HotSpot11 to determine the methods in which each

benchmark spends the most execution time. Figure 3.14 shows how the overheads of these

benchmarks are reduced when the top k methods in terms of execution time are annotated

as relaxed, for k ranging from 0 to 20. Declaring a method to be relaxed causes the

method to be compiled exactly as in the original HotSpot JVM, so memory-barrier nodes

are only inserted for accesses to variables that are explicitly declared volatile. Note that

the interpreter still executes these methods with volatile-by-default semantics, and any

methods called by these methods are both interpreted and compiled with volatile-by-default

semantics.

The figure shows that annotating the top 20 or fewer methods as relaxed provides a

11I were not able to perform this experiment for tomcat as my profiler crashes when running this benchmark.
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Figure 3.14: Cost of VBD-HotSpot with relaxed methods

large reduction in the overhead of VBD-HotSpot. One benchmark have particularly dramatic

reductions in overhead: luindex reduces from 1.82 to 1.17. Many of the top methods are in

the Java standard library and so could be declared relaxed once and then used by many

applications.

With 20 relaxed annotations each on the five benchmarks in Figure 3.14, the geometric

mean of VBD-HotSpot’s overhead reduces to 18% for the entire Da Capo suite (with a max

overhead of 34% for tomcat). These results show the volatile-by-default semantics can be a

practical choice on modern server hardware, with a judicious choice of relaxed annotations.

3.4.1.5 Consumer PCs

Finally, I also ran my benchmarks on several consumer PC machines, in addition to my server

machine. PC1 is a 6-core machine with an Intel Core i7-3930K CPU (3.20GHz), which was

released in the fourth quarter of 2011. PC2 is a 4-core machine with an Intel Core i7-4790

CPU (3.20GHz), which was released in the second quarter of 2014. PC3 is a 4-core machine

with an Intel Core i7-6700 CPU (3.40GHz), which was released in the third quarter of 2015.
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Hyperthreading is enabled on all three machines. Therefore I respectively have 12, 8, and 8

processing units for PC1, PC2, and PC3.

Figure 3.15: Relative execution time of the DaCapo benchmarks

I ran the DaCapo benchmarks on these machines using the same setup as in Section 3.4.1.1.

Figure 3.15 shows the relative execution time for VBD-HotSpot of the benchmarks on the

three machines, normalized to the execution time when run on the baseline HotSpot JVM.

The geometric mean of the overhead due to the volatile-by-default semantics is respectively

36%, 40%, and 50% on machines PC1, PC2, and PC3, which is somewhat higher than the

overhead of VBD-HotSpot on my server machine (Section 3.4.1.1).

Though not uniformly so, the results indicate an upward trend on the cost of the volatile-

by-default semantics over time, since PC1 is the oldest and PC3 the newest machine. It’s

hard to identify the exact cause of this trend, or whether it is an actual trend, since the

machines differ from one another in several ways (number of processors, execution speed,

microarchitecture, etc.). However, the absolute performance of the benchmarks improves

over time. Therefore, one possible explanation is that the performance of fences is improving

relatively less than the performance of other instructions.
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3.4.2 Performance Evaluation of VBDA-HotSpot

I compared the performance of VBDA-HotSpot to that of the baseline JVM on several

benchmark suites. I ran experiments on two multicore 64-bit ARM servers: machine A has 8

Cortex A57 cores, 16G memory, and is running openSUSE Tumbleweed; machine B has 2

Cavium ThunderX CN8890 CPU (96 cores in total), 128G memory, running Ubuntu 16.04.

3.4.2.1 DaCapo Benchmarks

The DaCapo benchmark suites are a widely used set of Java applications to evaluate Java

performance [BGH06]. I use the latest maintenance release (9.12-MR1) of the DaCapo

benchmarks from January 2018. Among all tests, I remove batik which fails on the baseline

aarch64 port of OpenJDK 8u (even without any of my modifications), tradesoap which fails

periodically, apparently due to an incompatibility with the -XX:-TieredCompilation flag

that VBDA-HotSpot requires (as discussed below)12, and tomcat due to a problem unrelated

to DaCapo13. I also replace lusearch with the new lusearch-fix benchmark that includes

a bug fix, as recommended by the authors of the DaCapo benchmarks in their latest release.

I used the default workload and thread numbers for each benchmark. I employed an

existing methodology for Java performance evaluation [GBE07]. In each JVM invocation I

ran a benchmark for 15 warm-up iterations and then calculated the average running time

of the next five iterations. I ran five invocations of each benchmark using this process and

calculated the average of these per-invocation averages. Finally I calculated the relative

execution time of each benchmark using the average of the averages and then calculated the

geometric mean of the relative execution times over all benchmarks.

12https://bugs.openjdk.java.net/browse/JDK-8067708

13https://bugs.openjdk.java.net/browse/JDK-8155588
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Figure 3.16: Absolute execution time of VBDA-HotSpot and baseline JVM for DaCapo

benchmarks on machine A.
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Figure 3.17: Absolute execution time of VBDA-HotSpot and baseline JVM for DaCapo

benchmarks on machine A.

Figures 3.16 and 3.17 show the execution time in ms for the baseline JVM and VBDA-

HotSpot on machine A. The error bars show 95% confidence intervals. I use the flag

-XX:-TieredCompilation in all versions in order to turn off tiered compilation, which employs

multiple compilers, since I have only modified the server compiler to respect the volatile-

by-default semantics. I have verified that for the baseline HotSpot JVM, there is very little

performance difference with and without tiered compilation on the DaCapo benchmarks.

The figures show that for the baseline JVM, the performance with or without the

-XX:+UseBarriersForVolatile flag is almost the same (1% difference). However, VBDA-

HotSpot is much faster with the flag than without it, even though the new one-way fences

are intended to improve the performance of volatile accesses. On further investigation, I

identified two causes for this counter-intuitive behavior. First, I ran some microbenchmarks

and were not able to identify any performance improvement of the acquire-release operations
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over the use of memory barriers. So it appears that the ARM hardware that I use is

still not exploiting the release-acquire semantics of the one-way fence instructions in their

implementation.
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Figure 3.18: Relative execution time of VBDA-HotSpot, VBDA-HotSpot with bug fix for one

way fences, VBDA-HotSpot with two way fences on machine A, y-axis in logarithmic scale.

Second, HotSpot’s support for these instructions does not seem to be mature. For instance,

these new instructions do not (yet) support offset-based addressing, so the compiler often

requires an additional register to use these instructions. As has been reported by others, this

adversely interacts with the current register-allocation heuristics of HotSpot.14 Fixing those

heuristics as suggested in the bug report makes a dramatic difference, as shown in Figure 3.18,

reducing the average overhead of VBDA-HotSpot versus the baseline HotSpot JVM from

195% to 109%. However, the version with two-way fences is still significantly faster, with

14https://bugs.openjdk.java.net/browse/JDK-8183543
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Figure 3.19: Relative execution time of VBDA-HotSpot and X86-like VBDA-HotSpot over

baseline JVM for DaCapo on machine A, y-axis in logarithmic scale.

an average overhead of 73%. Therefore, in the rest of the paper I report numbers with the

-XX:+UseBarriersForVolatile flag for VBDA-HotSpot.

The first series in Figures 3.19 and 3.20 respectively shows the relative execution time of

VBDA-HotSpot over the baseline HotSpot JVM on machine A and machine B (for machine A

these are the same numbers as shown in the last series in Figure 3.18). The geometric mean

of the relative execution time shows an average overhead of 73% for DaCapo benchmarks,

with a maximum overhead of 129% for luindex on machine A, and an average overhead of

57% with a maximum overhead of 157% for machine B.

To better understand the overhead of VBDA-HotSpot, I also implemented an “X86-like”

version of VBDA-HotSpot that inserts the store-load barriers after each store but removes

all other barriers in the interpreter, in the intrinsics implementations, and in the ideal graph

for the compiler. The second series in Figures 3.19 and 3.20 respectively shows the relative
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Figure 3.20: Relative execution time of VBDA-HotSpot and X86-like VBDA-HotSpot over

baseline JVM for DaCapo on machine B, y-axis in logarithmic scale.

execution time of this X86-like VBDA-HotSpot over the baseline JVM on machine A and

machine B.

The X86-like VBDA-HotSpot results in average and maximum overheads of 35% and

78% for DaCapo on machine A, and average and maximum overheads of 46% and 132% for

machine B. In other words, the additional fences on reads required by VBDA-HotSpot only

double the overhead versus the X86-like version, despite the fact that reads dominate writes

in typical programs. The X86-like implementation must insert a full fence, dmb ish, after a

volatile write to implement the store-load barrier, so it seems that additional fences do not

incrementally add much overhead.
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3.4.2.2 Scalability Experiments

I also performed experiments on both machine A and machine B to understand how the

overhead of VBDA-HotSpot changes with the number of threads/cores available, as an

indication of how the cost of volatile-by-default may change as processors introduce

more cores. Since committing a memory operation involves inter-core communication (e.g.,

coherence messages) and fences require a core to stall until all prior operations have committed,

one may expect the overhead of the volatile-by-default approach to increase with the number

of cores. I previously showed that in fact the relative overhead of volatile-by-default

decreases or stays the same as the number of cores increases on X86 [LMM17], apparently

because of the additional cost of regular loads and stores, but I were interested to investigate

whether the same would hold true on the weaker ARM platform.

Machine A has 4 sockets, each with 2 cores. Machine B has 2 sockets, each with 48 cores.

For these experiments I used the -t option in DaCapo to set the number of external threads

for each test and Linux’s taskset command to pin execution to certain cores. I choose

the benchmarks in DaCapo which exhibit external concurrency, namely h2, lusearch-fix,

sunflow, xalan.

Experiments on both machines show a similar trend as in the prior X86 work: as the

number of driver threads/cores increases, the relative overhead of VBDA-HotSpot stays

the same or decreases modestly. The results of my experiment on machine B are shown in

Figure 3.21; the results for machine A are similar. The figure shows how the relative execution

time of VBDA-HotSpot changes with different numbers of external threads. Interestingly,

VBDA-HotSpot is faster than the baseline HotSpot JVM for the xalan benchmark at 36

and 48 cores. Plotting the absolute execution times, as shown in Figure 3.22, I see that the

baseline JVM stops scaling after 24 threads while VBDA-HotSpot stops at 48 threads.

48



0.5

1

2

4

0 20 40 60 80 100 120

Threads

Relative Execution Time of VBDA-HotSpot

h2

lusearch

sunflow

xalan
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Figure 3.22: Execution time of VBDA-HotSpot and baseline JVM running xalan with

different numbers of threads/cores on machine B.

Cross-socket memory accesses tend to be more expensive than within-socket accesses. To

understand how the additional fences of VBDA-HotSpot affect this trend, I performed an

experiment to measure the relative performance difference for VBDA-HotSpot when running

on cores within the same socket versus on cores across sockets. I ran the DaCapo benchmarks

with 2 driver threads in two different configurations: one using cores 0 and 1, which are on

the same socket, and one using cores 0 and 2, which are on different sockets. Figure 3.23

shows the relative execution times for each configuration on VBDA-HotSpot versus that

same configuration executed on the baseline JVM. From the results I can see that the relative

overhead of VBDA-HotSpot in the multiple-sockets configuration is the same or slightly

lower than that in the single-socket configuration. These results are again consistent with

the earlier experiments on X86 [LMM17].
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3.4.2.3 Spark Benchmarks

Finally, I tested VBDA-HotSpot’s performance on big data and machine learning bench-

marks for Apache Spark [ZXW16]. As in prior work [LMM17] I use the spark-tests and

mllib-tests benchmarks from the spark-perf repository15 provided by Databricks.

I ran Spark in standalone mode on a single machine, which reduces the latency of network

communication versus running Spark on a cluster. Therefore, this experiment shows the

worst-case cost. The executor memory is set to 4GB and the driver memory is set to

1GB. I also use a scale factor of 0.005 for workloads to adapt for single-machine execution.

The spark-perf framework runs each benchmark multiple times and calculates the median

execution time. I ran the spark-perf framework for 5 invocations and calculated the average

15The original repository is at https://github.com/databricks/spark-perf. I used an updated version
that is compatible with Apache Spark 2.0 at https://github.com/a-roberts/spark-perf.
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of the median execution times of each test.
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Figure 3.24: Histogram and cumulative % of relative execution time of VBDA-HotSpot for

Spark benchmarks.

Figure 3.24 summarizes the results in a histogram. For example, the second gray bar from

the left indicates that on Machine A there are 5 benchmarks that incur a relative execution

time between 1.00 (exclusive) and 1.25 (inclusive). I omitted four benchmarks that failed on

the original JVM (als, kmeans, gmm, and pic). The geometric mean of VBDA-HotSpot’s

relative execution time on Machine A and Machine B is 2.03 and 1.85 respectively, representing

a 103% and 85% overhead over the baseline HotSpot JVM. These results are consistent with

those found for VBD-HotSpot in the prior work[LMM17].16 I suspect that the high overhead

for Spark tests versus the DaCapo benchmarks is due to the many array reads and writes

that are necessary to implement Spark’s key data structure, the resilient distributed dataset

(RDD) [ZXW16]. Indeed, on a version of VBDA-HotSpot that (unsoundly) omits fences

16See the appendix in the updated version of the paper at http://web.cs.ucla.edu/~todd/research/
oopsla17.pdf.
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for array-element accesses, the average overhead of the Spark benchmarks on Machine A is

reduced from 103% to 46%.
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CHAPTER 4

A Speculative Implementation of volatile-by-default

As shown in the previous section, the baseline implementation of the volatile-by-default

semantics for Java incurs considerable overhead on a weak platform like ARM. While adding

relaxed annotations is one way to reduce the overhead of VBDA-HotSpot, the results

above argue for the need to explore optimization techniques for language-level SC on stock

weak-memory-model hardware.

I take the first steps in this direction by proposing a speculative approach to enforcing the

volatile-by-default semantics. The basic idea is to modify the JIT compiler to treat each

object as safe initially, meaning that accesses to its fields can be compiled without fences.

If an object ever becomes unsafe during execution, any speculatively compiled code for the

object is removed, and future JITed code for the object will include the necessary fences in

order to ensure SC. I call the version of HotSpot that uses this approach to ensuring the

volatile-by-default semantics S-VBD.

4.1 Design Overview

Several design decisions must be made to turn the above high-level idea into a concrete

approach that in fact provides performance improvements.

First, the notion of safe must be instantiated. It must capture a large percentage of

objects at runtime to reduce the overhead of volatile-by-default semantics, but the cost of

checking safety should not mask the achieved savings. The most precise approach would be

to convert an object from safe to unsafe only when a data race is detected on that object.

However, dynamic data-race detection is quite expensive, so employing it would erase any
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performance advantage of this approach over the implementation of volatile-by-default

described in the previous section.

Instead, I treat an object as safe if it is thread-local : all accesses to the object’s fields occur

on the thread that created the object. This definition is motivated by the expectation that

many objects will be single-threaded throughout their lifetime. These include non-escaping

objects that are not allocated in the stack due to the imprecision in HotSpot’s escape analysis,

and objects that are reachable from global data structures but are nevertheless logically

thread-local. VBDA-HotSpot unnecessarily incurs the cost of fences for these objects.

To track this notion of safety, it suffices to record the ID of the thread that creates each

object. Whenever an object’s field is accessed, I compare the recorded ID to the ID of the

current thread, in order to decide whether the object can still be treated as safe or not. Once

an object becomes unsafe it remains so for the rest of its lifetime, so no more checking is

required.

Even though checking thread locality is much less expensive than checking for data races,

the runtime overhead would be prohibitive if I do this check on every field access. However, a

key property of the way I define thread locality is that many of these checks can be statically

eliminated. Specifically, the check whether an object is created by the current thread is

invariant throughout a method since all accesses in a method are executed by the same

thread. Therefore, I can safely replace multiple per-access checks to an object with a single

check at the beginning of the method. Note that this is sound even if an object becomes

non-thread-local in the middle of a method — the second thread that accesses the object

will force a decompilation of this method. I have implemented an intraprocedural analysis in

S-VBD that performs this optimization for the receiver object this of each method.

Second, speculative compilation requires that I have both a slow and fast version of each

method, respectively with and without fences inserted. The most precise approach would be

to keep track of the appropriate version on a per-object basis. However, to vastly simplify

my implementation I instead switch on a per-class basis. That is, as soon as any instance of

class C becomes unsafe, I switch to the slow version of C’s compiled methods, and this version
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is used for all instances of the class. This approach ensures that only a single version of C’s

compiled code is active at any given point in time, which accords with a constraint in the

original HotSpot JVM.

Third, I must decide how to switch from safe to unsafe mode in a correct and low-

complexity way. I observe that the HotSpot JVM already has support for deoptimization of

compiled methods, which is used when an assumption about a method (e.g., that no method

overrides it) is violated (e.g., when a new class is dynamically loaded). I show how to leverage

this capability for my purpose. Specifically I use HotSpot’s dependency tracking mechanism

to record the speculatively compiled fast methods that may access fields of objects of a given

class C. The first time that some instance of C is found to be unsafe, S-VBD invokes HotSpot’s

deoptimization facility to safely pause all threads and remove the compiled versions of all

methods that depend on C before resuming execution. If JIT compilation is later triggered

on any of these methods, the slow versions will be used.

Finally, I have described my design for accesses to the fields of an object. Conceptually

this speculative approach could also be used for accesses to static fields and array elements.

However, to reduce implementation complexity I currently treat these accesses exactly as

in VBDA-HotSpot. Specifically, I unconditionally insert the appropriate memory barriers

for these accesses to ensure the volatile semantics. I also unconditionally insert fences for

intrinsics as in VBDA-HotSpot.

4.2 Implementation

Implementing this design is non-trivial: both the JIT compiler and the interpreter must be

updated to perform safety checks, and fast code must never be executed after a relevant safety

check fails, even when that failure happens on another thread. This subsection describes my

implementation in detail.

To simplify the presentation, I first describe my implementation under the assumption

that all field accesses are of the form this.f. If that is the case, then it suffices to replace all

per-field-access checks with a single check of the this object at the beginning of each method.
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1 compile (m) {

2 i f (m. c l a s s .mode==f a s t ) {

3 compi le f a s t_ver s i on (m) ;

4 c r i t i c a l_s e c t i on_beg i n ;

5 i f (m. c l a s s .mode != f a s t )

6 abort_compi lat ion ( ) ;

7 else

8 register_compiled_method ( ) ;

9 c r i t i c a l_se c t i on_end ;

10 }

11 else {

12 compile s low_vers ion (m) ;

13 register_compiled_method ( ) ;

14 }

15 }

Figure 4.1: Just-in-time compilation of a method.

As mentioned above, I have implemented an intraprocedural analysis at class-load time that

performs this optimization. I then describe the more general case where per-field-access

checks are required in the next subsection.

To determine whether an object is safe, I add another word in each object header which

contains the ID of the thread that created the object. Therefore the safety check simply

compares this value to the ID of the current thread. I also must remember whether a

class is using the fast or slow versions of its methods; I add a flag to HotSpot’s VM-level

representation of each class for this purpose.

Figure 4.1 shows what happens when a method gets “hot” enough and is chosen to be

compiled. I check whether the method’s class is in fast or slow mode and compile the

corresponding version of the method. After compilation of the fast version I check the class’s

mode again. If the class’s mode has changed, it means that some object of the class has

been found to be unsafe on another thread in the meanwhile, so I abort the compilation.
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1 s low_vers ion (m) {

2 vbd (m. body ) ;

3 }

4

5 fa s t_ver s i on (m) {

6 i f ( curr_thread == th i s . creator_thread )

7 m. body ;

8 else

9 switch_to_slow ( t h i s . c l a s s ) ;

10 }

11

12 switch_to_slow (C) {

13 c r i t i c a l_s e c t i on_beg i n ;

14 i f (C.mode == slow )

15 return ;

16 C.mode = slow ;

17 deoptimize_to_slow (C) ;

18 c r i t i c a l_se c t i on_end ;

19 }

Figure 4.2: The slow and fast versions of a method.

Otherwise I register the compiled method for subsequent execution. (If there are inlined

methods I also need to re-check their classes’ modes before registering the compiled method.)

The process of checking the mode again and registering the compiled method is atomic so

there is no potential for time-of-check time-of-use errors.

Figure 4.2 provides pseudocode for the two versions of each compiled method. The slow

version is simply the method with all fences added, as in the baseline volatile-by-default

approach. The fast version first performs the safety check. If the method’s receiver object is

still safe, then its method body is executed, without requiring any added fences. Otherwise,

all compiled methods of this’s class must be invalidated to be recompiled in their slow

versions.
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1 i n t e rp r e t e r_ve r s i on (m) {

2 i f ( t h i s . c l a s s .mode == f a s t &&

3 curr_thread != th i s . creator_thread ) {

4 switch_to_slow ( t h i s . c l a s s ) ;

5 }

6 s low_vers ion (m) ;

7 }

Figure 4.3: The interpreted version of a method.

The switch_to_slow pseudocode in the figure illustrates the latter process. I first change

the mode of the given class C to slow. The deoptimize_to_slow function (definition not

shown) then leverages the HotSpot JVM’s existing mechanism for deoptimization to invalidate

all compiled methods that depend upon C, which includes the methods of C and its superclasses,

as well as any methods in which one of these methods is inlined. This function also changes

the mode of all of C’s superclasses to slow. The deoptimize_to_slow function is implemented

as a “VM operation” in the HotSpot JVM, which causes all other threads to be stopped

before its execution so that it can safely invalidate compiled methods. Also, I make the

switch_to_slow function shown in Figure 4.2 atomic to prevent multiple threads from

deoptimizing the same methods and to prevent the compile function in Figure 4.1 from

concurrently registering any fast methods for class C.

Finally, I describe modifications to the HotSpot interpreter. As in VBDA-HotSpot, the

interpreter always includes the additional fences necessary to ensure the volatile-by-default

semantics. However, I additionally must perform the check at the beginning of each method

that the receiver object is safe, and if not then all compiled methods that depend on the

object’s class must be deoptimized. Pseudocode is shown in Figure 4.3.
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4.3 Implementing Per-Access Checks

The above description assumed that all field accesses are of the form this.f, but Java allows

field accesses to arbitrary objects (e.g., for fields that are declared public). For objects

other than this S-VBD performs safety checks on a per-field-access basis. This subsection

describes how such checks are implemented.

As mentioned earlier, at class-load time an intraprocedural analysis identifies field accesses

whose receiver object is definitely this, so I can avoid checks on these accesses. The analysis

also rewrites all other getfield bytecodes in the method to a new check_getfield bytecode

that I have defined in S-VBD, and similarly for all other putfields in the method. Later,

whenever a check_getfield bytecode is encountered during interpretation or compilation, I

simply treat it as if it were an inlined call to a getter method on the receiver object. That

is, I follow exactly the scheme shown in the previous subsection, except that the various

checks are inlined into the method containing the check_getfield bytecode. Similarly, a

check_putfield bytecode is treated as an inlined call to a setter method.

Making this approach work requires one addition to the scheme shown earlier. If a field

of class D is accessed by method m of class C, then I must make sure to deoptimize C.m

whenever class D is deoptimized. Otherwise, the compiled version of C.m will still be using

the fast version of the field access even after D has been switched to slow mode. To do

this I record a dependency of the method C.m on class D whenever I encounter such a field

access, extending the dependency-tracking mechanism that HotSpot uses for deoptimization

as described earlier.

4.4 Optimizing Fence Insertion

In addition to speculative compilation, I implemented an orthogonal optimization that reduces

the number of fences required to enforce the volatile-by-default semantics for ARM. The

first two rows of Table 4.1 show the memory barriers required before and/or after a volatile

memory access in Java, as described in the JMM Cookbook [JSR18], and the corresponding
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Barriers Needed Before Barriers Needed After Aarch64 Instruction Sequences

volatile load None LoadLoad and LoadStore
ldr

dmb ish ld ; wait for load

volatile store LoadStore and StoreStore StoreLoad

dmb ish ; full fence

str

dmb ish ; full fence

VBD Load None LoadLoad and LoadStore
ldr

dmb ish ld ; wait for load

VBD Store None StoreLoad and StoreStore
str

dmb ish ; full fence

Table 4.1: The implementation for volatile accesses on ARM in HotSpot (first two rows)

and an optimized implementation for memory accesses on ARM in S-VBD (last two rows).

ARM instructions used to achieve those barriers in HotSpot. For example, a volatile load

requires a LoadLoad and LoadStore barrier after it, which is implemented by a dmb ish ld

instruction in ARM.

The baseline implementation of VBDA-HotSpot, which uses the approach of VBD-

HotSpot, simply inherits this implementation strategy for volatiles from HotSpot. However,

I observe that some of the barriers are only there to prevent reorderings between volatile

and non-volatile accesses. Hence in the volatile-by-default setting, where all accesses are

treated as volatile, it is safe to eliminate some of these barriers, which in turn eliminates

some unnecessary fence instructions in the generated code.

The last two rows in Table 4.1 show my optimized approach. The implementation of VBD

loads is the same as that for volatile loads in Java. However, a VBD store does not require

a preceding LoadStore fence, due to the LoadStore fence after each VBD load. Further, in

place of the StoreStore fence that precedes a volatile store, it is equivalent in VBD to move

this fence after each store, since there are no non-volatile stores. The result is that I have

eliminated the need for any memory barriers before a VBD store. Further, while I have added

a StoreStore barrier after a VBD store, the corresponding implementation of the required

barriers in ARM remains the same, namely the use of a full fence dmb ish.
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I implemented this optimized strategy, which I call VBD-Opt, in S-VBD. For the interpreter,

I changed the barriers inserted as described above. For the server compiler, for simplicity of

implementation I keep the original VBD design at the IR level, so compiler optimizations

must respect all of the original memory barriers. However, during the code generation phase,

I eliminate the dmb ish instruction before each store.

4.5 Performance Evaluation

4.5.1 DaCapo Benchmarks
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Figure 4.4: Relative execution time of VBDA + speculative compilation, VBDA + VBD-

Opt, S-VBD over the baseline JVM compared to VBDA-HotSpot on machine A, y-axis in

logarithmic scale.

I measured the peak performance of S-VBD for the DaCapo benchmarks using the same

methodology as in the previous section. The fourth series in Figures 4.4 and 4.5 shows the

overhead of my approach over the baseline HotSpot JVM on machine A and machine B.

The geomean overhead of the S-VBD approach is respectively 51% and 37% for the two

machines, which is a significant improvement over the geomean overheads of the original

VBDA-HotSpot (the first series in the figures) at 73% and 57%. Also, the maximum overhead

across all benchmarks respectively reduces from 129% to 78% and from 157% to 73%.

Figures 4.4 and 4.5 also isolate the effect of each of my optimizations: the second series

shows the relative performance when using just speculative compilation, and the third series
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Figure 4.5: Relative execution time of VBDA + speculative compilation, VBDA + VBD-

Opt, S-VBD over the baseline JVM compared to VBDA-HotSpot on machine B, y-axis in

logarithmic scale.

shows the relative performance when using just the VBD-Opt fence optimization. On its

own each optimization provides a considerable performance improvement, but speculative

compilation clearly is the more effective optimization. As the fourth series shows, together

they are even more beneficial in terms of reducing the overhead of the volatile-by-default

semantics.

Finally, speculative compilation’s use of deoptimization is likely to impair startup perfor-

mance. I measured the startup performance of both VBDA-HotSpot and S-VBD using an

existing methodology [GBE07]. I run n invocations of each benchmark, each time measuring

the execution time of one iteration, until either the confidence interval for the sampled times

is less than 2% of the average execution time or until n is 30. I discard the first JVM

invocation of each benchmark because it might change some system state such as dynamically

loaded libraries or the data cache. Finally, I report the average execution time and confidence

interval for each benchmark and calculate the relative execution time of each benchmark

using these averages.

The relative startup performance of VBDA-HotSpot and S-VBD compared to the baseline

HotSpot JVM is shown in Figure 4.6. The confidence interval of each benchmark is less than

5% of the average execution time after 30 invocations. As expected, the use of deoptimization

causes S-VBD to have a significantly higher impact on startup performance than VBDA-
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Figure 4.6: Relative startup execution time of VBDA-HotSpot and S-VBD over the baseline

JVM, y-axis in logarithmic scale.

HotSpot.

4.5.2 CheckOnly Overhead

To further understand the overheads of S-VBD, I implemented a check-only version, which

performs all of the safety and mode checks as described above but never deoptimizes any

methods. Note that this check-only version also keeps all barriers for array accesses and

intrinsics. Figure 4.7 shows the relative execution time of this version versus the baseline

HotSpot JVM on machine A and machine B. The experiment shows that the cost of the

checks required by the speculative approach is considerable, on its own incurring well over

half of the overhead incurred by S-VBD. These results also validate the thread-local hypothesis

that underlies my speculative compilation technique. Specifically, the large overhead of the

checks implies that the overhead due to fences on field accesses is relatively modest, meaning

that the thread-locality hypothesis is effective at removing many fences.

4.5.3 Spark Benchmarks

I also measured the peak performance of S-VBD for the spark-perf benchmarks using

the same methodology as in the previous section. Figure 4.8 summarizes the results of

spark-tests and mllib-tests in a histogram. The geometric mean of S-VBD’s relative
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execution time on Machine A and Machine B is 2.01 and 1.86 respectively, representing a

101% and 86% overhead over the baseline HotSpot JVM. Comparing these results to the

ones for VBDA-HotSpot from Figure 3.24 I see that my speculative compilation strategy

provides little speedup for these benchmarks. I suspect this is due to the fact mentioned

earlier that these benchmarks have many array accesses. Since S-VBD does not speculate on

array accesses it incurs the same cost as VBD-HotSpot for these accesses.
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CHAPTER 5

A Sequential Consistency Enforcing Julia Compiler

Another language I have looked into is the Julia language. Julia aims to be a fast, dynamic, and

easy to use programming language. Thanks to its high-level syntax, script-like characteristic

(because it’s dynamically typed), and reasonably fast performance, Julia has gained much

popularity in fields like scientific computation.

The Julia language does not have a memory model for its recently added multi-threading

support [BNP]. Julia uses LLVM as a backend for the compiler and does not put additional

work into enforcing a stronger memory model. Based on the fact that the LLVM memory

model is inspired by the C++0x memory model [LLVb], it is reasonable to conclude that

the Julia’s memory model is weaker than SC. In fact, simple litmus tests like the Dekker’s

algorithm can show the SC-violating behaviors in Julia.

However, like Java, I believe Julia’s design philosophy suggests it a good candidate to

have SC: Julia is designed to be an accessible and easy-to-use language for programmers

from any background. It provides many safety guarantees by default, while also allows more

performance-focus users to use various macros to “opt-out” of the safety checks. For example,

Julia uses bounds checking to ensure memory safety when access arrays, but @inbounds

macro can be used to elide such checks in a tight loop.

Part of the reason behind Julia’s decision (or non-decision) of its memory model is the

lack of measurement for the cost of it having SC. While previous work suggest that the cost

of SC for Java can be lower than people have expected, it still remains to be seen whether

the differences in the programs workloads (array-heavy for Julia) or the fact that Julia is

implemented using LLVM will change the cost of SC on it.

To answer those questions, I have explored ways to provide SC for Julia. I have imple-
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mented an SC enforcing Julia compiler that guarantees SC and measured the cost of SC for

Julia. I have further analyzed different factors that might affect the cost of SC and explored

possibilities of using annotations to reduce the cost of SC.

5.1 Design Overview

To implement an SC enforcing Julia compiler, the general idea is to make sure all loads and

stores to shared memory in the program have SC semantic. I will give an overview of the

design below and talk about the details of implementation in the next section.

To implement the above idea, I need to transform all loads and stores in the LLVM IR

to have SC semantics. I must first decide when to transform the loads and stores in the

IR. There are two choices: 1) I can perform such transformation when the Julia compiler is

generating the LLVM IR from its lowered form IR; or 2) I can implement such transformation

as an LLVM pass, where I will iterate through all loads and stores in every function and

rewrite them.

The benefit of the first approach is that I may be able to take advantage of some semantics

in the Julia AST for optimization. However, this approach is more intrusive to the existing

code base. Implementing the transformation at such an early stage also means I won’t have

accesses to the many existing LLVM analysis that will be available later, many of which will

be very helpful for more complicated optimizations. The second approach requires much

less change to the Julia compiler itself, which as suggested by the Julia developers is much

preferred. Besides, Julia can still preserve some of its semantics information as metadata

in the LLVM IR, and I can still take advantage of Julia-level semantic information even if I

only modify LLVM. Therefore I decide to implement my changes as an LLVM pass.

I have implemented a transformation LLVM pass which rewrites loads and stores in the

program to have SC semantics using combinations of LLVM’s atomic instructions and fence

instructions. However, simply rewriting every load and store in the LLVM IR to have SC

semantics will lead to huge slowdown. Therefore, I have also implemented two optimizations

to reduce the number of load and store instructions I need to rewrite, which I will describe
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more in detail in 5.2.4.

To follow the “safe-by-default, performance by choice” principle of safe languages, I want

to provide experienced programmers “escape hatches” to annotate certain parts of the code

that is more performance intensive. I implemented a @drf annotation that allows certain

loops/functions/modules to “escape” from the SC semantics and get the original behaviors of

the Julia language.

The implementation of my SC-by-Default Julia compiler is open sourced and can be

viewed on GitHub: https://github.com/Lun-Liu/SC-by-Default-Julia.

5.2 Implementation

My implementation is based on the v1.4.1 release of the Julia runtime on GitHub. Additionally,

I have changed the LLVM version used to 9.0.1 because of a patch needed to handle atomic

operations for non-zero address spaces correctly.

In the rest of this section, I will describe in detail how the above designs are implemented.

I will first overview the LLVM pass that rewrites loads and stores to have SC semantics.

Then I will go into details about the LLVM instructions I use to rewrite loads and stores

to make them SC. I will also cover the caveats of the current implementation. Then I will

go over a few optimizations I implement to reduce the performance cost as well as the @drf

annotation available for programmers as the “escape hatch” for performance.

5.2.1 AddSC LLVM Pass

I implement my changes as an LLVM Pass, and I call it “AddSC”. This pass is the first

optimization pass in the passes pipeline specified by the Julia JIT compiler. It needs to be

the first pass so the following passes will respect the SC semantics when trying to optimize

the IR.

AddSC inherits from FunctionPass in LLVM. LLVM pass manager will iterate through every

Function &F and call AddSC’s runOnFunction method with F. In runOnFunction, I iterate
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through every instruction in every basic block and rewrite the load and store instructions

that need to be made SC using atomic instructions/fence instructions. I will cover the details

on what specific instructions I used in the next section. Some of the load/store instructions

can be skipped because of my optimizations or the @drf annotation as explained in later

sections too.

Every LLVM pass also needs to specify which analysis it depends on and if it changes the

IR, which analysis it can preserve. AddSC requires LoopInfoWrapperPass to find loops with

annotations. Since it does not change the loop or the CFG in any way, it can also preserve

the LoopInfoWrapperPass and the CFG.

5.2.2 Rewrite Loads and Stores using Atomic and Fence Instructions

In LLVM, loads and stores can have different levels of atomic ordering [LLVa], which provide

different atomicity and ordering guarantees. By default, LLVM loads and stores are not

atomic: if there is a race on a memory location, memory accesses will have undefined behaviors.

Many load and store instructions that the Julia compiler currently generates are regular loads

and stores and are not atomic.

One can also declare loads and stores to have a higher level of atomicity. Among all

atomicities, Acquiremakes a load to have lock-acquire semantics, Releasemakes a store to have

lock-release semantics, SequentiallyConsistent provides Acquire semantics for loads and Release

semantics for stores. It also guarantees a total ordering among all SequentiallyConsistent

operations.

I implement the SC enforcing Julia compiler by rewriting every load and store in LLVM

IR to be SequentiallyConsistent - simply making all loads Acquire and all store Release would

not be sufficient since a global ordering is required for SC. However, there are also limitations

to which loads and stores can be atomic operations in the IR [LLVb]. For example, the

pointee of atomic loads and stores must be either an integer, a pointer, or a floating-point,

while regular loads and stores are allowed to point to aggregate types such as ArrayType or

StructType. CodeGen process will fail if those loads and stores have high atomicity levels and
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are marked as atomic operations.

For those loads and stores, I still mark them as SequentiallyConsistent during AddSC pass,

but I rewrite them again before codegen to instructions that are supported. Specifically, I

implemented another LLVM pass called SCExpand. SCExpand is the last optimization pass

in the pipeline before codegen. During SCExpand, every such load or store’s atomicity level

will be set back to the same as the regular loads and stores, to comply with LLVM IR’s

requirements. I then make a few additional changes to the IR to make sure that those

instructions won’t be reordered by hardware optimizations or compiler optimizations after

this pass.

To prevent the hardware from reordering memory instructions, during SCExpand, I add

an Acquire fence after a load, a Release fence before a store, and a SequentiallyConsistent

FenceInstruction after every such store. The FenceInstructions in LLVM are simi-

lar to the MemBar nodes in the Java Ideal Graph. The Acquire fence provides a barrier

of lock-acquire semantics, the Release fence provides a barrier of lock-release semantics.

The SequentiallyConsistent fence guarantees that a total ordering exists between all

SequentiallyConsistent operations. Those FenceInstructions will be compiled to corre-

sponding hardware barriers in the compiled code: on X86, Acquire and Release fence will

become no-op, and SequentiallyConsistent fence will become a MFENCE instruction to

prevents loads to be reordered before stores, which is the only kind of reorderings X86 will

perform.

Formally, according to the specification of LLVM [LLVb], the compiler only has to respect

the semantics of those fence instructions if they are used with loads and stores that have

at least Monotonic atomicity levels, which is also higher than the atomicity level of regular

loads and stores. So simply surrounding regular loads and stores with FenceInstructions

won’t always prevent the compiler from performing optimizations (e.g. during codegen) that

might violate SC.

Therefore, during SCExpand, I also set the volatile attribute of each such load or store

instruction to true. A volatile load or store in LLVM is not the same as a volatile load
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or store in Java, but has a similar semantics to the volatile keyword in C/C++. Essentially

it prevents any compiler optimization, including the ones during codegen, on the memory

access. While it may be an overkill, it guarantees that no SC violation because of compiler

optimizations will happen on those accesses after we set the atomicity level back to regular

loads and stores.

Notice that marking the loads and stores as volatile and adding FenceInstructions may

prevent more compiler optimizations than needed for SC. An alternative solution here to

handle those loads and stores would be to rewrite the Julia compiler to only generate LLVM

loads and stores that is compatible with higher atomicity levels. For example, in the place

where they want to load a struct, they should manually load each field of the struct using

separate load instructions. However, this also requires a lot of modification to the Julia

compiler.

5.2.3 Caveats

I believe my implementation is a good first step to understand the cost of SC for Julia on

X86. However, there does exist certain caveats of my current implementation.

The first caveat is that I only modified the Julia compiler, but not the interpreter.

Although most code will be compiled since Julia don’t have very complicated JIT heuristics,

I don’t enforce additional guarantees than what is already there for the memory accesses

from the interpreter.

Second, to have end-to-end SC, it is also necessary to make sure no Julia optimizations

before my SC transformation pass will violate SC. I believe this is better done in collaboration

with the Julia developers considering the fast-changing nature of the Julia language and its

implementation.

5.2.4 Optimizations

Simply rewriting every load and store in the LLVM IR to have SC semantics will lead to huge

slowdown. However, many loads and stores are already guaranteed to have SC semantics and
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the transformation pass can ignore them.

If the data being loaded is immutable, it is already guaranteed to have SC semantics. A store

to an immutable data (i.e. initialization of immutable data) does not need SC rewriting,

but it does need to have Release semantics so that so that it will be guaranteed to

order before the write of the pointer to this data, and preventing anyone from observing

uninitialized value.

If the data is only visible to the runtime, it won’t affect the semantics of the language and

don’t need additional guarantees. The compiler developers already have to ensure there

is no data race for such data to have a correct implementation of the runtime. For

example, Julia optimizes the implementation of Union by storing union types of small,

primitive “bits” types inline. It uses a “type tag byte” to signal the type of the actual

value stored inline. It is the compiler developers’ responsibility that reading and writing

this byte will not cause data races and thus I don’t need to rewrite those loads and

stores.

If the data is on the stack, it is already guaranteed to have SC semantics. Although Julia

does perform optimization to stack-allocate objects, it will only do so if it can prove

that the data is immutable or does not escape. Theoretically, there are certain tricks to

get a pointer to object on the stack. However, it is not considered “safe” operation in

Julia and such operations do not play well with GC either.

Motivated by this, I implement an optimization that uses the type information for LLVM’s

type-based alias analysis (tbaa) and only rewrite loads and stores of certain types. When

the Julia compiler generates the LLVM IR, it will “decorate” each load and store instruction

with a MetaData node that specifies the tbaa type of the address of the instruction. I went

through all tbaa types that Julia uses and identified the types that are “safe” for SC and the

ones that are not always “safe” following the above principles. During my transformation

pass, for each candidate load or store instruction, I will check the tbaa information and do

not rewrite the ones that are accessing “safe” locations. Table 5.1 lists all the tbaas used by

Julia and if they need SC rewriting.
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tbaa name what it represents SC rewriting?

jtbaa Everything Yes

jtbaa_gcframe GC frame; exists after FinalLowerGC pass No

jtbaa_stack stack slot No

jtbaa_data Any user data that ‘pointerset/ref‘ are allowed to alias Yes

jtbaa_binding a Julia binding to a global variable Yes

jtbaa_value Runtime data structure of a Julia value that is not an array Yes

jtbaa_mutab mutable type Yes

jtbaa_immut immutable type No

jtbaa_ptrarraybuf Data in an array of boxed values Yes

jtbaa_arraybuf Data in an array of POD Yes

jtbaa_unionselbyte a selector byte in isbits Union struct fields No

jtbaa_array Runtime data structure of a Julia array (jl_array_t) No

jtbaa_arrayptr The pointer inside a jl_array_t No

jtbaa_arraysize A size in a jl_array_t No

jtbaa_arraylen The len in a jl_array_t No

jtbaa_arrayflags The flags in a jl_array_t No

jtbaa_arrayoffset The offset in a jl_array_t No

jtbaa_arrayselbyte a selector byte in a isbits Union jl_array_t No

jtbaa_const Memory that is immutable by the time LLVM can see it No

Table 5.1: A list of tbaas in Julia and if they need SC rewriting.

Some of the functions in Julia is implemented as builtins in C++. While the implementa-

tions in C++ are also compiled by LLVM, loads and stores from such C++ builtins do not

have Julia specific tbaa information. Instead of treating all of them as "unsafe" for SC, I

manually inspected the C++ source code of such builtin functions. I rewrite loads and stores

to shared memory using atomic accesses and treat other loads and stores as "safe" for SC.

The above optimization allows me not to rewrite many load and store instructions.

However, the tbaa information sometimes is too conservative. To further optimize the SC

enforcing compiler, I implement an additional optimization to identify loads and stores to
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stack locations. In Java, this is easy to tell because one can tell if an operation is accessing a

local variable (e.g. iload_x) or a heap location (e.g.getfield) by looking at the bytecode.

In the LLVM IR, however, the operand of loads and stores can be a heap location or a local

variable on the stack, and it is not immediate clear if a random load or store instruction is

operating on a heap or stack location.

Luckily, the Julia compiler uses the custom address spaces feature to identify GC-tracked

pointers and their uses, and I can use this information to help me decide if pointer can point

to heap locations. LLVM allows each pointer to have an integer representing the address

space. Specifically, in the Julia compiler, GC tracked pointers have address spaces of 10,

derived pointers have address space of 11, callee rooted pointers have address space of 12, and

pointers loaded from tracked object have address space of 13 [Jul]. On the other hand, the

alloca instruction in LLVM, which allocates memory on the stack frame, always allocate

the object in the address space for allocas: address space 0. Therefore, as an optimization, I

also checked the address space of the pointer of candidate load and store instructions and if

they are in address space 0, I won’t rewrite them.

5.2.5 @drf annotations

Sometimes experienced programmers may want to allow certain performance intensive parts

of their programs to have a weaker semantic but better performance. For example, considering

the fill!(A, x) function in Julia. It fills array A with the value x. The body of this function

is very straight-forward - a loop that writes every element in the array. Without SC, there

is no atomicity or ordering constraints, the whole loop will be optimized into a memset

call. With SC, the existence of the atomic instructions/fence instructions will prevent such

optimization. As a result, the SC version can be hundreds times slower depends on the loop

iterations.

In the case where the programmers want to elect for performance, I implement a @drf

annotation that allows certain parts of the code to “escape” from the SC semantics and get

the original behaviors of the Julia language. Of course, now the programmer is responsible to
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clearly specify the exact guarantee their program provides.

5.2.5.1 @drf annotation for loops

Julia already provides a @simd macro for performance reasons. If a loop is annotated as

@simd, it promises that the iterations are independent and may be reordered, and therefore

allows the compiler to optimize to use SIMD instructions for this loop. The implementation

of @drf annotation mimics the implementation of @simd annotation. If a loop is annotated

@drf, an Expr(:loopinfo, Symbol("julia.drfloop")) is added to its end. When parsing

this expression, this expression is translated to a CallInst that calls the special function

julia.loopinfo_marker, and this CallInst is also marked to have ’julia.loopinfo’

MetaData, whose value is julia.drfloop.

During AddSC pass for function F, I will first add all basic blocks to a worklist. After

adding all basic blocks of F to a worklist, I will iterate through all users of the special function

julia.loopinfo_marker, which are all the CallInsts to it. If the CallInst is in F, I will

check to see if it has a ’julia.loopinfo’ MetaData and its value matches ’julia.drfloop’.

If it does, it means I can remove all basic blocks of this loop from the worklist and I won’t

rewrite any loads and stores in this loop.

Notice that julia.loopinfo_marker is not a real function, but rather a marker to find

loops with annotations. Therefore, those CallInsts can’t be in the IR when generating the

actual code. However, Julia’s LowerSIMDLoop pass is already handling the removing of such

CallInsts.

5.2.5.2 @drf annotations for functions

Besides annotating certain loops as @drf, I also allow programmers to specify certain functions

in the program to have @drf semantics, i.e. loads and stores in the function body will not

have SC semantics but will have the original Julia semantics.

The names of the functions to be treated as @drf will be passed in as a list. During

AddSC pass, before I make any changes to the IR, I will get the function name from LLVM,
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demangle it, and compare it with the list of @drf functions, and I will only make changes to

the IR if the current function is not a @drf function.

5.2.5.3 @drf annotations for modules

Similar to functions, programmers can specify certain Julia modules to be @drf. If a Julia

module is @drf, all functions in the module will be treated as @drf.

The names of the modules to be treated as @drf are also passed in as a list, and I compare

the name of the Julia module that the function belongs to to the list during AddSC pass

to decide if I need to rewrite the current function. However, the Julia module name of a

function is not readily available in the LLVM IR. To solve this problem, when generating the

LLVM IR from Julia AST, I add the Julia module name of a function to be a MetaData of

the LLVM Function. I can then retrieve the module name by checking the MetaData of the

function during AddSC pass.

5.3 Experiments

I performed several performance evaluations for my implementation of SC Julia on X86. I

ran all the evaluations on a 8-core (4 physical cores with hyper-threading enabled) Intel(R)

Core(TM) i7-6700 machine. I compared the performance of my implementation (referred to

as SC-Julia in this section) to that of the original v1.4.1 Julia but switched its LLVM version

to v9.0.1.

5.3.1 BaseBenchmarks

The BaseBenchmarks benchmark suite is a collection of Julia benchmarks available for CI

tracking. It is open-sourced on GitHub, and used by the Julia developers to track the

performance of the Julia language. There are more than 3000 benchmarks in the benchmark

suite categorized into different groups. Many of the benchmarks in BaseBenchmarks are

micro-benchmarks, but there are also some larger benchmarks.
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The BaseBenchmarks benchmark suite uses Julia’s BenchmarkTools benchmarking frame-

work. The framework will tune each test to find the correct test parameters for each test,

run the test with the tuned test parameters, and record the results. I calculate the overhead

of the tests using the median execution time reported for each test.

Figure 5.1: Geometric mean of relative execution time of SC-Julia over the baseline Julia.

Each bar represents a test group in BaseBenchmarks, the number in the parenthesis after

each test group name is the number of tests in that group. The last bar represents the whole

benchmark suite.

I compute the relative execution time of SC-Julia over the baseline Julia for each test,

and then calculate the geometric mean of relative execution time for the tests in each test

group as well as the whole benchmark suite.

Figure 5.1 shows the results. The x-axis divides the tests into different groups, and the

y-axis shows the geometric mean of the relative execution time of tests in each group. The

numbers in the parenthesis are the numbers of tests in the test groups. Figure 5.1 also shows

the results of two different test settings. The orange bars on the right show the results when

running with the O2 optimization level, which is the default optimization level for the Julia

compiler, while the blue bars on the left show the results when running with O0 optimization
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level for the Julia compiler. Note that this optimization level is not the optimization level of

the X86 compiler when the Julia compiler itself is built, but rather how many optimizations

are enabled when the Julia compiler is compiling the base libraries or the input program.

From the figure I can see that with the O2 optimization level, 10 out of 18 groups of

tests have an average overhead of more than 100%. The average overhead across the whole

benchmark suite is 76%, with the maximum overhead of any single test being 25642%. But

with the O0 optimization level, all groups have an average overhead of less than 100%. The

average overhead across the whole benchmark suite is 22%, with the maximum overhead of

any single test being 26154%. I conclude that with the current implementation, SC has a

more acceptable overhead with a low optimization level setting for Julia.

While it may be consistent with people’s intuition that SC would have a higher cost for a

high optimization level, I perform a few other experiments in 5.3.2 to better understand why.

5.3.2 Understanding the Impact of SC: Compiler Optimizations vs Hardware

Fences

There are in fact two factors that could explain the difference in the cost of SC for different

optimizations levels. First, the baseline execution of the same program with O0 is much

slower than the baseline execution with O2, therefore, even with the same amount of hardware

fences, i.e., assuming the same additional absolute execution time coming from the hardware

fences, with O2 SC-Julia is going to have a higher overhead. Second, O2 enables more

optimizations passes, and those passes are also more aggressive when optimizing. One may

assume that having additional atomic instructions/fence instructions in the IR will more

adversely impact the compiler optimizations with O2.

To understand what contributes the most to the cost differences of SC with different

optimization level, I modified LLVM to have a custom LLVM that all fence instructions in

the IR will turn into no-op during code generation. For this experiment alone, I also modified

the implementation of SC-Julia so that all atomic loads and stores will become volatile

with FenceInstructions at the beginning of CodeGen. Comparing the execution time of SC
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Julia using this LLVM with the execution time of baseline Julia using this LLVM, I will be

able to see SC’s impact on compiler optimizations for Julia.

Figure 5.2: Geometric mean of relative execution time of SC-Julia without hardware fences

over the baseline Julia without hardware fences. Each bar represents a test group in

BaseBenchmarks, the number in the parenthesis after each test group name is the number of

tests in that group. The last bar represents the whole benchmark suite.

Figure 5.2 shows the results. With fence instructions being in the IR but not generated to

hardware fences, the average cost of SC is negligible for all test groups with O0 optimization

level, and the maximum overhead of any single test is also reduced to 1633%. For O2, the

cost for all test groups are also much lower than SC-Julia. The average cost with O2 is 23%,

and the maximum overhead of any single test is 6746%. Comparing it with the results in

5.3.1, I conclude that most of the cost of SC comes from the cost of the hardware fences, and

that the main reason for the higher relative cost of SC for a high optimization level is that

fences are relatively more expensive with a faster baseline.
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1 @noin l ine function f i l l ! ( des t : : Array{T} , x ) where T

2 xT = convert (T, x )

3 @drf for i in eachindex ( dest )

4 @inbounds dest [ i ] = xT

5 end

6 return dest

7 end

Figure 5.3: Implementation of the library function fill! in Julia and with @drf annotation.

5.3.3 @drf annotations

While the cost of SC for most tests with a low optimization level is somewhat acceptable,

there are certain tests (mostly microbenchmarks) in the benchmark suite that has a very high

overhead. For example, ["array", "bool", "boolarray_true_fill!"] and ["array",

"bool", "bitarray_true_fill!"] benchmark the performance of calling fill! to set all

elements in a 1000000 elements bool array and 1000000 elements bit array to true respectively,

and have overheads of 256.42X and 41.24X respectively.

Figure 5.3 illustrates how @drf annotations can help. The majority of the overhead

comes from the fact that the existence of the atomic instructions/fence instructions in the

IR prevents the compiler to optimize the whole loop to a memset. Adding @drf annotation

to the loop body will tell AddSC pass not to rewrite any load and store in the loop body,

therefore allowing the memset optimization. Accordingly, now the fill! function is only

guaranteed to work correctly if there are no data races on the array.

To gauge the potential effectiveness of @drf annotations, I measured the performance

of SC-Julia with a few @drf annotations. First, I treat loops that already have @simd

annotations as @drf loops. @simd in Julia promises that the iterations are independent and

may be reordered, making them great candidate for @drf annotation. Additionally, I mark

Base module in Julia as @drf. Base is a standard module in Julia and contains standard

library functions of Julia. The distinction between the general user code and the library code

in Julia makes standard library functions good candidates for @drf too.
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Figure 5.4: Geometric mean of relative execution time of SC-Julia over the baseline Julia for

BaseBenchmarks, with @drf behaviors for @simd and Base module. O0 and O2 represents

different optimization levels.

Figure 5.4 shows the average overhead of SC-Julia over the baseline Julia with O0 and O2

with @drf behaviors for @simd annotations and Base module. From the figure we can see that

with @drf annotations for @simd and Base module, the average overhead for BaseBenchmarks

with O0 is reduced from 22% to 13%, and with O2 it is reduced from 76% to 36%.

5.3.4 Hardware Instruction Selection

Another interesting finding I discovered is that the hardware barrier instruction used could

affect the cost of SC greatly on X86. On X86, both a sequentially consistent load and a

non-SC load are mapped to a MOV instruction. A sequentially consistent store could be

mapped to either a XCHG instruction or a sequence of MOV; MFENCE on X86.

A XCHG instruction is supposed to be faster than the sequence of MOV; MFENCE on X86.

In LLVM, if a store has SequentiallyConsistent atomicity level and its size and alignment

is supported, it will be translated into a XCHG instruction. A normal store is mapped to a

MOV instruction, and a SequentiallyConsistent fence is mapped to a MFENCE instruction. To
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1 using BenchmarkTools

2

3 ar r = ze ro s ( Int32 , 100000)

4 function perf_loop ( ar r )

5 for i = 1:100000

6 ar r [ i ] = i

7 end

8 end

9

10 @btime perf_loop ( ar r )

Figure 5.5: A microbenchmark that uses a loop to set every element in an array.

measure the impact of different hardware barriers have on the cost of SC, I implemented

another version of SC-Julia, and call it mSC-Julia. In this alternate implementation, instead

of rewriting loads and stores to have SequentiallyConsistent atomicity level when supported,

I always rewrite loads and stores to be surrounded by fence instructions. Therefore, at the

hardware level, SC-Julia will try to use XCHG for SC stores whenever possible, while mSC-Julia

will always use the sequence of MOV; MFENCE.

I first tested the performance with a microbenchmark that uses a loop to set every element

in an array, as shown in 5.5. The execution time is 52.795 µs using the baseline Julia, 511.825

µs using SC-Julia, and 1300 µs using mSC-Julia. As shown by the results, switching to a

slower MFENCE instruction can cause SC to have approximately twice as much overhead as

the XCHG implementation for a tight loop.

Figure 5.6 shows the performance overhead of mSC-Julia over the baseline Julia for

BaseBenchmark tests. The results are organized the same way as previous figures, x-axis

shows different test groups, and y-axis shows the average relative execution time of tests

in each test group. From the graph we can see this alternate implementation using MFENCE

instruction has an average overhead of 50% for O0 and 130% for O2, both much higher than

the cost of SC-Julia.
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Figure 5.6: Geometric mean of relative execution time of mSC-Julia over the baseline Julia.

O0 and O2 represents different optimization levels.

From the experiments above, I can see that the performance of hardware fences could

have a great impact on the cost of SC, and future hardware optimizations for more efficient

implementation of barrier instructions would also help bring down the cost of SC.
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CHAPTER 6

Related Work

Language-Level Sequential Consistency I proposed the volatile-by-default semantics

for achieving SC for Java and Julia and evaluated it on Intel X86 hardware and the ARM

hardware. My work is, the first implementation of SC for Java in the context of a production

JVM and hence the first realistic performance evaluation of the cost of SC for Java. The work

to measure the cost of SC on ARM is, to the best of my knowledge, the first comprehensive

study of the cost of providing SC for any language on ARM, which is a much weaker memory

model than X86. The SC Julia compiler work is, to the best of my knowledge, the first

implementation of SC for Julia.

Vollmer et al. [VSM17] implement the SC semantics for the Haskell programming language

and demonstrate negligible overheads on X86. They also demonstrated low overheads for

some benchmarks on ARM but did not do an extensive study due to the limited portability

of Haskell libraries. The key takeaway is that a pure, functional programming language like

Haskell naturally limits conflicting memory accesses among threads and so can support SC

with low overhead. As such, these results do not extend to imperative languages like Java.

I evaluated the volatile-by-default semantics in a production JVM with modern features

such as dynamic class loading and just-in-time compilation. In contrast, prior work has

evaluated the cost of SC for Java in the context of an offline whole-program compiler, which

admits more opportunities for optimization but is incompatible with modern JVMs. Shasha

and Snir [SS88] propose a whole-program delay-set analysis for determining the barriers

required to guarantee SC for a given program. Sura et al. [SFW05] implement this technique

for Java and Kamil et al. [KSY05] do the same for a parallel variant of Java called Titanium.

These works demonstrate low performance overhead for SC on both X86 and POWER.
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Alglave et al. [AKN14] implemented SC for C programs similarly.

Other work has achieved language-level SC guarantees for Java [CTM07, AQL09] and

for C [MSM11, SNM12] through a combination of compiler modifications and specialized

hardware. These works show that SC can be comparable in efficiency to weak memory models

with appropriate hardware support. The technique of Singh et al. [SNM12] is similar to my

speculative approach in identifying safe and unsafe memory accesses. However, they rely on

specialized hardware as well as operating system support to perform the speculation, while I

speculate purely at the JVM level. Finally, several works demonstrate testing techniques to

identify errors in Java and C code that can cause non-SC behavior (e.g., [FF10, IM16]).

Language-Level Region Serializability Other work strives to efficiently provide stronger

guarantees than SC for programming languages through a form of region serializability. In

this style, the code is implicitly partitioned into disjoint regions, each of which is guaranteed

to execute atomically. Therefore SC is a special case of region serializability where each

memory access is in its own region. Several works have explored a form of region serializability

for Java [SBZ15, SCB15, BZB15, ZBB17]. These approaches are implemented in the Jikes

research virtual machine [AAB05] and evaluated only on X86. Work on region serializability for

C has achieved good performance either through special-purpose hardware [LCS10, MSM10,

SMN11] or by requiring 2N cores to execute an application with N threads [OCF13].

Memory Model Safety The notion of “safety” in the JMM disallows out-of-thin-air

values [MPA05], but it has proven difficult to ensure while also admitting desired optimiza-

tions [BMN15]. Several recent works have defined new memory models that attempt to resolve

this tension [BD14, JR16, PS16, LVK17, KHL17, OD18]. Many of these works formalize

the new memory model along with compilation strategies to common hardware platforms,

allowing them to prove properties such as the absence of thin-air reads. To my knowledge only

the work by Ou and Demsky provides an empirical evaluation [OD18]; they demonstrate low

overheads for C/C++ programs running on ARM hardware. My work adopts and empirically

evaluates a significantly stronger notion of safety for Java than these works [MMM15], as it
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additionally preserves the program order of instructions and the atomicity of primitive types.

Weak Memory Model Performance for Java Demange et al. [DLZ13] define an X86-

like memory model for Java. They present a performance evaluation that uses the Fiji

real-time virtual machine [PZB10] to translate Java code to C, which is then compiled with

a modified version of the LLVM C compiler [MSM11] and executed on X86 hardware. Ritson

and Owens [RO16] modified the HotSpot compiler’s code-generation phase for both ARM

and POWER to measure the cost of different instruction sequences to implement the JMM.
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CHAPTER 7

Conclusion

Safe languages like Java and Julia provide programming abstractions, like type and memory

safety, to improve programmer productivity. Unfortunately, in the domain of concurrent

programming, mainstream safe languages instead choose to adopt complex and error-prone

semantics by default in the name of performance, breaking fundamental programming

abstractions and failing to provide baseline guarantees for programmers.

My PhD work focuses on the problems with memory consistency models. Most mainstream

safe languages adopt weak memory models or no memory models in the name of performance,

and expose programmers to the relaxed/undefined semantics of the memory models, which is

complex, unintuitive, and can violate critical program invariants.

I believe this performance-by-default approach conflict with the design philosophy of “safe”

languages. Additionally, very little is known about the actual performance cost of a stronger

memory model on modern hardwares for modern programming languages.

My thesis states that it is possible to measure the cost of strong and simple semantics for

concurrent programming on modern hardwares for modern languages with modern language

implementation techniques, and with optimizations, it is possible to have a simpler semantics

for concurrent programming at a reasonable cost for certain languages.

In this thesis I define the volatile-by-default semantics as a natural way to make the

memory consistency model of Java and other JVM-based languages safe-by-default and

performant-by-choice. The volatile-by-default semantics protects most programmers from

the vagaries of relaxed-memory-model behavior by providing sequential consistency by default,

while still allowing expert programmers to avoid fence overheads on performance-critical

libraries. I present VBD-HotSpot, a modification of Oracle’s HotSpot JVM that enforces the
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volatile-by-default semantics on Intel X86 hardware and ARM hardware. To my knowledge

this is the first implementation of SC for Java in the context of a production JVM and

hence the first realistic performance evaluation of the cost of SC for Java. This is also the

first comprehensive study of the cost of providing language-level sequential consistency for a

production compiler on ARM.

My experiments indicate that while VBD-HotSpot incurs a significant performance cost

relative to the baseline HotSpot JVM for some programs, it can be a practical choice today

for certain applications on X86. My experiments also show that an the same technique that

provides the volatile-by-default semantics for Java on Intel X86 hardware at modest cost

in fact incurs considerable overhead on ARM.

I then present a novel speculative technique to optimize language-level SC and demon-

strate its effectiveness in reducing the overhead of enforcing volatile-by-default. To my

knowledge this is the first optimization approach for language-level SC that is compatible

with modern implementation technology, including dynamic class loading and just-in-time

(JIT) compilation. My experiments show that with optimizations, I can reduce the cost of

SC on weaker hardware architectures like ARM significantly.

I have also explored ways to provide SC for Julia. I have implemented an SC enforcing

Julia compiler that guarantees SC and measured the cost of SC for Julia. I have further

analyzed different factors that might affect the cost of SC and explored possibilities of using

annotations to reduce the cost of SC.

Longer-term, the goal of this line of research is to persuade mainstream languages to

adopt such safer and stronger memory models as the default. To reach this goal, it would help

greatly if the performance of strong language-level memory models like volatile-by-default

can be competitive for more use cases even on weak hardwares. Static techniques that can

reduce the number of fences needed and compiler optimizations limited or dynamic techniques

that have lower runtime cost would be obvious avenues of future work. Furthermore, a more

carefully selected group of “unsafe” annotations could help us reach a low overhead threshold

much faster. The selection of those annotations may require manual efforts from domain
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experts of certain languages, or can be simplified if future work implements tools that can

automatically profile and recommend the best candidates for “unsafe” annotations.

Additionally, until the above longer term goal is achieved, a promising direction to build

on the work in this thesis is to build tools that can help identify and debug memory model

related bugs. Having the ability to execute a program with a safe-by-default memory model

with specified “unsafe” regions, one can possibly use techniques such as delta debugging to

help pinpoint the exact code that leads to the memory model related bug.
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