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ABSTRACT OF THE DISSERTATION

Virtual Element Method for Elliptic Interface Problem

By

Frank M. Lin

Doctor of Philosophy in Mathematics

University of California, Irvine, 2021

Professor Long Chen, Chair

We developed a simplified formulation of the existing immersed finite element (IFE) meth-

ods for solving the second order elliptic interface problems. A virtual body-fitted mesh is

generated using the intersection points of the interface and the underlying shape regular

triangulation. We define an immersed virtual element local space. By deriving an error

equation and performing convergence analysis base on it, we not only create a more concise

formulation and convergence proof of partially penalized IFE method, but also brings a con-

nection between various methods such as body-fitted FEM, IFEM, VEM, etc. In addition,

our approach has the advantage that it is easier to generalize into three dimension case.

ix



Chapter 1

Finite Element Methods Review

This will be a short chapter, on reviewing the basics of conforming linear finite element

method on Poisson’s equation. We aim to set the foundation here, as all the methods in

later chapters can be viewed as generalization or extension of it.

Finite element methods are based on the variational/weak formulation of the partial differ-

ential equation. We break the given domain into union of small triangles(the mesh), define

the finite dimensional discrete function space on it. On the discrete space we then solve the

approximated (finite dimensional linear algebra) problem, and proceed to prove the error of

the approximated solution converges in desired way.

1.1 Equation and Discrete Problem

The model problem is the Poisson equation with Dirchlet boundary condition.

−∆u = f on Ω
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and

u = 0 on ∂Ω

Through integration by parts, the variational formulation is to find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v)

where a(u, v) =
∫

Ω
∇u · ∇vdx and (f, v) =

∫
Ω
fvdx.

Under the assumption that f ∈ L2(Ω), there is a well known regularity result, that the

solution u ∈ H2(Ω) and

‖u‖H2(Ω) ≤ C‖f‖L2(Ω), (1.1)

The domain Ω is cut into union of simplex (Triangle or Tetrahedron, for mesh generating

algorithm, see for example [16]), called mesh. Then we define the discrete, finite dimensional

function space using the mesh, and find an approximated solution. We say a triangulation

Th satisfies the minimum/maximum angle condition if minimum/maximum angle of each

triangle in Th is uniformly bounded below/above. We say a triangulation is shape-regular if

it satisfies both minimum/maximum angle conditions.

Given a shape regular triangulation Th, the discrete linear finite element space is defined

to be Vh := {v|v ∈ C(Ω), v|τ ∈ P1(τ),∀τ ∈ Th}. Then we solve the discrete problem, find

uh ∈ Vh such that

ah(uh, vh) = (f, vh) ∀vh ∈ Vh

.

For each triangle τ , the local stiffness matrix Aτ (matrix form by
∫
τ
∇φi · ∇φjdx where φi)

can be computed exactly, and is given below,
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Theorem 1.1.1 (Local stiffness matrix). Let θi denotes the interior angles of τ ,

Aτ =
1

2


cot(θ2) + cot(θ3) − cot(θ3) − cot(θ2)

− cot(θ3) cot(θ1) + cot(θ3) − cot(θ1)

− cot(θ2) − cot(θ1) cot(θ1) + cot(θ2)



1.2 FEM error estimate

To estimate uh, we first establish the projection and interpolation estimates, then we use an

orthogonality argument to show that uh converges in the same way.

Theorem 1.2.1 (Bramble Hilbert Lemma (Special Case)[11]). For u ∈ H2(K), where K ⊂

R2 is a bounded star-shaped domain with diameter hK, there exists a linear polynomial p,

such that,

‖u− p‖0,Ω + hK |u− p|1,Ω . h2
K |u|2,Ω

where the constant is independent of hK but depends on the star-shaped constant.

For u ∈ H1, we define the nodal interpolation uI by uI ∈ Vh, uI and u match values on

verticies of all triangles τ ∈ Th

For the nodal interpolation uI we have the following estimate,

Theorem 1.2.2 (Interpolation Estimate[11]). For u ∈ H2(Ω), Ω ⊂ R2, Vh linear finite

element space on shape-regular quasi-uniform triangulations Th, we have

|u− uI |1,Ω . h|u|2,Ω

Then we have the following H1 estimate of the discrete solution

3



Theorem 1.2.3 (Interpolation Estimate). For u and uh being the solutions of the continuous

and discrete equations, when u ∈ H2(Ω) ∩H1
0 (Ω), we have the following estimate.

|u− uh|1,Ω . h‖u‖2,Ω

Proof. From the continuous and discrete equation, we have

a(u, v) = (f, v),∀v ∈ H1
0 (Ω)

and

a(uh, v) = (f, v),∀v ∈ Vh

Therefore for all v ∈ Vh we have the orthogonality a(u− uh, vh) = 0, which implies

‖∇(u− uh)‖ = inf
vh∈Vh

‖∇(u− vh)‖

The equation above combines with Theorem 1.2.3 gives the desire result.

4



Chapter 2

Virtual Element Methods Review

In this chapter we review the frameworks of the virtual element methods, and some lemmas

needed for the convergence analysis.

2.1 Introduction and model problem

Virtual element method (VEM) [6] can be viewed as an extension of the finite element method

(FEM) on triangle and tetrahedral elements to general polygonal and polyhedral elements.

Since some local basis functions have no closed form formulas, not every quantities can be

computed by degrees of freedom (see more detail in section 3.1). The degrees of freedom

in the VEM space are defined in such a way that many integral quantities or matrices (e.g.

stiffness matrix) can be approximated from them without computing non-polynomial basis

functions.

The aim of this and next chapter is to present the optimal order of error estimates of VEM

with relaxed geometric assumptions on the three dimensional mesh. Consider the following

weak formulation for a model Poisson equation with zero Dirichlet boundary condition in a

5



3-dimensional Lipschitz domain Ω: given an f ∈ L2(Ω), find u ∈ H1
0 (Ω) such that

a(u, v) := (∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω)

and (·, ·) is the inner product on L2(Ω).

We will define the VEM spaces in section 3.1. Roughly speaking, the two dimensional local

VEM space of order k ∈ N is defined by the space of functions that are continuous piecewise

polynomial of degree at most k on the boundary, and inside the domain the Laplacian of the

function is a degree at most k−2 polynomial. For three dimensional local VEM space, inside

the domain the Laplacian of the function is still a degree at most k− 2 polynomial, while on

each face on the boundary the function is in a modified VEM space so that the L2 projection

is computable from degrees of freedom. The basis functions of the local VEM space are well-

defined, but their values or gradient are not explicitly computed. Each local bilinear form

contains an orthogonal H1-projection term that can be computed exactly from the degrees

of freedom. The global conforming VEM space of degree k, denoted as Vh (See definition

3.1.9), glues the local spaces together using continuity condition across inter-element faces.

i.e.,

ah(u, v) =
∑
K∈Th

[(
∇ΠKu,∇ΠKv

)
K

+ SK(u, v)
]
, (2.1)

where ΠK is the H1-projection operator (see Definition 3.1.3) to the space of degree k

polynomials on K, and SK(·, ·) is a stabilization term to ensure the coercivity.

In the traditional norm equivalence VEM approaches, the stabilization term is defined to

6



satisfy k-consistency,

a(u, p) = ah(u, p) for p ∈ Pk(K) ∀K ∈ Th

and the following norm equivalence between the exact form on H1
0 and the approximated

form on Vh(See definition 3.1.9),

a(u, u) . ah(u, u) . a(u, u), for u ∈ Vh (2.2)

in which both constants in the inequalities are independent of u. With this property the finite

dimensional approximation to the weak formulation using the VEM discretization (3.10)

is well-posed, and the H1 seminorm error estimate is optimal. One possible choice of the

local stabilization on K is given in [6]: for u, v in the VEM space

Sorig
K (u, v) =

NK∑
r=1

χr(u− ΠKu)χr(v − ΠKv) (2.3)

where NK is the number of degrees of freedom (see Definition 3.1.2) on K, χr is each

individual degree of freedom.

Under certain geometric assumptions of the polytopal mesh, the aforementioned norm equiv-

alence (2.2) is established with a proper choice of the stabilization, and the optimal order

error estimates can be achieved (see [6]). Typical geometric assumptions include that (1)

the mesh is star-shaped with chunkiness parameter [12] uniformly bounded below, and (2)

the distance between neighboring vertices are comparable to the diameter of the element.

However, it has been observed in numerical experiments that the optimal convergence rates

for the virtual element methods can be achieved with relatively little geometric assumptions

7



[16]. In [8], different choices of stabilization terms are analyzed in detail, and further relaxed

the geometric assumptions for two dimensional mesh by including short edges. Recently,

in [12], it is shown that one can allow small faces on a three dimensional mesh and still

achieve the optimal order with only uniform star shape assumption. However, several error

estimates still require faces to be uniform star shape and the error estimate depends on the

logarithm of the longest to the shortest edge ratio of the faces.

We shall use a different approach, which was first proposed in [14] to handle the 2D cut mesh,

to relax the geometric assumptions further on three dimensional meshes and still achieve the

optimal order.

Instead of working on a stronger H1-seminorm, the error analysis is performed toward a

weaker “energy norm” |||·||| := a
1/2
h (·, ·). Similar to that of the Discontinuous Galerkin (DG)-

type methods, an error equation for |||uh − uI |||, is derived. This error equation breaks down

the |||uh−uI ||| into several standard projection and interpolation error estimates. Our method

does not rely on the norm equivalence property of the stabilization term.

Instead, different from the above so-called identity matrix stabilization (2.3) above, the

stabilization term is concocted from the “boundary term” emerged from the integration by

parts (see section 3.2 for detail), while equipped with correct weights to remain the optimal

order for the error estimates.

The following new stabilization term is proposed in this chapter, which partly agrees with

the conjecture in [12] and is “singularly conforming” in the sense that the term which keeps

8



the conformity of the method may have a small constant in front it.

SK(u, v) = h−1
K

∑
F⊂∂K

[(
QKu−QFu,QKv −QFv

)
F

+

εFhF
∑
e⊂∂F

(
u−QFu, v −QFv

)
e

]
,

(2.4)

where QK , QF are L2-projection operators (see Definition 3.1.4) to the local space of degree

k polynomials on K respectively. The εF is related to the chunkiness parameter of ρF (see

Definition 2.2.1) of each polygonal face F on the boundary of a polyhedral element K.

This new approach, comparing to the existing approaches, allows us to deal with the mesh

that has less constraints on the shape regularity. For example, the chunkiness parameter ρF

of each face F on an element K may no longer be uniformly bounded below. In addition, the

constants in the new estimates do not depend on logarithm of the longest and the shortest

edge of each face. As a result, we obtain the optimal order error estimate on a weaker energy

norm (3.3.5) with a set of relaxed geometric assumptions 4.2.1 that are introduced in section

3.3.

A final remark before we go to the next section, for each inequality with constant we will

put extra emphasis on whether the hidden constant depends on the chunkiness parameter of

the domain or not. In the next chapter, our main result, the error equation will be derived,

and then based on this error equation, the optimal order of the a priori error estimate under

appropriate geometric assumptions can be achieved.
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2.2 Approximation Theory on Star-Shaped or Convex

Domain

In this section, we shall review some existing results on VEM projection (2.2.6) and inter-

polation error estimates (2.2.8).

Definition 2.2.1 (Star-shaped polytope). Let D be a simple polygon or polyhedron. We

said D is star-shaped with respect to a disc/ball B if for every point y ∈ D, the convex hull

of {y}∪B is contained in D. If D is star-shaped with respect to a disc/ball with radius ρhD.

We define the supremum of ρ to be chunkiness parameter ρD.

Lemma 2.2.2 (Bramble-Hilbert estimates on star-shaped domain [10]). Let D be a star-

shaped domain, then we have the following estimates,

inf
q∈Pl
|u− q|Hm(D) ≤ C(ρD)hl+1−m

D |u|Hl+1(D), ∀u ∈ H l+1(D), l = 0, 1, ..., k,m ≤ l (2.5)

where C(ρD) is inverse proportional to ρD.

As ρD → 0, the above estimate will be less suitable to apply (e.g. to a face with small ρD).

In the following version of Bramble-Hilbert estimates the constant is independent of ρD.

Lemma 2.2.3 (Bramble-Hilbert estimates on convex domains [20]). Let D be a convex

domain, there exists a constant C independent of ρD,

inf
q∈Pl
|u− q|Hm(D) ≤ Chl+1−m

D |u|Hl+1(D), ∀u ∈ H l+1(D), l = 0, 1, ..., k,m ≤ l (2.6)

The following scaled trace inequalities are often used when we need to bound norm on

boundary faces by norm on elements.

10



Lemma 2.2.4 (Trace inequalities on star-shaped domain [12]). Let D be a star-shaped do-

main, then

‖u‖2
L2(∂D) . h−1

D ‖u‖
2
L2(D) + hD|u|2H1(D),∀u ∈ H1(D) (2.7)

Let F be a face of D ⊂ R3, we have

hD|u|2H1(F ) . |u|2H1(D) + h2
D|u|2H2(D),∀u ∈ H2(D) (2.8)

where in both cases, the constant in . is inverse proportional to ρD.

In the following Poincare inequality, the constant in estimation can be written explicitly in

term of only the diameter, if the domain is convex.

Theorem 2.2.5 (Poincaré inequality on convex domain [4]). Let D ⊂ Rn be a convex domain

with diameter hD. Then

‖u‖L2(D) ≤
hD
π
‖∇u‖L2(D)

for all u ∈ H1(D) satisfying ∫
D

u(x)dx = 0

By combining the Bramble-Hilbert Estimates, and the stability of projection operators (QD

and ΠD) [12] in L2, H1, and H2 norm, we can obtain the following projection error estimates.

Theorem 2.2.6 (Projection Error Estimate). Let D be a star-shaped domain. Let Π be ΠD

or QD then for m, l, k ∈ N, 0 ≤ m ≤ 2, min(1,m) ≤ l ≤ k, u ∈ H l+1(D) we have

‖u− Πu‖m,D ≤ [C(ρD)hD]l+1−m|u|l+1,D (2.9)

where C(ρD) is inverse proportional to ρD.
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Theorem 2.2.7 (Projection Error Estimate on Convex Domains). Let D be a convex domain,

then there exists a constant C independent of ρD such that

‖u−QDu‖0,D ≤ Chl+1
D |u|l+1,D, (2.10)

and

|u− ΠDu|1,D ≤ ChlD|u|l+1,D. (2.11)

The optimal order of interpolation operators are much harder to prove. Brenner and Sung

[12] construct an auxiliary semi-norm to prove the following interpolation estimates. We

will list the result here and refer the reference for the detail (Although the estimate of

|u − QDuI |1,D is not explicitly given in [12], the derivation follows from H1 stability of QD

and almost identical procedure of deriving the estimate of |u−ΠDuI |1,D). The interpolation

estimates for three dimensional element require the uniform star-shaped condition.

Theorem 2.2.8 (Interpolation Error Estimate). Let D be a star-shaped domain. Let uI be

the nodal interpolation of the function on the local VEM space defined in 3.1.10. We have,

for 1 ≤ l ≤ k, ∀u ∈ H l+1(D)

|u− uI |1,D + |u− ΠDuI |1,D + |u−QDuI |1,D . [C(ρD)hD]l|u|l+1,D (2.12)

|u− ΠDuI |2,D . [C(ρD)hD]l−1|u|l+1,D (2.13)

12



‖u− uI‖0,D + ‖u−QDuI‖0,D + ‖u− ΠDuI‖0,D . [C(ρD)hD]l+1|u|l+1,D (2.14)

The constants C(ρD) is inverse proportional to ρD.
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Chapter 3

A Conforming VEM for Poisson

Equation in Three Dimensions

In this chapter, we go into detail of the virtual element space apply virtual element method

to solve 3D Poisson’s equation.

3.1 VEM Preliminaries

In this section, we introduce the definition of the VEM space, modified spaces and the

corresponding degrees of freedom. The motivation behind the modified space is to make L2

projection of the VEM function computable from degrees of freedom.

In this section, we will use standard notations for differential operators, function spaces and

norms that can be found, for examples in [1].

The domain Ω is partitioned into a three dimensional mesh Th, and for simplicity Ω is

assumed to have a polygonal boundary so that there is no geometric error of Th on ∂Ω. Let

14



K be a simple polyhedral element in Th. F denotes a face of the element, and e denotes

an edge of a face. D denotes a general domain in two or three dimensions, and hD is the

diameter of D. e ⊂ ∂F or F ⊂ ∂K are used to denote the edge or face is one of the edges

or faces on the boundary of F or K.

3.1.1 VEM spaces

To define the three dimensional VEM space, first we need to define the two dimensional local

VEM space Vk ([5]) and the modified space Wk ([2]). Notice when defining the local VEM

space on a face, the surface Laplacian operator ∆F on a face F shall be used. Let k ∈ N

and let Pk(D) be the space of polynomial functions with degree up to k (where P−1 contains

only zero polynomial) on D.

Definition 3.1.1 (Local two dimensional VEM space on a face F ).

Vk(F ) :=
{
v ∈ H1(F ) : ∆Fv ∈ Pk−2(F ), v|∂F ∈ Bk(∂F )

}
, (3.1)

where

Bk(∂F ) := {v ∈ C0(∂F ) : v|e ∈ Pk(e) for all e ⊂ ∂F}. (3.2)

The degrees of freedom of the space in Definition 3.1.1 can be defined using the scaled

monomials.

Let D be a two dimensional simple polygon or three dimensional simple polygonal domain,

and (xc, yc, zc) be the center of mass of D. Then the scaled monomials are polynomials of

the form mα = (x−xc
hD

)α1(y−yc
hD

)α2( z−zc
hD

)α3 where α1, α2, α3 are non-negative integers. We

define the degree of the polynomial to be α = α1 + α2 + α3 (or without z and α3 if in two

15



dimension).

Definition 3.1.2 (Degrees of freedom). The degrees of freedom of vh in Vk(F ) are defined

as follows:

1. The value of vh at the vertices of F .

2. The moments up to order k− 2 of vh in each edge e. That is,
1

|e|

∫
e

vhmα where mα is

a scaled monomial for α ≤ k − 2.

3. the moments up to order k − 2 of vh in F . That is,
1

|F |

∫
F

vhmα where mα is a scaled

monomial for α ≤ k − 2.

With the degrees of freedom above, the following projection operator ΠK in the gradient

inner product can be defined.

Definition 3.1.3 (Gradient orthogonal projection operator). Πk
D : H1(D) → Pk(D), v 7→

Πk
Dv satisfies

(
∇(Πk

Dv − v),∇p
)
D

= 0, ∀p ∈ Pk(D).

where the constant kernel is determined by the following constraint:

∫
D

(Πk
Dv − v) = 0, k ≥ 2, (3.3)

or

∫
∂D

(Πk
Dv − v) = 0, k = 1. (3.4)

On a polygonal domain D, to compute the gradient projection of vh ∈ Vk(D) to Pk(D), it is

16



sufficient to compute (∇vh,∇q)D for all q ∈ Pk(D). Integration by parts

(∇vh,∇q)D = −(vh,∆q)D + (vh,∇q · n)∂D, (3.5)

then the first term of the right hand side can be computed via internal moments of vh in

D (See Definition 3.1.2), and the second term can be computed because it’s a polynomial

integral (See Definition 3.1.1).

However, for a three dimensional polyhedron D, a naive generalization of the degrees of

freedom for the local space Vk(D) mimicking what of the polygonal version in Definition

3.1.2 is not sensible. In the three dimensional case, part of the second term (vh,∇q · n)F in

equation (3.5) is a surface moment integral on F that is not computable if F is not triangular.

The reason is that only the moments of vh on a face F ⊂ ∂D up to degree k− 2 are given as

degrees of freedom (See definition 3.1.2), yet for q ∈ Pk(D), ∇q ·n|F ∈ Pk−1(F ). To compute

this, we need to be able to compute the L2-projection onto Pk−1(F ) for a VEM function vh.

To this end, modified face spaces such as Wk(F ) or W̃k(F ) are to be introduced.

Definition 3.1.4 (L2 orthogonal projection operator). Qk
D : L2(D) → Pk(D), v 7→ Qk

Dv

satisfies

(
Qk
Dv − v, q

)
D

= 0, ∀q ∈ Pk(D).

When D is a polygonal face on the boundary of a polyhedron K, the above L2 projection

is not computable through the internal moment degrees of freedom for Vk(F ) in Definition

3.1.2, in that the moments (vh, q)D for polynomial q being degree k or k − 1 are unknown.

However the space Vk(F ) defined above can be enriched in a certain way ([2, 12], see definition

3.1.5 and 3.1.8) such that the L2-projection is computable from the same degrees of freedom.

These are the motivations behind defining the modified space such as Wk(F ) and W̃k(F ),
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instead of using a direct generalization from Vk(F ) to Vk(D) for a polyhedron D.

When the order of the projection operators are omitted, we assume it is k, the same as the

order of the VEM space.

Definition 3.1.5 (Local modified VEM space). Let P̃k(e) be the space of degree exactly k

monomials, then the local modified VEM space can be defined as:

Wk(F ) :=
{
v ∈ H1(F ) : ∆Fv ∈ Pk(F ), v|∂F ∈ Bk(∂F ),

(v, q)F = (Πk
Fv, q)F , ∀q ∈ P̃k(F ) ∪ P̃k−1(F )

}
.

(3.6)

Note that Wk and Vk share the same degrees of freedom, but the L2 projection of a function

in Wk is now computable. In Wk we can replace (vh, q)K by (Πk
Kvh, q)K for q being degree k

or k − 1 and the later integral is computable (just polynomial integral).

The three dimensional local VEM space can be defined as follows:

Definition 3.1.6 (Local three dimensional VEM space on an element K).

Vk(K) :=
{
v ∈ H1(K) : ∆v ∈ Pk−2(K), v|∂K ∈ Bk(∂K)

}
, (3.7)

where Bk(∂K) :=
{
v ∈ C0(∂K) : v|F ∈ Wk(F ), v|e ∈ Pk(e)

}
.

Any function in Vk(K) can be uniquely determined by its degrees of freedom ([5]) defined in

the following paragraph.

Definition 3.1.7 (Degrees of freedom of three dimensional VEM space). We can take the

following degrees of freedom of vh in Vk(K), where K is a three dimensional element.

1. The value of vh at the vertices of K
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2. The moments on each edge e up to degree k − 2. That is, 1
|e|

∫
e
vhmα where mα is the

scaled monomials with α ≤ k − 2.

3. The moments on each face F up to degree k− 2. That is, 1
|F |

∫
F
vhmα where mα is the

scaled monomials with α ≤ k − 2.

4. The moments on the element K up to degree k − 2. That is, 1
|K|

∫
K
vhmα where mα is

the scaled monomials with α ≤ k − 2.

An alternative definition of the modified VEM space [12], that allows us to compute both

H1 and L2 projection from degrees of freedom is the following. We denote such a space

W̃k(D), where D can be a polyhedron domain in any dimension. For convenience we shall

define W̃k(e) = Pk(e) for e being 1 dimensional edge and higher dimension spaces are defined

recursively.

Definition 3.1.8 (The modified local W̃k space). Let D be a two or three dimensional

polygon or polygonal domain, define the space W̃k(D) by vh ∈ W̃k(D) satisfies,

1. vh is continuous on ∂D.

2. vh restrict to each F ⊂ ∂D (face of polyhedron, edge of polygon), is a function in

W̃k(F )

3. ∆vh is a polynomial of degree k in K.

4. Πk
Dvh −Qk

Dvh is a polynomial of degree at most k − 2.

When computing L2 projection in W̃k, we first write Qk
Kvh = Πk

Kvh + w, w ∈ Pk−2, and the

corresponding integrals can be computed using internal degree up to k − 2.

We shall use the following W̃h for the global VEM space for the rest of the chapter.
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Definition 3.1.9 (The global spaces). For a given mesh size h. We define Vh, Wh, W̃h the

global VEM space. That is, u is in the corresponding local VEM space Vk, Wk, W̃k for each

element and is continuous on the boundary between elements.

We shall only use the W̃h for the global VEM space for the rest of the chapter, so that L2

projection is computable for any three dimensional element.

We then have the following natural definition of the nodal interpolation.

Definition 3.1.10 (The local nodal interpolation of the function). Let K be an element and

u ∈ H1(K), then we define uI as a function in W̃k(K) that has the same degrees of freedom

as u.

Definition 3.1.11 (The global nodal interpolation of the function). Let u ∈ H1(Ω), then

we define uI as a function in W̃h that has the same degrees of freedom as u.

We use the same notation uI for both local and global interpolation, but under the proper

context it should not be confused.

The following choice of stabilization term is motivated by the error equation that will be

derived in the next chapter.

Definition 3.1.12 (Stabilization term and discrete bilinear form). On an element K, the

stabilization term is defined as follows:

SK(u, v) = h−1
K

∑
F⊂∂K

[
(QKu−QFu,QKv −QFv)F

+ εFhF
∑
e⊂∂F

((u−QFu), (v −QFv))e

]
,

(3.8)

where εF ∝ ρ−1
F is a mesh-dependent parameter (where ρF is the chunkiness parameter of
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F ), and the discrete bilinear form is given by

ah(u, v) =
∑
K∈Th

[(
∇ΠKu,∇ΠKv

)
K

+ SK(u, v)
]
. (3.9)

Then the VEM approximation problem is: to seek uh ∈ W̃h, where W̃h is the virtual element

space (see definition 3.1.9)

ah(uh, vh) =
∑
K∈Th

(f,QKvh) ∀vh ∈ W̃h. (3.10)

3.2 A priori error estimate

In this section, we first derive identities on the discrete bilinear form. A priori error estimate

(3.2.4) then can be derived from the error equation (3.12). After that the optimal order of

error estimate can be derived from estimating each term in the error equation.

Recall that on an element K, the bilinear form and the stabilization term are defined in

equations (3.9) and (3.8) and the VEM approximation problem is (3.10).

The bilinear form (3.9) can be used to induce a seminorm |||u||| = a
1/2
h (u, u), and the following

lemma verifies that it is a norm on the VEM space with the boundary condition imposed.

Lemma 3.2.1. |||·||| is a norm on Vh ∩H1
0 (Ω).

Proof. It suffices to verify that if |||v||| = 0, then v ≡ 0. By definition, when ah(v, v) = 0, we

have ΠKvh = 0 on each K, and QKvh = QFvh on each F ⊂ ∂K.

By the boundary condition of the space, QFvh = 0 for F on ∂Ω. Because QKvh = QFvh

on each F ⊂ ∂K, that makes QKvh = 0 for K contains at least a boundary face. For the

same reasons, QKvh = 0 for K that shares a face with K ′, an element that contains at least
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a boundary face. Repeat this argument we have QKvh = QFvh = 0 for each K.

In addition, on each face vh = QFvh = 0. That makes the degrees of freedom of vh on each

K equal 0, that implies vh = 0 by unisolvence of the VEM space [5]

, which completes the proof.

Lemma 3.2.2 (The approximated bilinear form). For u that is the solution to (4.3), uh that

is the solution to (3.10), and any v ∈ Vh, the following identity holds,

ah(uh, v) =
∑
K∈Th

(∇ΠKu,∇ΠKv)K +
∑
K∈Th

〈∇(u− ΠKu) · n,QKv −QFv〉∂K (3.11)

Proof. First we apply the integration by parts to u, v,ΠKu,QKv, and use the definitions of

H1-projection ΠK and L2-projection QK to get

−(∆u,QKv)K = (∇ΠKu,∇QKv)K + 〈∇u · n,QKv〉∂K ,

(∆ΠKu,QKv)K = −(∇ΠKu,∇QKv)K − 〈∇ΠKu · n,QKv〉∂K ,

and − (∆ΠKu, v)K = (∇ΠKu,∇v)K + 〈∇ΠKu · n,QFv〉∂K .

Adding above equations together and notice that (∆ΠKu,QKv)K = (∆ΠKu, v)K . By the

definition of QK , we get

−(∆u,QKv)K =(∇ΠKu,∇v)K

+〈(∇u−∇ΠKu) · n,QKv〉∂K

+〈∇ΠKu · n,QFv〉∂K .

By definition, the first term can be rewritten as (∇Πu,∇Πv)K . By the continuity of ∇u · n

across the interelement faces, and the fact that QFv is single value at the face F ,
∑

K∈Th〈∇u·
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n,QFv〉∂K = 0. As a result, recalling the VEM approximation problem in equation (3.10),

we arrive at the following identity

ah(uh, v) =−
∑
K∈Th

(∆u,QKv)K

=
∑
K∈Th

(∇ΠKu,∇ΠKv)K +
∑
K∈Th

〈∇(u− ΠKu) · n,QKv −QFv〉∂K .

Theorem 3.2.3 (Error equation). Under the same setting with Lemma 3.2.2, let uI be the

VEM interpolation in (3.1.11), the following identity holds,

ah
(
uh − uI , vh

)
=
∑
K∈Th

[
(∇ΠK(u− uI),∇ΠKvh)K

+
∑
F⊂∂K

(
(∇(ΠKu− u) · n,QKvh −QFvh)F

− h−1
K (QKuI −QFuI , QKvh −QFvh)F

− εFhF
∑
e⊂∂F

(uI −QFuI , vh −QFvh)e

)]
(3.12)

Proof. It follows directly from Lemma 3.2.2 and stabilization term definition in 3.8.

Corollary 3.2.4 (A priori error bound). The following a priori error estimate holds for uh

and uI (defined in 3.1.11) with a constant independent of the chunkiness parameter for ρF

of each face in the underlying mesh, and εF ∝ ρF

|||uh − uI |||2 .
∑
K∈Th

[
‖∇ΠK(u− uI)‖2

0,K +
∑
F⊂∂K

(
hK‖∇(ΠKu− u) · n‖2

0,F

+ h−1
K ‖QKuI −QFuI‖2

0,F + εF
∑
e⊂∂F

‖uI −QFuI‖2
0,e

)]
(3.13)

Proof. From the error equation, plug in vh = uh − uI and apply Cauchy-Schwarz inequality,
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we have

|||uh − uI |||2 .
∑
K∈Th

[
‖(∇ΠK(u− uI)‖0,K‖∇ΠKvh‖0,K

+
∑
F⊂∂K

(
h

1/2
K ‖∇(ΠKu− u) · n‖0,Fh

−1/2
K ‖QKvh −QFvh‖0,F

+ h
−1/2
K ‖QKuI −QFuI‖0,Fh

−1/2
K ‖QKvh −QFvh‖0,F+∑

e⊂∂F

εF‖(uI − ΠFuI)‖0,eεF‖(vh − ΠFvh)‖0,e

)]
(3.14)

The second part of each term is clearly parts of |||uh− uI ||| and therefore can be bounded by

|||uh − uI |||. After cancelling |||uh − uI ||| we get the estimate.

3.3 Geometric conditions and error estimations

In this section, based on the a priori error estimate in Corollary 3.2.4, the energy norm

estimate follows from estimating each term in (3.13). The necessary geometry conditions

motivated by (3.13) to have optimal order of convergence are proposed as follows.

Assumption 3.3.1 (Geometric conditions). For each element K ∈ Th, the following three

geometric conditions are met:

1. Number of faces in K is uniformly bounded.

2. K is star-shaped with the chunkiness parameter ρK defined in 2.2.1 bounded below.

3. For each F ⊂ ∂K, F is star-shaped, but the star-shape constant may not be uniformly

bounded.
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Lemma 3.3.2 (Optimal order error estimate of the stabilization term on face). Let u ∈

Hk+1(K), and uI be the VEM space interpolation defined in 3.1.10. Suppose the geometric

assumptions 3.3.1 hold, then

h
−1/2
K ‖QKuI −QFuI‖0,F . hkK |u|k+1,K , k ≥ 1 (3.15)

Proof. By triangle inequality,

h
−1/2
K ‖QKuI −QFuI‖0,F = h

−1/2
K ‖QF (QKuI − uI)‖0,F

. h
−1/2
K ‖QKuI − uI‖0,F

. h
−1/2
K (‖QKuI − u‖0,F + ‖u− uI‖0,F )

. h−1
K (‖QKuI − u‖0,K + ‖u− uI‖0,K)

+ (|QKuI − u|1,K + |u− uI |1,K)

. hkK |u|k+1,K

(3.16)

where Theorem 2.2.6, 2.2.8, 2.2.4 are applied.

Lemma 3.3.3 (Optimal order error estimate of stabilization term on edge). Let u ∈ Hk+1(K),

and uI be the VEM space interpolation defined in 3.1.10. Suppose the geometric assumption

3.3.1 hold, then for a mesh dependent constant εF ∝ ρkF

εF‖uI −QFuI‖0,e . hkF |u|k+1,K , k ≥ 1 (3.17)
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Proof. By the Theorem 2.2.4 and triangle inequality, under the star-shaped condition 2.2.1,

‖uI −QFuI‖0,e . ε−1
F (h

−1/2
F ‖uI −QFuI‖0,F + h

1/2
F |uI −QFuI |1,F )

. ε−1
F (h

−1/2
F (‖uI − u‖0,F + ‖u−QFuI‖0,F ) + h

1/2
F (|uI − u|1,F

+ |u−QFuI |1,F ))

(3.18)

where each except the last term has optimal error order by Theorem 2.2.8. In order to use

Theorem 2.2.8 on the face, ρF need to be included because we do not assume it is uniformly

bounded below, therefore the constant εF ∝ ρkF is introduced. For the last term, we apply

the polynomial norm equivalence and the triangle inequality.

|u−QFuI |1,F . |u− ΠFuI |1,F + |ΠFuI −QFuI |1,F

. |u− ΠFuI |1,F + ε−1
F h−1

F ‖ΠFuI −QFuI‖0,F

. |u− ΠFuI |1,F + ε−1
F h−1

F ‖ΠFuI − uI‖0,F + ε−1
F h−1

F ‖uI −QFuI‖0,F

(3.19)

where each term has optimal error order by Theorem 2.2.8. Similarly the inverse inequal-

ity(polynomial norm equivalence) depends on ρF [12] (and we do not assume ρF is uniformly

bounded below), a mesh dependent constant εF ∝ ρkF is introduced to compensate.

Now we derived the estimates of the other terms in the a priori

error bound (3.2.4).

Lemma 3.3.4 (The projection type error estimates). Let uI be the interpolation defined in
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3.1.10, then

‖∇ΠK(u− uI)‖0,K . hk−1
K |u|k,K , k ≥ 2, (3.20)

h
1/2
K ‖∇(ΠKu− u)‖0,F . hk−1

K |u|k,K , k ≥ 2. (3.21)

Proof. By Theorem 2.2.6 and ΠK is the projection under | · |1,K ,

‖∇ΠK(u− uI)‖0,K . |u− uI |1,K . hk−1
K |u|k,K

In addition, by Theorems 2.2.4 and 2.2.6

h
1/2
K ‖∇(ΠKu− u)‖0,F . |ΠKu− u|1,K + hK |ΠKu− u|2,K . hk−1

K |u|k,K

Theorem 3.3.5 (Energy norm error estimate). Let uI be the interpolation defined in 3.1.11,

then Suppose the geometric assumptions 4.2.1 hold, then for k ≥ 1 the followings hold,

|||uh − uI ||| . hk|u|k+1 (3.22)

Proof. (3.22) follows immediately from the bound of each term in the a priori error estimate

(3.13) by Lemmas 3.3.4, 3.3.2, and 3.3.3.
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Chapter 4

Elliptic Interface Problem

4.1 Introduction

In this chapter we go over the equations of the elliptic interface problem, and give an overview

of various numerical methods ([30, 31, 26]) to solve it. We shall go over the detail of each

method in the next few chapters.

We consider a two dimensional domain Ω, which is formed by two different materials sepa-

rated by a closed smooth curve Γ ∈ C1,1, i.e., Γ separates Ω into sub-domains Ω+ and Ω−

such that Ω = Ω+ ∪ Ω− ∪ Γ, cf. Fig. 4.1. The coefficient β is assumed to be a piecewise

positive constant function on Ω:

β(x, y) =


β+, (x, y) ∈ Ω+,

β−, (x, y) ∈ Ω−.
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We consider the approximationm problem to the following elliptic interface problem,

−∇ · (β∇u) = f in Ω

u = 0 on ∂Ω.

(4.1)

We further assume that the data f ∈ L2(Ω) and the true solution satisfies the following jump

conditions

u+ = u−, β+∇u+ · n+ + β−∇u− · n− = 0 on Γ (4.2)

where n± denotes the unit outward normal vector to the corresponding domains Ω+ and Ω−

on Γ, respectively. With slight abuse of the point-wise values of u, for a point x ∈ Γ, u+ and

u− are defined as u+(x) := limε→0+ u(x− ε · n+) and u−(x) := limε→0+ u(x− ε · n−)

The weak formulation of (4.1) is: to seek the solution u ∈ H1
0 (Ω) such that

a(u, v) := (β∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω). (4.3)

where (·, ·) is the L2-inner product on Ω. The existence and uniqueness of the solution is

well-known by Lax-Milgram lemma due to the positivity of β and the Poincaré inequality.

Under the assumption that f ∈ L2(Ω) and Γ ∈ C1,1, it can be shown that (see e.g. [28, 29, 19])

the solution u ∈ H2(Ω+ ∪ Ω−) and

‖u‖H2(Ω+∪Ω−) ≤ Cβ±‖f‖L2(Ω), (4.4)

where, for k > 1,

Hk(Ω+ ∪ Ω−) =
{
u ∈ H1(Ω) and u± ∈ Hk(Ω±)

}

The main challenge of using standard finite element methods is that the solution of equation
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(4.3) is not in H2(Ω), which makes the well-known optimal approximation results for linear

finite element methods (FEM), ‖u−uh‖H1(Ω) . h|u|H2(Ω) not achievable if the mesh does not

fit the interface. In order to achieve the optimal convergence order, two major approaches

in the literature are proposed: (i) modify the mesh to fit the interface and then apply either

continuous or discontinuous Galerkin formulation, (ii) modify the finite element spaces to

encode the jump conditions into the discretization.

The first approach, also known as the body-fitted finite element methods, generates a shape

regular mesh in a way that the interface cannot intersect element interior and can be well-

approximated by edges of elements [16, 29]. The approximated interface separates the do-

main to Ω±h . Defining βh = β± according to the subdomains Ω±h and modifying the bilinear

from in (4.3) to be ah(u, v) = (βh∇u,∇v). The error estimates then follow the standard

Céa’s Lemma by taking advantage of the fact that the error caused by the mismatch be-

tween the interface and the approximated interface is of higher order of the desired rate of

convergence [34, 9, 18, 29].

The latter approach aims to circumvent the burden of generating interface-fitted mesh as

this procedure could be non-trivial and expensive for geometrically complicated or moving

interface. It includes, for example, the CutFEM [13], the mutiscale FEM (MsFEM) [19]

and the immersed finite element (IFE) to be discussed in this paper and many others.

The methods modify finite element spaces on interface elements, i.e., those elements are by

interface, and thus can be used on unfitted meshes and still obtain the optimal convergence

order where the hidden constant is independent of interface location relative to the mesh.

In particular, for the IFE method, a set of local basis functions on the interface elements are

devised as piecewise polynomials that include jump conditions (4.2) in their connection in

a pointwise or averaging sense. The convergence of IFE methods have been established in

[30, 31, 26] and improved recently in [21, 24].

We shall present a new formulation and a convergence analysis of the immersed finite element
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method using the methodology of virtual element methods (VEM) [5, 7]. In this new ap-

proach, there is a underling linear virtual element space that is defined on an interface-fitted

polygon mesh. As an analogy to VEM, we define ΠKuh to be the projection to IFE space on

non-fitted mesh. A stabilization term is then added to the discrete bilinear form to ensure

the coercivity. To summarize, the proposed discrete bilinear form follows the standard VEM

projection–stabilization split as follows,

ah(uh, vh) :=
∑
K∈Th

[
(βh∇ΠKuh,∇ΠKvh)K + SK(uh − ΠKuh, vh − ΠKvh)

]
, (4.5)

where ΠK is an orthogonal projection to a local IFE space defined in definition 5.9, and

SK(·, ·) is a stabilization term that preserves the approximation property to the correct

order. The choice of stabilization for VEM is flexible, and in this paper, we opt for a

tangential derivative-type stabilization in [33, 8].

This new formulation may inherit the advantages of both VEM and IFE in the following

sense. First, it is still able to solve the interface problems on unfitted meshes with optimal

convergence order

|||uh − u||| . h‖u‖H2(Ω+∪Ω−)

where |||·||| is defined using ah(·, ·). Second, compared with other penalty-type methods in the

literature [24, 31], the proposed new formulation based on VEM needs only on edge term and

is more local as the stabilization term does not need interaction of neighbor elements. Third,

compared with the anisotropic analysis for VEM [12, 14], as the virtual space is projected

onto the IFE spaces, the anisotropic subelement shape of interface elements can be easily

handled by the properties of IFE spaces including their trace inequalities and approximation

capabilities which are all independent of interface location, i.e., the cut points.
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4.2 Body-Fitted FEM and VEM

In this section, we shall review the body-fitted FEM and VEM method of solving the elliptic

interface problem.

Let Th = {K} be a shape regular triangulation of the domain Ω. A triangle K is defined as

an interface triangle if meas(K ∩ Ω+) > 0 and meas(K ∩ Ω−) > 0. Throughout the paper

we make the following assumptions on the interface Γ and the triangulation Th.

Assumption 4.2.1 (Assumptions on meshes and the interface). For each interface triangle

K:

1. Γ ∩ ∂K consists of exactly 2 points, called cut points;

2. these two cut points cannot be on the same edge of K.

These assumptions can be satisfied if the triangulation Th is fine enough [19].

Due to the discontinuity of the coefficient β, the solution to (4.3) is not in H2(Ω) globally.

Under the assumption that f ∈ L2(Ω) and Γ is of class C2 (e.g. [28, 29, 19]), it can be shown

that the solution u ∈ H2(Ω+ ∪ Ω−) and

‖u‖H2(Ω+∪Ω−) ≤ Cβ±‖f‖L2(Ω), (4.6)

where, for k > 1,

Hk(Ω+ ∪ Ω−) =
{
u ∈ H1(Ω) and u± ∈ Hk(Ω±)

}
and the piecewise Hk norm is defined by ‖u‖2

Hk(Ω+∪Ω−)
= ‖u‖2

Hk(Ω+)
+ ‖u‖2

Hk(Ω−)
for any

u ∈ Hk(Ω+ ∪ Ω−).
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4.2.1 The body-fitted Finite Element Method

Given a shape regular triangulation Th which may not resolve the interface, we can use the

Delaunay triangulation of the interface points, that include vertices of all interface element

and cut points (algorithm details can be found in [16]), to generate an auxiliary body-fitted

triangulation T h. It has been proved in [16] that the so-called maximum angle condition

4.2.2 is satisfied.

Definition 4.2.2 (Maximum Angle Condition). We said that a family of meshes Th satisfied

the maximum angle condition if the maximum angle in Th is bounded uniformly away from

π as h→ 0.

Using the procedure in [16], we can generate a discrete interface Γh, a subset of edges of tri-

angles in T h, such that Γh ⊂ Sδ(Γ) and δ = O(h2), where Sδ(Γ) is the tubular neighborhoods

of the interface Γ: Sδ(Γ) := {x ∈ Ω : dist(x,Γ) < δ}. The domain Ω is split into Ω±h by Γh.

In addition, define βh = β± on Ω±h . Note that β 6= βh since in general Ω±h ∩Ω∓ 6= ∅, but the

mismatch of β and βh occurs in an area with small measurement, e.g., Kδ in Figure 4.2.

As Γh ⊂ Sδ, we have the following trivial conclusion.

Lemma 4.2.3 (Γh approximation property). Suppose the curvature of Γ is bounded above

and the mesh is fine enough so assumptions 4.2.1 holds. Let Ωδ := {x ∈ Ω : β 6= βh}. We

have |Ωδ| = O(h2).

Proof. Under the assumption on Γ and mesh, we have δ = O(h2), that makes |Kδ| =

O(h3). Because the number of interface triangle is of O(h−1), we reach the conclusion

|Ωδ| = O(h2).

It can be shown that, under the maximum angle condition, the body-fitted linear finite

element method can achieve the optimal order of convergence [17]. We first present an
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inequality [17, 29], that could be derived from Gagliardo–Nirenberg interpolation inequality.

Lemma 4.2.4. [17, 29] Let D be a bounded domain in R2 with Lipschitz boundary ΓD. Let

Sσ(ΓD) = {x ∈ D : dist(x,ΓD) < σ} be the σ−neighborhood of ΓD. Then we have

‖u‖L2(Sσ(ΓD)) .
√
σ‖u‖H1(D)

for all u ∈ H1(D). Furthermore, the constant is independent of σ.

We then define the local and global discrete spaces of the body-fitted linear FEM.

Definition 4.2.5 (Local linear FEM Space). Given a triangle K, the local standard FEM

space is simply P1(K), the linear polynomial space on K. The degrees of freedom are values

of the function at vertices of K. We emphasize that these include nodal values at cut points.

Definition 4.2.6 (Global body-fitted linear FEM Space). For any triangulation Th of Ω,

define V̄h as the continuous and piecewise linear finite element space on the auxiliary body-

fitted mesh T̄h satisfying the boundary condition of H1
0 (Ω).

The standard conforming finite element approximation in the body-fitted finite element space

is: find uh ∈ V̄h such that

ah(uh, vh) :=
∑
K∈Th

(βh∇uh,∇vh)K = (f, vh) ∀vh ∈ V̄h. (4.7)

The following lemma [34, 18, 29] on the interpolation error will be useful for the error analysis

of the solution on the body-fitted meshes. For the completeness and later usage, we present

the results below.

Lemma 4.2.7 (Approximation of the nodal interpolation). Let u ∈ H2(Ω+ ∪ Ω−) ∩H1
0 (Ω)

and let T̄h be the body-fitted mesh generated by Algorithm 1 in [16] that satisfies maximum
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angle condition. Let Ihu be the nodal interpolation to the body-fitted linear finite element

space V̄h. Then we have the following estimate with the constant independent of β, βh:

‖u− Ihu‖0,Ω + h‖∇(u− Ihu)‖0,Ω . h2‖u‖H2(Ω+∪Ω−)

Proof. Apply Sobolev extension theorems [32] to u± to get Eu± ∈ H2(Ω) and ‖Eu±‖H2(Ω) .

‖u±‖H2(Ω±) where the constant depends on Ω only. For K ⊂ Ω±h , write u−Ihu = (u−Eu±)+

(Eu± − IhEu±) and by triangle inequality it is sufficient to estimate each term. Note that

IhEu
± = Ihu

±. Then, apply the standard interpolation error estimate on triangles with the

maximal angle condition [3], we obtain

‖Eu+ − IhEu+‖0,K + h‖∇(Eu+ − IhEu+)‖0,K . h2‖Eu‖H2(K) . h2‖u‖H2(K)

for K ⊂ Ω+
h , and we write the similar inequality on u− for K ⊂ Ω−h .

On the other hand, for u−Eu± on K ⊂ Ω±h , this term is only non-zero on K∩Ωδ, the region

with width O(h2). Then by the Lemma 4.2.4 and the stability of E in H1 and H2 norm.

We have ‖u− Eu±‖0,K . h2‖u‖H2(Ω+∪Ω−) and ‖∇(u− Eu±)‖0,K . h‖u‖H2(Ω+∪Ω−).

Combine the results of the last two paragraphs give the desire estimate.

With the interpolation error estimate, the approximation of the discrete solutions can be

obtained (e.g. [29, 17]). The procedure is standard but lengthy, we shall present the result

and skip the proof here.

Theorem 4.2.8 (Approximation of the linear finite element on body-fitted meshes). Let

u ∈ H2(Ω+ ∪ Ω−) be the solution of (4.3), and uh ∈ V̄h be the solution of (4.7), then

‖∇(u− uh)‖0,Ω . h‖u‖H2(Ω+∪Ω−).
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4.2.2 Virtual Element Methods

In this section we review the virtual element method (VEM) approach on the interface

problem [5, 7, 16]. We will only use the linear VEM space. The mesh is generated in similar

way as in the body-fitted FEM. Let Kh be the interface-fitted polygonal mesh generated

by algorithm in Section 2 of [16]. In 2D, given a polygonal mesh, the interface-fitted mesh

is simply separating interface polygons into two by the cut points. We start our review of

VEM by some definitions [5, 7].

Definition 4.2.9 (Local linear VEM space). Given a star-shaped polygon K, the local linear

VEM space Uh(K) is defined by Uh(K) = {u ∈ H1(K)|∆u = 0, u|e ∈ P1(e), u|∂K ∈ C0(∂K)}.

That is, a harmonic function that is continuous and piece-wise linear polynomial on the

boundary.

Definition 4.2.10 (Global VEM space). The global virtual element space can be defined as

Uh := {u ∈ H1(Ω), u|K ∈ Ūh(K)∀K ∈ Th}

Definition 4.2.11 (Degrees of Freedom of VEM space). The degrees of freedom of uh ∈ Uh

are the values of the function at vertices x ∈ Nh(K) in the mesh Th.

Definition 4.2.12. For u ∈ H1(Ω) ∩ C(Ω), the interpolation function uI is defined by the

unique uI ∈ Ūh (proof of uniqueness and existence can be found at [5]) that has identical

degrees of freedom as u.

The interpolation operator on VEM space satisfies standard optimal error estimates property

provided the mesh is uniform star-shaped [8, 15, 12].

Lemma 4.2.13 (Interpolation Error Estimate). Given a polygon K, and let hK be the
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diameter of K, we have

‖∇(u− uI)‖0,K . hK |u|2,K (4.8)

where the constant in the inequality depends on the star-shaped constant of K.

Notice that the polygon mesh Kh, obtained by connecting cut points may contain anisotropic

elements K so that the interpolation error estimate (4.8) on K is useless. Fortunately we

shall only use (4.8) on shape regular polygons.

Before defining the discrete bilinear form, it is necessary to define a local H1-projection

operator.

Definition 4.2.14 (Local H1 Projection). Let K be a polygon and u ∈ H1(K), we define

the projection ΠKu ∈ P1(K) the linear polynomial that satisfies (∇u,∇q)K = (∇ΠKu,∇q)K

for all q ∈ P1(K). In addition,
∑

x∈V(K)

u(x) =
∑

x∈V(K)

ΠKu(x). That is, the average value of

the function across the vertices of K remains unchanged after projection.

The projection operator can be computed without explicit formula of the basis function of

local space, but only need the degrees of freedom of the function [5, 7].

Now for the interface problem we define

aKh (uh, vh) := (βh∇ΠKuh,∇ΠKvh)K + SK(uh − ΠKuh, vh − ΠKvh)

for a suitable choice of the stabilization SK . The global bilinear form then is defined as

aVEM
h (uh, vh) =

∑
K

aKh (uh, vh) and |||·|||2 =
∑
K∈Th

aKh (·, ·) is the corresponding energy norm.

Stabilization SK,β has to be chosen in the way that, the following conditions are satisfied.

Assumption 4.2.15 (VEM stabilization term assumption). The SK,β has to be chosen in
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the way that, aKh (p, vh) satisfies

� Consistency: aKh (p, vh) = aK(p, vh) for all vh ∈ V̄h(K) and p ∈ P1(K)

� Stability: aKh (vh, vh) ' aK(vh, vh) for all vh ∈ V̄h(K)

The discrete problem is: find uh ∈ V̄h such that

aVEM
h (uh, vh) = (fh, vh) ∀vh ∈ V̄h. (4.9)

If these assumptions hold, the error of the discrete solution can be bounded by standard

interpolation and projection error estimates [5].

Lemma 4.2.16 (VEM error estimate [5]). Suppose Assumptions 4.2.15 holds. Let uh be the

solution of (4.9). Then we have the error bound

|||u− uh||| . |||u− uI |||+
(∑

K

|||u− ΠKu|||2K
)1/2

+ ‖f − fh‖V̄ ′h (4.10)

More detail and higher order cases can be found on, for example, [5, 7, 17]. The analysis

involves proving each term converges with optimal order. Different choices of the stability

term SK and the proof of norm equivalence (4.10) with respect to each choice of SK , can be

found on [5, 15, 8].

4.3 Immersed Finite Element Methods

In this section, we review another approach, the immersed finite element method (IFE), of

solving the elliptic interface problem.

38



In IFE methods [31, 26], the mesh is not fitted into the interface Γ. Instead, the local space

on interface triangles is changed to fit the behavior of the solution across the interface.

We shall review the IFE method that can be found on [31].

Definition 4.3.1 (Local IFE Space [31]). Given a triangle K and a curved interface Γ.

Assume Γ intersects ∂K at D and E (on the different edges of K). Let L = DE and L

cut K into K±. Let n± be the outward normal vector of K± on the edge L. Denote the

restriction of u to K± by u±. We define u ∈ P̃1(K) if and only if

1. u± ∈ P1(K±)

2. u+ = u− on L

3. β+∂n+u+ + β−∂n−u
− = 0 on L

Note that as u ∈ P̃1(K) is piecewise linear, the continuity of the function value can be

ensured by that on the two cut points: u+(D) = u−(D), u+(E) = u−(E). And the flux

condition can be imposed at any point on L.

Definition 4.3.2 (Global IFE Space). For a triangulation Th of Ω, define u ∈ V IF
h if u is

continuous on non-interface edge and is in P̃1(K) for each interface element K and P1(K)

otherwise.

Notice the function value at the cut points are not degrees of freedom, but are determined

elementwise, and might be different in two elements sharing the cut point. Thus in general

V IF
h is not a subspace of H1. The discontinuity across the cut points make the penalization

term in the bilinear form necessary.

Let φIF
z be the nodal basis function of the global IFE space, that is, φIF

z ∈ V IF
h , φIF

z (z) = 1

and φIF
z (x) = 0 for x ∈ N (K), x 6= z. Then, the piecewise-defined nodal interpolation I IF

h (·)
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for any v ∈ C0(Ω) is as follows:

I IF
h v(x)

∣∣∣
K

:=
∑

z∈N (K)

v(z)φIF
z (x). (4.11)

We need the following approximation property for the interpolation operator.

Lemma 4.3.3 (Interpolation Error Estimate [31, 24] ). For u ∈ H2(Ω+ ∪Ω−)∩H1
0 (Ω) sat-

isfying the interface jump condition (equation (4.2)), there exists a constant C, independent

of cut points location, such that

∥∥u− I IF
h u
∥∥
L2(Ω)

+ h

(∑
T∈Th

∥∥u− I IF
h u
∥∥2

H1(T )

) 1
2

≤ Ch2‖u‖H2(Ω+∪Ω−). (4.12)

The bilinear form of partially penalized IFE approach in [31] is: for arbitrary parameters ε,

α > 0, and σ◦e ≥ 0

aIF
h (uh, vh) := (βh∇uh,∇vh)Ω

−
∑
EΓ

∫
e

({β∇uh · ne}[vh] + ε{β∇vh · ne}[uh])

+
∑
EΓ

∫
e

σ◦e
|e|α

[uh][vh]

(4.13)

where the set of all edges with cut points is denoted EΓ and the standard notation for jumps

[·] and averages {·} are used. That is,

{v}e :=
v|T1 + v|T2

2
, and [v]e := v|T1n1 + v|T2n2,

where e is the edge share by T1 and T2. The discretization in [31] is: find the uh ∈ V IF
h such

that

aIF
h (uh, vh) = (f, vh) ∀vh ∈ V IF

h (Ω). (4.14)
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With this formulation the approximation property of uh can be achieved provides u ∈

H2(Ω+ ∪ Ω−),

Theorem 4.3.4 (Convergence analysis of the discrete solution [24]). Let u be the solution

of equation (4.3) and uh be the solution of equation (4.13), then provided u ∈ H2(Ω+ ∪Ω−)

‖u− uh‖h . h‖u‖H2(Ω+∪Ω−) (4.15)

where ‖ · ‖h is the discrete energy norm defined by the bilinear form (4.13).

In [31], the estimate required H3-norm is due to the usage of IFE trace theorem ([27]) on

the H2-norm on the edge, this is later removed in [24]. In our approach we seek to keep this

advantage and simplify the formulation further.

In the end of this section we briefly review the result in [26]. It is shown that by using the

non-conforming IFE space Ṽ IF
h constructed in [27] with some modifications on the penalty

term, we can have a contrast independent estimate, assuming only H2 regularity.

The discretization of partially penalized IFE approach in [26] is: Find the uh ∈ Ṽ IF
h such

that

ah(uh, vh) := (β∇u,∇v)Ω

−
∑
EΓ

∫
e

({β∇u}[v] + {β∇v}[u])

+
∑
EΓ

(
γ

|e−|

∫
e−

[u][v] +
γ

|e+|

∫
e+

[u][v])

+
∑
EΓ

(
γ

|e−|

∫
e−

[∇u][∇v] +
γ

|e+|

∫
e+

[∇u][∇v]) = (f, v) ∀v ∈ V̄ IF
h (Ω)

(4.16)

for a penalty parameter γ > 0.

Theorem 4.3.5 (Convergence analysis of the discrete solution [26]). Let u be the solution

of equation (4.3) and uh be the solution of equation (4.16), then provided u ∈ H̃2(Ω+ ∪ Ω−)
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‖u− uh‖h .h[
√
β−(‖Du‖L2(Ω−) + ‖D2u‖L2(Ω−))+√

β+(‖Du‖L2(Ω+) + ‖D2u‖L2(Ω+))]

where ‖ · ‖h is the energy norm defined by the bilinear form (4.16).
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Chapter 5

Virtual Element Methods on Elliptic

Interface Problems

In this chapter we present our main result of virtual element method of solving the elliptic

interface problem. We not only create a more concise formulation and convergence proof

of partially penalized IFE method, but also brings a connection between various methods

reviewed in earlier chapters.

5.1 Preliminary

In this section, some definitions and notation are introduced, and certain existing results,

which are essential to our error analysis, are reviewed as well.

Let Th = {K} be a shape regular triangulation of the domain Ω that may not be fitted to

the interface. A triangle K is defined as an interface triangle if meas(K ∩ Ω+) > 0 and

meas(K ∩ Ω−) > 0, where meas(·) denotes the measure of a domain; otherwise K is called

a non-interface element. Throughout the chapter we make the assumption 4.2.1 on the
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triangulation Th, which can be satisfied if Th is fine enough [19, 21] provided that Γ ∈ C1,1.

Let Hk(D) k ≥ 0 be the standard Hilbert space on a domain D with the norm ‖ · ‖Hk(D) and

the semi-norm | · |Hk(D). Due to the discontinuity of the coefficient β, the solution to (4.3)

is not in H2(Ω) globally. Under the setting introduced in section 4.1 that f ∈ L2(Ω) and

Γ ∈ C1,1, it can be shown that (see e.g. [28, 29, 19]) the solution u ∈ H2(Ω+ ∪ Ω−) and

‖u‖H2(Ω+∪Ω−) ≤ Cβ±‖f‖L2(Ω), (5.1)

where, for k > 1,

Hk(Ω+ ∪ Ω−) =
{
u ∈ H1(Ω) and u± ∈ Hk(Ω±)

}
and the piecewise Hk–norm is defined by ‖u‖2

Hk(Ω+∪Ω−)
= ‖u‖2

Hk(Ω+)
+ ‖u‖2

Hk(Ω−)
for any

u ∈ Hk(Ω+ ∪ Ω−). Next, u±E := Eu± ∈ H2(Ω) denotes a smooth Sobolev extension that is

bounded in the H2-norm (see e.g., [1]). If there is no danger of confusion, in the following

discussion, we shall employ a simple notation for the norms: ‖ · ‖k,D = ‖ · ‖Hk(D) and

‖ · ‖k,D−∪D+ = ‖ · ‖Hk(D−∪D+), and the semi-norms similarly.

For a non-interface element K, the local finite element space is simply defined as the linear

polynomial space P1(K) where the standard Lagrange elements are used. If K ∈ Th is an

interface triangle (see Figure 5.1), D and E denote the intersection points of the interface

and edges of K, and we let ΓKh = DE. In addition, we let EK be the collection of cut

segments from the original edges of K, for example EK = {BC,CE,EA,AD,DB} for the

interface element K in Figure 5.1. In other words, we treat K as pentagon.

We define the union of cut segments ΓKh of all the interface elements as the approximated

interface Γh. Γh also separates the original domain Ω into two subdomains Ω±h , in which

the ± are determined by the area overlap with Ω±. Define βh = β± on Ω±h . For each

interface triangle K, Kδ is the subset of K such that β 6= βh (i.e. mismatch region). Using

Figure 5.1 as an example, without loss of generality, K+ := ∆ADE and K− the quadrilateral
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complement formed by BCED, and the relevant definitions and proofs follow similarly when

± swaps.

In the rest of this chapter, all constants in . are β dependent but cut point location inde-

pendent unless stated otherwise.

The stabilization term SK(·, ·) in (4.5) will be defined using a broken 1/2-seminorm on

the boundary of each element, which has the sharpest estimate among other choices of

stabilization. Let e be a line segment, and for an admissable function w, we define

|w|21/2,e :=

∫
e

∫
e

|w(x)− w(y)|2

|x− y|2
dx dy.

By direct calculation, 1/2 semi-norm of any linear function on a straight line segment is

equivalent to its (weighted) tangential derivative. Specifically, let w be a linear function

defined on a line segment e with the endpoints ae and be, then

|w|1/2,e = |w(be)− w(ae)| = h1/2
e |w|1,e.

Then the broken 1/2-seminorm on ∂K can be defined as,

|w|21/2,EK :=
∑
e∈EK

|w|21/2,e. (5.2)

Now we review some fundamental estimates that are crucial for our analysis. The following

result can be found in [17, 29] which we can use to estimate the mismatch between β and

βh in the following section.

We will also use the following trace theorems and Poincaré inequality.

Theorem 5.1.1 (Poincare inequality [14]). Let P be a polygon with the number of edges
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uniformly bounded,
∫
∂P
w ds = 0, then we have

‖w‖0,∂P . h
1/2
P |w|1/2,EP ,

where EP denotes the collection of edges of P . In addition, the constant in this inequality is

independent of star-shaped constant.

5.2 Virtual Immersed Spaces

In this section, we first briefly review the linear virtual element space and the IFE space

defined on interface elements as well as their properties. Then we describe the associated

projection and interpolation operators.

5.2.1 Spaces

For each interface elementK, we begin with a virtual element space that involves the interface

information:

Vh(K) = {v : ∇ · (βh∇v) = 0, v|e ∈ P1(e), ∀e ∈ EK , v ∈ C1(∂K)

v satisfies the jump conditions on ΓKh }.
(5.3)

Clearly Vh(K) ⊆ H1(K). This space can be understood as a generalization of the usual

linear virtual space in the literature [5, 7] to the case of discontinuous coefficients. Then the

global space is defined as

Vh = {v ∈ H1
0 (Ω) : v|K ∈ Vh(K) if K ∈ T ih and v|K ∈ P1(K) if K ∈ T nh } (5.4)

which is a H1-conforming space.
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However, due to jump conditions involved in (5.3), the standard linear polynomial space

P1(K) is not an appropriate choice onto which the virtual space (5.3) is projected in a manner

of the usual virtual element method [5, 7], since the jump information will be missed. As

the linear IFE space consists of piecewise linear polynomials satisfying the jump conditions

on ΓKh , naturally it can be used as a computable space to project the virtual space (5.3) in

computation.

So let us review the linear IFE space. Consider the approximate jump conditions to (4.2)

defined on the segment ΓKh :

∇v+ · t̄ = ∇v− · t̄, β+∇v+ · n̄ = β−∇v− · n̄, (5.5)

where t̄ and n̄ are the unit tangential vector and normal vectors to ΓKh , respectively.

The local IFE space on K is then defined as

V IF
h (K) := {vh|K± ∈ P1(K±) : vh satisfies(5.5)} (5.6)

It can be immediately proved that the IFE space (5.6) has the dimension three since the

jump conditions in (5.5) defines a bijective mapping from one side to another. Besides the

dimension, it also shares some other nice properties as the standard linear FE space. For

example, the following trace theorem for IFE functions can be found in [22].

Theorem 5.2.1 (Trace theorem for IFE function). Let e be an edge of K. Then ∀w ∈

V IF
h (K), there holds

� |e|1/2‖βhw‖0,e .
β−√
β+
‖βh∇w‖0,K

� h1/2‖βh∇w‖0,ΓK . β−√
β+
‖βh∇w‖0,K
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where the hidden constant is independent to β and cut point location.

It can be shown that the IFE space V IF
h (K) is unisolvent by the nodal values at vertices

of K [21], which gives the Lagrange type IFE shape functions. The nodal value degrees

of freedom (DoFs) are then widely used in the IFE literature [21, 24, 31] for both analysis

and computation. However, the proof of the unisolvence with respect to nodal DoFs is in

general very technical and relies on mesh assumption [25], and the unisolvence may not hold

for some problems [23]. However we highlight that both the analysis and implementation of

the proposed method do not rely on the nodal value DoFs of the IFE space as it only serves

to projecting the underling virtual space. Roughly speaking, the usual nodal IFE shape

functions will be replaced by ΠKφi,h, i = 1, 2, 3, 4, 5, where φi,h are the shape functions of

the virtual space associated with the element nodes and interface-cutting points and ΠK is

the projection operator defined in (5.9) below. This is one of the major difference of the

proposed method from those classical penalty-type IFE works.

In order to compute the projection, one only needs to find a basis of the gradient space of

V IF
h (K) to perform projection of which the explicit form can be written as

vh,i ∈ ∇V IF
h (K), with v−h,i = ei in K−h and v+

h,i = Mei in K+
h , (5.7)

where e1 and e2 can be any two linearly independent vectors in R2, and M is a matrix

involving the jump information

M =

 n2
2 + ρn2

1 (ρ− 1)n1n2

(ρ− 1)n1n2 n2
1 + ρn2

2

 (5.8)

where n̄ = [n1, n2], t̄ = [t1, t2] and ρ = β−/β+. Here the matrix is constructed according to

the jump conditions in (5.5). Then each shape function in the virtual element space Vh(K)

is projected to the IFE space by these two basis functions through the projection operator
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described below. It is an advantage in both computation and analysis since it circumvents

the issue of the existence of IFE shape functions and makes the implementation more easily.

5.2.2 Projection and Interpolation

For the proposed immersed virtual element method, both the error analysis and computation

rely on a weighted Galerkin projection ΠK : H1(K)→ V IF
h (K):

(βh∇ΠKu,∇vh)K = (βh∇u,∇vh)K , ∀vh ∈ V IF
h (K),

and

∫
∂K

β
1/2
h (uh − ΠKuh) ds = 0

(5.9)

This projection exactly mimics the the usual one used in the VEM literature, and the only

difference is the non-smooth coefficient βh.

Similar to standard projection, the approximation result of ΠK follows from the smallest

distance property and the approximation of another interpolation operator for IFE functions

such as those in [21, 26]. But the analysis in the next Section shows that we need the

approximation of each polynomial component of ΠK on the whole element K, which needs

some special treatment. For this purpose, we need to use a quasi-IFE interpolation operator

introduced in [26] as an intermediate tool. So let us provide its interpolation for readers’

sake. For any interface element K, we first define its patch as

ωK :=
⋃

T∈Th,K∩T 6=∅

T.

For u ∈ H2(Ω− ∪ Ω+) satisfying the jump condition (4.2) with the extension u±E, we let

JKu
±
E be L2–projection of u±E to P1(ωK) and let x0 be the middle point of ΓKh . Still, we let n̄

and t̄ be a fixed unit normal and tangential vector to ΓKh , respectively. Then, the quasi-IFE
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interpolation I IF
K u is given by the following definition

I IF,−
K u(x0) = I IF,+

K u(x0) = JKu
+
E(x0),

∇I IF,−
K u(x0) · t̄ = ∇I IF,+

K u(x0) · t̄ = ∇JKu+
E(x0) · t̄,

β−∇I IF,−
K u(x0) · n̄ = β+∇I IF,+

K u(x0) · n̄ = β−∇JKu−E(x0) · n̄,

(5.10)

where I IF,±
K u denote the two polynomial components of I IF

K u. It is important to note that

these two polynomials can be naturally defined and used on the whole patch ωK . Moreover,

these two polynomials have the desired optimal approximation to their corresponding func-

tions u±E also on the whole patch which is given by the lemma below. This crucial property

serves as the key to in our analysis.

Lemma 5.2.2 (Quasi IFE interpolation error estimate [26]). For u ∈ H2(Ω−∪Ω+) satisfying

the jump conditions (4.2), there holds

|u±E − I
IF,±
K u|1,ωK . hK(‖u+

E‖2,D + ‖u−E‖2,D). (5.11)

In the following discussion, without causing confusion, for any subdomain D ⊆ Ω, we denote

‖u±E‖2,D := ‖u+
E‖2,D + ‖u−E‖2,D.

A similar estimate for Π±K can be established on the whole patch ωK where, again, Π±K denote

the two polynomial components from the definition. The analysis needs to employ the quasi

interpolation IIF,?K as the bridge which is postponed to the next section.
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5.3 A New Formulation and The Error Equation

In this section, we first present a new method to solve the elliptic interface problem based

on the IFE method based and the virtual element method.

5.3.1 A Virtual Immersed Scheme

The key idea is to use the virtual element space defined on the background mesh for ap-

proximation and project the virtual functions to the IFE spaces on interface elements for

projections as the immersed elements described above satisfy the jump conditions thus offer-

ing sufficient approximation locally. Consequently, we define the local discrete bilinear form

on an interface element K as: aKh (·, ·) : H1(K)×H1(K)→ R where

aKh (uh, vh) := (βh∇ΠKuh,∇ΠKvh)K + SK(uh − ΠKuh, vh − ΠKvh). (5.12)

The stabilization term above SK(·, ·) is

SK(Y, Z) :=
∑
e∈EK

βe(Y, Z)1/2,e

where Y = uh − ΠKuh and Z = vh − ΠKvh, βe = β± depends on e ⊂ K±, and

(Y, Z)1/2,e :=

∫
e

∫
e

(Y (x)− Y (y))(Z(x)− Z(y))

|z − y|2
dx dy.

Since both Y and Z are linear functions on each e, a simple formulation of the stabilization

term can be obtained:

SK(Y, Z) =
∑
e∈EK

βe(Y (be)− Y (ae))(Z(be)− Z(ae)). (5.13)
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For each non-interface element, ΠK is simply the identity operator and SK vanishes since the

stabilization is applied on (I − ΠK). Therefore, the bilinear form on non-interface elements

reduces to

aKh (uh, vh) := (βh∇uh,∇vh)K .

As a result, some key estimates on non-interface elements fall into the standard FEM regime,

as such, the results on these elements will be omitted, and the focus is on the interface

elements. In the rest of this section, on each element K, the notions of ΠK and SK , regardless

of being interface element or not, are adopted to maintain a consistent and concise set of

notations.

The proposed virtual immersed scheme is to find uh ∈ Vh such that for all vh ∈ Vh,

ah(uh, vh) :=
∑
K∈Th

aKh (uh, vh) =
∑
K∈Th

(f,ΠKvh)K . (5.14)

There are several major differences of the proposed virtual immersed scheme above from the

classic penalty-type IFE scheme [31]. First, the proposed scheme does not require those edge

terms originated from the integration parts, but only the stabilization term. As a result,

the discretization is parameter-free, and yields a symmetric system which can be solved by

fast linear solvers. Second, it does not need the interaction between two neighbor elements

such that the computation is more parallelizable. However, compared with the classical IFE,

there are more DoFs locally on each interface element, of which the extra are associated with

the cutting points.

5.3.2 Error representation

Now we proceed to derive an error equation for the numerical solution uh. Given each

u ∈ H2(Ω−∪Ω+), denote uI as the interpolation of u in Vh. Namely, it is the standard linear
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Lagrange interpolant on non-interface elements, but a special non-polynomial function on

interface elements. Due to the conforming property of the virtual elements, there always

holds uI ∈ H1(Ω). To estimate the error sourcing from different terms, we shall derive an

error equation for uh − uI under the bilinear form induced norm |||·|||2 := ah(·, ·).

Lemma 5.3.1 (Error equation). Let u ∈ H2(Ω−∪Ω+) satisfy the jump condition (4.2), and

denote vh = uh − uI , then the following identity holds

|||vh|||2 =
∑
K∈Th

(βh∇ΠK(u− uI),∇ΠKvh)K

+ (βh∇(u− ΠKu) · n, vh − ΠKvh)∂K − SK(uI − ΠKuI , vh − ΠKvh)

+ ((β − βh)∇u,∇ΠKvh)K .

(5.15)

Proof. We start by using the equation −∇ · (β∇u) = f in Ω− ∪ Ω+ to obtain

|||vh|||2 =ah(uh − uI , vh) = ah(uh, vh)− ah(uI , vh)

=
∑
K∈Th

(f,ΠKvh)K − ah(uI , vh)

=
∑
K∈Th

(−∇ · (β∇u),ΠKvh)K − ah(uI , vh)

=
∑
K∈Th

[(β∇u,∇ΠKvh)K︸ ︷︷ ︸
(I)

− (β∇u · n,ΠKvh)∂K︸ ︷︷ ︸
(II)

]− ah(uI , vh)

(5.16)

where in the last identity we have also used the integration by parts on each subelement K±,

the flux jump conditions of u and the continuity of ΠKvh on K. For the term (I) in (5.16),

using the definition of ΠK we have

(I) = (βh∇u,∇ΠKvh)K + ((β − βh)∇u,∇ΠKvh)K

= (βh∇ΠKu,∇ΠKvh)K + ((β − βh)∇u,∇ΠKvh)K .

(5.17)
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For the term (II), since it is defined on ∂K, β exactly matches βh, and thus we obtain

(II) = (βh∇u · n,ΠKvh)∂K = (βh∇u · n,ΠKvh − vh)∂K . (5.18)

where in the second identity we have used vh = uh − uI being continuous across each edge

as it is in the virtual element space Vh. Using integration by parts on the subelements K±h ,

the flux jump conditions of the IFE functions on ΓKh , vh − ΠKvh be continuous across ΓKh ,

and definition the projection ΠK in (5.9), we have

(βh∇ΠKu · n, vh − ΠKvh)∂K =
∑
s=±

(βh∇ΠKu · n, vh − ΠKvh)∂Ks
h

=
∑
s=±

(βh∇ΠKu,∇(vh − ΠKvh))Kh

= 0.

(5.19)

Thus, (5.18) further becomes

(II) = (βh∇(u− ΠKu) · n,ΠKvh − vh)∂K . (5.20)

Putting (5.17) and (5.20) into (5.16), and using the format of ah(uI , vh), we obtain the

desired result.

In the derivation above, there are two steps involving integration by parts in which the one

in (5.16) is for the exact solution u with respect to the subelements K± and another one in

(5.19) is for virtual and IFE functions with respect to the subelements K±h . The different

manners are according to their corresponding jump conditions imposed on Γ or ΓKh such that

those extra terms occurring on Γ or ΓKh can be cancelled.
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5.4 Error Estimates

In this section, we proceed to estimate the solution errors. Based on the error equation in

Lemma 5.3.1, we first get the bound of the error uh − uI .

Theorem 5.4.1 (A priori error bound). Let u ∈ H2(Ω− ∪ Ω+) satisfy the jump conditions

in (4.2), then the following estimate holds

|||vh||| .
∑
K∈Th

[‖β1/2
h ∇ΠK(u− uI)‖0,K

+ h
1/2
K ‖β

1/2
h ∇(u− ΠKu) · n‖0,∂K + |β1/2

h (uI − ΠKuI)|1/2,EK

+ ‖β1/2
max∇u‖0,Kδ ].

(5.21)

Proof. Note that β 6= βh only on Kδ. So for the error equation in Lemma 5.3.1, applying

the Cauchy-Schwarz inequality, we have

|||vh|||2 ≤
∑
K∈Th

(
‖β1/2

h ∇ΠK(u− uI)‖0,K‖β1/2
h ∇ΠKvh‖0,K

+ ‖β1/2
h ∇(u− ΠKu) · n‖0,∂K‖β1/2

h (vh − ΠKvh)‖0,∂K

+ |β1/2
h (uI − ΠKuI)|1/2,EK |β

1/2
h (vh − ΠKvh)|1/2,EK

+ ‖β1/2
max∇u‖0,Kδ‖β1/2

max∇ΠKvh‖0,K

)
.

(5.22)

In the bound above, it is clear that ‖β1/2
h ∇ΠKvh‖0,K and |β1/2

h (vh−ΠKvh)|1/2,EK are bounded

above by |||vh|||, and ‖β1/2
max∇ΠKvh‖0,K is also bounded above by |||vh||| with a β dependent

constant.

Then it remains to estimate the second term in (5.22). Note that
∫
∂K
β

1/2
h (vh−ΠKvh)ds = 0.

So by Theorem ??, there holds

‖β1/2
h (vh − ΠKvh)‖0,∂K . h

1/2
K |β

1/2
h (vh − ΠKvh)|1/2,EK . h

1/2
K |||vh|||.
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Combining the estimates above and cancelling out a |||vh||| from the left hand side, we get

the desired a priori estimate.

Now our task is to estimate each term in the right hand side of the error bound (5.21).

Before getting into the estimate, we emphasize that the set EK consists of the edges formed

by element vertices and cut points. So in the following discussion, for each edge e ∈ EK that

connects the element vertices and cut points, we will use ê to denote the extension of e to

the actual edge of the triangle K (e.g. e = AD to ê = AB). Now, let us first dervie the

estimate of the first term in the right hand side of the error bound in (5.21).

Lemma 5.4.2. Let u ∈ H2(Ω− ∪ Ω+) satisfy the jump conditions in (4.2), then on each

interface element K there holds

‖β1/2
h ∇ΠK(u− uI)‖0,K . hK‖u±E‖2,ωK (5.23)

Proof. By the definition of projection, we immediately have

‖β1/2
h ∇ΠK(u− uI)‖2

0,K =(βh∇ΠK(u− uI),∇ΠK(u− uI))K

=(βh∇ΠK(u− uI),∇(u− uI))K .

Using integration by parts on the subelements K±h , Πk(u−uI) satisfying the jump condition

on ΓK and u− uI being H1, we have

‖β1/2
h ∇ΠK(u− uI)‖2

0,K =(βh∇ΠK(u− uI) · n, u− uI)∂K

≤‖β1/2
h ∇ΠK(u− uI) · n‖0,∂K‖β1/2

h (u− uI)‖0,∂K .

(5.24)

For each edge on ∂K, applying the IFE trace inequality in (5.2.1), we obtain

‖β1/2
h ∇ΠK(u− uI) · n‖0,e ≤ ‖β1/2

h ∇ΠK(u− uI) · n‖0,ê

. h
−1/2
K ‖β1/2

h ∇ΠK(u− uI)‖0,K .

(5.25)
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Putting (5.25) into (5.24) and cancelling out the term ‖β1/2
h ∇ΠK(u− uI)‖0,K leads to

‖β1/2
h ∇ΠK(u− uI)‖0,K . h

−1/2
K ‖β1/2

h (u− uI)‖0,∂K . (5.26)

So it remains to estimate the right-hand side above. Notice βh is constant on each edge in

EK . Without loss of generality, we focus on an edge e ⊆ K+. Then by the interpolation

estimate on this edge, we have

‖β1/2
h (u− uI)‖0,e . h3/2

e |u|3/2,e . h
3/2
K |u

+
E|3/2,ê . h

3/2
K |u

+
E|2,K (5.27)

where in the last inequality, we have also applied the trace inequality in [14, Lemma 6.2].

Putting (5.27) into (5.26) gives the desired estimate on this edge. Similar arguments apply

to the case e ⊂ ∂K− which together finishes the proof.

To estimate the second and third term in the right-hand side of the error bound (5.21), we

need to establish the estimate for ΠK , particularly its every polynomial component Π±K on

the whole element K.

Lemma 5.4.3. For u ∈ H2(Ω− ∪ Ω+) satisfying the jump conditions (4.2), then on each

interface element K there holds

|u±E − Π±Ku|1,K . hK
(
‖u+

E‖2,ωK + ‖u−E‖2,ωK

)
+ |u+

E|1,Kδ + |u−E|1,Kδ . (5.28)

Proof. By the jump conditions on ΓKh and employing the matrix in (5.8), we first have the

following identity for gradients of an IFE function vh ∈ V IF
h (K):

∇v+
h = M∇v−h .
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It clearly shows

‖∇v+
h ‖ ' ‖∇v

−
h ‖ (5.29)

where ‖·‖ are just Euclidean norms for vectors, and the hidden constant depends on β. Now

let us move to the estimate in (5.28), and without loss of generality, we only discuss the +

piece. We have the following trivial split

|u+
E − Π+

Ku|1,K . |u+
E − Π+

Ku|1,K+
h︸ ︷︷ ︸

(I)

+ |u+
E − Π+

Ku|1,K−h︸ ︷︷ ︸
(II)

. (5.30)

The estimate for (I) follows from inserting u

|u+
E − Π+

Ku|1,K+
h
. |u− Π+

Ku|1,K+
h

+ |u− u+
E|1,K+

h

. |u− IIF,+h u|1,K + |u|1,Kδ

. hK(‖u+
E‖2,ωK + ‖u−E‖2,ωK ) + |u+

E|1,Kδ + |u−E|1,Kδ

(5.31)

where in the second inequality we have used the smallest distance property for ΠK under

energy norm which is equivalent to the | · |1,K norm. The more difficult one is (II) as we

need to analyze it on K−h . The idea is to insert the quasi IFE interpolation IIFh as it already

admits the desired estimate for each component:

|u+
E − Π+

Ku|1,K−h ≤ |u
+
E − I

IF,+
h u|1,K−h︸ ︷︷ ︸

(IIa)

+ |IIF,+h u− Π+
Ku|1,K−h︸ ︷︷ ︸

(IIb)

. (5.32)

(IIa) immediately follows from the approximation capabilities of IIFh in Lemma 5.2.2. For

(IIb), noticing IIF,+h u−Π+
Ku is one polynomial component of the IFE function IIFh u−ΠKu.
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So applying the equivalence in (5.29) together with the triangular inequality, we obtain

(IIb) . |IIF,−h u− Π−Ku|1,K−h

. |IIF,−h u− u|1,K−h + |u− Π−Ku|1,K−h

. hK(‖u+
E‖2,ωK + ‖u−E‖2,ωK ) + |u+

E|1,Kδ + |u−E|1,Kδ

(5.33)

where the argument for the second and third inequalities are similar to (5.31). Putting

(5.31)-(5.33) into (5.30), we have the desired result.

Next, we estimate the second term in the right-hand side of the error bound (5.21).

Lemma 5.4.4. For u ∈ H2(Ω− ∪ Ω+) satisfying the jump conditions (4.2), then on each

interface element K there holds

‖β1/2
h ∇(u− ΠKu) · n‖0,∂K . h

1/2
K ‖u

±
E‖2,ωK + h

−1/2
K |u±E|1,Kδ . (5.34)

Proof. Without loss of generality, we only consider + side. Given an edge e ∈ EK with

e ⊆ K+
h and its extension ê as an edge of K, we apply the trace inequality to obtain

‖βh∇(u− ΠKu) · n‖0,e ≤ (β+)1/2‖∇(u+
E − Π+

Ku) · n‖0,ê

. h
−1/2
K |u+

E − Π+
Ku|1,K + h

1/2
K |u

+
E|2,K

which yields the desired result by Lemma 5.4.3.

Then we estimate the third term in the right-hand side of the error bound (5.21).

Lemma 5.4.5. For u ∈ H2(Ω− ∪ Ω+) satisfying the jump conditions (4.2), then on each
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interface element K there holds

|β1/2
h (uI − ΠKuI)|1/2,EK . hK‖u±E‖2,ωK + |u±E|1,Kδ . (5.35)

Proof. It suffices to establish an edge-wise bound | · |1/2,e by (5.2). For each edge, since βh is

a constant, we have

|β1/2
h (uI − ΠKuI)|1/2,e . |uI − ΠKu|1/2,e︸ ︷︷ ︸

(I)

+ |ΠK(u− uI)|1/2,e︸ ︷︷ ︸
(II)

.

In the following discussion, without loss of generality we only consider the e ⊆ K+
h . For (I),

since it is linear on e, and u and uI match at the end points ae and be of e, we obtain

(I) =
∣∣(uI − Π+

Ku)|beae
∣∣ =

∣∣(u− Π+
Ku)|beae

∣∣
=

∣∣∣∣∫
e

∂e(u− Π+
Ku) ds

∣∣∣∣ ≤ h1/2
e

∥∥∂e(u− Π+
Ku)

∥∥
0,e

≤ h1/2
e |u− Π+

Ku|1,e.

(5.36)

Replacing u by its extension u+
E and recalling that Π+

Ku is a polynomial being trivially used

on the whole element K, we apply the standard trace inequality and Lemma 5.4.3 to get

(I) ≤ h
1/2
K |u

+
E − Π+

Ku|1,ê . |u
+
E − Π+

Ku|1,K

. hK‖u±E‖2,ωK + |u±E|1,Kδ .
(5.37)

For (II), applying the trace inequality for IFE functions in Theorem 5.2.1 and Lemma 5.4.2,

60



we obtain

(II) =
∣∣ΠK(u− uI)|beae

∣∣ =

∣∣∣∣∫
e

∂eΠK(u− uI) ds

∣∣∣∣
≤h1/2

e |ΠK(u− uI)|1,ê . h
−1/2
K h1/2

e |ΠK(u− uI)|1,K

≤hK‖u±E‖2,ωK .

(5.38)

Here we note that ΠK(u−uI) is a piecewise polynomial used on the whole element and thus

the standard trace inequality is not applicable; instead we need to use the trace inequalities

for IFE functions in Theorem 5.2.1. Combining the estimates of (I) and (II), we have the

desired result.

Remark 5.4.6. In the analysis of classical VEM on anisotropic elements [14], the main

difficulty is to obtain an error bound that is independent of element anisotropy such as

shrinking elements. We highlight that one of the key obstacles for anisotropic analysis is the

failure of the standard trace inequalities as the height supporting an edge may very small.

For example for the present situation, in the estimation of (5.25) and (5.38), the standard

trace inequality can not be applied directly to each polynomial on each subelement as it may

shrink, and thus the hidden constant may not be uniform with respect h anymore. So the

estimation for VEM generally requires some special analysis techniques such as the Poincaré

inequality on an anisotropic cut element developed in [14]. However, we note that these

special treatments are not needed in the proposed method and analysis since the IFE functions

even as piecewise polynomial do admit the trace inequalities on interface elements, and the

constants are independent of cut points as shown in Theorem 5.2.1. These trace inequalities

actually significantly simplify the analysis as it is more close the the analysis on isotropic

elements.

Combining the results of Lemma 5.4.2, 5.4.4 and 5.4.5 and the error bound in Theorem 5.4.1,

we achieve the following conclusion.
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Theorem 5.4.7. Let u ∈ H2(Ω− ∪ Ω+) satisfy the jump conditions and uh the IFE-VEM

solution, then the following estimate holds

|||u− uh||| . h‖u‖2,Ω−∪Ω+ . (5.39)

Proof. Triangle inequality yields |||u−uh||| ≤ |||u−uI |||+ |||uI−uh|||. For |||uI−uh|||, combining

the results of Lemma 5.4.2, 5.4.4 and 5.4.5 and the error bound in Theorem 5.4.1, we have

|||uI − uh||| .
∑
K∈T nh

hK‖u‖2,K +
∑
K∈T ih

(
hK‖u±E‖2,ωK + |u±E|1,Kδ

)
. h‖u±E‖2,Ω . h‖u‖2,Ω−∪Ω+ .

(5.40)

where we have used the finite overlapping property of ωK and the strip argument in Lemma

?? to control |u|1,Kδ and finally the boundedness for Sobolev extensions.

Then we proceed to estimate |||u− uI |||. Since it is trivial on non-interface elements, we only

need to estimate it on interface elements. By the triangular inequality, we have

|||u− uI ||| .
∑
K∈T ih

‖β1/2
h ∇ΠK(u− uI)‖0,K + |u− uI |1/2,EK (5.41)

The first term can be handled by Lemmas 5.4.2. For the third term, given e ∈ EK and

without loss of generality assuming it is K+
h , by the interpolation estimate in 1D and the

standard trace inequality on K, we have

|u− uI |1/2,e . he|u|3/2,e . he|u+
E|3/2,ê . hK‖u+

E‖2,K (5.42)

where ê is the extension of e. Putting (5.42) to (5.41) and applying the boundedness for

Sobolev extensions, we have the desired result.
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