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Abstract. Images derived from a “virtual phantom” can be useful in characterizing the performance of imaging
systems. This has driven the development of virtual breast phantoms implemented in simulation environments.
In breast imaging, several such phantoms have been proposed. We analyze the non-Gaussian statistical proper-
ties from three classes of virtual breast phantoms and compare them to similar statistics from a database
of breast images. These include clustered-blob lumpy backgrounds (CBLBs), truncated binary textures, and
the UPenn virtual breast phantoms. We use Laplacian fractional entropy (LFE) as a measure of the non-
Gaussian statistical properties of each simulation procedure. Our results show that, despite similar power
spectra, the simulation approaches differ considerably in LFE with very low scores for the CBLB to high
values for the UPenn phantom at certain frequencies. These results suggest that LFE may have value in
developing and tuning virtual phantom simulation procedures. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication,
including its DOI. [DOI: 10.1117/1.JMI.6.2.025502]
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1 Introduction
Virtual breast phantoms have many appealing qualities for
evaluating breast imaging technology. These phantoms are the
output of simulations of breast tissue, often with the intent of
capturing the effect of anatomical variability on the performance
of imaging systems. As such, the “phantom” may be considered
as the ensemble of image backgrounds produced by the simu-
lation procedure, with additional acquisition noise simulated
as part of a specific implementation. Virtual phantoms have
advantages that arise from known ground truth about the object
being imaged and the ability to evaluate a not-yet-existent
(or otherwise inaccessible) imaging system through a simulation
of the imaging process.

However, in order to be effective, a virtual phantom must
accurately capture the effects of patient-structured images.
We refer to this objective as phantom realism, with the
assumption that a more realistic phantom will more fully capture
anatomical effects than a less realistic phantom. But it is not
clear at this point in time how to validate such a comparison
or how such a validation might depend on the task that drives
development of the imaging system.

The approach we explore in this work is based on the idea
that realism can be characterized by comparing statistical prop-
erties of the phantom ensemble (or the subsequent images) and
actual patient images in cases where such images are available.
Traditionally, statistical properties have been limited to the mean
and power spectrum,1–3 which characterize first- and second-
order statistical properties (e.g., mean, variance, covariance),
under the assumption of stationarity. It has been well established
that the distribution of soft tissue in breast images has multiscale

characteristics4–7 that lead to a power law governing the power
spectrum of anatomical variability. The power spectrum of
breast images is well approximated as the sum of this power
law with the power spectrum of quantum noise generated during
the process of image acquisition. This relationship was first
observed in film-screen mammography8 and later extended to
full-field digital mammography (FFDM)5 and other breast im-
aging modalities, such as digital breast tomosynthesis9,10 and
dedicated breast computed tomography (CT),11–13 albeit with
different exponents, demonstrating the ubiquity of the power-
law formalism. As a result, the power-law spectrum has served
as a useful constraint for stochastic simulations of breast
anatomy in virtual breast phantoms.

However, it is also known that the power spectrum does not
fully capture the appearance of most medical images.14 For
example, it is generally easy to differentiate between a real
patient mammogram and a Gaussian process that has matched
the power spectrum of the mammograms. Figure 1 gives exam-
ples of each of these processes. The top row of the figure shows
small regions of x-ray projection mammograms from clinical
exams that have been log-converted to density. Note that we
have not applied the usual “for-display” processing to these
images since we are interested in the properties of the objects
being imaged and not necessarily the final displayed image.
We contend that textural components of the mammograms
make them readily discriminable from the Gaussian textures
in the bottom row of the figure.

Figure 1 suggests that if the statistical-properties approach to
evaluating phantom realism is going to be most effective, we
will likely need to evaluate properties beyond the mean and
power spectrum that fully characterize a stationary Gaussian
process. We consider these to be “non-Gaussian” statistics that
assess higher-order structure in the images. We investigate one*Address all correspondence to Craig K. Abbey, E-mail: ckabbey@ucsb.edu
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such measure, known as Laplacian fractional entropy (LFE),
for this purpose.14 LFE is based on the response histograms of
Gabor filters, which are intended to represent receptive fields
in early visual cortex.15–17 Much like visual receptive fields,
the measure can be tuned to different center frequencies and ori-
entations. The LFE measure computes the entropy of a response
histogram relative to the expected histogram from a Gaussian
process matched for mean and variance. Relative entropy will
be zero when the two histograms fully correspond, which occurs
when the response histogram is consistent with a Gaussian
distribution. This makes the measure insensitive to Gaussian sta-
tistics. The Laplacian distribution (two-sided exponential) is used
as a yardstick for measuring how much a response histogram
deviates from Gaussian form. An LFE value of 100% is inter-
preted as being as “non-Gaussian” as a Laplacian distribution.

The question we would like to address in this work is
whether a higher-order statistical property, LFE in this case, pro-
vides additional information over the power spectrum regarding
phantom realism. For simplicity, we use FFDM images as a test
case for this hypothesis. We examine LFE in three classes of
virtual breast phantoms comprising nine different simulations
of FFDM. These include virtual breast phantoms based on clus-
tered-blob lumpy backgrounds (CBLBs),18,19 binary truncation
(BT) processes,10,20 and the UPenn virtual breast phantom.21–23

For comparison, we also have patient images from a set of 35
clinical breast exams that we use to estimate the anatomical
noise in FFDM images of patients. In addition, we also evaluate
a stationary Gaussian process with a power-law power spectrum
at the two-pixel sizes used in this work (70 and 100 μm). Our
approach is different than what was used in our preliminary
conference report,24 in that we determine the acquisition noise-
power spectrum in each simulation by matching the power spec-
trum of the FFDM images. This allows us to see what additional
information is learned by evaluating the non-Gaussian statistics.

2 Materials and Methods

2.1 Mammograms

The mammograms we use were obtained from the UC Davis
Medical Center and the University of Pennsylvania Medical
Center under IRB-approved human-subject protocols that
included deidentifying all image data. Images from 26 patients
came from the UC Davis Medical Center and images from
9 patients came from the University of Pennsylvania Medical
Center. Patient images were selected on the basis of having
complete data, which consisted of two standard views (CC
and MLO) of each breast for a total of 140 images. All of
the mammograms were acquired on Hologic Dimensions sys-
tems (Hologic Inc., Bedford, Massachusetts) as part of breast
cancer-screening exams. However, patient images in our sample
were collected retrospectively on the basis of a recommendation
for biopsy, and so they should not be considered a representative
sample of the screening population.

A subset of 26 of these exams (acquired at UC Davis)
was used previously in the original LFE paper.14 All breast
image data were saved at the “for-processing” stage, after
detector calibration had been performed, but before any dis-
play processing had been applied. This step was done to
avoid any non-Gaussian statistics that might be introduced by
transformations in the “for-display” processing.14 The images
were log-converted from transmission to density before the
analysis was performed. Pixel size in the mammograms was
70 μm.

2.2 Clustered-Blob Lumpy Backgrounds

The CBLBs have been developed by Bochud et al.18,19 as
an extension of Rolland’s and Barrett’s type I lumpy back-
grounds25 for applications in x-ray projection mammography.

Fig. 1 Mammographic backgrounds and Gaussian stochastic textures. (a) The 5 cm × 5 cm patches of
mammographic density images. (b) Gaussian stochastic textures that match the mean and power spec-
trum of mammographic densities in the breast interior.
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The idea behind lumpy backgrounds was that a background
could be generated as a superposition of lump profiles placed
at different locations throughout the background area. The
CBLB extended this by allowing the lump profile to be a local-
ized probability density for a cluster made up from smaller
lumps.

A total of five previously published CBLB simulation
procedures are considered here. These include the process
described in the original publication18 and referred to as
“OpEx99,” as well as four virtual breast phantoms developed
in a subsequent publication.19 These are all sampled on a
100-μm-pixel size that was used in the publications. Two
virtual phantoms based on oriented and isotropic processes
are referred to as “SimpOri” and “SimpIso,” respectively,
with “Simp” indicating that a single CBLB process is used.
The remaining two phantoms both sum two CBLB processes
modeling glandular and fibrous structures, respectively. These
also incorporate oriented and isotropic processes and are
referred to as “DoubOri” and “DoubIso,” with “Doub” indicat-
ing that a double CBLB process is used. The parameters for
these processes are all taken directly from the original publica-
tions, with the only change being to scale the number of clusters
to match the larger image size (1024 × 2048 instead of
256 × 256) tested. For each phantom, 50 independent back-
grounds are generated for analysis. Figure 2 gives examples of
each of these processes [Figs. 2(a)–2(e)] along with a power-
law Gaussian texture [Fig. 2(h)], sampled on a 100-μm-pixel
grid, for reference.

It should be noted that the CBLB phantoms directly simulate
a two-dimensional (2-D) image. This is considerably simpler
than the methods below, which simulate a three-dimensional
(3-D) breast and then project the 3-D simulation onto a 2-D
detector.

2.3 Binary Truncation Processes

The BT phantoms are based on the idea that the breast can be
well modeled as mixture of adipose and glandular tissues, each
characterized by its respective attenuation coefficient. These
models of soft tissue contrast have typically neglected calcifica-
tions. The spatial distribution of the attenuation coefficients is
generated by thresholding a 3-D random process, initially devel-
oped by Gong et al.26 The approach of Abbey and Boone20

(referred to as AB08) uses a 3-D Gaussian process truncated
to ∼30% volume glandular fraction. Reiser and Nishikawa10

(referred to as RN10) used phase randomization followed by
thresholding to generate the distribution of adipose and glandu-
lar tissues and targeted a 75% glandular fraction.

It should be noted that both of these approaches have higher
glandular fractions than the 19% average volume glandular
fraction of the breast, as measured from breast CT images.27

Both methods could be easily modified to meet this average
glandular fraction by increasing the truncation threshold. There
are other differences between the two processes (how they
generate and truncate the 3-D random field) that can affect
LFE. However, our interest is in evaluating whether LFE
changes substantially between the different simulation proce-
dures, and so we have adhered as closely as possible to the
simulation procedures used in the publications.10,20

Binary 3-D backgrounds were generated with an isotropic
sampling of 100 μm in x, y, and z. The resulting grid was
1024 × 2048 × 512, and thus approximately captured the 5-cm
average thickness of a compressed breast in a screening mam-
mography exam while achieving the size needed for a compa-
rable region of interest (ROI) of the breast interior relative
to FFDM images. Phantoms were projected onto the detector
by summing the z-dimension of the 3-D phantom for a

Fig. 2 CBLBs and BT backgrounds. Samples of CBLBs are shown (a–e) along with those generated
using BT processes (f, g). A Gaussian texture generated at 100 μm sampling (h) is also shown for
reference.
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1024 × 2048 final image size. For each of the BT phantoms,
a total of 50 independent backgrounds were generated for
analysis. Examples of BT phantoms from these two processes
are shown in Figs. 2(f) and 2(g).

2.4 UPenn Virtual Breast Phantom

A virtual breast phantom development project has been under-
way at the University of Pennsylvania for several years.21–23

This approach is based on simulating the major anatomical com-
ponents of the breast, including skin, adipose tissue, fibrogland-
ular tissue, and Cooper’s ligaments. The breast simulation is
initially generated in an uncompressed state, to which a com-
pression transform is applied using a finite element model.

We consider two versions of the UPenn phantom. One is the
first published version of the phantom, tailored for projection
mammography.22 In the second version, a new approach is
used that involves simulating additional microstructure in the
adipose compartments.28 We refer to the original simulation
procedure as the “coarse” phantom because of the strong texture
of the projection images. The newer simulation is referred to
as the “mixed” phantom because of the mixing of attenuation
components in the adipose compartments. Mammograms are
simulated from the 3-D phantom, assuming a 950-mL breast
volume with 6.4 cm compressed breast thickness, a polyener-
getic x-ray beam, and 70-μm detector pixels similar to the
Hologic detector. The phantoms are generated at an image size
of 3328 × 4096 pixels. For each of the UPenn phantoms, 50 in-
dependent backgrounds are generated for analysis. Example
images from these two phantoms are given in Fig. 3, along
with a power-law Gaussian texture sampled on a 70-μm pixel
grid.

2.5 Image Power Spectra

This work makes extensive use of power spectra for both the
sample images and the simulation procedures. Here, we briefly
describe the windowed spectral estimation procedure we use.
All image analysis (both power spectra and LFE) focuses on
the ROIs within the image. Examples of the interior regions for
the different phantoms are shown in Fig. 4. For the FFDM
images, these ROIs are generated manually to indicate the
interior of the breast, which is taken to be ∼10 mm inside the
skin line of the mammogram and avoiding pectoral muscle, ribs,
skin-folds, etc. The average area of the ROIs, across all patients

and views, is 116.3 cm2 and ranges from 15.9 to 308.4 cm2. For
the CBLB and BT phantoms generated on a 100-μm grid and
an overall simulation size of 1024 × 2048, we used a central
rectangle with an area of 112.3 cm2. This ROI is also used for
the Gaussian process sampled on the same scale. For the UPenn
phantoms (and corresponding 70-μm Gaussian phantom),
the ROI is also generated similar to the FFDM images. Since
the UPenn phantoms all have the same breast contour with
randomized interior structure, a single ROI (106 cm2) is appro-
priate for all of these phantoms.

The power spectrum is estimated from square image patches
that are randomly selected so that the entire patch falls within the
interior of the breast. Let gi½n;m�, n;m ¼ 0; : : : ; N − 1, be the
sample patch from the i’th FFDM image or the i’th image gen-
erated by one of the simulation procedures (i ¼ 1; : : : ; ISamp).
The patch size is fixed at 512 × 512 pixels (i.e., N ¼ 512).
For the FFDM images where the breast was too small to fit,
the patches are excluded from the power-spectrum estimate.
This constraint leaves 34 cases for use in each of the MLO
views, and 33 cases for each of the CC views. The simulations
all use 50 sample images. A windowed power spectrum is esti-
mated for each ROI in a sample image as

EQ-TARGET;temp:intralink-;e001;326;510Ŝi½k; l� ¼ jFFTðw½n;m�ðgi½n;m� − g½n;m�ÞÞj2; (1)

where g½n;m� is the average over all the patches and w½n;m� is a
spatial window that is centered in the middle of the patch and
remains constant out to a radius of 10.0 mm before rolling off to
zero with a cosine profile at a radius of 17.9 mm. The spatial
frequency indices ½k; l� both range over k; l ¼ 0; : : : ; N − 1.
The window function reduces spectral leakage in the power-
spectrum estimate from periodic discontinuities at the edges
of the patch.29 To ensure that the power spectrum will have
approximately the right amplitude, the window is normalized
to have an average value of 1.0 over the patch.

We use radial averages to convert the 2-D power spectra in
Eq. (1) to a one-dimensional function of radial frequency, con-
sistent with previous works.4,6,30 This has typically been justi-
fied on the basis of approximate isotropy of power spectra for
breast images, although other investigators have shown orienta-
tion dependence.31 Since our study is focused on the power
spectrum at a more general level, we use radial averages and
neglect any orientation dependence in our data. Let fk;l
represent the radial frequency for the indices, then

Fig. 3 Phantoms generated at 70 μm sampling. Samples from two versions of the UPenn virtual breast
phantom are shown (a, b) along with a Gaussian texture (c) generated at 70-μm pixel size and shown for
reference.
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EQ-TARGET;temp:intralink-;sec2.5;63;456fk;l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2w þ l2w

p
NΔ

;

where N is the patch size (512), Δ is the pixel size (0.1 or
0.07 mm), and kw and lw account for frequency “wrap-around”
(i.e., kw ¼ k for 0 ≤ k < N∕2, and kw ¼ k − N for
N∕2 ≤ k < N, likewise for lw).

Let q be the radial frequency index (q ¼ 0; : : : ; N∕2) with
associated radial frequency ρq ¼ q∕NΔ. We define Fq as the
set of all 2-D frequency index pairs in a band centered on ρq
that has a width of one radial frequency sample (i.e.,
Fq ¼ f½k; l�∶ − 1∕2NΔ ≤ fk;l − ρq < 1∕2NΔg); let Nq be the
number of index pairs in the band, then the radial power spec-
trum is given as

EQ-TARGET;temp:intralink-;e002;63;297Ŝi½q� ¼
1

Nq

X
½k;l�∈Fq

Ŝi½k; l�: (2)

The radial power spectrum for the process is generated
by averaging over the image samples. In addition, we find it
useful to work with the log-power spectrum at times. We
generate the average log-spectrum by averaging over samples
as well

EQ-TARGET;temp:intralink-;e003;63;193LŜ½q� ¼ 1

ISamp

XISamp

i¼1

log10ðŜi½q�Þ: (3)

The sample standard deviation across i is used to quantify the
variability of the log-power spectrum

EQ-TARGET;temp:intralink-;e004;63;119σ̂LŜ½q� ¼
�

1

ISamp − 1

XISamp

i¼1

ðlog10ðŜi½q�Þ − LŜ½q�Þ2
�1∕2

: (4)

2.6 Simulating Acquisition Noise

The above simulation procedures describe how the anatomical
components of the phantom images are generated. However, a
full simulation should also include the generation of acquisition
noise. In the initial conference report of this study,24 acquisition
noise was modeled as white Gaussian noise. While this had the
correct qualitative effect of flattening the power spectrum at high
frequency, it is noticeably different than the actual power spectra
of digital images. In addition, the different simulation proce-
dures are normalized differently leading to large differences
in the amplitude of the power spectra.

In this study we model the acquisition noise as another
power-law process that is fitted to the power spectrum of the
FFDM images over a frequency range from 0.1 cyc∕mm to
the Nyquist limit. The noise process has two free parameters:
a power-law amplitude, ANse, and exponent, βNse. We also
scale the simulation processes by a factor AScl to have approx-
imately the same amplitude as the FFDM images. These effects
are achieved by fitting the power spectra of the simulation
procedures to the power spectrum of the FFDM images. Let
ŜBck½k; l� be the power spectrum estimated for one of the
background simulation procedures. We fit the simulation
power spectrum to the image spectrum using a three-parameter
model

EQ-TARGET;temp:intralink-;e005;326;183ŜSim½q; θ� ¼ ASclŜBck½q� þ ANseρ
βNse
q ; (5)

where θ ¼ ðAScl; ANse; βNseÞ is a vector comprising the three free
parameters to be fit. Note that for q ¼ 0, we replace ρ0 with ρ1 to
avoid singularity. The parameters are fit by minimizing the
weighted least squares error with the log-power spectrum of
the FFDM images, LŜFFDM½q�, according to

Fig. 4 ROIs used for analysis. Each image shows a phantom with the ROI indicated. (a) The CBLBs and
BT processes used a rectangular ROI with an area of 112 cm2. (b) The UPenn phantoms and (c) FFDM
patient images used manually determined the ROIs. The UPenn phantom ROI has an area of 106 cm2.
The ROI in the FFDM image shown (LCC view) is roughly the average size of the area in the image set
(111 cm2). In this image, a small skin fold in the lower right corner is explicitly avoided in the ROI.
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EQ-TARGET;temp:intralink-;e006;63;752ErrðθÞ ¼
XN∕2

q¼0

ðLŜFFDM½q� − log10ðŜSim½q; θ�ÞÞ2
σ̂2
LŜ½q�

; (6)

which is readily solved using standard optimization methods.

2.7 Laplacian Fractional Entropy

LFE is based on the relative entropy (K-L divergence) between
the response histogram of a Gabor filter, normalized to be a
probability distribution, and a best-fit Gaussian distribution over
the same histogram bins. If the histogram represents an under-
lying Gaussian process, then it will be well fit by the Gaussian
distribution, and the relative entropy will be negligible. Any sort
of departure from a Gaussian distribution in the histogram will
lead to nontrivial relative entropy. This relative entropy is
normalized by the relative entropy of the best-fit Laplacian dis-
tribution with respect to this Gaussian. In this way, the Laplacian
relative entropy serves as a yardstick for interpreting the
Gaussian relative entropy. As a result, an LFE value of 100%
means that the histogram exhibits as much departure from a
Gaussian profile as the Laplacian distribution does. In principle,
any non-Gaussian distribution could be used in place of the
Laplacian. However, Laplacian distributions have played an
important role in the analysis of natural scenes.32–34

The LFE was computed according to the procedure specified
in a previous publication.14 Gabor filters that spanned 11 center
frequencies from 0.125 to 4.0 cyc∕mm were evaluated at six
different orientations (0 deg, 30 deg,. . . , 150 deg). The filters
were sine-phase with a bandwidth of 1.4 octaves and an aspect
ratio of 1. Filter responses were generated by convolving each
filter with an image. All responses from 1 cm inside the boun-
dary of the ROI were used to form response histograms from
which the LFE measures at different frequencies were estimated.
The histograms binned the central 99% of the responses,
with an additional 1% bin for the remaining extremal values.

The computational scheme for determining LFE for a particular
Gabor filter in a given image is shown in Fig. 5, resulting in
an LFE value of 63%.

For the FFDM images, LFE estimates from a single filter are
averaged across the six orientations and across the four views for
each patient. The result is averaged over patients, to get a final
estimate of LFE at each spatial frequency. The sample standard
deviation over patients is used to quantify the variability of LFE.
For the simulation processes, we average across orientations
and samples, to get an estimate of mean LFE for the process.
The standard error of the mean (across samples) is typically
quite small (<4% of the mean on average).

3 Results and Discussion
The main results of this work are power spectra and LFE plots
averaged over orientations and plotted as a function of spatial
frequency.

3.1 Power Spectra

A comparison of radially averaged power spectra for simulation
procedures and FFDM images are shown in Fig. 6. The simu-
lation spectra have been fitted using the procedure described in
Sec. 2.6. Each plot shows the results for a different class of
simulation procedures. The fitted amplitudes of the acquisition
power spectra ranged from 156.8 to 371.5, while the power-law
exponents of the acquisition noise models ranged between
−0.27 and −0.90.

In most cases the fitting procedure results in good agreement
between the fitted model and the FFDM data. The average rel-
ative error across all frequencies in all the simulation procedures
is 6%. The largest divergence between fitted model and data
occurs for the OpEx99 model of the CBLB [Fig. 6(a)] at
low spatial frequencies (<0.3 cyc∕mm) where relative error is
over 100%, but these drop below 10% at higher frequencies.
Fitted spectra from the binary processes [Fig. 6(b)] and the

Fig. 5 Computation of LFE. The image (a) is convolved with a Gabor filter (upper left corner), and all filter
responses in the ROI are retained (b). (c) The resulting histogram is normalized to a probability distri-
bution by dividing by the total number of responses and is shown with fitted Gaussian and Laplacian
distributions. The LFE measure is the relative entropy of the data to the Gaussian divided by the relative
entropy of the Laplacian to the Gaussian, which is 63% in this case.
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UPenn breast phantom [Fig. 6(c)] agree with the sample esti-
mates across the tested frequency range. The Gaussian processes
used for reference [Figs. 6(b) and 6(c)] also agree well across
the spectrum.

Measured from spatial frequencies between 0.1 and
1.0 cyc∕mm, the power-law exponent of the FFDM power spec-
trum is β ¼ −3.01, which is consistent with previously pub-
lished results.6–8 With the exception of the OpEx99 process
(β ¼ −3.81), the relative errors in the power-law exponents
are within 10% of the sample estimate. The Gaussian processes,
generated with a power-law slope of 3.0, result in relative errors
of <3%, which suggests that the spectral estimation procedure is
not introducing a substantial bias in the power-law exponent.

Even with some departures at low frequencies by the CBLBs,
the general finding is that the power spectra of the virtual phan-
toms are reasonably well fit by a power-law over the frequencies

in which anatomical variability dominates, even though the vari-
ous phantoms have quite different visual appearances. This is a
testament to the ubiquitous nature of the power-law spectrum.
However, when the goal is to distinguish between various
models, the generality of the power law may work against its
usefulness. This serves as the motivation for investigating
higher-order statistical properties.

3.2 Laplacian Fractional Entropy

LFE results for the various simulation procedures are shown in
Fig. 7. Here again, the FFDM results for left CC view images are
plotted (with �1 sd error bars across patients) for comparison
with each class of simulation procedure. Other views have sim-
ilar LFE values. The general profile of the LFE curve is similar
to previous reports,14 which is not surprising, given that 26 of

Fig. 6 Radial power spectra. Radial averages of the power spectrum are shown for each of the simu-
lation approaches. Each of the phantom procedures has been scaled and has Gaussian noise added to
match the observed FFDM power spectrum across a frequency range of 0.1 to 5 cyc∕mm. The FFDM
data are shown on each plot for reference with error bars of �1 sd for comparison.

Fig. 7 LFE plots. Plots are shown for (a) the CBLBs, (b) BT backgrounds, and (c) two versions of the
UPenn virtual breast phantom. The LFE data for the patient FFDM images are shown on each plot for
reference, with error bars of �1 sd for comparison. In the binary processes plot (b), there is also a plot
from the Gaussian process generated on a 100-μm pixel size for reference and, on the UPenn virtual
breast phantom plot, there is also a plot for the Gaussian process generated on a 70-μm pixel size.
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the 35 cases were used for those results. LFE appears to be drop-
ping across the lower frequencies with a mild shoulder around
1 cyc∕mm, where acquisition noise begins to dominate, driving
the measure to zero.

Figure 7(a) shows LFE plots for the CBLBs, along with a
matched Gaussian texture. These plots all have fairly small val-
ues across the frequency range (<5%). These are similar to the
matched Gaussian process plotted in Fig. 7(b). Nonzero values
of LFE for the Gaussian textures reflect departures from the
Gaussian profile in the histogram due to the limited spatial
extent of the ROI used to compute the histogram and the finite
sample of histogram responses.

None of the CBLBs show any substantial non-Gaussian struc-
ture by the LFE measure. This is somewhat surprising given that
the procedure for generating the phantoms is rigorously non-
Gaussian.18,19 However, it appears that—seen through the lens
of Gabor receptive fields—there is little higher-order structure
in these backgrounds. Given that the number of background
“blobs” in a simulation are generated using sums over Poisson
random deviates, it may be that for the frequencies we are testing,
Poisson variability is well approximated as Gaussian. It is also
possible that substantial non-Gaussian structure in the images
is not being captured in the Gabor-filter histograms used by
the LFE measure. Further analysis is needed to resolve this issue.

Figure 7(b) shows LFE plots for the phantoms based on the
BT processes, along with the matched (100 μm) Gaussian tex-
ture and the FFDM samples. The AB08 process results in higher
LFE than the RN10 process, and this is mostly due to more
regions of uniform intensity, which add to the response histo-
grams near zero. This explains the increased LFE observed here
compared to the earlier conference report.24 Future implemen-
tations and optimizations of these processes should carefully
consider the simulation parameters including sampling resolu-
tion and approaches to dealing with power-law processes
near f ¼ 0.

Figure 7(c) shows LFE plots for the UPenn phantoms along
with the matched (70 μm) Gaussian texture, and the FFDM sam-
ple estimates. As expected, the Gaussian texture has very low LFE
values similar to the 100 μm Gaussian texture plotted in Fig. 7(b).
This serves as a check that the different pixel sizes do not produce
any unexpected results. The coarse UPenn phantom shows a sub-
stantial peak in LFE at frequencies between 0.3 and 1.5 cyc∕mm

that is not present in the FFDM data. This peak is substantially
modulated in the mixed UPenn phantom leading to a better
agreement with the FFDM data over the entire spectrum.

The UPenn phantom results show how LFE can be used to
guide the development of virtual breast phantom procedures.
Both the coarse and the mixed phantoms can be made to closely
match the power spectrum of breast images, which means that
the power spectrum is not a useful way to identify which one is
closer to the real images. In contrast, LFE shows a substantial
difference between the two and suggests that mixing in the adi-
pose compartments is moving the phantom in a more realistic
direction. This is not entirely surprising given that there are
physiological reasons to expect a distribution of attenuation val-
ues within a glandular compartment, but it is advantageous to
have a quantitative measure that reflects this.

As a way to quantify how closely the phantom LFE matched
the FFDM LFE at frequencies of interest, we compare
differences in the average phantom LFE and FFDMLFE relative
to the standard deviation in LFE across patients in the FFDM
data. For frequencies between 0.125 and 1 cyc∕mm, the average

error of the AB-08 phantom relative to the standard deviation of
the FFDM LFE is 52%, and for the mixed UPenn phantom it is
125%. For the RN-10 phantom, the coarse UPenn phantom,
all the CBLB phantoms, and the Gaussian processes, the errors
are >200%.

The LFE results presented here are somewhat different than
in our initial results.24 This demonstrates the potential impact of
varying the simulation procedures. For this reason, and others
noted below, we hesitate to accept this as a reflection of the
general validity of the virtual phantom procedures.

3.3 Study Limitations

Our study is fairly limited, and hence we caution against the
overinterpretation of our results, and in particular the establish-
ment of a “best” phantom on the basis of these results. The pur-
pose of our study was to demonstrate that phantoms which have
similar power-law spectra may exhibit considerable differences
in higher-order statistics, and that LFE can be used to quantify
those differences in a meaningful way. Comparison with the
LFE derived from FFDM images from a limited set of patients
scheduled for biopsy was made to give a general sense of how
real FFDM images behave. This study was not designed to iden-
tify the most appropriate phantom. Amore focused evaluation of
phantom approaches should consider the population of patients
from which sample images are used, and it would likely also be
useful to allow for some training of parameters in the phantom
procedure as well.

4 Conclusions
All of the virtual breast phantoms tested here have power spectra
that resemble a power-law form at low spatial frequencies. This
is generally consistent with the original findings of Burgess
et al.7 and others5,8 for x-ray projection mammograms. At higher
frequencies, near 1 cyc∕mm and above, acquisition noise domi-
nates and flattens the spectrum. With appropriate normalization,
and the addition of acquisition noise with an appropriate power
spectrum, the observed power spectra of all virtual breast phan-
toms could be made quite similar to the power spectrum of the
mammograms. As a result, all of the phantoms may be consid-
ered consistent with the power-law model of breast anatomy.
While this shows that the various phantoms have similar
second-order statistical properties to clinical breast images, it
also illustrates the limitations of the power spectrum as an end-
point for evaluating simulation models of the breast. The sim-
ilarity of the phantoms at the level of the power spectrum along
with clearly visible differences between the simulated images
emphasizes the importance of higher-order structure in the
appearance and realism of virtual breast phantoms.

LFE, which is relatively insensitive to the power spectrum of
the phantoms, shows substantial variability between the differ-
ent kinds of phantoms, and between the phantoms and the sam-
ple of FFDM images. This confirms the underlying motivation
for this work, that the power-law spectrum should be considered
a necessary condition for phantom realism, but not necessarily a
sufficient condition. It also suggests a role for LFE in the opti-
mization of phantoms realism beyond spectral similarity. This is
exemplified in the UPenn virtual breast phantom results, where
the use of an adipose/glandular mixing model within compart-
ments results in closer agreement with the LFE of FFDM
images, even though the power-law spectrum shows good agree-
ment regardless of whether this component was used.
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While our study was focused on the use of LFE as a measure
of realism, one surprising incidental finding is noted. This is the
relatively low LFE scores for all the CBLBs considered, which
were difficult to distinguish (in LFE terms) from a Gaussian proc-
ess. Further modeling and analysis is needed to understand how
this finding comes about, and how the simulation procedure
might be altered to make it more like breast images. For the
present, we suggest some caution in relying on the CBLB to
implement non-Gaussian structure in breast images.

As we have indicated, our results suggest the use of LFE for
evaluating the realism of breast x-ray simulation approaches.
But it may also be worth considering other approaches for evalu-
ating higher-order structure. Presumably, there are many ways
for physical processes to depart from a Gaussian distribution. So
an array of features may be needed to adequately characterize
these. One such possibility may be the use of co-occurrence sta-
tistics developed by Victor et al.,35,36 which are also invariant to
power spectra and based on a different principle of statistical
structure. While we believe that LFE has demonstrated useful
properties for evaluating phantom realism, more work in this
area is needed for a broader understanding of how higher-order
structure is manifest in breast images.
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