Lawrence Berkeley National Laboratory Recent Work

Title

UNITARIZATION OF THE DUAL RESONANCE AMPLITUDE. II. THE NONPLANAR FT-LOOP AMPLITUDE

Permalink

https://escholarship.org/uc/item/8d05j99s

Authors

Kaku, Miehio
Yu, Loh-ping.
Publication Date
1970-09-01

UNITARIZATION OF THE DUAL RESONANCE AMPLITUDE．

II．THE NONPLANAR N－LOOP AMPLITUDE

Michio Kaku and Loh－ping Mu

September 8， 1970

AEC Contract No．W－7405－eng－48

TWO－WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks． For a personal retention copy，call Tech．Info．Division，Ext． 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNITARIZATION OF THE DUAL RESONANCE AMPLITUDE. II. THE NONPLANAR N-LOOP AMPLITUDE*

Michio Kaku and Loh-ping Yu
Lawrence Radiation Laboratory
University of California
Berkeley, California 94720

September 8, 1970

Abstract

Following our previous paper on the planar N-loop Veneziano amplitude, we derive the nonplanar N-loop formula in this paper. The calculation is performed by tracing over both the multiply factorized tree and the Sciuto threereggeon vertex functions.

I. INTRODUCTION

This paper is the second of three articles devoted to calculating all multiloop amplitudes in the dual resonance model. In the first paper, ${ }^{l}$ we presented the planar N-loop amplitude; we discussed at length the principal-axes method, the infinite cancellation technique, the KSV interpretation, the Jacobian calculation, and the range of integration. Because the planar and nonplanar loop calculations are similar, we present the nonplanar amplitudes in this paper without many of these details. In the third paper, we will present rules for writing down arbitrary planar, nonplanar, overlapping, and nonorientable loop amplitudes. ${ }^{2}$

The nonplanar amplitude differs from the planar one in three major ways:
(a) The linear dependence correction is $(1-X)^{2}$ for each loop, not $(1-X)$, where X is the multiplier of each projective transformation.
(b) The factors raised to the $\frac{m^{2}}{2}-1$ power differ slightly, to reflect the different quark topology $[$ see (2.26) and (3.13)].
(c) There are variables of integration which lie between the invariant points of each projective transformation.

II. MULTIPLE FACTORIZATION FORMULATION OF NONPLANAR MULTIPLE LOOPS

As in the previous paper, ${ }^{1}$ we first consider the nonplanar. single-loop ${ }^{3}$ amplitude, expressed in a general projective frame, and then apply the method without modification to the nonplanar multiloop diagrams.

A. Nonplanar Single-Loop Amplitude

We first write down ${ }^{4}$ the following doubly factorized tree formula for the amplitudes corresponding to Fig. l:

$$
\begin{align*}
& \quad G_{(Y)}^{(2)}\left(a^{\alpha}, a^{\beta}\right)=\int \prod_{i}{d y_{i}\left(Y_{S+2}\right\}}^{X} \exp \left\{\sum_{\substack{i=0 \\
(i \neq \alpha)}}^{S+1}\left(a^{\alpha}\left|P_{\alpha}(i)\right| k_{i}\right)+\sum_{i=0}^{S+1}\left(a^{\beta}\left|P_{\beta}(i)\right| k_{i}\right)\right. \\
& \left.\quad+\quad\left(a^{\alpha}\left|P_{\alpha}(\beta) M_{-} P(\alpha+1, \beta-1, \alpha, \beta) M_{-}^{T} P_{\beta}(\alpha)\right| a^{\beta}\right)\right\},
\end{align*}
$$

$$
\begin{equation*}
P_{\alpha}(i)=P(\alpha, \alpha+1, \alpha-1, i) \equiv \frac{\left(y_{\alpha}-y_{\alpha-1}\right)\left(y_{\alpha+1}-y_{i}\right)}{\left(y_{\alpha+1}-y_{\alpha-1}\right)\left(y_{\alpha}-y_{i}\right)}, \tag{2.2a}
\end{equation*}
$$

$$
\begin{equation*}
P_{\beta}(i)=P(\beta, \beta-1, \beta+1, i) . \tag{2.2b}
\end{equation*}
$$

Applying the sewing prescriptions ${ }^{l}$ on the excited a^{α}, a^{β} legs, and using the principai-axes technique, ${ }^{1}$ we obtain, from Eq. (2.1), the
nonplanar single-loop amplitude (Fig. 2); call it FNL(1):

$$
F N L(1)=\int d^{4} k_{\alpha} \int_{0}^{1} d t t^{-\ell\left(k_{\alpha}\right)-1}(1-t)^{\alpha-1+\frac{1}{2} k_{\alpha}^{2}} \int \prod_{i}^{\prime} d y_{i}^{\left(Y_{S+2}\right\} I,}
$$

where

$$
\begin{equation*}
I=\frac{1}{(\operatorname{det}[\Delta])^{\frac{1}{2}}} \exp \left\{\frac { 1 } { 2 } \sum _ { n = 0 } ^ { \infty } \left(\left(E \left\lvert\,,(F \mid)[G H]^{n}\binom{\mid F)}{\mid E)}\right.\right\}\right.\right. \tag{2.4}
\end{equation*}
$$

and

$$
\begin{align*}
& {[\Delta]=\left(\begin{array}{cc}
0 & {[I]-[\overline{\mathrm{C}}]^{T}} \\
{[I]-[\overline{\mathrm{C}}]} & 0
\end{array}\right)} \tag{2.5}\\
& {[\mathrm{GH}]=\left(\begin{array}{cc}
{[\overline{\mathrm{C}}]} & 0 \\
0 & {[\overline{\mathrm{C}}]^{T}}
\end{array}\right),} \tag{2.6}
\end{align*}
$$

with

$$
\begin{align*}
{[\bar{C}]=} & M_{-}^{T}\left(\frac{t}{t-1}\right) P_{\alpha}(\beta) M_{-} P(\alpha+1, \beta-1, \alpha, \beta) M_{-}^{T} P_{\beta}(\alpha), \tag{2.7a}\\
\mid \bar{F})= & \sum_{\substack{i=0 \\
(i \neq \alpha, \beta)}}^{S+1} \therefore M_{-}^{T}\left(\frac{t}{t-1}\right) P_{\alpha}\left[\begin{array}{c}
i \\
\beta \\
\alpha+1
\end{array}\right]\left[\begin{array}{l}
k_{i} \\
k_{\beta} \\
k_{\alpha}
\end{array}\right), \tag{2.7b}
\end{align*}
$$

$$
\mid E)=\sum_{\substack{i=0 \tag{2.7c}\\
(i \neq \alpha, \beta)}}^{S+1} P_{\beta}\left[\begin{array}{c}
i \\
\alpha \\
\beta+1
\end{array}\right]\left(\begin{array}{c}
k_{i} \\
k_{\alpha} \\
k_{\beta}
\end{array}\right)
$$

We then calculate Eq. (2.4), order by order in [GH] matrix, by defining the projective operator

$$
\begin{equation*}
Q(x)=\frac{1}{\left(\frac{t}{t-1}\right)\left(1-\frac{1}{x}\right)}, \quad Q^{-1}(x)=\frac{1}{1-\frac{t-1}{t x}} \tag{2.8}
\end{equation*}
$$

and the projective operator corresponding to encircling the loop

$$
\begin{equation*}
R_{\beta \alpha} \equiv R_{\beta \alpha}^{+} \equiv P_{\alpha}^{-1} Q \hat{P}_{\beta}, \quad R_{\beta \alpha}^{-1} \equiv \hat{P}_{\beta}^{-1} Q^{-1} P_{\alpha}, \tag{2.9}
\end{equation*}
$$

where

$$
\begin{align*}
\hat{P}_{\beta}(x) & =\frac{1}{P_{\beta}(x)}=P(\beta-1, \beta, \beta+1, x) \tag{2.10a}\\
\hat{P}_{\beta}^{-1}(x) & =y_{\beta-1}-\frac{y_{\beta-1}-y_{\beta}}{1-x\left(\frac{y_{\beta}-y_{\beta+1}}{y_{\beta-1}-y_{\beta+1}}\right)} \tag{2.10b}\\
\hat{P}_{\beta}^{-1}(x) & =P_{\beta}^{-1}\left(\frac{1}{x}\right) \tag{2.10c}
\end{align*}
$$

From Eq. (2.9), we have two identities

$$
\begin{align*}
& R_{\beta \alpha}^{-1}\left(y_{\alpha}\right)=y_{\beta+1} \tag{2.11a}\\
& R_{\beta \alpha}\left(y_{\beta}\right)=y_{\alpha+1} \tag{2.11b}
\end{align*}
$$

These two identities, Eq. (2.1la) and (2.11b), enable us to get the "invariant points" of $R_{\beta \alpha}$. .

We find, after tedious calculation, the expression for I :

$$
\begin{align*}
& I \equiv \frac{1}{(\operatorname{det}[\Delta])^{\frac{1}{2}}} \prod_{n=0}^{\infty} \prod_{\substack{i, j=0 \\
i, j \neq \alpha, \beta)}}^{S+1}\left[y_{i}-R_{\beta \alpha}^{ \pm(n+1)}\left(y_{j}\right)\right]^{-\frac{1}{2} k_{i} \cdot k_{j}} \\
& X \prod_{\substack{(i \neq \alpha, \beta)}}^{S+1}\left\{\frac{y_{i}-x_{2}}{y_{i}-x_{1}}\right\}^{-k_{i} \cdot k_{\alpha}}\left\{\frac{y_{i}-y_{\beta}}{y_{i}-y_{\alpha}}\right\}^{-k_{i} \cdot k_{\alpha}} \\
& X\left\{\frac{\left(y_{\alpha}-y_{\beta}\right)}{\left(y_{\alpha}-x_{1}\right)}: \frac{R_{\beta \alpha}^{-1}\left(y_{\alpha}\right)-x_{1}}{R_{\beta \alpha}^{-1}\left(y_{\alpha}\right)-y_{\beta}}\right\}^{-k_{\alpha} \cdot k_{\alpha}} \tag{2.12}
\end{align*}
$$

We also separate out, in the factor $\left\{\mathrm{Y}_{\mathrm{S}+2}\right\}$ of Eq. (2.3), all factors containing y_{α}, y_{β}, and combine them with Eq. (2.12); we get, finally,

$$
\begin{aligned}
& \left\{Y_{S+2}\right\} I=\frac{1}{(\operatorname{det}[\Delta])^{\frac{I}{2}}} \overbrace{n=0}^{\infty} \overbrace{i, j=0}^{S+1}\left[y_{i}-R_{B \alpha}^{ \pm(n)}\left(y_{j}\right)\right]^{-\frac{1}{2} k_{i} \cdot k_{j}} \\
& \begin{array}{l}
(i, j \neq \alpha, \beta) \\
(n=0, i \neq j)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x\left\{\left[\frac{\left(\mathrm{R}_{\beta \alpha}^{-1}\left(\mathrm{y}_{\alpha}\right)-\mathrm{x}_{1}\right.}{\left(\mathrm{y}_{\alpha}-\mathrm{x}_{1}\right)\left(\mathrm{R}_{\beta \alpha}^{-1}\left(\mathrm{y}_{\alpha}\right)-\mathrm{y}_{\beta}\right)}\right]^{-\mathrm{k}_{\alpha}^{2}}\right.
\end{aligned}
$$

Equation (2.13) continued

$$
\begin{aligned}
& x\left[\frac{\left(y_{\alpha-1}-y_{\alpha}\right)\left(y_{\alpha}-y_{\alpha+1}\right)\left(y_{\beta-1}-y_{\beta}\right)\left(y_{\beta}-y_{\beta+1}\right)}{\left(y_{\alpha-1}-y_{\alpha+1}\right)\left(y_{\beta-1}-y_{\beta+1}\right)}\right]^{-\frac{1}{2} k_{\alpha}^{2}-1} \\
& \left.\times\left[\left(y_{\alpha-1}-y_{\alpha+1}\right)\left(y_{\beta-1}-y_{B+1}\right)\right]^{\alpha_{0}-1}\left(y_{a}-y_{b}\right)\left(y_{b}-y_{c}\right)\left(y_{c}-y_{a}\right)\right\} \cdot(2.13)
\end{aligned}
$$

We now express our final answer in a projectively invariant form by transforming the set of variables ($t, \mathrm{y}_{\alpha}, \mathrm{y}_{\beta}$) into the new set of variables ($\mathrm{X}, \mathrm{x}_{1}, \mathrm{x}_{2}$). We first extract out all factors containing $\mathrm{t}, \mathrm{y}_{\alpha}, \mathrm{y}_{\beta}$ in Eq. (2.3). From Eqs. (2.3) and (2.13), they are

$$
\begin{aligned}
& d t d y_{\alpha} d y_{\beta} t^{-\ell\left(k_{\alpha}\right)-1}(1-t)^{\alpha_{0}-1+\frac{1}{2} k_{\alpha}}\left\{\left[\frac{\left(R_{\beta \alpha}^{-1}\left(y_{\alpha}\right)-x_{1}\right)}{\left(y_{\alpha}-x_{1}\right)\left(R_{\beta \alpha}^{-1}\left(y_{\alpha}\right)-y_{\beta}\right)}\right]^{-k_{\alpha}^{2}}\right. \\
& X\left[\frac{\left(y_{\alpha-1}-y_{\alpha}\right)\left(y_{\alpha}-y_{\alpha+1}\right)\left(y_{\beta-1}-y_{\beta}\right)\left(y_{\beta}-y_{\beta+1}\right)}{\left(y_{\alpha-1}-y_{\alpha+1}\right)\left(y_{\beta-1}-y_{\beta+1}\right)}\right]^{-\frac{1}{2} k_{\alpha}^{2}-1} \\
& \left.X\left[\left(y_{\alpha-1}-y_{\alpha+1}\right)\left(y_{\beta-1}-y_{\beta+1}\right)\right]^{\alpha_{0}-1}\left(y_{a}-y_{b}\right)\left(y_{b}-y_{c}\right)\left(y_{c}-y_{a}\right)\right\}
\end{aligned}
$$

The Jacobian calculation is quite involved, and details can be found in Appendix A. We merely quote the result here. In the frame $\mathrm{x}_{1}=\infty, \mathrm{x}_{2}=0$, the expression (2.14) is equal to

$$
\begin{equation*}
d x\left[d x_{1}\right]\left[d x_{2}\right](1-x)^{2} x^{-\ell\left(k_{\alpha}\right)-1}\left[\left(y_{\alpha-1}-x_{\beta+1}\right)\left(y_{\alpha+1}-x_{\beta-1}\right)\right]^{\alpha_{0}-1} \tag{2.15}
\end{equation*}
$$

The unique projective generalization of the expression (2.15) is exactly similar to that found in the previous paper; ${ }^{1}$ it is

$$
\begin{align*}
& d X d x_{1} d x_{2} X^{-\ell\left(k_{\alpha}\right)-1}(1-x)^{2} \frac{\left(y_{a}-y_{b}\right)\left(y_{b}-y_{c}\right)\left(y_{c}-y_{a}\right)}{\left(x_{1}-x_{2}\right)^{2}} \\
& X\left\{\frac{\left[y_{\alpha-1}-R_{\beta \alpha}\left(y_{\beta+1}\right)\right]\left(x_{1}-y_{\beta+1}\right)}{\left[x_{1}-R_{\beta \alpha}\left(y_{\beta+1}\right)\right]}\right\}^{\alpha-1} \\
& X\left\{\frac{\left[y_{\alpha+1}-R_{\beta \alpha}\left(y_{\beta-1}\right)\right]\left(x_{1}-y_{\beta-1}\right)}{\left[x_{1}-R_{\beta \alpha}\left(y_{\beta-1}\right)\right]}\right\}^{\alpha_{0}-1} \tag{2.16}
\end{align*}
$$

Now we are ready to write down the nonplanar single-loop formula. By combining Eqs. (2.16), (2.13) with (2.3), we obtain the final form:

$$
\begin{aligned}
& \operatorname{FNL}(1)=\int d^{4} k_{\alpha} \int d X X^{-l\left(k_{\alpha}\right)-1}(1-X)^{2} \\
& X \int \prod_{\substack{i=0 \\
(i \neq \alpha, \beta, a, b, c)}}^{s+1} d y_{i} d x_{1} d x_{2}\left[d y_{a}\right]\left[d y_{b}\right]\left[d y_{c}\right] \frac{\left(y_{a}-y_{b}\right)\left(y_{b}-y_{c}\right)\left(y_{c}-y_{a}\right)}{\left(x_{1}-x_{2}\right)^{2}} \\
& X \prod_{i=0}^{S+1}\left(y_{i}-y_{i+1}\right)^{\alpha_{0}-1} \\
& \binom{i \neq \alpha, \alpha-1}{\beta, \beta-1} \\
& X\left\{\frac{\left[y_{\alpha-1}-R_{\beta \alpha}\left(y_{\beta+1}\right)\right]\left(x_{1}-y_{\beta+1}\right)}{\left[x_{1}-R_{\beta \alpha}\left(y_{\beta+1}\right)\right]}\right\}^{\alpha_{0}^{-1}}\left\{\frac{\left[y_{\alpha+1}-R_{\beta \alpha}\left(y_{\beta-1}\right)\right]\left(x_{1}-y_{\beta-1}\right)}{\left[x_{1}-R_{\beta \alpha}\left(y_{\beta-1}\right)\right]}\right\}^{\alpha_{0}-1}
\end{aligned}
$$

Equation (2.17) continuted

$$
\begin{gather*}
x \prod_{n=1}^{\infty} \frac{1}{\left(1-x^{n}\right)^{4}} \prod_{\substack{i=0 \\
(i \neq \alpha, \beta)}}^{S+1}\left(\frac{y_{i}-x_{2}}{y_{i}-x_{1}}\right)^{-k_{i} \cdot k_{\alpha}} \prod_{\substack{i, j=0 \\
(i, j \neq \alpha, \beta)}}^{S+1} \prod_{\substack{n=0 \\
(n=0, i \neq j)}}^{\infty} \\
X\left[y_{i}-R_{B \alpha}^{ \pm(n)}\left(y_{j}\right)\right]{ }^{-\frac{1}{2} k_{i} \cdot k_{j}}, \tag{2.17}
\end{gather*}
$$

where

$$
\begin{equation*}
(\operatorname{det}[\Delta])^{-\frac{1}{2}}=\prod_{n=1}^{\infty}\left(1-x^{n}\right)^{-4} \tag{2.18}
\end{equation*}
$$

The ordering of $y_{i}, i=0,1, \cdots, s+1, \quad i \neq \alpha, \beta$ and x_{1}, x_{2} will now be discussed. The variables of the multiply factorized tree, before sewing, had the ordering

$$
y_{0} \geq y_{1} \geq \cdots \geq y_{\alpha-1} \geq y_{\alpha} \geq y_{\alpha+1} \geq \cdots \geq y_{\beta-1} \geq y_{\beta} \geq y_{\beta+1} \geq \cdots \geq y_{S+1} .
$$

It is sufficient to specialize to the frame $x_{1}=\infty, x_{2}=0$ and consider the case $0 \leq X<1$. After sewing, Eq. (2.11) gives the relations

$$
\begin{align*}
y_{\alpha} & =x y_{\beta+1}<y_{\beta+1} \tag{2.19a}\\
y_{\beta} & =x^{-1} y_{\alpha+1}>y_{\alpha+1} . \tag{2.19b}
\end{align*}
$$

These two relations imply two inequalities similar to Eq. (2.48) of Ref. l:

$$
\begin{align*}
& x^{-1} y_{\alpha-1}>y_{\beta+1} \geq y_{\beta+2} \geq \cdots \geq y_{S+1} \geq y_{0} \geq \cdots y_{\alpha-1}>\mathrm{xy}_{\beta+1} \tag{2.20a}\\
& \cdot x^{-1} y_{\alpha+1}>y_{\beta-1} \geq y_{\beta-2} \geq \cdots \geq y_{\alpha+1}>\mathrm{xy}_{\beta-1} \tag{2.20b}
\end{align*}
$$

Equations (2.20a) and (2.20b) force us to put x_{1} between $y_{\beta+1}$ and $y_{\beta-1}, x_{2}$ between $y_{\alpha-1}$ and $y_{\alpha+1}$. Therefore we conclude that the ordering is

$$
\begin{equation*}
y_{0} \geq y_{1} \geq \cdots \geq y_{\alpha-1} \geq x_{2} \geq y_{\alpha+1} \geq \cdots \geq y_{\beta-1} \geq x_{1} \geq y_{\beta+1} \geq \cdots \geq y_{S+1} . \tag{2.20c}
\end{equation*}
$$

One observes that the nonplanar single-loop formula, Eq. (2.17), is essentially the product of two planar single-loop formulas, one with external legs outside the loop, and the other with external legs inside the loop. The interpretation of various factors is exactly parallel to the interpretations discussed in Ref. l; we will not repeat them here. We see that the nonplanar single-loop formula, Eq. (2.17), is hardly different from the planar single-loop formula in Ref. 1, and as we will see further, the nonplanar N-loop formula again is very similar to the nonplanar single-loop formula.

B. The Nonplanar N-Loop Amplitude

In this subsection, we apply the techniques of the previous subsection to the nonplanar multiply factorized tree diagram (Fig. 3). Each loop is labeled by two indices, e.g., the ($\alpha \beta$) loop is obtained by sewing the excited α leg with the β leg. We adopt the convention that the first index (e.g., α) of each loop [e.g., the ($\alpha \beta$) loop] corresponds to the complex parameter $\left(\lambda_{\alpha}^{*} \mid\right.$. We now write down ${ }^{4}$ the $2 \mathbb{N}$ th-factorized tree amplitude corresponding to Fig. 3:

$$
\begin{align*}
& G_{(Y)}^{(2 N)}\left(a^{\alpha}, a^{\beta} ; a^{\gamma}, a^{\delta} ; \cdots ; a^{\sigma}, a^{\lambda}\right)=\int T_{i} d y_{i}\left(Y_{S+2}\right) \\
& \text { X. } \exp \left\{\sum_{\alpha=\{\mathscr{L}\}} \sum_{\substack{i=0 \\
(i \neq \alpha)}}^{S+1}\left(a^{\alpha}\left|P_{\alpha}(i)\right| k_{i}\right)+\sum_{\beta=\{\mathscr{L}\}} \sum_{\substack{i=0 \\
(i \neq \beta)}}^{S+1}\left(a^{\beta}\left|p_{\beta}(i)\right| k_{i}\right)\right. \\
& +\frac{1}{2} \sum_{\substack{\alpha, \gamma=(\mathscr{L}) \\
(\alpha \neq \gamma)}}\left(a^{\alpha}\left|P_{\alpha}(\gamma) M_{-} P(\alpha+1, \gamma+1, \alpha, \gamma) M_{-} P_{P_{\gamma}}(\alpha)\right| a^{r}\right) \\
& +\frac{1}{2} \sum_{\substack{\beta, \delta=\{\alpha) \\
(\beta \neq \delta)}}\left(a^{\beta}\left|P_{\beta}(\delta) M_{-} P(\beta-1, \delta-1, \beta, \delta) M_{-}^{T} P_{\delta}(\beta)\right| a^{\delta}\right) \\
& \left.+\sum_{\alpha, \delta=\{\mathcal{L}\}}\left(a^{\alpha}\left|P_{\alpha}(\delta) M_{-} P(\alpha+1, \delta-1, \alpha, \delta) M_{-}^{T} P_{\delta}(\alpha)\right| a^{\delta}\right)\right\}, \tag{2.21}
\end{align*}
$$

where

$$
\begin{align*}
& P_{\alpha}(i)=P(\alpha, \alpha+1, \alpha-1, i) \tag{2.22a}\\
& P_{\beta}(i)=P(\beta, \beta-1, \beta+1, i) \tag{2.22b}\\
& P_{\gamma}(i)=P(\gamma, \gamma+1, \gamma-1, i), \tag{2.22c}\\
& P_{\delta}(i)=P(\delta, \delta-1, \delta+1, i) \tag{2.22d.}
\end{align*}
$$

The sum $\sum_{\{\mathscr{Z}\}}$ is over one index from each pair $(\alpha \beta),(\gamma \delta), \cdots,(\sigma \lambda)$; the total number of pairs is N. We will use \mathcal{Q}^{*} to denote the second index in the pair ($\alpha \beta$).

The variable $t_{\alpha \beta}$ corresponds to the propagator which joins the α leg to the β leg. We first apply the sewing prescriptions ${ }^{l}$ simultaneously on the N pairs of excited legs $a^{\alpha}, a^{\beta},(\alpha \beta)=\{\mathscr{L}\}$; then we use the principal-axes technique; ${ }^{1}$ then we define the projective operator $R_{\beta \alpha}$ responsible for circling the ($\alpha \beta$) loop; then we use Eq. (2.11) to facilitate the infinite number of cancellations ${ }^{5}$ leading to the invariant points $x_{\alpha \beta}^{(1)}, x_{\alpha \beta}^{(2)}$ of $R_{\beta \alpha}$; and finally we obtain the nonplanar N -loop amplitude (Fig. 4):

$$
\begin{gather*}
\operatorname{FNL}(N)=\int \prod_{\alpha=\left\{\mathcal{L}^{\mathcal{L}}\right\}} d^{4} k_{\alpha} \int_{0}^{1} \prod_{(\alpha \beta)=\{\mathcal{L}\}} d t_{\alpha \beta} t_{\alpha \beta}^{-\ell\left(k_{\alpha}\right)-1}\left(1-t_{\alpha \beta}\right)^{\alpha_{0}-1+\frac{1}{2} k_{\alpha}^{2}} \\
X \int \prod_{i} d y_{i}\left(Y_{S+2}\right\} I, \tag{2.23}
\end{gather*}
$$

where

$$
\begin{aligned}
& I=\frac{1}{(\operatorname{det}[\Delta])^{\frac{I}{2}}} \prod_{n=0}^{\infty} I_{n}=\frac{1}{(\operatorname{det}[\Delta])^{\frac{T}{2}}} \\
& \prod_{\substack{(\alpha \beta), \ldots,(\gamma \delta) \\
=\{\mathcal{L}\}}} \\
& x \prod_{n=0}^{\infty}\left[\left(y_{i}-\left[R^{ \pm}\right](n+1)\left(y_{j}\right)\right)^{-\frac{1}{2} k_{i} \cdot k_{j}} \prod_{\substack{(\alpha \beta), \ldots(\sigma \lambda),(\gamma \delta)=\left\{\mathcal{L}^{\prime}\right\}}}^{\substack{i \neq 0 \\
\left(i \neq\left(\mathcal{L}^{*}, \mathcal{L}\right]\right)}} \prod_{n=0}^{\infty+1}\right. \\
& X\left\{\frac{y_{i}-\left[R^{ \pm}\right]_{\beta \alpha, \lambda \sigma}^{(n)}\left(x_{\gamma \delta}^{(1)}\right)}{y_{i}-\left[R^{ \pm}\right]_{\beta \alpha, \lambda \sigma}^{(n)}\left(x_{\gamma \delta}^{(2)}\right)}\right\}_{(\sigma \lambda) \neq(\gamma \delta)}^{+k_{i} \cdot k_{i}} \quad\left\{\frac{y_{i}-y_{\delta}}{y_{i}-y_{\gamma}}\right\}^{-k_{i} \cdot k_{\gamma}}
\end{aligned}
$$

Equation (2.24) continued

Again, separating out all Koba-Nielsen variables $\mathrm{y}_{\alpha}, \mathrm{y}_{\beta}$
$(\alpha \beta)=\{\mathscr{L}\}$ in $\left\{Y_{S+2}\right\}$ in Eq. (2.23) and combining it with I of Eq. (2.24), we get

$$
X \quad\left\{y_{i}-\left[R^{+}\right]_{\beta \alpha, \delta \gamma}^{(n)}\left(y_{j}\right)\right\}^{-\frac{1}{2} k_{i} \cdot k_{j}}
$$

x
$\prod_{n=0}^{\infty}\left\{\frac{y_{i}-\left[R^{ \pm}\right]_{\beta \alpha, \lambda \sigma}^{(n)}\left(x_{r \delta}^{(1)}\right)}{y_{i}-\left[R^{ \pm}\right]_{B \alpha, \lambda \sigma}^{(n)}\left(x_{r \delta}^{(2)}\right)}\right\}^{+k_{i} \cdot{ }^{k} r}{ }^{r}$
Equation (2.25) continued

$$
\begin{align*}
& X \prod_{\substack{(\alpha \beta),\left(\alpha^{\prime} \beta^{\prime}\right), \cdots,(\sigma \lambda),(\gamma \delta)=\left\{\mathcal{L}^{\prime}\right\}}}^{\infty}\left\{\begin{array}{l}
x_{\alpha=0}^{(1)}-\left[R^{ \pm}\right]_{\beta^{\prime} \alpha^{\prime}, \lambda \sigma}^{(n)}\left(x_{r \delta}^{(1)}\right) \\
x_{\alpha \beta}^{(2)}-\left[R^{ \pm}\right]_{\beta^{\prime} \alpha^{\prime}, \lambda \sigma}^{(n)}\left(x_{\gamma \delta}^{(1)}\right)
\end{array}\right. \\
& \text { - } \left.\frac{x_{\alpha \beta}^{(2)}-\left[R^{ \pm}\right]_{\beta^{\prime} \alpha^{\prime}, \lambda \sigma}^{(n)}\left(x_{\gamma \delta}^{(2)}\right)}{x_{\alpha \beta}^{(1)}-\left[R^{ \pm}\right]_{\beta^{\prime} \alpha^{\prime}, \lambda \sigma}^{(n)}\left(x_{\gamma \delta}^{(2)}\right)}\right)_{\substack{(\alpha \beta) \neq\left(\alpha^{\prime} \beta^{\prime}\right),(\sigma \lambda) \neq(\gamma \delta)}}^{-\frac{1}{2} k_{\alpha}^{\cdot k}{ }_{\gamma}} \\
& x \prod_{\substack{\alpha \beta),(\gamma \delta) \\
=\{\mathcal{L}\}}}\left\{\frac{\left(y_{\alpha}-y_{\delta}\right)\left(y_{\beta}-y_{\gamma}\right)}{\left(y_{\beta}-y_{\delta}\right)\left(y_{\alpha}-y_{\gamma}\right)}\right\}_{(\alpha \beta) \neq(\gamma \delta)}^{-\frac{1}{2} k_{\alpha} k_{r}} \prod_{(\alpha \beta)=\mathscr{L})} \\
& \chi\left\{\frac{R_{\beta \alpha}^{-1}\left(y_{\alpha}\right)-R_{\beta \alpha}^{-1}\left(y_{\beta}\right)}{y_{\alpha}-R_{\beta \alpha}\left(y_{\beta}\right)} \cdot \frac{R_{\beta \alpha}\left(y_{\alpha}\right)-R_{\beta \alpha}\left(y_{\beta}\right)}{y_{\beta}-R_{\beta \alpha}^{-1}\left(y_{\alpha}\right)}\right\}^{-\frac{1}{2} k_{\alpha} \cdot k_{\alpha}} . \tag{2.24}
\end{align*}
$$

Equation (2.25) continued

$X \prod_{(\alpha \beta)=\{\mathcal{L}\}}\left[\frac{\left(y_{\alpha-1}-y_{\alpha}\right)\left(y_{\alpha}-y_{\alpha+1}\right)\left(y_{\beta-1}-y_{\beta}\right)\left(y_{\beta}-y_{\beta+1}\right)}{\left(y_{\alpha-1}-y_{\alpha+1}\right)\left(y_{\beta-1}-y_{\beta+1}\right)}\right]^{-\frac{1}{2} k_{\alpha}^{2}-1}$
$X \prod_{(\alpha \beta)=\{\mathcal{L}\}}\left[\left(y_{\alpha-1}-y_{\alpha+1}\right)\left(y_{\beta-1}-y_{\beta+1}\right)\right]^{\alpha_{0}-1}$

$$
\begin{equation*}
\left.X\left(y_{a}-y_{b}\right)\left(y_{b}-y_{c}\right)\left(y_{c}-y_{a}\right)\right\} \tag{2.25}
\end{equation*}
$$

We note that the factors in the last brace in Eq.
(2.25) are not identical to the analogous factors in the nonplanar singleloop case, Eq. (2.13). However, in the frame $x_{\alpha \beta}^{(1)}=\infty, x_{\alpha \beta}^{(2)}=0$,
in which $R_{\beta \alpha}^{ \pm}$reduces to its multiplier $X_{\alpha \beta}^{ \pm}$, they are fortunately identical, and this is enough for our purpose. We can transform the set of variables $\left[t_{\alpha \beta}, y_{\alpha}, y_{\beta} ;(\alpha \beta)=\{\mathcal{Z}\}\right]$ into the new set of variables $\left[x_{\alpha \beta}, x_{\alpha \beta}^{(1)}, x_{\alpha \beta}^{(2)} ;(\alpha \beta)=\{\mathcal{L}\}\right]$ by performing the same calculation as in the one-loop case, ie. Eqs. (2.14), (2.15), and (2.16). Each time we pick out a particular frame $x_{\alpha \beta}^{(1)}=\infty, x_{\alpha \beta}^{(2)}=0$, we find a linear dependence factor $\left(1-x_{\alpha \beta}\right)^{2}$ for the ($\alpha \beta$) loop, and obtain an expression similar to (2.16). We then repeat the calculaLion for the ($\gamma \delta$) loop, etc. Therefore, on combining Eqs. (2.25), (2.23), and (2.16), we finally obtain the projectively invariant nonplanar N-loop formula:

$$
\begin{gathered}
\operatorname{FNL}(\mathbb{N})=\int \prod_{\alpha=\{\mathcal{L}\}} d^{4} k_{\alpha} \int_{(\alpha \beta)=\{\mathcal{L}\}} \prod_{\alpha \beta} \prod_{[\bar{R}]}\left[1-x_{\alpha \beta}^{-l\left(k_{\alpha}\right)-1}\left(1-x_{\alpha \beta}\right)^{2} \prod^{-4}\right.
\end{gathered}
$$

$$
x \int \prod_{\substack{i=0 \\\left(i \neq\left\{\mathcal{L}, \mathcal{L}^{*}, a, b, c\right\}\right)}}^{s+1} d y_{i}\left[d y_{a}\right]\left[d y_{b}\right]\left[d y_{c}\right] \prod_{(\alpha \beta)=\{\mathcal{L}\}} d x_{\alpha \beta}^{(1)} d x_{\alpha \beta}^{(2)} \prod_{(\alpha \beta)=\{\mathscr{A}\}^{\left(y_{a}-y_{b}\right)\left(y_{b}-y_{c}\right)\left(y_{c}-y_{a}\right)} \prod_{\alpha \beta}^{\left[x_{\alpha \beta}^{(1)}-x_{\alpha \beta}^{(2)}\right]^{2}}}^{\prod_{\alpha}}
$$

Equation (2.26) continued

Equation (2.26) continued
$X\left\{\frac{\left[y_{\alpha-1}-R_{\beta \alpha}\left(y_{\beta+1}\right)\right]\left[x_{\alpha \beta}^{(1)}-y_{\beta+1}\right]}{\left[x_{\alpha \beta}^{(1)}-R_{\beta \alpha}\left(y_{\beta+1}\right)\right]}\right\}^{\alpha_{0}^{-1}}\left\{\frac{\left[y_{\alpha+1}-R_{\beta \alpha}\left(y_{\beta-1}\right)\right]\left[x_{\alpha \beta}^{(1)}-y_{\beta-1}\right]}{\left[x_{\alpha \beta}^{(1)}-R_{\beta \alpha}\left(y_{\beta-1}\right)\right]}\right\}^{\alpha_{0}-1}$

$X \underset{\substack{(\alpha \beta),\left(\alpha^{\prime} \beta^{\prime}\right), \ldots,\left(\sigma_{\lambda}\right),(\gamma \delta)=\left\{\mathcal{Q}^{\prime}\right\}}}{ }$
$X\left\{\begin{array}{l}x_{\alpha \beta}^{(1)}-\left[R^{ \pm}\right]_{\beta^{\prime} \alpha^{\prime}, \lambda \sigma}^{(n)}\left(x_{\gamma \delta}^{(1)}\right) \\ x_{\alpha \beta}^{(2)}-\left[R^{ \pm}\right]_{\beta^{\prime} \alpha^{\prime}, \lambda \sigma}^{(n)}\left(x_{\gamma \delta}^{(1)}\right)\end{array} \frac{x_{\alpha \beta}^{(2)}-\left[R^{ \pm}\right]_{\beta^{\prime} \alpha^{\prime}, \lambda \sigma}^{(n)}\left(x_{\gamma \delta}^{(2)}\right)}{x_{\alpha \beta}^{(1)}-\left[R^{ \pm}\right]_{\beta^{\prime} \alpha^{\prime}, \lambda \sigma}^{(n)}\left(x_{\gamma \delta}^{(2)}\right)}\right\}_{\substack{(\alpha \beta) \neq\left(\alpha^{\prime} \beta^{\prime}\right) \\(\sigma \lambda) \neq(\gamma \delta)}}^{-\frac{1}{2} k_{\alpha}^{\cdot k} k_{\gamma}}$,
where

$$
\begin{equation*}
R_{\beta \alpha}^{ \pm}(z)=\frac{z\left[x_{\alpha \beta}^{(2)}-x_{\alpha \beta}^{ \pm} x_{\alpha \beta}^{(1)}\right]-x_{\alpha \beta}^{(1)} x_{\alpha \beta}^{(2)}\left(1-x_{\alpha \beta}^{ \pm}\right)}{z\left(1-x_{\alpha \beta}^{ \pm}\right)+x_{\alpha \beta}^{(2)} x_{\alpha \beta}^{ \pm}-x_{\alpha \beta}^{(1)}}, \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
(\operatorname{det}[\Delta])^{-\frac{1}{2}}=\prod_{\{\bar{R}\}}\left(1-X_{\bar{R}}\right)^{-4} \tag{2.28}
\end{equation*}
$$

The ordering of $y_{i} ; x_{\mathcal{L}}^{(1)}, x_{\mathcal{L}}^{(2)}$ can be seen in Eqs. (2.19) and (2.20), and the result is shown in Fig. 5.

The region of integration and periodicities are fully explained in the next section $[$ see (3.16)].

We see that the nonplanar N-loop formula is little different from the product of planar loop formulas. ${ }^{l}$ The interpretation of various factors in Eq. (2.26) is again parallel to the previous paper. ${ }^{\text {I }}$
III. THE N-LOOP AMPLITUDE IN THE FORMULATION OF SCCUTO

The nonplanar N-loop amplitude can also be calculated with the three-reggeon vertex introduced by Sciuto. These vertex functions are inserted in a scalar multiperipheral tree, as shown in Fig. 7. We insert a complete set of intermediate states $\left|\lambda_{\alpha \beta}\right\rangle\left\langle\lambda_{\alpha \beta}\right|$ in the upper portion of each loop:

$$
\begin{gather*}
F N L(N)=\prod_{\alpha=\{\mathcal{L}\}} \int_{\alpha}^{4} k_{\alpha}\left\langle\left. 0\right|_{a} v_{s}^{a} D_{s}^{a} v_{s-1}^{a} \cdots v_{\beta+1}^{a} D_{\beta+1}^{a} L_{\alpha \beta} D_{\alpha}^{a}\right. \\
X v_{\alpha-1}^{a} \cdots v_{2}^{a} D_{2}^{a} v_{1}^{a}|0\rangle_{a} \tag{3.1}
\end{gather*}
$$

where

$$
\begin{aligned}
& D_{i}^{a} \equiv \int_{0}^{1} d x_{i} x_{i}^{R} a^{-\alpha\left(k_{i}\right)-1}\left(1-x_{i}\right)^{-c}, \\
& L_{\alpha \beta} \equiv\left\langle\left. 0\right|_{b} W_{\beta}^{a b} D_{\alpha \beta}^{b} D_{\beta}^{a} v_{\beta-1}^{a} \cdots v_{\alpha+1}^{a} D_{\alpha+1}^{a} \bar{W}_{\alpha}^{a b} \mid 0\right\rangle_{b}, \\
& W_{\beta}^{a b} \equiv \exp \left(a^{+} \mid k_{\beta}\right) \exp \left(a^{+}, b\right)_{+} \exp \left(a \mid k_{\beta}\right) \exp (a, b)_{-} \exp \left(b \mid-\pi_{\beta+1}\right), \\
& \mathrm{V}_{\mathrm{i}}{ }^{\mathrm{a}} \equiv \exp \left(\mathrm{k}_{\mathrm{i}} \mid \mathrm{a}^{+}\right) \exp \left(\mathrm{k}_{\mathrm{i}} \mid a\right), \\
& \overline{\mathrm{w}}_{\alpha}^{a b} \equiv \exp \left(\mathrm{a}^{+} \mid \mathrm{k}_{\alpha}\right) \exp \left(\mathrm{a}^{+}, \mathrm{b}^{+}\right)_{-} \exp \left(\mathrm{a} \mid \mathrm{k}_{\alpha}\right) \exp \left(\mathrm{a}, \mathrm{~b}^{+}\right)_{+} \exp \left(\left.\mathrm{b}^{+}\right|_{\pi_{\alpha}}\right), \\
& D_{\alpha \beta}^{b} \equiv \int_{0}^{1} d u_{\alpha \beta} u_{\alpha \beta}^{R_{b}-\alpha\left(k_{\alpha}\right)-1}\left(1-u_{\alpha \beta}\right)^{-c} .
\end{aligned}
$$

[Notice that, for the moment, we have omitted the linear dependence correction factor and the $(1-z)^{R}$ factor associated with the Sciuto vertex.]

We will use the identities

$$
\begin{align*}
& \left\langle\left. 0\right|_{b} w_{\beta}^{a b}{ }_{\alpha_{\alpha \beta}}{ }^{b} \mid \lambda_{\alpha \beta}\right\rangle= \\
& =\int_{0}^{1}{ }_{d u_{\alpha \beta}} u_{\alpha \beta}^{-\alpha\left(k_{\alpha}\right)-1}\left(1-u_{\alpha}\right)^{-c} \exp \left(a^{+} \mid k_{\beta}+M_{+} u_{\alpha \beta}{ }_{\alpha \beta \beta}\right) \\
& X \exp \left(\left.a\right|_{k_{\beta}}+M_{-} u_{\alpha \beta} \lambda_{\alpha \beta}\right) \exp \left(-\pi_{\beta+1} \mid u_{\alpha \beta} \lambda_{\alpha \beta}\right) \tag{3.2}
\end{align*}
$$

and

$$
\begin{array}{r}
\left\langle\lambda_{\alpha \beta}\right| \bar{W}_{\alpha}^{a b}|0\rangle_{b}=\exp \left(a^{+} \mid k_{\alpha}+M_{-} \lambda_{\alpha \beta}^{*}\right) \\
X \exp \left(\left.a\right|_{\alpha}+M_{+} \lambda_{\alpha \beta}^{*}\right) \exp \left(\pi_{\alpha} \mid \lambda_{\alpha \beta}^{*}\right) . \tag{3.3}
\end{array}
$$

Using the techniques given in Ref. 1, we now contract over "a" oscillators and find

$$
\begin{align*}
& \operatorname{FNL}(\mathbb{N})=\int \prod_{\alpha=\left\{\alpha^{\prime}\right\}} d^{4} k_{\alpha} \int_{0}^{1} \prod_{(\alpha \beta)=\{\mathcal{L}\}} d u_{\alpha \beta} \int \prod_{i=1}^{S} d x_{i} \\
& X \int \prod_{(\alpha \beta)=\{\mathcal{L}\}} \alpha\left(\frac{\lambda_{\alpha \beta}}{\sqrt{2}}\right) d\left(\frac{\lambda_{\alpha \beta}^{*}}{\sqrt{2}}\right) u_{\alpha \beta}^{-\alpha\left(k_{\alpha}\right)-1}\left(1-u_{\alpha \beta}\right)^{-c} \\
& \text { X } \quad \mathrm{x}_{\mathrm{i}}^{-\alpha\left(\pi_{i}\right)-1}\left(1-\mathrm{x}_{\mathrm{i}}\right)^{-c} \exp \left\{\sum_{i>j}^{S}\left(\mathrm{k}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{j}+1, i}\right| \mathrm{k}_{\mathrm{j}}\right)\right\} \\
& x \quad \exp \left\{\left(\lambda_{\lambda} \mid \lambda_{\sim}^{*}\right)+\left(\lambda_{\sim}^{*}|[C]| \lambda\right)+\left(\underset{\sim}{\lambda}|[\mathrm{B}]| \lambda_{\lambda}^{*}\right)+\left(\lambda_{\sim}^{*}|[D]| \lambda_{\sim}^{*}\right)\right. \\
& \left.+(\underset{\sim}{\lambda}|[A]| \lambda)+\left(\lambda_{\sim}^{*} \mid \underset{\sim}{F}\right)+(\underset{\sim}{\lambda} \mid \tilde{\sim})\right\}, \tag{3.4}
\end{align*}
$$

where $\quad A_{\alpha \beta, \gamma \delta}=u_{\alpha \beta} M_{+} y_{\delta} y_{\beta}^{-1} M_{-} u_{\gamma \delta} \quad($ for $\alpha<\beta<\gamma<\delta)$

$$
\begin{aligned}
= & 0 \text { otherwise }, \\
C_{\alpha \beta, \gamma \delta}= & M_{-}^{T} y_{\delta} y_{\alpha}^{-1} M_{-} u_{\gamma \delta}(\alpha<\beta<\gamma<\delta) \text { or } \\
& (\delta=\beta \text { and } r=\alpha)
\end{aligned}
$$

$$
=0 \text { otherwise }
$$

$$
B_{\alpha \beta, \gamma \delta}=u_{\alpha \beta} M_{+} y_{\gamma} y_{\beta}^{-1} M_{+}(\alpha<\beta<\gamma<\delta)
$$

$$
=0 \text { otherwise }
$$

$$
D_{\alpha \beta, r \delta}=M_{-}^{T} y_{\gamma} y_{\alpha}^{-1} M_{+}(\alpha<\beta<\gamma<\delta)
$$

$$
=0 \text { otherwise }
$$

$$
\left.\left|E_{\alpha \beta}\right\rangle=\sum_{j=1}^{\beta-1} u_{\alpha \beta} M_{-}^{T} y_{\beta} y_{j}^{-1}\left|k_{j}\right\rangle+\sum_{j=\beta+1}^{S} u_{\alpha \beta} M_{+} y_{j} y_{\beta}^{-1} \mid k_{j}\right)
$$

$$
-u_{\alpha \beta}{ }^{\pi} B+1
$$

$$
\left.\left|F_{\alpha \beta}\right\rangle=\sum_{j=1}^{\alpha-1} M_{+} y_{\alpha} y_{j}^{-1} \mid k_{j}\right)+\sum_{j=\alpha+1}^{S} M_{-}^{T} y_{j} y_{\alpha}^{-1}\left(k_{j}\right)+\left(\pi_{\alpha}\right)
$$

($\alpha<\beta$ always) ($\gamma<\delta$ always). We shall symmetrize as follows:

$$
\begin{align*}
& {[\overline{\mathrm{A}}]=[\mathrm{A}]+[\mathrm{A}]^{T}} \\
& {[\overline{\mathrm{D}}]=[\mathrm{D}]+[\mathrm{D}]^{T}} \\
& {[\overline{\mathrm{C}}]=[C]+[B]^{T}} \tag{3.5}
\end{align*}
$$

We now perform the integration over λ. Then we get

$$
\begin{align*}
& F N L(N)=\prod_{(\alpha \beta)=\{\mathscr{L}\}} \int_{0}^{1} \operatorname{du}_{\alpha \beta} u_{\alpha \beta}^{-\alpha\left(k_{\alpha}\right)-1}\left(1-u_{\alpha \beta}\right)^{-c} \int_{\alpha=\{\mathscr{L}\}} d^{4} k_{\alpha} \\
& X \prod_{i=1}^{S} \int_{0}^{1} d x_{i} x_{i}^{-\alpha\left(\pi_{i}\right)-1}\left(1-x_{i}\right)^{-c} \\
& X(\operatorname{det}[\Delta])^{\frac{1}{2}} \exp \left\{\frac{1}{2} \sum_{n=0}^{\infty}\left(\underset{\sim}{|\underset{\sim}{E}|}(\underset{\sim}{F} \mid)[G H]^{n}\binom{\mid \underset{\sim}{F})}{\mid \underset{\sim}{E})}\right\},\right. \tag{3.6}
\end{align*}
$$

where we have used

$$
\begin{align*}
& {[G] \equiv\left(\begin{array}{cc}
0 & {[\mathrm{I}]} \\
{[\mathrm{I}]} & 0
\end{array}\right),} \\
& \because[\mathrm{H}] \equiv\left(\begin{array}{cc}
{[\overline{\mathrm{A}}]} & {[\overline{\mathrm{C}}]^{\mathrm{T}}} \\
{[\overline{\mathrm{C}}]} & {[\overline{\mathrm{D}}]}
\end{array}\right), \\
& {[\Delta]=[G]-[\mathrm{H}]} \tag{3.7}
\end{align*}
$$

At this point, we will find it useful to introduce the following projective operator:

$$
\begin{align*}
& R_{\beta \alpha}=y_{\alpha} P_{\beta \alpha} y_{\alpha}^{-1} \\
& P_{\beta \alpha}=\left(\begin{array}{ll}
1 & -y_{\beta} y_{\alpha}^{-1} \\
1 & -y_{\beta} y_{\alpha}^{-1}\left(1-u_{\alpha \beta}\right)
\end{array}\right) \tag{3.8}
\end{align*}
$$

With this projective operator, we can re-express all matrices as follows:

$$
\begin{align*}
& \left.\left(E_{\alpha \beta}\right)=\sum_{j=0}^{S+1} K P_{\beta \alpha} y_{\alpha}^{-1} y_{j} \mid k_{j}\right), \\
& \left.\left(F_{\alpha \beta}\right)=\sum_{j=0}^{S+1} k^{-1} y_{\alpha} y_{j}^{-1} \mid k_{j}\right), \\
& \left(\mathrm{E}_{\alpha \beta}\right)=\sum_{j=0}^{S+1} \frac{\left(k_{j} \mid\right.}{K^{-1} \frac{1}{P_{\beta \alpha} \mathrm{y}_{\alpha}^{-1} \mathrm{y}_{j}}}, \\
& \left\langle F_{\alpha \beta}\right)=\sum_{j=0}^{S+1} \frac{\left(k_{j}\right)}{K y_{\alpha}^{-1} y_{j}}, \\
& \bar{A}_{\alpha \beta, \gamma \delta}=K P_{\beta \alpha} y_{\alpha}^{-1} y_{\gamma} P_{\delta \gamma}^{-1} \frac{1}{K()}, \\
& \bar{D}_{\alpha \beta, \gamma \delta}=K^{-1} \frac{1}{y_{\alpha}^{-1} y_{\gamma} K^{-1}()}, \\
& \overline{\mathrm{c}}_{\alpha \beta, \gamma \delta}=\mathrm{K}^{-1} \frac{1}{\mathrm{y}_{\alpha}^{-1} \mathrm{y}_{\gamma} \mathrm{P}_{\delta \gamma}^{-1} \frac{1}{\mathrm{~K}()}}, \\
& \overline{\mathrm{C}}_{\alpha \beta, \gamma \delta}^{\mathrm{T}}=K P_{\beta \alpha} \mathrm{y}_{\alpha}^{-1} \mathrm{y}_{\gamma} K^{-1}(), \tag{3.9}
\end{align*}
$$

where $K(z)=1-\frac{1}{z}, \quad K^{-1}(z)=\frac{1}{I-z}, \quad K^{-1} \neq \frac{1}{K^{\prime}}$. Notice that we have
assumed momentum conservation in order to derive projective relations for \bar{A}, \bar{D}, and \bar{C}. When expressed in this fashion, all K 's in $[\mathrm{GH}]^{n}$ neatly cancel. (Also: $\mathrm{y}_{0} \equiv \infty, \mathrm{y}_{1} \equiv \mathrm{l}, \mathrm{y}_{\mathrm{S}+1} \equiv 0$.)

If we assume momentum conservation among the k 's, then we can contract over harmonic oscillator states and projectively manipulate these expressions:

$$
\begin{align*}
& \quad \frac{1}{2}(\underset{\sim}{F} \mid \underset{\sim}{E})=\prod_{i, j} \prod_{\alpha \beta=\{\mathscr{X}\}}\left[y_{j}-R_{\beta \alpha} y_{i}\right]^{-\frac{1}{2} k_{i} k_{j}}, \\
& \left.\quad \text { etc. }[\bar{C}]^{T} \mid \underset{\sim}{E}\right)=\prod_{(\alpha \beta),(\gamma \delta)=\{\mathcal{I}\}}\left[y_{j}-R_{\beta \alpha} R_{\delta \gamma} \mathrm{y}_{i}\right]^{-\frac{1}{2} k_{i} k_{j}},
\end{align*}
$$

Notice that we have imposed conservation of momentum everywhere, which allows us to ignore "residue" terms which arise from binomial contractions, i.e., $\left(M_{+}\right)_{n m} x^{m} \cong\left(\frac{1}{1-x}\right)^{n}-1$. One disturbing fact is that y_{α} and y_{β} are not the invariant points of $\mathrm{R}_{\alpha \beta}$ (as was found earlier). When the binomial "residue terms" are added in, we get an infinite set of cancellations, ${ }^{5}$ which replaces y_{α} and y_{β} with the invariant points of $\mathrm{R}_{\alpha \beta}$. (The cancellation is exactly as in the planar case, and hence is not"presented here.) : We merely state the result:

$$
\begin{align*}
& \exp \left\{\sum_{i>j}^{S}\left(k_{i}\left|x_{j+1, i}\right| k_{j}\right)\right\} \exp \left\{\left(\underset{\sim}{E} \left\lvert\,(\underset{\sim}{F} \mid)[\Delta]^{-1}\binom{\mid \underset{\sim}{E})}{\mid \underset{\sim}{F})}\right.\right\}\right. \\
& =\prod_{n=0}^{\infty}(\alpha \beta) \cdots(\sigma \lambda)=\{\mathcal{L}) \prod_{\substack{i, j=0 \\
i \neq \alpha, \beta \\
j \neq \lambda, \sigma \\
i \neq j \\
i f}}\left(w_{i}-\left(R^{ \pm}\right)_{\beta \alpha, \lambda \sigma}^{(n)} w_{j}\right)^{-\frac{1}{2} k_{i} k_{j}} \\
& X\left(x_{\alpha \beta}^{(2)}-y_{\alpha}\right)^{-\frac{1}{2} k_{\alpha}^{2}}\left(x_{\alpha \beta}^{(1)}-y_{\beta}\right)^{-\frac{1}{2} k_{\beta}^{2}}\left(\frac{y_{\alpha}}{x_{\alpha \beta}^{(1)}}\right)^{+\frac{1}{2} k_{\alpha}^{2}} \prod_{i>j}^{S+1}\left(-y_{i}\right)^{-k_{i} k_{j}}, \tag{3.11}
\end{align*}
$$

where $x_{\alpha \beta}^{(2)} \equiv R_{\alpha \beta}^{\infty}\left(z_{1}\right), \quad z_{1} \neq x_{\alpha \beta}^{(1)}$,

$$
x_{\alpha \beta}^{(1)} \equiv R_{\alpha \beta}^{-\infty}\left(z_{2}\right), \quad z_{2} \neq x_{\alpha \beta}^{(2)},
$$

and

$$
\begin{aligned}
& w_{i} \equiv y_{i} \quad \text { if } i \neq\{\mathscr{L}\} \\
& w_{\alpha} \equiv x_{\alpha \beta}^{(2)}=\text { invariant point, } \\
& w_{\beta} \equiv x_{\alpha \beta}^{(1)}=\text { invariant point. }
\end{aligned}
$$

Now that we have all the tools to derive the answer, we are ready to put in all ($1-z)^{R}$ factors (appearing in each Sciuto vertex) and the linear dependence correction, ${ }^{6}$

$$
\begin{equation*}
\left(1-\frac{\left(1-x_{\alpha}\right) u_{\alpha \beta} x_{\alpha+1} x_{\beta-1}}{\left(1-x_{\alpha+1}\right)\left(1-x_{\beta-1}\right)}\right)^{-c} \tag{3.12}
\end{equation*}
$$

The linear dependence correction to nonplanar and overlapping loops is a simple c-number. ${ }^{6}$ The planar loops, however, have modified propagators. We have

$$
\begin{aligned}
& \operatorname{FNL}(N)=\prod_{(\alpha \beta)=\{\mathscr{L}\}} \int d^{4} k_{\alpha} \int_{0}^{1} d u_{\alpha \beta} u_{\alpha \beta}^{-\alpha\left(k_{\alpha}\right)-1} \\
& X\left(1-u_{\alpha \beta}\right)^{-c}\left(1-x_{\alpha}\right)^{-\alpha\left(k_{\alpha}\right)} \prod_{i=2}^{S} \int_{0}^{1} d x_{i} x_{i}^{-\alpha\left(\pi_{i}\right)-1} \\
& X\left(1-x_{i}\right)^{-c}\left(1-u_{\alpha \beta}\right)^{-\alpha\left(\pi_{\beta+1}\right)}\left(1-\frac{\left(1-x_{\alpha}\right) u_{\alpha \beta} x_{\alpha+1} x_{\beta-1}}{\left(1-x_{\alpha+1}\right)\left(1-x_{\beta-1}\right)}\right)^{-c} \\
& X \exp \left\{\sum_{i>j}^{S}\left(k_{i}\left|x_{j+1, i}\right| k_{j}\right)\right\} \exp \left\{\frac{1}{2}(\underset{\sim}{E}|\underset{\sim}{\mid F}|)[\Delta]^{-1}\binom{\mid \underset{\sim}{\mid E})}{\mid \underset{\sim}{F})}\right\} \\
& =\int \prod_{\alpha=\{\mathcal{L}\}} d^{4} k_{\alpha} \int_{(\alpha \beta)=\{\mathcal{L}\}} \prod_{i=0}^{S+1} d w_{i}\left(d w_{a} d w_{b} d w_{c}\right)^{-1} d x_{\alpha \beta} x_{\alpha \beta}^{-\alpha\left(k_{\alpha}\right)-1} \\
& X\left(1-x_{\alpha \beta}\right)^{2} \prod_{(\bar{R}\}}\left(1-x_{\bar{R}}\right)^{-4} \prod_{n=0}^{\infty} \prod_{i, j=0}^{s+1} \\
& \begin{array}{l}
i \neq \alpha, \beta \\
j \neq \lambda, \sigma
\end{array} \\
& \chi \prod_{(\alpha \beta) \cdots(\sigma \lambda)=\{\mathscr{K}\}}\left(w_{i}-\left(R^{ \pm}\right)_{\beta \alpha, \lambda \sigma}^{(n)} y_{j}\right)^{-\frac{1}{2} k_{i} k_{j}}
\end{aligned}
$$

Equation (3.13) continued

$$
\begin{align*}
& X\left(x_{\alpha \beta}^{(1)}-x_{\alpha \beta}^{(2)}\right)^{-2} \\
X & \left\{\frac{\left(x_{\alpha \beta}^{(1)}-w_{\beta+1}\right)\left(w_{\alpha-1}-R_{\beta \alpha}\left(w_{\beta+1}\right)\right)\left(x_{\alpha \beta}^{(1)}-w_{\beta-1}\right)\left(w_{\alpha+1}-R_{\beta \alpha}\left(w_{\beta-1}\right)\right)}{\left(x_{\alpha \beta}^{(1)}-R_{\beta \alpha}\left(w_{\beta+1}\right)\right)\left(x_{\alpha \beta}^{(1)}-R_{\beta \alpha}\left(w_{\beta-1}\right)\right)}\right)^{\alpha_{0}^{-1}}, \tag{3.13}
\end{align*}
$$

where we have:

$$
\begin{aligned}
& x_{\alpha \beta}^{(1)} \equiv w_{\beta} \equiv R_{\beta \alpha}^{\infty}\left(z_{1}\right), \quad z_{1} \neq x_{\alpha \beta}^{(2)} \\
& x_{\alpha \beta}^{(2)} \equiv w_{\alpha} \equiv R_{\beta \alpha}^{-\infty}\left(z_{2}\right), \quad z_{2} \neq x_{\alpha \beta}^{(1)} \\
& x_{\alpha \beta} \equiv \text { multiplier of } \quad R_{\beta \alpha}=\frac{\Phi_{\alpha \beta}^{2}-2 \pm \Phi_{\alpha \beta}\left(\Phi_{\alpha \beta}^{2}-4\right)^{\frac{1}{2}}}{2}
\end{aligned}
$$

where

$$
\begin{gather*}
\Phi_{\alpha \beta}=\frac{\operatorname{Tr}\left(R_{\beta \alpha}\right)}{\left[\operatorname{det}\left(R_{\beta \alpha}\right)\right]^{\frac{1}{2}}}, \\
w_{S+2}=w_{0}, \\
w_{a}, w_{b}, \text { and } w_{c}=\text { fixed points, } \\
J_{\alpha \beta}=\frac{\partial\left(y_{\alpha+1}, y_{\alpha+2}, \cdots, y_{\beta-1}, x_{\alpha \beta}^{(1)}, x_{\alpha \beta}^{(2)}, x_{\alpha \beta}\right)}{\partial\left(x_{\alpha}, x_{\alpha+1}, \cdots, x_{\beta}, u_{\alpha \beta}\right)} \\
=-\frac{y_{\beta}^{2}\left(1-x_{\alpha}\right) D_{\alpha \beta}}{y_{\alpha}^{2} y_{\beta}\left(1-t_{\alpha \beta}\right)^{3} t_{\alpha \beta}}, \tag{3.14}
\end{gather*}
$$

where $D_{\alpha \beta} \equiv 1-t_{\alpha \beta}\left[1-u_{\alpha \beta}\left(1-x_{\alpha}\right)\right]$ and $\frac{y_{\beta}}{y_{\alpha}}=t_{\alpha \beta}\left(1-t_{\alpha \beta}\right) D_{\alpha \beta}^{-1}$,

$$
\begin{align*}
& P_{\beta \alpha} \equiv\left(\begin{array}{ll}
1 & -y_{\beta} y_{\alpha}^{-1} \\
1 & -y_{\beta} y_{\alpha}^{-1}\left[1-u_{\alpha \beta}\left(1-x_{\alpha}\right)\right]
\end{array}\right) \tag{3.15}\\
& R_{\beta \alpha} \equiv y_{\alpha} P_{\beta \alpha} y_{\alpha}^{-1} .
\end{align*}
$$

(Notice that $P_{\beta \alpha}$ changes by a factor of $1-x_{\alpha}$ when the $(1-z)^{R}$ Sciuto factor is correctly inserted; notice also that ${ }^{t}{ }_{\alpha \beta}$ is defined implicitly:

$$
\begin{aligned}
& x_{\alpha \beta}^{(1)}=y_{\alpha} t_{\alpha \beta} \\
& \left.x_{\alpha \beta}^{(2)}=y_{\beta} t_{\alpha \beta}^{-1} .\right)
\end{aligned}
$$

When the calculation is actually performed, the region of integration is actually larger than what was found earlier (egg., the multiplier ranges from 0 to ∞). As in the planar case, we take the branch where the multiplier is between zero and one. (When the multiplier is equal to one, the invariant points are equal to each other.)

We recover the usual single-loop nonplanar amplitude if we let

$$
\begin{aligned}
& U_{1}=(0,1),\{\mathcal{L}\}=\{\alpha\},\left\{\mathcal{L}^{*}\right\}=\{\beta\}, R_{\beta \alpha}=X_{\beta \alpha} \\
& w_{a}=x_{\alpha \beta}^{(2)}=0, x_{\alpha \beta}^{(1)}=w_{c}= \pm \infty, w_{b}=w_{\beta+1}=1, \\
& U_{2}=\left(x_{\alpha \beta}^{(1)}=-\infty<w_{\beta-1} \leq w_{\beta-2} \leq \cdots \leq w_{\alpha+1} \leq x_{\alpha \beta}^{(2)}=0 \leq,\right. \\
&\left.w_{\alpha-1} \leq \cdots w_{1} \leq w_{0} \leq w_{S+2} \leq \cdots \leq w_{\beta+2} \leq w_{\beta+1}=1<\infty=x_{\alpha \beta}^{(1)}\right) .
\end{aligned}
$$

Conveniently, we find that the cyclic ordering of the Koba-Nielsen variables mimics the ordering in Fig. 3 if we let $w_{c x}$ and w_{β} be the invariant points.

We are free to move external lines past loops, as required by rubber band duality, because

$$
w_{\beta+1} \leq w_{\beta} \leq \cdots \leq w_{\alpha} \rightarrow w_{\beta} \leq \cdots w_{\alpha} \leq R_{\beta \alpha}\left(w_{B+1}\right)
$$

and.

$$
w_{\beta} \leq w_{\beta-1} \leq \cdots \leq w_{\alpha+1} \leq w_{\alpha} \rightarrow w_{\beta} \leq \cdots \leq w_{\alpha+1} \leq R_{\beta \alpha}\left(w_{\beta-1}\right) \leq w_{\alpha} .
$$

Notice that variables trapped between w_{α} and w_{β} always remain trapped, while variables located between the invariant points of different, adjacent loops are free to move past these points. (In the planar case, no variables are allowed between ${ }^{w_{\alpha}}$ and w_{β}.)

In studying these periodicity properties, we will find it convenient to move these latter lines completely away from the region occupied by the invariant points. A simple renumbering yields

$$
\left(w_{\alpha} \leq w_{S+1} \cdots \leq w_{1} \leq w_{0} \leq w_{\lambda} \cdots \leq w_{\gamma} \leq w_{\beta} \leq \cdots \leq w_{\alpha+1} \leq w_{\alpha}\right)
$$

(Notice that the factors in the braces in (3.13) change slightly, depending on the quark topology.)

Since the operator $R_{B \alpha}$ flips these latter lines across the ($\alpha \beta$) loop, the operator $\left(R_{\beta \alpha} \cdots R_{\lambda \sigma}\right)$ flips these lines completely around the diagram. The regions occupied by these "rotated" lines are disjoint from previously rotated lines. As we rotate these lines an
infinite number of times, they asymptotically approach the invariant points $x^{(1)}$ and $x^{(2)}$ of $\left(R_{\beta \alpha} \cdots R_{\lambda \sigma}\right)^{-1}$. These points $x^{(1)}$ and $x^{(2)}$ separate the region occupied by the invariant points from the region occupied by these rotated lines. Likewise, the lines lying between w_{α} and w_{β} are rotated by the action of $R_{\beta \alpha}$. We summarize these statements as follows:

$$
\begin{align*}
& U_{2}=\left[x^{(1)} \leq R_{\beta \alpha} \cdots R_{\lambda \sigma}\left(w_{0}\right) \leq w_{S+1} \leq w_{S} \leq \cdots \leq w_{0} \leq x^{(2)} \leq\right. \\
& w_{\lambda}^{\prime} \leq w_{\lambda-1} \leq \cdots \leq w_{\sigma+1} \leq R_{\lambda \sigma}\left(w_{\lambda-1}\right) \leq w_{\sigma} \leq \cdots \leq w_{\gamma} \leq w_{\beta} \leq \\
& \left.w_{\beta-1} \leq \cdots \leq w_{\alpha+1} \leq R_{\beta \alpha}\left(w_{B-1}\right) \leq w_{\alpha} \leq x^{(1)}\right] \tag{3.16}
\end{align*}
$$

We subtract out periodicities by constraining one variable in each set to lie between y_{0} and $R\left(y_{0}\right)$, where y_{0} is arbitrary, i.e.

$$
\left[R_{\alpha \beta} \cdots R_{\lambda \sigma}\left(y_{0}\right) \leq w_{0} \leq y_{0} \leq x^{(2)}\right]
$$

and

$$
\left[w_{\beta} \leq y_{\beta} \leq w_{\beta-1} \leq R_{\beta \alpha}\left(y_{\beta-1}\right)\right] \text { for each }(\alpha \beta) \text { in }\{\mathcal{L}\} \text {. Notice the }
$$ complete symmetry between the $R_{\beta \alpha}{ }^{\prime} s$ and $\left(R_{\alpha \beta} \cdots R_{\lambda \sigma}\right)^{-1}$, meaning that the distinction between outer and inner quark loops disappears. In each case, external lines belonging to each quark loop are confined to lie between the invariant points of that loop. (In the planar case, we only have outer quark lines, i.e., the lines between w_{β} and w_{α} are missing.)

These constraints are enough to determine U_{1} uniquely. (All multipliers range from 0 to 1 , but now they are no longer independent.)

We understand that Prof. C. Lovelace and Dr. V. Alessandrini have obtained similar results.' ${ }^{7}$

ACKINOWLEDGMENTS

We thank Dr. Joel Scherk, Dr. Joel Shapiro, Charles B. Thorn, and especially, Professor Stanley Mandelstam.

APPENDIX A. THE JACOBIAN CALCULATION
We show how the variables t, y_{α}, y_{β} in the expression (2.14) are eliminated and transformed into the variables X, x_{1}, x_{2} in Eq. (2.15). We first find a set of identities that relate $t, \mathrm{y}_{\alpha}, \mathrm{y}_{\beta}$ to $\mathrm{x}, \mathrm{x}_{1}, \mathrm{x}_{2}$. Using Eqs. (2.8), (2.9), (2.10), and (2.2), we can express the projective operator: $\mathrm{R}_{\beta \alpha}^{-1}$, defined in Eq. (2.9) as

$$
\begin{equation*}
R_{\beta \alpha}^{-1}(z)=\frac{z\left(y_{\beta}-a y_{\beta+1}\right)-\left(y_{\alpha} y_{\beta}-y_{\alpha+1} y_{\beta+1} a\right)}{z(1-a)+\left(a y_{\alpha+1}-y_{\alpha}\right)}, \tag{A.1}
\end{equation*}
$$

with

$$
\begin{align*}
& \mathrm{a} \equiv \frac{\mathrm{t}}{\mathrm{t}-1} \mathrm{~d}, \quad \mathrm{t}=\frac{\mathrm{a}}{\mathrm{a}-\mathrm{d}}, \tag{A.2a}\\
& \mathrm{~d} \equiv \frac{\left(\mathrm{y}_{\alpha}-\mathrm{y}_{\alpha-1}\right)\left(\mathrm{y}_{\beta}-\mathrm{y}_{\beta-1}\right)}{\left(\mathrm{y}_{\alpha+1}-\mathrm{y}_{\alpha-1}\right)\left(\mathrm{y}_{\beta+1}-\mathrm{y}_{\beta-1}\right)} . \tag{A.2b}
\end{align*}
$$

On comparison of Eq. (A.I) with the standard form in Ref. l, we find the set of identities

$$
\begin{align*}
(1-a) & =\ell\left(1-x^{-1}\right) \tag{A.2c}\\
y_{\beta}-y_{\beta+1} & =\ell\left(x_{2}-x^{-1} x_{1}\right), \tag{A.2d}\\
a_{\alpha+1}-y_{\alpha} & =\ell\left(x_{2} x^{-1}-x_{1}\right), \tag{A.2e}\\
y_{\alpha} y_{\beta}-y_{\alpha+1} y_{\beta+1} & =\ell x_{1} x_{2}\left(1-x^{-1}\right), \tag{A.2f}\\
\ell & =\left[\frac{a\left(y_{\alpha}-y_{\alpha+1}\right)\left(y_{Q+1}-y_{\beta}\right)}{x^{-1}\left(x_{1}-x_{2}\right)^{2}}\right]^{\frac{1}{2}} . \tag{A.2~g}
\end{align*}
$$

From Eqs. (A.2d) and (A.2e), we can derive the identity

$$
\begin{equation*}
a=\frac{y_{\beta}+y_{\alpha}\left(\frac{x_{2}-x^{-1} x_{1}}{x_{2} x^{-1}-x_{1}}\right)}{y_{\beta+1}+y_{\alpha+1}\left(\frac{x_{2}-x^{-1} x_{1}}{x_{2} x^{-1}-x_{1}}\right)} \tag{A.3a}
\end{equation*}
$$

With the further identities

$$
\begin{align*}
& y_{\alpha}=R_{\beta \alpha}\left(y_{\beta+1}\right)=\frac{y_{\beta+1}\left(x_{2}-x_{1} x\right)-x_{1} x_{2}(1-x)}{y_{\beta+1}(1-x)+x_{2} x-x_{1}}, \tag{A.3b}\\
& y_{\beta}=R_{\beta \alpha}^{-1}\left(y_{\alpha+1}\right)=\frac{y_{\alpha+1}\left(x_{2}-x_{1} x^{-1}\right)-x_{1} x_{2}\left(1-x^{-1}\right)}{y_{\alpha+1}\left(1-x^{-1}\right)+x_{2} x^{-1}-x_{1}}, \tag{A.3c}\\
& R_{\beta \alpha}^{ \pm}(z)=\frac{z\left(x_{2}-x^{ \pm} x_{1}\right)-x_{1} x_{2}\left(1-x^{ \pm}\right)}{z\left(1-x^{ \pm}\right)+x_{2} x^{ \pm}-x_{1}}, \tag{A.3d}\\
& \frac{R_{\beta \alpha}^{ \pm}(z)-x_{2}}{R_{\beta \alpha}^{ \pm}(z)-x_{1}}=x^{ \pm} \frac{z-x_{2}}{z-x_{1}}, \tag{A.3e}\\
& \frac{R_{\beta \alpha}^{-1}\left(y_{\alpha}\right)-x_{1}}{\left(y_{\alpha}-x_{1}\right)\left[R_{\beta \alpha}^{-1}\left(y_{\alpha}\right)-y_{\beta}\right]}=\frac{R_{\beta \alpha}\left(y_{\beta}\right)-x_{2}}{\left.y_{\alpha}-R_{\beta \alpha}\left(y_{\beta}\right)\right]\left(y_{\beta}-x_{2}\right)}, \tag{A.3f}
\end{align*}
$$

one then can show that the expression (2.14) is equal to

$$
\begin{aligned}
& d x d x_{1} d x_{2}\left|\frac{\partial\left(t, y_{\alpha}, y_{\beta}\right)}{\partial\left(x_{,} x_{1}, x_{2}\right)}\right|^{-\alpha_{0}-\frac{1}{2} k_{\alpha}^{2}} \frac{(a-\alpha)^{2}}{a d}\left[\left(y_{\alpha}-y_{\alpha-1}\right)\left(y_{\beta}-y_{\beta-1}\right)\right]^{\alpha_{0}-1} \\
& \left.\left.\left\{\frac{\left[R_{\beta \alpha}^{-1}\left(y_{\alpha}\right)-x_{1}\right]\left[R_{\beta \alpha}\left(y_{\beta}\right)-x_{2}\right]}{\left(y_{\alpha}-x_{1}\right)\left(y_{\beta}-x_{2}\right)}\right\}^{-\frac{1}{2} k_{\alpha}^{2}} \int \frac{\left(y_{a}-y_{b}\right)\left(y_{b}-y_{c}\right)\left(y_{c}-y_{a}\right)}{\left(y_{\alpha+1}-y_{\alpha}\right)\left(y_{\beta+1}-y_{\beta}\right)}\right\}_{\text {A. }}{ }^{2}\right)
\end{aligned}
$$

Now we specialize to the frame $x_{1}=\infty, x_{2}=0$. Then $R_{\beta \alpha}^{ \pm} \rightarrow X^{ \pm}$, and $y_{\alpha}=x_{1}, \quad y_{b}=1, \quad y_{c}=x_{2}$, so that

$$
\begin{align*}
& a \rightarrow 1, \\
& \ell \rightarrow \frac{y_{\beta+1}-x^{-1} y_{\alpha+1}}{x_{1} x^{-1}}, \\
& y_{\alpha} \rightarrow x_{y_{\beta+1}} \\
& y_{\beta} \rightarrow x^{-1} y_{\alpha+1} . \tag{A.5}
\end{align*}
$$

Hence the expression (A.4) reduces to

$$
\begin{gather*}
\left.d x\left[d x_{1}\right]\left[d x_{2}\right][J]\right|_{\substack{x_{1}=\infty \\
x_{2}=0}}\left[\left(y_{\alpha-1}-X y_{\beta+1}\right)\left(y_{\alpha+1}-X y_{\beta-1}\right)\right]^{\alpha-1} \\
\therefore x^{-\ell\left(k_{\alpha}\right)+1} \frac{(a-\alpha)^{2}}{\ell^{2} d x^{-1}} \tag{A.6}
\end{gather*}
$$

The calculation of the Jacobian factor

$$
\begin{equation*}
J \equiv \frac{\partial\left(t, y_{\alpha}, y_{\beta}\right)}{\partial\left(x, x_{1} x_{2}\right)} \tag{A.7}
\end{equation*}
$$

is rather complicated. Fortunately, it gives

$$
\begin{equation*}
\frac{i^{2} d}{(a-d)^{2}} \frac{(1-x)^{2}}{x^{3}} \tag{A.8}
\end{equation*}
$$

Proof. From Eq. (A.2a), taking derivatives of t with respect to X, $\mathrm{x}_{1}, \mathrm{x}_{2}$ and using Eq. (A.2b), we get

$$
\begin{equation*}
J=\frac{d}{(a-d)^{2}}\left|\frac{\partial\left(a, y_{\alpha}, y_{\beta}\right)}{\partial\left(x_{1}, x_{1}, x_{2}\right)}\right| \tag{A.9}
\end{equation*}
$$

In deriving Eq. (A.9), we have used the theorem that the determinant vanishes when two rows are identical. We now use Eq. (A.3a) to take derivatives of a with respect to X, x_{1}, x_{2} and evaluate in the frame $x_{1}=\infty, x_{2}=0$; we get

$$
J=\frac{\alpha}{(a-d)^{2}} \frac{x^{-1}\left(y_{\beta+1}-y_{\alpha+1} x^{-1}\right)}{\left(y_{\beta+1}+y_{\alpha+1} x^{-1}\right)}\left|\begin{array}{cc}
\frac{\partial y_{\alpha}}{\partial x_{1}} & \frac{\partial y_{\alpha}}{\partial x_{2}} \tag{A.10}\\
\frac{\partial y_{\beta}}{\partial x_{1}} & \frac{\partial y_{\beta}}{\partial x_{2}}
\end{array}\right|
$$

We then calculate, from Eqs. (A.3b), (A.3c), the derivatives of y_{α}, y_{e} with respect to $\mathrm{x}_{1}, \mathrm{x}_{2}$ (evaluate in the frame $\mathrm{x}_{1}=\infty, \mathrm{x}_{2}=0$), we finally get

$$
J=\frac{d}{(a-d)^{2}} \frac{(1-x)^{2}}{x^{3}}\left[\frac{\left(y_{\beta+1}-x^{-1} y_{\alpha+1}\right)^{2}}{x_{1}^{2} x^{-2}}\right]=\frac{d \ell^{2}}{(a-d)^{2}} \frac{(1-x)^{2}}{x^{3}}
$$

Substituting Eq. (A.11) in Eq. (A.6), we obtain Eq. (2.15):

$$
d X\left[d x_{1}\right]\left[d x _ { 2 } \left[(1-x)^{2} x^{-\ell\left(k_{\alpha}\right)-1}\left[\left(y_{\alpha-1}-X y_{\beta+1}\right)\left(y_{\alpha+1}-X y_{\beta-1}\right)\right]^{\alpha_{0}-1}\right.\right.
$$

FOOTNOTES AND REFERENCES

* This work was supported in part by the U.S. Atomic Energy Commission.

1. M. Kaku and L. P. Yu, The General Multiloop Veneziano Amplitudes, University of California-Berkeley preprint, August, 1970; M. Kaku and L. P. Yu, Unitarization of the Dual Resonance Amplitude. I. Planar N-Loop Amplitude (Lawrence Radiation Laboratory Report UCRL-20054, August 1970), submitted to Phys. Rev.
2. M. Kaku and L. P. Yu, Unitarization of the Dual Resonance Amplitude. III. General Rules for Orientable and Nonorientable Multi-Loop Amplitudes, Lawrence Radiation Laboratory Report UCRL-20104, to be submitted to Phys. Rev.
3. M. Kaku and C. B. Thorn, Unitary Nonplanar Closed Loop, University of California-Berkeley preprint, to be published in Phys. Rev; C. B. Thorn, Unitary Nonplanar Closed Loop. II., Phys. Rev., to be published.
4. L. P. Yu, Multifactorizations and the Four-Reggeon Vertex Function in the Dual Resonance Models. I., Phys. Rev., to be published; L. P. Yu, General Treatment on the Multiple Factorizations in the Dual Resonance Models-And the N-Reggeon Amplitudes. II., Phys. Rev., to be published.
5. The infinite number of cancellations is similar to those discussed in Appendix C, Ref. l, but now both y_{α} and $y_{\beta}, \quad(\alpha \beta)=\{\mathcal{L}\}$, are not the invariant points. The complication is twice as much as in Ref. 1.
6. M. Kaku, Iinear Dependence and the Multi-Loop Veneziano Amplitude, University of California-Berkeley preprint, August 1970.
7. C. Lovelace, M-Loop Generalization Veneziano Formula, CERN preprinti;
V. Alessandrini, A General Approach to Dual Multi-Loop Diagrams, CERN preprint.

FIGURE CAPTIONS
Fig. lo Doubly factorized tree diagram (nonplanar).
Fig. 2. Nonplanar single-loop diagram.
Fig. 3. 2Nth-Factorized tree diagram.
Fig. 4. Nonplanar N-loop diagram (rubber-band).
Fig. 5. Ordering of the $S+2$ variables $y_{i}, i=0,1, \cdots, s+1$, $i \neq\left\{\mathscr{L}^{*}, \mathscr{L}\right\}$, and $x_{\alpha \beta}^{(1)}, x_{\alpha \beta}^{(2)}, \quad(\alpha \beta)=\{\mathscr{L})$.
Fig. 6. Ordering of the external legs y_{i} 's relative to the loops. There is no y_{i} between any two adjacent loops.
Fig. 7. Nonplanar configuration via Sciuto vertex.

XBL 708-1946

Fig. 1.

XBL 708-1942

Fig. 2.

XBL 708-1947

Fig. 3.

XBL 708-1943

Fig. 4.

Fig. $5 \cdot$

$$
-42-
$$

UCRL-20055

Fig. 6.

XBL 708-1944

Fig. 7

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.
As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

