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Dynamical approach to weakly dissipative granular collisions
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Caixa Postal 5008, 58059-900, João Pessoa, Brazil

Katja Lindenberg
Department of Chemistry and Biochemistry and BioBircuits Institute,

University of California San Diego, La Jolla, California 92093-0340, USA
(Dated: June 30, 2015)

Granular systems present surprisingly complicated dynamics. In particular, nonlinear interac-
tions and energy dissipation play important roles in these dynamics. Usually (but admittedly not
always), constant coefficients of restitution are introduced phenomenologically to account for energy
dissipation when grains collide. The collisions are assumed to be instantaneous and to conserve
momentum. Here, we introduce the dissipation through a viscous (velocity dependent) term in the
equations of motion for two colliding grains. Using a first order approximation, we solve the equa-
tions of motion in the low viscosity regime. This approach allows us to calculate the collision time,
the final velocity of each grain, and a coefficient of restitution that depends on the relative velocity
of the grains. We compare our analytic results with those obtained by numerical integration of the
equations of motion and with exact ones obtained by other methods for some geometries.

I. INTRODUCTION

The characterization of granular matter is extremely
broad, and includes essentially any conglomeration of dis-
crete macroscopic particles. These can be as small as
grains of sand and as large as asteroids, they can be in a
condensed or gas-like phase. The condensed phases may
exhibit characteristics of solids or fluids or gases or vari-
ous combinations thereof. Granular matter is important
in more industrial applications than can be listed here,
and exhibits a huge variety of interesting behaviors that
have provided food for thought over centuries of time.
Behaviors such as the so-called jamming transition and
the formation of patterns are frequent subjects of cur-
rent research, as is the propagation of energy in granular
materials.

A feature common to granular matter is the fact that
energy is lost every time grains collide. Indeed, the grains
have to be very hard and difficult to compress for a col-
lision not to lead to a loss of energy. Yet it is usually
the case that momentum is conserved in these inelastic
collisions. The conservative limit, where only elastic col-
lisions are involved, is famously illustrated by Newton’s
cradle, consisting of a row of very hard balls that just
touch, each hanging on a string of the same length at-
tached to a common support. When the ball at one end
is picked up and released so that it collides with the next
ball, the energy passes down the row until the last ball
flies up to the same height as the first ball before it was
released (the other balls remain at rest). The last ball
then flies back, the energy is transferred across the row
again, and the first ball flies up to the same height [1–3].
This continues, although not forever because of course
some small amount of energy must be lost at each colli-
sion event.

The prototypical phenomenological description of en-
ergy loss involves the coefficient of restitution ε in the

equation that describes a collision between two grains,

vf2 − vf1 = ε (vi1 − vi2) . (1)

Here the v’s represent the velocities, the subscripts i and
f stand for initial (before collision) and final (after col-
lision) and the numbers label particles 1 and 2. This
description leads to an energy loss at each collision of
1 − ε2 of the kinetic energy of the center of mass before
the collision. For a successfully built Newton’s cradle, ε
is exceedingly small.

The coefficient of restitution is most often treated as
a parameter independent of the velocities. And yet, it
is broadly recognized that this can not be totally correct
because it leads to problematic features in the asymp-
totic behavior such as the so-called inelastic collapse in
a granular gas because there may be an infinite num-
ber of collisions in a finite time [4, 5]. Indeed, when one
considers realistic interaction models, it is in fact univer-
sally the case that interactions of any two compressible
grains are nonlinear. For instance, the interactions be-
tween two spherical objects obey Hertz’s law, where the
repulsion is proportional to the compression to the power
3/2 rather than the more familiar Hook’s law where the
repulsion is simply proportional to the compression. The
consequence of this non-linearity is that the duration of a
collision depends on the initial velocities of the particles
before the collision. Therefore, when a dissipative col-
lision occurs, the mechanism responsible for the dissipa-
tion of energy acts for different lengths of time depending
on the initial velocities, leading to distinct energy losses,
and consequently to a velocity-dependent coefficient of
restitution. It is interesting to note that Hertz’s law is
frequently used together with a velocity-independent co-
efficient of restitution.

The history of the analysis of the effect of velocity-
dependent frictional forces on the coefficient of restitu-
tion is long and varied. Here we only summarize some of
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its salient points. Hertz’s law assumes that there are no
attractive surface forces in lightly loaded spherical gran-
ules. Perhaps the earliest work to recognize that such
forces lead to a finite contact area between surfaces un-
der zero load (adhesion), and that this in turn modi-
fies the external force required to separate two bodies
of given surface energy and geometry, is that of John-
son et al. (commonly known as JKR theory) [6]. This
in turn modifies the velocity dependence of the coeffi-
cient of restitution, as analyzed in detail by Brilliantov
et al. [7]. While this correction may be small, even neg-
ligible, between granules of high elastic modulus such as
metals or glass, it is considerable in soft granules such as
rubber and agrees well with experiments in these cases.
Much of the literature on this topic is based on spherical
granules, but other shapes are also discussed in this con-
text. For instance, the work of Walton and Braun on fric-
tional disks is noteworthy [8], as is the work of Herbold
and Nesterenko [9]. In [10] the coefficient of restitution
for spherical granules obeying Hertz’s law for the elas-
tic portion of the interactions plus a velocity-dependent
frictional force was obtained exactly as an infinite series.
The series can not be summed analytically and converges
very slowly, and truncation of the series leads to unphys-
ical divergences. A compact Padé approximation to the
series makes it possible to perform much more efficient
event-driven molecular dynamics simulations as well as
direct Monte Carlo methods than was possible with ear-
lier methods, and provides excellent results when com-
pared to those obtained from numerical integrations of
the equations of motion [11]. Determination of the veloc-
ity dependence of the restitution coefficient has recently
become increasingly detailed and addresses a more var-
ied range of particle sizes and compositions. For instance,
experimental determination [12] and molecular dynamics
calculations [13] of the velocity dependence of the coef-
ficient of restitution of argon nanoparticles have shown
that these nanoparticles are hard and highly elastic at
collision velocities smaller than the size-dependent yield
velocity, while they progressively soften as the collision
velocity increases beyond the yield velocity.

In this contribution, our goal is not to arrive at a more
efficient approach for numerical simulations, but rather
to present a perturbative but very broadly applicable
methodology to analytically analyze the consequences of
a general viscoelastic model of dissipation on the out-
come of a collision in the low dissipation regime. Our
study provides an alternative approach to the problem.
We arrive at approximate but accurate analytic expres-
sions for the initial velocity dependence not only for the
coefficient of restitution but also for the duration of a
collision and for the velocities of the granules at the end
of the collision for large ranges of parameter values. Our
results have interesting implications for the understand-
ing of a full range of realistic collisions, which should be
useful for the study of granular gases and for pulse propa-
gation in granular chains. Examples of granular systems
with low intergranular friction include sand, glass beads,

and steel beads.
We accomplish three objectives, all in the limit of low

but non-zero dissipative forces. The first, presented in
Sec. II, is to discuss the equations of motion that describe
the collision of two not necessarily spherical grains. The
scenario is this: the two grains are initially just touching.
Grain 1 has velocity v1 and grain 2 has velocity v2. How
these grains came to have these velocities is not impor-
tant. If our two grains are elements in a granular gas,
they may, for example, have arrived at this point due
to previous collisions with other grains. Or, one might
be preparing an experiment with just two grains, where
one grain is given a kick of some kind at time t = 0 to
cause it to start moving with velocity v1 while the other
is initially at rest (v2 = 0). The equations of motion then
determine the further evolution of the two granules. In
particular, we are able to calculate the relative velocities
of the granules at the end of a collision as a function of
the initial relative velocities.

Our second objective, detailed in Sec. III, is to use this
result to calculate the duration of a collision as a function
of the initial velocities. This makes explicit our assertion
that collisions are in general not instantaneous and that
their duration in fact depends on the initial velocities of
the colliding granules. As pointed out above, this in turn
leads to a velocity-dependent coefficient of restitution.

Our third objective is to calculate the coefficient of
restitution and the velocities of the colliding granules at
the end of the collision. This is presented in Sec. IV. In
the absence of dissipative forces the coefficient of restitu-
tion is equal to unity. We are able to explicitly calculate
the lowest order corrections to this and thus to obtain
an explicit form for the dependence of the coefficient of
restitution on the initial velocity difference of the gran-
ules.

Finally, Sec. V contains a summary of the paper and
comments on the possible generalizations of this study.

II. THE MODEL

Viscoelastic forces for the collision of two spheres in-
clude two terms. The first is due to the elastic repulsion
between the two particles and has its origins in Hertz’s
theory [14, 15]. The second term stands for the viscous
dissipation via a dashpot [16, 17]. Hence, the contact
force can be written as

F = −r (x1 − x2)
n−1 − γ (x1 − x2)

α
(ẋ1 − ẋ2) . (2)

Here x is the displacement of a particle from its initial
position at the beginning of a collision. A dot denotes
a derivative with respect to time, and the subscripts on
x label the two particles. The coefficient r is a constant
dependent on Young’s modulus and Poisson’s ratio. For
instance, for colliding spheres of radii R1 and R2 this
constant is given by

r =
2

5D12

√
2R1R2

R1 +R2
, (3)
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where

D12 =
3

4

(
1− σ2

1

E1
+

1− σ2
2

E2

)
, (4)

σi is Poisson’s ratio and Ei the Young’s modulus of
sphere i. Returning to Eq. (2), γ is the coefficient of
viscosity, α is a constant that defines the specific vis-
coelastic model, and n depends on the topology of the
contact between the particles. For spheres n is equal to
5/2 [14, 15], and α to 1/2 [18, 19], but we leave them as
n and α for the sake of generality. We say that parti-
cle 1 is to the left of particle 2, and that our system of
coordinates increases from left to right. When we work
with two equal spheres so that R1 = R2, σ1 = σ2, and
E1 = E2, we drop the subscript on D, that is, we set
D11 ≡ D.

The equations of motion for two particles of mass m1

and m2 during a collision are

m1ẍ1 = −r (x1 − x2)
n−1 − γ (x1 − x2)

α
(ẋ1 − ẋ2) ,

m2ẍ2 = r (x1 − x2)
n−1

+ γ (x1 − x2)
α

(ẋ1 − ẋ2) . (5)

From Eq. (5), conservation of momentum immediately
follows,

m1ẍ1 +m2ẍ2 = 0, (6)

so that m1ẋ1 + m2ẋ2 = const. Equation (5) also leads
to an uncoupled equation for the difference variable z =
x1 − x2,

z̈ = − r
µ
zn−1 − γ

µ
zαż, (7)

where µ is the reduced mass µ−1 = m−11 + m−12 . For
the latter equation, the initial conditions are z(0) = 0
because we deal with configurations where the granules
are initially just touching each other, and ż(0) = vi1 −
vi2 ≡ v0. Here vi1 and vi2 are the initial velocities of the
two colliding granules.

An analytic solution z(t) of Eq. (7) for arbitrary n and
α seems not to be available. However, we have been able
to obtain the velocities at the end of the collision as a
function of the initial velocities in the low viscosity limit.
We rewrite Eq. (7) as a first order differential equation of
the velocity as a function of the position. Defining v = ż,
and noting that

z̈ =
dv

dt
=
dv

dz

dz

dt
= v

dv

dz
, (8)

we rewrite Eq. (7) as

v
dv

dz
= − r

µ
zn−1 − γ

µ
zαv. (9)

In the absence of dissipation (γ = 0), this equation ad-
mits two solutions for v(z),

v±(z) = ±

√
v02 −

2rzn

µn
. (10)

Obviously, the positive sign should be considered during
compression, and the negative one during decompression.

Our approximation in the low dissipation regime starts
by writing the velocity as a perturbation on the non-
dissipative solution. Consequently, during compression
we have

v(z) = v+(z) + γvcomp(z), (11)

where vcomp(z) is a function to be determined. Substitut-
ing the trial solution Eq. (11) in Eq. (9), and collecting
the terms of order γ, we have

r

µ
zn−1vcomp +

(
2rzn

µn
− v02

)(
zα

µ
+ v′comp

)
= 0, (12)

where a prime denotes a derivative with respect to z.
Furthermore, the condition vcomp(0) = 0 is necessary to
satisfy the initial conditions. The solution of Eq. (12)
with the initial conditions vcomp(0) = 0, when added
to v+(z), then gives us the compression velocity to first
order in the dissipation,

v(z) =

√
v02 −

2rzn

µn
− γ

z1+α
[
2(1 + α) + n 2F1(1, 12 + 1+α

n ; 1 + 1+α
n ; 2rzn

nµv02 )
]

(1 + α)(2 + n+ 2α)µ
, (13)

where 2F1 is a hypergeometric function [20].
Next we move on to the decompression, which starts

with v = 0 and z = zmax. To calculate the maximum
compression zmax, we again look for a first order correc-
tion in γ,

zmax =

(
nµv0

2

2r

)1/n

(1− γzc) , (14)

where zc is a constant to be determined and(
nµv0

2/2r
)1/n

is the maximum compression in the ab-
sence of dissipation, obtained by setting v±(z) = 0 in
Eq. (10). The relative velocity must vanish for the maxi-
mum compression. This is the point at which the collid-
ing grains stop moving and begin to separate. Therefore,
we evaluate Eq. (13) at z = zmax as given in Eq. (14),
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expand to first order in γ, and set the left hand side
equal to zero. Solving the resulting equation for zc and

inserting the result in Eq. (14), we find for the maximum
compression

zmax =

(
nµv0

2

2r

) 1
n

1− γ
2−

1+n+α
n
√
π
(
nµ
r

) 1+α
n v0

2−n+2α
n Γ

(
1+α
n

)
n2µΓ

(
3
2 + 1+α

n

)
 . (15)

While it might be tempting to assume that the collision
ends when z = 0, that is, when the particles lose contact,
this would neglect the fact that the particles have not re-
covered their original shape at this point [10]. The effect
of neglecting this contribution leads to serious spurious
attractive forces. The collision actually ends when the
force is zero, z̈ = 0, at which point the initial shape is
recovered. Setting z̈ = 0, z = zf , and ż = vf in Eq. (7),

where the subscript f stands for final, we have

zf =

(
−γvf
r

) 1
n−1−α

. (16)

In what follows we restrict n to values n > α+ 1, so that
zf is small for low viscosity.

We write the perturbative solution for the decompres-
sion velocity in the low viscosity case as

v(z) = v−(z) + γvdecomp(z). (17)

Again substituting into Eq. (9) and expanding the latter
to first order in γ, we find

vdecomp(z) =
C√

nµv02 − 2rzn
− 4rz1+n+α

(2 + n+ 2α)µ (2rzn − nµv02)
−
z1+α

[
2 + 2α+ n2F1

(
1, 12 + 1+α

n ; 1 + 1+α
n ; 2rzn

nµv02

)]
(1 + α) (2 + n+ 2α)µ

.

(18)

Here C is a constant to be determined by the continuity
of the solutions (18) and (13) at zmax. Remembering
that v(zmax) = 0, where zmax is given by Eq. (15), and
expanding up to first order in γ, C is found to be

C =
2−

α+1
n
√
π(nµ)(−

1
2+

α+1
n )r−

α+1
n v

n+2α+2
n

0 Γ
(
α+1
n

)
Γ
(
α+1
n + 3

2

) .

(19)

To use this result to calculate the leading contribution
to the final relative velocity we write

vf = v(zf ) = v(0) + v′(0)zf , (20)

since zf is small. A prime denotes a derivative with re-
spect to the argument z. Since the force is zero at the
end of the collision, we have

z̈ = 0 = dż/dt = dż/dz dz/dt = v′(zf )v(zf )

= [v(0) + v′(0)zf ][v′(0) + v′′(0)zf ]

= v(0)v′(0) + [v(0)v′′(0) + (v′(0))2] +O(z2f ).

(21)

This equation has two solutions for v′(0): either v′ =
−v(0)/zf or v′ = 0. The first leads to a final relative

velocity that vanishes, which is not physical in our per-
turbative approach where we expect the final relative ve-
locity to go to −v0 when γ → 0. We must thus choose
v′(0) = 0 (or, more rigorously, v′(0) = O(z2f )). There-
fore,

vf = v(0) +O(z3f ) = v(0) +O(γ3/(n−1−α)). (22)

We choose values of n and α such that 0 < n−1−α < 3.
For spheres with n = 5/2 and α = 1/2 this condition is
clearly satisfied. We later also consider n = 5/2, α = 0
(used by others), for which the condition is also satisfied.
The correction in the final velocity can then be neglected
in our analysis to first order in γ. The first term, v(0),
is obtained by substituting Eq. (19) into Eq. (18), using
this result together with Eq. (17), and taking the limit
z → 0. We then obtain

vf = −v0 + γ

(
nµv20
2r

) 1+α
n √

πΓ(1 + 1+α
n )

µΓ( 3
2 + 1+α

n )
. (23)

III. COLLISION TIME

Our next objective is to calculate the collision time,
which we do in two parts. First we calculate the com-
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pression time of the collision as the two grains compress
one another and then, as the grains move apart, the at-
tendant decompression time. The collision time is then
the sum of the two.

First we calculate the compression time as

Tcompression =

∫ zmax

0

1

v(z)
dz (24)

where, to order γ, 1
v(z) is obtained from Eq. (13) as

1

v(z)
=

1√
v02 − 2rzn

nµ

+ γ
z1+α

[
2(1 + α) + n 2F1(1, 12 + 1+α

n ; 1 + 1+α
n ; 2rzn

nµv02 )
]

(1 + α) (2 + n+ 2α)µ(v20 − 2rzn

nµ )
. (25)

Substituting this into Eq. (24) and integrating leads to a
contribution of order γ0, and a cancellation of two terms
of order γ1/2. Consequently, the compression time does
not show any γ dependence up to first order:

Tcompression =
2−

1
nn−1+

1
n
√
πr−

1
nµ

1
n v0
−1+ 2

nΓ( 1
n )

Γ( 1
2 + 1

n )

+O(γ3/2). (26)

Next we move on to decompression which starts with
v = 0 and z = zmax (maximum compression) and ends
when z̈ = 0 (force is zero), at which point z = zf as given
in Eq. (16). Hence, the decompression time is

Tdecompression =

∫ zf

zmax

dz

v(z)

=

∫ 0

zmax

dz

v(z)
+

∫ zf

0

dz

v(z)
. (27)

We first deal with the first integral. Since the zero-
th order term of the velocity during decompression, Eq.
(17), is the negative of the compression velocity in Eq.
(13), and the limits of integration of the compression and
the first term in the decompression times are switched,
the latter time is the same as the compression time up
to terms of order γ3/2.

This still leaves the second term in the decompression
time given in Eq. (27). Since zmax is small,∫ zf

0

dz

v(z)
h
zf − 0

v(zf )
h −zf

v0
= − 1

v0

(γv0
r

) 1
n−1−α

. (28)

For n−1−α > 0, this correction is indeed small and our
perturbative approach is valid. In particular, for spheri-
cal grains n = 5/2, and the particular values of α = 1/2
(commonly used in the literature) and α = 0 (used by
others, see below), the value of the exponent of γ is 2/3
and 1 respectively. This in turn implies that this term is
a small perturbation.

We have thus established that for the parameters used
herein, the decompression time is equal to the compres-
sion time up to order γ2/3 or order γ depending on the
value of α. Hence the total collision time to this order is

twice the compression time plus an additional contribu-
tion to the decompression time,

T =
21−

1
nn−1+

1
n
√
πr−

1
nµ

1
n v0
−1+ 2

nΓ( 1
n )

Γ( 1
2 + 1

n )

− 1

v0

(γv0
r

) 1
n−1−α

, (29)

and we have arrived at our second objective. We have not
found any other calculation of the velocity-dependence of
the collision time in the literature.

In a recent paper, the merits and problems of different
choices of the parameter α, and even a generalization of
the above model, were discussed [17]. Here, for n = 5/2
we consider two choices of this parameter that have been
commonly used in the literature to test Eq. (2). The
simplest case, α = 0, was proposed in [21] and further
developed in [22], but in our subsequent results below
we see that this choice leads to problematic outcomes.
The case α = 1/2, proposed independently in [18, 23],
is more widespread in the granular gas community. Yet
another combination of exponents was found experimen-
tally for chains of o-rings in[9] and analyzed theoretically
in[24]. In this model dissipation was not included, but
the elastic force is a double power-law rather than a sin-
gle one, with exponents 5/2 and 7. In the latter work
it was shown that depending on the characteristics of
the o-rings and the experimental setup, either the one or
the other contribution can be dominant. In Fig. 1 we
show the duration of the collision for two equal spherical
grains (n = 5/2) as a function of the relative velocity at
the beginning of the collision for both values of α. As
can be seen in the figure, for small γ the data is very well
predicted by our approximation, independently of the ex-
ponent α (the approximation only starts to deviate from
the theoretical prediction for γ = 0.1, represented by the
plus signs). This α-independence of the duration of the
collision is one of the striking predictions of our theory.
Another interesting characteristic of our solution is the
power-law dependence of T on the initial relative velocity
v0, as evidenced in the inset of Fig. 1.

In Fig. 2 we again show T as a function of v0, but this
time for spheres of different sizes. Fixing the radius of
granule 1 and varying the radius of granule 2 (assuming
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FIG. 1. Collision duration for several values of γ (from top to
bottom, 0.0001, 0.001, 0.01 and 0.1) and two different values
of α (0 for lower group and 1/2 for higher group), obtained
via numerical integration of the equations of motion (symbols)
and from our theory (line). The line represent the theoretical
prediction of Eq. (29). The inset shows the same data on
a log-log scale. In this figure, the parameters are as follows:
m1 = m2 = 1, R1 = R2 = 1, and 2/(5D) = 1. As pre-
dicted, for these values of γ and α the collision durations are
essentially independent of these parameters.
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FIG. 2. Duration of collisions for several values of R2 (from
bottom to top, R2 varies from 0.1 to 0.9 in steps of 0.1) ob-
tained via numerical integration of the equations of motion.
The lines represent the theoretical prediction Eq. (29). In this
figure the parameters are as follows: m1 = 1, R1 = 1, α =
1/2, γ = 0.001, and 2/(5D12) = 1. The densities of the two
colliding spheres are equal.

that they have the same density), we can see that the
collision takes longer for larger values of R2.

IV. FINAL VELOCITIES AND COEFFICIENT
OF RESTITUTION

We next turn our attention to the final velocities. From
the conservation of momentum, we know that the total
momentum at the beginning and end of the collision must
be the same,

m1vi1 +m2vi2 = m1vf1 +m2vf2, (30)

where the subscripts i and f once again label the initial
and final velocities of the grains. On the other hand, we
also know from the definition of z(t) that

ż(T ) = vf = vf1 − vf2. (31)

Solving the set of the two equations given above for vf1
and vf2, and using Eq. (17), we find

vf1 =
m1 −m2

m1 +m2
v1 +

2m2

m1 +m2
v2

+
2−

α+1
n m2

m1 +m2

√
πΓ
(
α+1
n

) (
r
µn

)1−α+1
n

rΓ
(
α+1
n + 3

2

) (vi1 − vi2)
2(α+1)
n γ,

(32)

vf2 = −m1 −m2

m1 +m2
v2 +

2m1

m1 +m2
v1

− 2−
α+1
n m1

m1 +m2

√
πΓ
(
α+1
n

) (
r
µn

)1−α+1
n

rΓ
(
α+1
n + 3

2

) (vi1 − vi2)
2(α+1)
n γ.

As expected, the result for an elastic collision is recovered
when γ = 0. Further, the influence of the dissipation is
greater on the lighter particle, and the influence of the
initial condition on the change in the final velocities due
to dissipation depends only on the relative velocity.

We conclude this section by using the above results in
Eq. (1) to calculate the coefficient of restitution and thus
completing our third and principal objective:

ε = 1−γ
2−

α+1
n
√
πΓ
(
α+1
n

) (
r
µn

)1−α+1
n

rΓ
(
α+1
n + 3

2

) (vi1 − vi2)
−n+2α+2

n .

(33)
In Fig. 3 we show the coefficient of restitution for several
values of α. The agreement is equally good for all of them.
An important characteristic of ε is that its qualitative
dependence on the initial relative velocity is drastically
different for α larger than or smaller than (n − 2)/2 (in
the case of spheres, this value is 1/4): α smaller than this
value leads to the unphysical situation of negative coef-
ficients of restitution for very small relative velocities.
For larger α, the collision approaches the elastic case for
small relative velocities. Perhaps most importantly, the
power (−n + 2α + 2)/n of the initial relative velocities
of the two granules is equal to 1/5 with the physically
justified values n = 5/2 and α = 1/2 for spheres, see
e.g. Eq. (12) in [25]. In addition to recovering this ex-
ponent, as in Eq. (14) of that reference, we also obtain



7

0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

0 1 2 3 4 5 6 7 8 9 10

ε

v0

FIG. 3. Coefficient of restitution as a function of the initial
relative velocity. Each curve corresponds to a different value
of α (from bottom to top on the left side, α varies from 0 to
0.9 in steps of 0.1). The other parameters are: γ = 0.001,
m1 = m2 = 1, R1 = R2 = 1, and 2/(5D) = 1. The lines
correspond to the theoretical prediction of Eq. (33).

the linear dependence of the correction of the coefficient
of restitution on the coefficient of viscosity γ.

In Fig. 4, we show the coefficient of restitution as a
function of v0 for particles of different sizes (same den-
sity) for α = 0 and α = 1/2. It is evident from the figure
that ε increases with the radius in both cases. However,
the qualitative behavior is independent of the sizes of the
grains.

V. CONCLUSIONS

We have succeeded in calculating quantities that char-
acterize the collision of two granules that lead to the loss
of energy (but not momentum) to the environment via
viscous dissipation. We started with an equation of mo-
tion (Newton’s Law) containing a kinetic energy contri-
bution, a force due to the elastic repulsion between the
two granules, and a dashpot viscous dissipation term. In
addition to parameters related to the shape and size of
the granules, the model contains two important param-
eters: a coefficient of viscosity γ, and a constant α that
defines the specific viscoelastic model, cf. Eq (2). Our
calculations are perturbative in the coefficient of viscos-
ity, that is, we present lowest order corrections to elastic
(energy-conserving) collisions.

A collision begins with the two granules just touch-
ing head-on toward each other with a relative velocity
v0. This velocity and configuration define the collision
strength. The collision begins at this initial moment with
compression of the granules until their relative velocity
is zero (at which point the compression is a maximum).
Decompression then follows, until the force between the
granules vanishes, at which point the collision ends.

0.988
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0.994

0.996

0.998

1

0 1 2 3 4 5 6 7 8 9 10

ε

v0

(a)α = 0

0.995
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0.997
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0.998

0.9985

0.999

0.9995

0 1 2 3 4 5 6 7 8 9 10

ε

v0

(b)α = 1/2

FIG. 4. Coefficient of restitution as a function of the initial
relative velocity. Each curve corresponds to a different value
of the radius of granule 2 (from bottom to top, R2 varies
from 0.5 to 1.4 in steps of 0.1). The other parameters are:
γ = 0.001, m1 = 1, R1 = 1, and 2/(5D12) = 1. The densities
of the two colliding spheres are equal. The lines correspond
to the theoretical prediction of Eq. (33).

Integration of the equations of motion leads to analytic
results for several important quantities usually specified
simply as phenomenological parameters. The first is the
relative velocity of the granules during compression and
during decompression. We calculate the final relative ve-
locity as a function of the separation of the centers of the
granules and find the dependence on initial relative ve-
locity and on the parameters γ and α, cf. Eq. (23); if the
collision were elastic, the final and initial relative veloci-
ties would of course just be the negatives of one another.
A second set of useful results are the final velocities of
each grain, for which we obtain explicit expressions as a
function of the parameters and of the initial velocities of
each grain, cf. Eq. (32). These are important for simu-
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lations of granular gases.
The third quantity we calculate is the duration of the

collision, cf. Eq. (29). In most phenomenologies, colli-
sions are assumed to be instantaneous. Collisions are of
course not instantaneous.

Finally, we find an analytic expression for the coef-
ficient of restitution ε defined in Eq. (1). This coeffi-
cient, usually chosen phenomenologically, recognizes the
inelasticity of granular collisions. We have found the de-
pendence of this coefficient on particle shape (via the
exponent in the force that determines the topology of
the contact between the granules), the coefficient depen-
dent on Young’s modulus and Poisson’s ratio, and, most
importantly, on initial relative velocity and on the pa-
rameters γ (to lowest order) and α that define the vis-
coelastic model, cf. Eq. (33). If γ = 0 the coefficient
of restitution is unity, that is, there is no energy loss
in the collision. Similarly, if the initial velocities of the
two granules are equal, the coefficient is trivially unity
again. The dependences on these quantities are non-
trivial and, we submit, essentially impossible to arrive at
phenomenologically. This then provides a physical basis
for the usual phenomenological choice ε < 1. While our
results are perturbative in γ and thus not as general for
elastic spheres (n = 5/2, α = 1/2) as is the infinite series

developed in [10], our model allows different values of n
and α and yields relatively simple explicit results for the
initial velocity dependence of the final velocities of the
colliding granules, of the duration of a collision, and of
the restitution coefficient.

In this paper we have only dealt with two colliding
granules, taking into account the energy loss due to an ex-
plicit viscoelastic force in the equations of motion. This
renders our results immediately applicable to granular
gases where at low densities binary collisions are the most
common interactions. The generalization to a granular
chain or to even higher dimensional granular arrays is
not trivial, cf. Ref. [25], but is now made considerably
easier by the fact that we have explicitly found the prin-
cipal ingredients of the problem. There is nevertheless a
great deal of work to be done, especially toward higher
dimensional generalizations.
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