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ABSTRACT OF THE DISSERTATION
A Diverse Set of Evolutionary Questions that have been Answered Using

Completely Sequenced Genomes

by
Fyodor Alexeevich Kondrashov
Doctor of Philosophy in Biology
University of California, San Diego, 2008

Professor Doris Bachtrog, Chair

In the past decade or so, the availability of completely sequenced
genomes and their annotations opened up previously unthinkable opportunities
to explore evolutionary and functional aspects of organic life forms. The rate of
deciphering new genomes shows no signs of slowing down. While a few years
ago every self-respecting genomicist could name every single available genome,
currently | will be hard pressed to name those that have been completed in the
past year alone. Whether or not the race to sequence more, faster and cheaper
will continue to revolutionize our understanding of biology is an open question
largely irrelevant to this thesis. However, it is undeniably evident that in the past
decade a new set of approaches, tools and knowhow have emerged in the fienld
of computational genomics, which will continue to be used for many years to

come.
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It so happened that in the past three years | have been interested in
several different questions that forced me to utilize almost every aspect of
comparative computational genomics. In the course of answering questions that
tickled my curiosity | have created a database, performed an evolutionary
analysis of a newly sequenced genome, worked with secondary and crystal
protein and RNA structures, measured the rate and mode of selection in coding
and noncoding sequences, made functional annotations of proteins, and in the
course of doing so have added to our understanding of several important
evolutionary questions. Thus, this thesis is more of a demonstration of my
capabilities as a computational comparative genomicist rather than a
comprehensive attempt to resolve some long-standing dispute in biology. The
first part of this thesis deals with some aspects and examples of compensatory
evolution in a framework of Compensatory Pathogenic Deviations. The second
part is a collection of works where the primary concept is the use of negative
selection to reveal functional and evolutionary novel aspects of genes and

genomes.

In Chapter 1, | describe a database of mitochondrial tRNA sequences and
secondary structures from completely sequenced metazoan mitochondrial
genomes. This database has been compiled mostly by hand, such that
secondary structure predictions were matched with evolutionary conserved
regions while eliminating annotation errors, resulting in an impressive 6060

curated tRNAs structure predictions. After its completion, but before publication,
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this database has been used to describe patterns of compensatory evolution in
mt tRNAs, which is the topic of Chapter 2. Previously to my work, it has been
thought that it is impossible to create an exclusively computational method for
prediction of pathogenic mutations in human mt tRNAs. | have been able to
show the contrary using two simple improvements. Firstly, | have shown that
sequences of more closely related species are much better predictors of fitness
impacts in orthologous human sites than distant species. Indeed, this is an
intuitive concept but it has not been utilized in a predictive matter previously.
Secondly, | have used patterns of compensatory evolution in tRNA stem
structures, which also greatly increased the predictive power of pathogenicity in
orthologous sites. It is not enough to look at sequence conservation of a site to
claim functional conservation, since sites may evolve in quickly even while being
under functional and selective constraint. Such rapid evolution is most easily
reconciled with functional conservation under the framework of structural
compensatory evolution. For example, in a tRNA the nucleotides forming a
Watson-Crick pair in a stem structure may rapidly change between G-C pair and
an A-T pair. The destruction of each pair may be deleterious; however, each site
may be rapidly evolving. By keeping track of sites potentially evolving in a
compensatory manner, | have been able to further improve my prediction of

pathogenic mutations in mt tRNAs.

In Chapter 3 | use the sequence of the vy-crystallins from several

mammalian species to study compensatory evolution in this gene. A disease-
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causing variant in one of the y-crystallins was found in other, healthy mammals.
Such events are called a Compensatory Pathogenic Deviation (CPD), and are
thought to be caused by structural compensations in the homologous proteins.
In this case, using a correlation sequence analysis it was possible to identify a
probable compensatory site in the y-crystallin. Curiously, on the crystal structure
this site was in a 180 degrees symmetrical position to the site with the
pathogenic substitution. This allowed us to conclude that crystallins are likely to
be packed together such that individual proteins are assembled in strings with
alternating 180 degree rotations. In addition, these genes showed interesting
patterns of gene conversion. Two y-crystallin pseudogenes showed clear signs
of negative selection despite clearly being pseudogenes. This observation,
coupled with signs of gene conversion in this gene family, led to the conclusion
that gene conversion can lead to apparent selection in cases where the rate of

conversion is rapid.

Chapter 4 is entirely devoted to the issue of selection on synonymous
sites in human protein coding genes. Contrary to general belief, negative
selection does not always lead to a decrease in the rate of evolution. If a
preferred nucleotide is highly mutable, then the rate of evolution may be
increased in comparison to a completely neutral site. This will occur due to a
preferred to un-preferred nucleotide substitution achieving fixation through drift
and driven by a high rate of mutation, while selection will drive the reverse

process of un-preferred to preferred substitution. Mammalian synonymous sites
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appear to be a mixture of sites with different rates of mutation spanning almost
two orders of magnitude due to the highly mutable CpG context. The analysis
reported in this chapter has shown that highly mutable synonymous sites evolve
faster than intron sites with the same CpG context, while synonymous sites
outside CpGs, those with a low rate of mutation, evolve slower than intron sites
outside the CpG context. Assuming weak selection preferring GC nucleotides in
synonymous sites leads to a perfect fit between several independent
observations and theoretical predictions. This work remains the most
comprehensive study of negative selection on synonymous sites that utilizes

both empirical observations and theory.

Chapter 5 reports a genome-wide search for two glyoxylate cycle-specific
enzymes, isocitrate lyase and malate synthase, in vertebrate genomes. The
presence of glyoxylate cycle in metazoans has always been controversial, with
all textbooks in biochemistry claiming that the glyoxylate cycle is not present in
higher animals. | utilized sequence pattern searches in completely sequenced
genomes, and found both glyoxylate cycle-specific enzymes in non-mammalian
vertebrates. In addition, malate synthase appears to be still functional in non-
placental mammals while being present as a pseudogene in placentals.
Interestingly, both of these enzymes show a high rate of horizontal gene transfer
throughout eukaryote evolution. In Chapter 6 a new method to study selection in
duplicated genes is described. The method assumes that substitution in two

gene copies with a high rate of paralogous gene conversion are under selection
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simultaneously in both genes and, therefore, the strength of selection in such
gene copies should resemble selection in a single copy gene. Thus, by
comparing substitutions that have, and have not, been subject to gene
conversion, we were able to evaluate selection on two diverging gene copies.
Interestingly, selection against nonsynonymous substitutions was stronger in two
independently evolving gene copies than in gene copies that were evolving in
concert. This may be possible due to strong selection for maintaining functional

uniformity of two gene copies.

Chapter 7 deals with organizational complexity of several metazoan
genomes. The “beans on a string” model of gene arrangement has been
abandoned since the discovery of a large fraction of nested genes. | was curious
to analyze the evolution of such complex, nested gene arrangement. Through
many genome comparisons it became clear that in recent evolutionary history
complex, nested, gene arrangements have been much more commonly created
than destroyed, implying a constant increase in genome organizational
complexity. By looking at expression patterns of nested gene pairs no evidence
has been found in support of selection playing a role in this independent
increase of complexity. This study is the first study that looked at the evolution of
complexity by analyzing evolutionary events directly, in this case gains of nested
gene structures, rather than analyzing correlations of different genomic
parameters. Equilibrium of genome organizational complexity appears to be very

far away, on the order of hundreds of millions of years away.
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Compensatory Pathogenic Deviations



Chapter 1.

A database of metazoan mitochondrial tRNA genes
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Abstract

Background: Mitochondrial tRMAs have been the subject of stedy for structural biologists
interested i their secondary structure characteristics, evolutionary biologists have researched
patterns of compensatory and structural evolution and medical studies have been directed towards
wnderstanding the basis of human disease. However, an up to date, manually curated database of
mitochondrially encoded tRMNAs from higher animals is currently not avaikable.

Description: We obtained the complete mitochondrial sequence for 277 tetraped species from
GenBank and re-annotated all of the tRMNAs based on a multiple alignment of sach tRMA gene and
secondary structure prediction made independently for each tRNA. The mitochondrial (me) tRNA
sequences and the secondary structure based multiple alignments are freely available as
Supplemental Information online.

Conclusion: We compiled a manually curated dambase of mitochondrially encoded (RMAS from
tetrapods with completely sequenced genomes. In the course of our work, we reannotated more
than 10% of all tetrapod me-tRMAs and subsequently predicted the secondary structures of 6060
mitochondrial tRMAs. This carefully constructed database can be utilized o enhance our
knowledge in several different fields including the evolution of mt-tRNA secondary structure and
prediction of pathogenic mut-tRMA mutations. In addition, researchers reporting nowel
mitochondrial genome sequences should check their tRMA gene annotations against our database
1o ensure  higher level of fidelity of their annotaticn,

Background

Mitochandrially encoded tRMAs {mt-1RNAs ) are an excel-
lent object of study for researchers in several fields for a
variety of reasons. The primary reason is the wide variety
of available completely  sequenced  mitochondrial
genomes, which provides a farge data sample from a
broad phylogenetic background. Besides the obvious

availability factor, mt-1RMAs show several unusual prop-
erties. mu-tRNAS are of particular interest o structural
binlogists, since the secondary structure of the m-aRNAs
is not as conserved as that of their nuckear encoded coun-
terparts [ 1], and some mt-tRNAS in several lineages show
accelerated rates of secondary structure evolution |2
Although some changes of the secondary structure may be
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the D-stem structure, which is a structural evolutionary
change particularly common in metRNAs 2],

Utility and Discussion

Maost tetrapod mitachondrial genomes code for 22 differ-
ent tRNAs with the exception of Metatherians that have
lost the mEaRNA™ [5]. In addition, some tetrapod mito-
chondrial genomes thar were labeled as complere were
only partially finished, such that seven mammalian
genomes did not have sequences for tIRMAFY ( Dromiciops
glivoides, Metachirus nudicaudars, Macrotis lagons, Noto-
ryctes fyphlops, Perameles gunnil, Pseudocheiris peregrinus
and Thylamys elegans) and five mammals did not have the
sequence for tIRNATe (Arctocephalies forsteri, Dromiciops gli-
rokdes, Macrotis lagonis, Perameles guinii and Thylamys ele-
gans). Thus, our database contains complete manually
curated sequence and secondary structure information for
HOG0 mitochondrially encoded IRMA molecules.

Our database is available in 22 text files, one for each
tRMA, with sequences of the 277 different species pre-
sented in the same order in each file. The order of the spe-
cies in the alignment is the same for each mi-tRNA gene
and roughly recapitulates the tetrapod phylogeny, Each
file in the database includes the species common and sci-
entific names, basic phylogenetic information and a mul-
tiple alignment of the tRNA with unaligned flanking
sequence and annotated secondary structure (Figure 1 and
2). The *|* characters in the alignment delineate the con-
served secondary structure prediction that was made using
the alignment of all (RNA genes. The capital and lower-
case letters in the files represent paired nucleotides accord-
ing o the secondary structure prediction that was made
with mfold. The two methods of secondary structure pre-
diction generally showed similar results bup small differ-
endces were commaon. For example, according to the mfold
prediction many species in the tRNAYS gene form 3 W
pairs in the D-stem, while the classical tRNA structure sup-
ported by the alignment predicts 4 imteracting nucleotides
in this stem (Figure 1b). The value of showing separate
predictions made by the alignment and the secondary
structure is more evident in complicated cases, such as the
case of the anticodon stem in the t(RNAY of the common
iguana. In this case the alignment delineates the overall
area where the anticodon stem should be formed, while
mfold predicis which nucleotides form WO pairs in the
strsctune (Figure 1h). Our database has a simple tab-
delimited format with a set number of species in exactly
the same order ineach file making it especially useful for
those researchers that wish 1o use our database in batch by
parsing information on the secondary structure from our

The first database of mammalian mi-tRNAs which we
used as a kernel in our alignment repons only mamma-

hittp:ifwwew biomedcentral.comy 147 1-2105/8/441

fian species, it does not report any secondary structure that
is independent of 3 multiple alignment and excludes com-
plicated cases, such as the loss of Destems [1]. Another,
mere current database that includes nuclear and mito-
chondrial tRNAs from the entire diversity of life forms has
been, unfortunately, derived aumtomatically [20] and is
unlikely to be useful to rescarchers requiring a high level
of sequence and structure annotation fidelity. In addition,
both of these databases are difficult 1o use in batch mode,
as they do not represent their resulis in a parsing-friendly
format. Thus, our database is likely 10 be more useful for
researchers that require a low level of annotation error, a
phylogenetically diverse sample or prefer to work with
many tIRNA genes in simple text files. However, our data-
base is not tailored 1o the needs of researchers that require
a graphical interface for their work.

In the course of re-annotation and the compilation of a
secondary-struciure based multiple alignment, we have
medified the annotation of the mt-tIRNA gene location for
13% of all mi-iRMAs presented in our database. Such a
high error rate in the annotation of such seemingly simple
molecules as m-IRNAs underscores the importance of
availability of manually annotated databases such as the
one reported here, In particular, we suggest for researchers
reporting novel mitochondrial genome sequences 0
check their IRNA gene annotations against our database 1o
ensure a higher level of fidelity of their annotation, Man-
ually curated databases have an inherent advantage of a
lowrer error rate than automatically created ones. How-
ever, a manual assembly of such an extensive database as
the one reported here is a resource-intensive enterprise,
and it is unlikely that the current database will be consid-
erably expanded using the same manual approach. Rather
the aim for the further development of this resource is 1o
use the alignments reported here as a basis for further
auromatic enfargement.

Conclusion

We repont a secondary structure based multiple alignment
of 6060 m-tRNAs from 277 tetrapod species. In the
course of our work, we have re-annotated a large fraction
of metRNA genes, and manually checked all secondary
structure predictions, We expect that our database will
facilitate further research of mitochondrially encoded
tRMNAs from a structural, evolutionary and medical per-
spectives, Currently, mammalian mitochondrial tRNAs
are thought to have a high level of similarity 1o the canon-
ical IRMA secondary structure | 1] However, an analysis of
exceptions to the canonical tRNA structures among the
vertehrate mt-tRNAs, which is made possible with the
database reponted here, has not hbeen undertaken, The
evolutionary implications of compensations on a molec-
ular level have been investigated previously [4], however,
the study of CPDs in metRNAS has been performed only
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Figure 2

The secondary structure of the the nine-banded armadillo me-tRMASY (a), and the multiple alignment with annotated second-
ary structure for selected species of mt-tRNASE (b, ¢). The "|" characters separate the loops and stems based on the accepred
basic secondary structwure of me-tRMNAs form Helm et ol (2000) while capital letters denote those nucleotides that are pre-
dicted by mfold to participate in WC or GU pairing in stem structures, The secondary structure of me-tRMNAR MY in our data-
base resembles the one of the nine-banded armadille me-tRNASE (c),
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Some mutations in human mitochondrial tRNAs are severely pathogenic. The available computational
methods have a poor record of predicting the impact of a tRNA mutation on the phenotype and fitness.
Here patterns of evolution at tRMNA sites that harbor pathogenic mutations and at sites that harbor phenoty-
pically cryptic polymorphisms were compared. Mutations that are pathogenic to humans occupy more con-
servative sites, are only rarely fixed in closely related species, and, when located in stem structures, often
disrupt Watson—-Crick pairing and display signs of compensatory evolution. These observations make it
possible to classify ~80% of all known pathogenic mutations as deleterious together with only ~.30% of
polymorphisms. These polymorphisms segregate at frequencies that are more than two times lower than fre-
quencies of polymorphisms classified as benign, indicating that at least ~.30% of known polymorphisms in

mitochondrial tRNAs affect fitness negatively.

INTRODUCTION

A variety of often severe genetic disorders, mostly neuromis-
cular and neurodegencrative, ang caused by mutations in mito-
chendrial (mt) DNA (1 <4), These mutations may be located in
mitochondrially encoded proteins. rRNAs, tRNAs and even in
regulatory regions (51 However, mutations of the 22 mt
IRNAs are of particular interest because these tIRNAS span
only 10% of the human mitochondrial genome yet they
harbor more than half of all known mitochondnal pathogenic
mutations (5) and, as IRNAs have o specific, clovereaf
secondary structure, such mutations may be studied from the
perspective of the secondary structure of the tRNAs (6).

It is thought that the aceurate identification of pathogenic
mutations would enable rescarchers to describe their mole-
cular and biochemical characteristics (7.8). which may lead
to more successful treatment of the resulting pathologies
(8.9}, Currcotly, a mutation can be identified as pathogenic
by a variety of different criteria (10), one of which is the
preference for the mutation to be found at an evolutionanly
conserved site, which by self is a poor predictor of patho-
genic nature of a vanant (11-13). The other erteria, such as
the requirement for the pathogenic mitochondnia to be hetero-
plasmic, are not computational and often require extensive
work in the laboratory (10, Thus, the availability of an

accurate computational approach should aid rapid and inex-
pensive identification of nevel pathogenic mutations.
Previous comparisons of pathogoenic mutations and pheno-
tvpically cryptic polymorphizms in  human mt (RNAs
showed that pathogenic mutations are more often located at
conservative sites (11-14) and sterm structures (14) and tend
o disrupt Watson—Crick (W) nucleotide pairing i stems
{11,14), However, these observations tumed out to be insuffi-
cient to predict the impact of a nucleotide substitution in an mt
tRNA on the phenotype and fitness (11,14), Here, an evolutio-
narily based computational analysis of the differences between
pathogenic and non-pathogenic substitutions is described.

RESULTS

Pathogenic mutations and cryplic  polymorphisms  were
mapped on multiple alignments of the 22 mt (RNAs from
138 differemt mammals, Both nucleotides which act as
mutations and as polymorphisms in bumans may be found at
orthologous sites of closely related species (15). However,
compensatory  substitutions, vsually restoning WO paining
{not including GU pairs), often accompany fixations of patho-
genie mutations (11}, but not of eryptic polymorphisms, in a
non-human mammal. For example, a human pathogenic

*To wham comespondence shonld be sddressel, Tel: 41 7006 2I566774; Fux: +1 B58 534718; Ematl: kondrashoviad nedavis.edo
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mutation in tRNA® that is a part of the normal sequence of its
non-human orthologs sppesrs to be sobject to WC com-
pensation (Fig. 1A) In contrast, the WO comespondence
between sites that harbor human polymorphisms and the inter-
acting sites is less than perfeet (Fig. 1B). The tendencey of mi
IRNA stem sites harboring pathogenic mutations 1o co-evalve
with their complementary sfems sites was used to distinguish
pathogenic mutations from polymorphisms. On the basis of
the ¢ntenia of conservation and compensatory co-cvolution, a
human variant can be classified as cither benign or deleterions,

‘There arc 94 known variants (47 pathogenic mutations and
47 polymorphisms) inomt (RNA stems that disrupt WO
pairing. For each variant, the number of species was connted
in which a variant was found without the compensatory substi-
tution, and the number of species in which a potentially
W pairing-restoring compensatory substitution was found
without the varant. For example, in Figure 1A, both of
these numbers are equal to  (variant A is always found oppo-
gite¢ a T) and in Figure 1B, these values are 1 and 2 for variant
G, and 4 and 0 for variant A. The sum of these two numbers,
ohtained scparately for primates only and for all mammals,
was used as a gauge of evolutionary independence of the inter-
acting sites. A variant was classificd as benign if this sum was
greater than two for prmates (four pathogenic mutations; 15
polymorphisims) or if this smn was greater than nine for all
mammals, and the site was conserved in less than 100 of the
138 (80 out of 119 for IRNAS variants. see Materials and
Methods) available mammals (one pathogenic mutation; five
polymorphisms). All other variants were classified as delete-
rioms (42 pathogenic mirations; 27 polyvmorphisims),

1f a variant within an mt (RN A stem that does not disrupt a
WO pair (two pathogenic mutation and 38 polymorphizms
total) affects a site that is conserved in more than 128 of the
138 available mammals (108 out of |19 for tRNA'" variants,
see Materials and Methods), and the variable nucleatide was
found in fewer than five mammals, it was classified as deleter-
ious (wo pathogenic mutation; four polymomhisms) and other
variants (34 polymorphisms) were classified as benign,
Together, these criteria place 94% pathogenic mutations loca-
lized m the stems, and 36% of such crypiic polymorphisms,
into the delererions category,

Without teérhary structure information, the only available
data on IRNA loop: are sequence conservation, Previous
attempts to distinguizh pathogenic mtations. from polymon:-
hisms relied on sequence conservation in all the available
mammalian orthologs (11). However. this dataset is too
diverse, because mt tRNA loops are often not conserved
even within primates (Fig. 1), and the use of non-primate
mammals may obscure the pattern of conservation, In
general, the use of closely related specics. is preferned,
becavse of the possibility of functional or compensatory
changes m more distant orthologs,

Two criteria were applied o 18 pathogenic mutations and
98 polymorphisms located cutside of stems: (1) whether a
varant is fouid in one of the five non-human Greater Ape
species and (i) the kevel of conzervation in all of the 17
primate species of the site of a variant. A variant was classificd
as benign if it was present in at feast one Greater Ape specics
(one pathogenic mutation; 42 pelymaorphisms) or if its site was
not conservative, in the sense that its most common nucleotide

vas found in fess than 15 ot of 17 primate specics (one patho-
genic mutation; 33 polymorphisms), Otherwise, a vanant was
classificd as deleterious (16 pathogenic mutations; 21 poly-
morphisms), This simple approach classifies as deleterious
89% of pathogenic mutations and only 21% of polymorphisins
located owside of stem structures.

Among all the known variants within afl human mt tRNAs,
~T0% of polymorphisms were classified as benign, whereas
the rate of false negative predictions was low: only ~10%
of afl known pathogenic mutations were classified as benign
(Fig. 2). The classification of ~90% of all pathogenic
mutation as deleterions is a substantinl improvement over pre-
vious results (11, 14). Sull, classification of ~30% of phenoty-
pically eryptic polymorphisms as deleterious may appear as a
deficiency of the proposed analysis, should it represerit the rite
of false positive prediction. Previous analyses assumed that all
segregating polymorphisms are selectively neutral (11.14),
However, owing fo a very high mutation rate of the mitochon-
drial DNA (E6), many segregating variants may be deleterious
{17). In addition, some polymorphisms may be scquencing
errors o heteroplasmic variants,

Indeed, the average frequency of polymorphisms classified
as deleternious (0.0014) is more than two times lower than
that of the polymorphisms classified as benign (0.0032),
which is highly sigmficant (ny = 131, ny = 52, U= 4401.0,
P 00018, twotailed Mann Whitney {-test). Most of the
polymomhisms that were classified as deleterious are single-
tons, i.e. they are present in only one of the 2064 individuals
from which the data on segregating variants have been
obtained (18) and few were found in more than two indivi-
duals (Fig. 33 The 52 different polymorphisms that were
classificd as deleterions were found 330 times in the sample
of 2064 individuals from the human population, although all
the 183 polvmorphisms were found 1415 times, Thus, ~30%
of all palymaorphisms in himoan (RMAs classified as deleterious
(52/183), indecd, reduce fitness, despite the lack of ohvious
phenotypic manifestation. The probability that a polymorphism
drawn at ndom from the human population is deleterious is
~25% (340V1415). The high cstimate is not surprising
becanse some of the polymorphizms found i the human
population used in this study are known to contribute to the
progression of mitochondrial discase (17). However, these
estimates were made using 2 highly non-random sample of
the human popalation (1%) and more accurate measurements
are needed to make a more relioble qualitative estimate,

Taken together, these observations snggest that the described
method has a high rate of accuraey for distinguishing benign
variants from severely and slightly pathogenic ones, To aid
the identification of new pathogenic variants, this method
was applied to all possible mutations of the 22 mt IRNAs
{Supplementary Material), As expected, the mutations disrupt-
ing WO pairing in stems were predicted 1o have the highest
prabability of being deleterious (2218 deleterious mutations
out of 2346 mutations total), whereas mutations in stems
that 1o do not distupt WE pairs have the lowest (104 out of
354). Mutations that are not located m stems have an mfer-
mediate probability of being deleterious (1095 out of 1767).
maost likely due to the inclusion of the highly conserved anti-
codon loop. Obviously, most lethal mutations should also be
classified as deleterions by this approach.
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[sctotee]talatat] --aaGta[grac]cfgtras] cotocaanttasc] tagr(teega) ca-acat[tcaan asagagtla
[actettet]ta[gtat]--aaGoa [gtac]c(gttas) cttoccan[ttanc) tagt[tttga)ca-acat[toenaanagagt]a
[actcreelva{grtat]--astta[grac]c(gttan) cutecan[ttaac]cagutteggl ta-gracccasa jasagagela
[actcree)valgtat]--asGa [grac]clattas) cttocaattaac]lcagrtttga)ca-acacitosaa lanagagtla
[actotre]ca[gtat]-~asaca[gtaclcgttas) cttocaattasc] tagr[tttga)ca-acteccsananagagtla
[actetec)tagtat]-~aatta[gtac]alhttga) cttocan|tonat)cagetitga)cs-atat{tosnajanagagtlsa
[sctctee]cafgrat]--asacca [gtac)a[Atega) cttconaltcant]cagetttgales-acat[tonsananagagtlsa
[actcrte]ta[gtat] -~ sacaa [geac]a[Atega) cttccan|tonat)sage| tttga)on-acat{toasan [asagagt]ls
[atrezte]ealgrat] --agoos [grac)algetga] cetecan[tensc] tage[tecga] tosacas[togga [asagaat]a
[atteceee]lea [grat]--sacta[grac]algetga) cntecaa[ttage] tagt[teogal ca-acattogan [assgaat]a
[actetee]ealgeat] --ssacalgtac]tigtras] cttocaalttaac)cageltecgal ta-acteltoganjaaagagtla
[strcroe]calgrat]--aaacalgrac]a[Acegal cetocsalctant] aggeectegal ta-a-aclocsagiagagaacla
[actcrer)tafgrat]cgacoca [atac]a[Artga) cttocsaf ttant] taac [ tecgg) tg-ananfocgga |anagaat]la
[getotee)tafgtac]-~aacta (gtac]a[Attga] cttocsa[teaat] agga[trtgg) tasatan[ccsna |agagage]s
[gttectt)ta[gtat]o~astta[gtac)a [Attga) cktocan| tonat]) tage[cotag] tecaattctagg | asgganc]a
[actecct)ta[gtat]~==-abta[gtat] afgetga) ettocaa| toage] agge[oecac] ~~cagttgtyggg | saggegt]a

B lgtccrrgles(grat]sa-acta[atac]e[ccage] cetgran[acogglagac(gasan)oce----[teercicanggac]s
[geccregitalgrat]lan-acta[atacla[ccggrl cetgraalaccggl sanac(gassaloce----[tcttc|caaggacls
[gecereglealgrat]lan-getafatac]la(coggr] ctegtaalacegg) asac(gansalott-==-[tattc|canggacia
[gecoerg)ta[gta Jag-acoa[atac]afccagt] ctrgtan[acogg) anac[gaaga)ect---=-[cetrc|casgaac]a
[geccetgltalgra laa-atss [Graclg (ccagel cregranl cotghl asatlgasgeloce---- [cotte | cacgggela
[geceerg)talgta Jaa-atsa[ctac]a[ceage] orrgran[corga)l asat[geaga)ece----[tereclcatggac)s
[gecceeg ] talgta: Jan-scta[atac]aforggt] ctegran[accaglanatggage]a--=-==-~ [cetec|ccagggt]a
[gecoteg]talgtat]an-attaavac]afcrgge] cttgranfaccag] snat[gaaac]at [teckclctaggge]a
[gecersgltalgrat) sa-attaorac]a[eegge) cregranlaccaglasat[gsaca)o------ [zeteciotagggels
[gescragltalgta: Jan-ncta[ovat]a(ccggt] cttgraa[acogal agatiggagalet
[gocceegltalgrat] aa-goca [atac] afcogge] ctrgranfgooggl asot[ganat]ott--~-~ [cottc|caaggac]a
[grecteg)ta[gtat]at-ccea[Etac]ceccgge] cttgran[ acegg] asna(ggagg] cacgeta{actec lacaggac]a
[gecctrgltagtat] aa-ctta [atac]e[ctggt] cttgtanaccag) scat[ggaga] scocect[catec fosaggac]a
[gecctaglta[gtat] aacacoa [trac]e[coggt] cttgtanfacegh] anac[ggage] - acee-- [gotes |ctaggas]a
[gteoteglta[gtat]aac-~ca[trac] ot vggt] cttgtea [accak] asat[gaagy] sacecas[conce | otaggas)e
[gteccagltalatat]l-ac-ata[atatlefezggt] ceegranfaccagl anac[ggagglgacac-=[catccictgggacle

[tetecictaggac]a

Figure 1. Multiple alignment of (A) mt (RNA™ and (B) mt (RNAT™. Puboppenic mutatiows are babeled in red amd their compensatory substitutions in bhue:
Polymorphic states are in green and ther compessatory stated b vellow. Sequences ane, top 1o bottes, from Homo xapiom, Pan troglodvier, Pan panisous,
Crowrtllie rowilla, Fange mapmaeus. Ponge promoeens abelll, Paplo amedeas, Mocooa sitvmes, Movoca mefarm, Codobus gurvesa, Trachpiohecus obsews,
fvlobates far, Cobes albifrons, Lemur cat, Nyeticebus cowcang, Tarsiu bumcans, Tupeia belarger,

DISCUSSION life expectancy (20.21) Investigation of the impact of such
polymorphisms on fitness may lead to more accurate deserip-
tion of the impact of these polymorphizms on morbidity and

mortality,

Palymerphisms classified here as deleterions are not neces-
sarily evertly pathogenic, because even a slight decrease in

fitness is cnough to reduce the frequency of @ variant (19),
Howgever, the identification of a relatively high proportion of
slightly defetérions polymorphisms is not necessarily a dis-
advantage of the propesed method even from a medical
perspective, It is likely that many of the identificd deleterious
polvmorphizms either contribute. epistatically to the progres-
sion of many mitochondrial disorders (17) or shghtly reduce

Stmilar attempts to discriminate pathogenic mutations from
polymorphisems were made for amino acid replacements in
nuclear encoded proteins (22,23). However, the deseribed
analysis of pathogenic mutations in mt tRNAs is slightly
more suceessful than that in profeins, possibly because of
the difficulty of predicting patterns of compensatary evolution
in proteins (24), relative to tRNAs (15), Many polymorphisms
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Figare 2, Fregueney of 184 polyborpiasns. (white) and 65 pathogemc
mutativas (grey b classified av benign (531 polymombasis; soven pathogenic
mutstions) amd debeterious (52 polymoephisms; 60 patbopenic mutssoms),
Error bars sepoesent the standand deviation

found in muclear encoded proteins are deletenouns (22,23);
futere application of the method described here for the identi-
fication of deleterons variants in the two rRNA genes encoded
in the mitochondria and the application of protéin-based
methods (25) for the identification of deletenious varants in
13 mitochondrially encoded proteins should Jead o an esti-
mate of the genctic load (26) of the mitochondrial genome.

There are four reasons why the method described here
appears to have a higher accuracy than those that were pub-
lished previonsly (11.14). First, sites in mt tRNAs were scgre-
pated into three, rather than two, structural categorics.
Secondly, this method allows for the possibility of having a
vanable site that excludes a particular nucleotide, e, it
allows for the possibility that A, T and G are neutral equiva-
lents and C is deleterious. Thirdly, use patterns of compensa-
tory evolution were used in stemn sites that disrupt WO paies.
Finally. sequence conservation information is used only in
closely related species. Further improvement of this method
may be based fine-tuning the cutoff values that were' used,
or on the addition of other ways to distinguish pathogenic
and polvmorphic variants, For cxample, the use of terhary
structure information improves the prediction of pathogenic
mutations in proteins (23) and should help to improve the
method of pathogenic mutation prediction for mt IRNAS as
well, However, given that sequence simifarity of closely
related species is o good predictor of pathogenicity, the
present method can be improved by the availability of mito-
chondrial sequences of other primate species. especially
from Plegrrking and  Strepsiviing, of which only  three
species are currently available,

MATERIALS AND METHODS

A list of pathogenic mutations was taken from MitoMap (5)
(hitp:/fwww.mitomap.org/) and a Bst of polymorphisms from
miDB (18} (hitp:/www.genpatunse/miDB/). Those patho-
gemic mutations whose status was listed as ‘wnclear” in
MitoMap were excluded from the analysis. Data from the

found in oo POATIOR SO B ROt

PotyenCnphesm found i Te
S R T At

Figure 2. Frequency disnbation of polymarphisns classificd as benign
{whited and debeterious (erev Error bars reprosent the standand deviation.

recent re-evaluation of the pathogenicity of mutations reported
in MitoMap (14) were used with & slight modification: data on
sequence conservation was excluded from the score of patho-
genicity [see Supplemental Material from McFarland er al
{14)]. Those mutations that were listed in MitoMap and
scored less than six on the scale of pathogenicity (mimnus the
score from the conservation column from MeFarland ef al
{14)] were removed from the list of pathogenie mutations. In
addition. the mutation 606{A —» (i) was excluded from the
list of pathogenic mutations because of the raised doubts of
its pathogenic nature (27), Finally, variants that were listed
as pathogenic mutations and a5 polymorphisms. were not
inclhuded in cither category, The final dataser included 67
pathogenic mutations and 183 polvmorphisms. The cutoff
values that were used to classify varants as pathogenic or
benign wore chosen according to the expected fraction of
non-W{ compensations among all observed compensatory
events in primates and mammals, which were published pre-
vipusly (15). The fraction of mon-WC compensitions was
~3% for pathogenic compensations in WO pairs (11), and
as there are two interacting nucleotides i a WO padr, it
implics that 109 of the nucleotides involved in WO pairing
may be subject to non-WC compensations, Thus, the cutoff
values for WO compensations in WO pairs were two out of
17 {~12%) in primate species and £5 out of 138 (~11%]} in
all mammals, Sequence conscrvation cutoff values were
taken a5 <-5% for non-WC pairs, as was done previously
{11}, and a more refaxed threshold of ~20% was chosen for
sites located outside of sterm structures because of a substan-
tially higher fraction of compensatory evolution in such sites
{15). Complete mitochondrial sequences from 138 different
marmmalian specics were obfained from GenBank by wsing
‘mammal AND complete AND genome ANL mitochondria’
as a keyword in the Entrer retrieval system (28). Only one
mitochondrizl sequence was used from each mammal. and
the possibility that @ polymorphism in humans randomly
occurs al the same site as 2 polymorphism in - another
species was ignored. Alignments of IRNA genes were made
with CLUSTALW (29) and manually corrected using secon-
dary structure information published previously (6), Annota-
tions of tRNA genes were manually corrected for several

12



Didaure, 5. and Schon, EA. (2001 ) Miwchoadrial DNA mutiess in
human disciise, A L Med Goner, 106, 18-26,

FHemon Molecolar Geneties, 2005, Vol 14, No, 1a

species using dats on sequence similarity from closely related 11 Florente, C. and Shsler, M. (2001) Disease-related versus palymorphic
species. Different cutoff values were used for variants located e ';“':‘;T “;ﬁ‘h"w“t tRN¥As, Where is the difference?
: N R R A TR i) ., 2, 481486,
in mt tRNA ¥ when cstimating the level of conservation In 1) c e poniahe, B imd DiSsare, S (1997) Miokirondrial DA
stem sites because this gene is missing in marsupial species mulations and patogencsis. 7. Bloenerg Biomenibe., 29, 131- 149
(30). In caleulating average frequencies of bemign and deleter- 13 Swemberg, D, Charzoplow, E., Luforé, P Fayer, G, Jardel, €.,
ions polymarphisms, but not in the application of the Mann Bloody, I\, Fasdes, M., Amsclem, 5., Eymond, B, aid Lombés, A {2001
Whitney  U-test,  three  outliers  (polymorphisms  with M‘lem"j:; ;;"i‘dlﬁ“r'r‘;" *’m“: Jren i S parients
;= with mitoc sl disarders. o 124, 984 =004,
frequency > 0.05) were removed, 14, MeFarland, B, Elson_ L., Tayloe, R.W., Howell, §. and Turmbull, DM
(2004) Assigning pathopeniciny o mitochoadrial TRNA mutstions: whin
‘definitely mayhe’ is mA pood emvagh, Trewds Gemer, 20, 591 =596,
SUPPLEMENTARY MATERIAL 15, Kem, AD, sl Kondragiov, FoA, (2004) Mechanisms and convergenee ol
. Sl S - ot compensabary evolution in mammalian midechosdial tRNAs: Nef, Gerel,.
Supplementary Material is available at HMG Online. 36, D715
16, Balland. 3, W.0, and Whathack, M0, (2004) The meompplee anhizal
history of the mitochoadria. Mal. Eoal, 13, T20-744.
ACKNOWLEDGEMENTS 17, Wallace, 2.0 {199:4) Mitochindmal INA sequence vistatioa th himan
The author thanks P. Andolfatto, D. Bachirog, N. Esipova, ?I"'I‘m’:“ﬁmx‘:‘:;ﬁ“ﬁ" ;‘::h:‘“; :" r.'\':‘;ffﬁ:;:’jﬂ"ﬂm'
S Makeov, A, Kondrashov, V., Ramensky, V. Tumanyan g, s N R I S R
g X Mitochondrial generne vanation amd the origsn of modem humans
and P. Viasov for 4 eritical reading of the manuseript. The I\.-,:W,.. 408, Tt?s;-TIB. e -
author is an NSF Graduate Research Fellow, This work was 19, Kimar, M. (1983) The Neutral Theary of Malecuiar Evalurtan
supported by a Contract of the Russian Ministry of Science Cambridge Lniversity Fress, Cambridge, UK.
and Education (02,434.11.1008) and a grant on Molecular 20 Yl_cll:"..i. ALK el lzfﬂ}:‘:iiwhlmdfiﬂillﬁ_ﬁ Poi:l-‘."nnl‘[!:imn as:mti;l‘.cﬂ
and Celi iolooy froin RAS with longevity ma Fmnish popualation, Hume Genet, LIZ, 29-35
Chibelar Biology ot 21, Tk, M., Takeyas; T, Fukk, N., Lisdun, G ind Kurata, M. (2004)
. Miochomdrial genome single nucleatide polymorphians and their
Comflicr of furerest statenrent. Mone declared, pheaotypes in the Japaneso, Aun. NY doad Scf, 1011, 7-20
22, Sunyaev, SR Lathe, WO, T, Ramenshoy, VUE. and Boge, P (2000) NP
Frequencies in uman genes an excess of mre alldes and diffening niedes
REFERENCES of selection. Tronds Genet,, 16, 335-337
= : 3 X L . 23, Sumyaev, 5. Bamensicy, V.. Koch, L, Lathe 1L W., Kosdrashey, A8, mad
R T LD T Sy il apr sl ok i Bork, I (2001) Prediction of deleteriaus b alleles. Hum. Mol
CUSCERA SN LAV g, doh Ly Cienet., W, 391597
2 Taylos, RW. und Turabull, 1. M. (2005) Mitochondrisl [INA mutations 0 35 Kondrashov, A5, Sunyacy, 5. sad Kondrishos, A (2002)
human disease. Nt Rev. Gener, 6, 389462, [ahehamsky ~Muller incompatibilities in protein evolatim. Proe, Mo
3 ];';'laélli,‘;.{..al_'l‘f’l)l Dronato, 8 (20804} Mitochandrial disosder Seafu, v Sei, -i'.’a'.{. B9, |457H- 14555,
e Elabil i g : 25, Ramenshy, V., Bork, PUand Sunvaev, 8. (20023 Humsan sot-symonyimis
4. .::;rc*?haij gﬁmﬂ;ﬁ? of mitnchendrial protein synthesis: fum SNPs. server ind survey. Nueleie Avids fes., 30, 35943900
5. Branddom, MO Lo, MTL Cuong Nguyen, K, Spelim, 5., Naveihe, S8, 8 Eym—\_n\'alkcr_ A Al '."‘:‘fhll.ﬁr' Pln_!;;ﬁ?hflﬂmmw ety
Haldi, P, and Wallsce, [.C. (2005) MITOMAP: a human mitochondrial TG ralés in hominis, Mpmrs, 397, H3-337,
genomic database —7003 update, Nuclefe Aefds Res., 33, D6 L1-D613. 27. McFarland, B, Taybor, BW., Chinnery, P.F., Howell, M. and
&, Hebt, M., Brale, 1., Frisds. 1, Ghcge, 1. Pati: T, and Flarsate, © Turnbndl, T M {2060 A soved spormdie mmatation i cytochronte « oxidase
I:m:;' .St':l.tth I'ulr ct;uuclwi:sun:"wmi'sl Eta‘.unl:.i of m:;mn.\a}lanl wubtnit 11 a8 8 cause of rhabdomyalysis, Mewrooiuend, Disord,, 14,
mitochondrial t(RNAs. RNA, 6, 13561379, Ly , L
7. Florentz, C., Sobes, B, Tryoen-Toth, P, Puiz, ). and Sissler, M_ (2003) 38 Wheeler, DL, Barreit, T, Benson, DAL Bryant, S, Canese, K.
Human mitochondrial RN A% in bealth and disease. il M, Life Sef., Chireh, DM, DiCsecio, M., Edgar, B, Federben, 5., Helmberg, W o ol
60, 13561175 {2005) Database revources of the National Center For Biotechnology
B, Wittenhapen, 1M, and Kelley, 5.0, (2008} [mpact of disease-rolated Infornuation, Nucletc defds Bes, 38, D39- D45,
endbochomidrinl mutabions on IRNA straefure and fimctbon. Frends 29, Thompson, 10, Higgios, DG and Gibsan, T 1. (1994) CLUSTALW:
Brochent \“r 28, f0E-al1. improving the :‘.u'mih,.'lly af progressive nuliphe ssquence alignimens
@, Sam F., Taybor, RW., Tumbill, DM, and Lightowless, through sequence weightmg, position-spealic gap penabtyes and weight
Sirategies lm treating disondens of the mitochondnal gesome ey choiee. Mucloe Acidy Rex, 212, 26754650
Binchime. Bfopitys. dena, 1659, 2372-239, 30, Janke. A, Feldmaier-Fuehs, Gi. Theaaas, WK, von Haeseler, A and

Pagha, 5. (1994 The massupial mitechondrial genome and the evolution
of placental mammals, Gemelics, 137, 243 =256,

13

Chapter 2, in full, is a reprint of the material at it appears in Kondrashov FA.
(2005) Prediction of pathogenic mutations in mitochondrially encoded human
tRNAs. Human Molecular Genetics 14, 2415-2419. Oxford University Press
2005. The dissertation author was the primary investigator and author of this

paper.



Chapter 3.

Conversion and compensatory evolution of the human y-
crystallin genes

14



ARTICLE

Conversion and Compensatory Evolution of the y-Crystallin
Genes and Identification of a Cataractogenic Mutation
That Reverses the Sequence of the Human CRYGD Gene

to an Ancestral State

Olga V. Plotnikova,” Fyodor A, Kondrashov,” Peter K. Viasov, Anastasia P Grigorenko,
Evgeny K. Ginter, and Evgeny . Rogaev

Wi fcbentified 2 mutation in the CRYGE geme (P235) of the y<rystallin gene cluster that s associated with a polymaonphic
congenital cataract that occurs with Ireguency of ~0.3% in a2 human population, To gain insight inte the molecular
mechanism of the pathogenesis of yerystaliin isoforms, we undertook an evolutbonary analvsis of the avallable mam-
malian and newly oblained primate sequences of the g=ceystallin genes. The cataract-associated serine at site 23 cofre-
sponds to the ancestral state, sinoe i was foursd In CRYGE of a lowes primate and all the surveyed nonprimate mammals.
Crystallin protedns Inchude two serpcturally shmilar domaing, and substituthons n manimalian CRYGEY protein at site 23
of the frst domain were always assoclated with substitutions in the structurally reciprocal sites 108 and 136 6f the secomnd
domaln. These data suggest that the cataractogenic effect of serine at site 23 In the N-terminal domain of CRYGED may
be compensated Indirectly by amine acid changes in a distal domain. We also found that gene conversion was & factor
In the evolution of the y-crystallin gene cluster thoughout different mammalian clades. The high rate of gene conversion
observed Detween the functional CRVGE gene and two primate y-crvstallin pseudogenes (CRYGEPT and CRYVGEPTcoupled
with a surpeising finding of apparent negative sefection in primate pseudogenes suggest a deleterious impact of mecently

derived paeudogenis involved in geme converdon in U g-ceystallin gene cluster,

Cataracts are characterized by opagueness of all or part of
the eve crystallin lens' and are the most common cause
of blindness in the world, with congenital cataracts fre-
quently resulting in blindness or visual impairment in
children.® The estimated prevalence is 2.2-2.49 cases per
10,000 live births,” and ~50% of all infantile cataract cases
are genetic.” Most cases ocour as isolated pathologies, but
somie forms are associated with other abnormalities.” Al-
though congenital cataracts can be transmitted as a re-
cessive or an X-linked trait, autesomal dominant inheri-
tance occurs most freguently and exhibits both clinical
vartability and genetic heterogeneity,”

Clinical and molecular genetics studies have led to the
identification of multiple candidate disease logi for con-
genital cataracts. Mutations In genes encoding lour spe-
Cilie types of proteing have been described in association
with the phenotype of nonsyndromic inherited cataracts.
These include members of the a-, 8-, and y-crystallin
families™® (MIM 4123580, +123590, *123610, *123620,
*123630, "123631, +600929, +123680, +123690, and
*123730), thrée transcription factors (MAFT [MIM
*177075], PITK3 [MIM +602669], and HSF4® [MIM
*602438]), cvtoskeletal protein BFSP2™ (MIM "6(3212),

Froo the Labsoratory of Molecular Brain Genetics, Research Center of Mental Health (00V.
(PR Besearch Center of Medical Genetios (ER.0. ), Vavalow lisstinate of Genemal Geaetios (E1.

and membrane-transport proteins MIP' (MIM + 1530500,
GIAZ (CX46)" (MIM *121015), and GIAS (CX50)" (MIM
*600897 ). Approximately half of all mutations associated
with congenital cataracts are located in crystallin genes.™

Crystalling are the major water-soluble structural pro-
teins expressed in the mammalian eye kensand consist of
three major families—the a-, 8-, and 3= orystalling" —with
the y-crvstallin composing up to 40% of the soluble pro-
teins expressed in the fens® In humans, the y-crvstallin
gene cluster is located on chromosome 2q33-g35 and con-
sists of genes CRYGA (MIM *123600; GenBank acoession
numbers M17315 and M17316), CRYGE (MIM *123670;
GenBank accession number M19364), CRYGC (MIM
+1236380; GenBank accession numbers KO3003 and
EO3004), and CRYGE (MIM +123690; GenBank accession
numbers KO3005 and KO3006)™ (encoding yA-, y8-, ¥,
and yD-crystalling, respectively), with cataract-associated
mutations in two of these genes {CRYGD and CRYGC) that
code for the most abundant y-crystallin proteins in the
lens. Twio other p-crystablin genes—CRYGEFT (GenBank
accession numbers KO3007 and KO3008) (encoding yE-
crystalling and CRYGFPI (GenBank accession numibers
KO3009 and KO3010) (encoding yF-crystalling (both MiM
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Figure 1. Abridged PCC-affected pedigree selected from the genetic isolate. The mutation is transmitted as an autosomal dominant
trait. The affected individuals are represented by blackened squares (males) and circles (Females), and the unaffected individuals are
represented by unblackened symbols. Family members participating in this study are indicated by an asterisk (*}. One asterisk indicates
subjects genotyped by restriction enzyme-digestion analysis, and two asterisks indicate individuals genotyped by direct-sequencing

analysis.

*123600)y—are also located in the same cluster, However,
in humans, they harbor a stop codon and are considered
peeudogenes; whereas, in other nonprimate mammals,
these genes appear functional.'” Cataractogenests is antic-
ipated to be a strong factor in selection processes of genes
for lens proteins; however, viry litde is vet known abowt
the evolution of different members of y-crvstallin genes,
especially in human and primate lineages. We have pre-
viously linked nonnuclear polymoerphic congenital cata-
ract (POC [MIM %001 286]) 10 the y-crystallin gene cluster
{CRYGY on the human chromosome 3935-35 in a lange
pedigree from a Central Asian population.'® Here, we
screened the PCC-affected pedigree for mutations in the
CRYGA-CRYGD genes and performed an evolutionary and
structural analysis of the mutation and the y-crystallin
gene family.

Material and Methods
Mutation Amalysis

The collection of DNA samples from subjects with POC was de-
seribed elsewhere.” The genombc sequence of human CRYGA-
CRYVGEY genes was obtalned from the GenBank database ™ To
search for mutations, the protein-coding regions of these genes
were amplified by CR, by use of genomic DNA o probanads
of the POCaftected pedigree. Fairs of oligonucleotide primmers
flanking the exons of human CRYGA-CRYGE genes were de.
sigmed manually of by Primerd aind were used fos PCR amplifi-
cation and sequencing of the PCR products (peimer oligomucle.
otide sequences ane avallable from the authors on request). PCR
was performed for 32 cycles at 94%C for 3 min, with an annealing
temperature of SE°C-58%C for 30 5, and at 72°C for 4 min. Each
PCR was perfommed ina volume of 25 gl that contained 10-20
pmol of exch primer, 1= resction buffer, 30 ng DNA, 200 M
AN, 2.5-1 mM MgCl, and 0.2 U Tay polvmerase, The PCR
products were puarified with clectrophoresis in e 1% agarne gel,

1= THE buffer, and the CAAEX 1Bt gel extraction kit (QIAGEN]
The purified PCR products were sequenced directly with use of
an ABL Prism 310 Automated Sequencer with the ABI Prism Big-
Dye Terminator cyche sequencing kits (Applied Blosystems),

The CFOT mutation in the CRYGD gene was Initiatly found in
sehected probunds by direct sequencng, The presence or absence
ol the mutation was clucidated further by restriction eneyme-
digestion assay in genomic DNA samples (rom all affected and
unaffected family imembers of the pedigree. To distinguish the
genotypes of unaifected and hewmorygous individuals for this
particular miutation, we designed nucleotide substitutions in one
of the prirers {reverse int) to create a new site for Bpralrestriction
endonuchease n the mutant CTOT aflele. Exon 2 of the CRYGD
gene was amplified by two rounds of PCR with the primoers direct
oxt (SWGCAGCCCCACOCGUTCA-R) and reverse ext (55GGGTA-
ATACTTIGCTTATGTGGGG-3) and then with internal primers
direct Int (F-AGCCATGGGOAMIGTGAG-3) and meverse fnn (3
AGTAGGOGUTGOAGGUTGG-3). The PCR produects were digested
for 24 hoat 375 with Bpesl, aod resulting DNA restrictbon frag-
ments were analyzed on s 706 polyacrylamide gel and were vi-
sualized usimg ethidium bromide staining. In total, we analvred
54 Individuals with cataract and 46 unaffected individuals from
thee Middle Asian POC pedigree. In additdon, families with obesity
from the same gepetic Isclate (22 Individuals) were genotvped.
Wi also wibed 312 coniltrol chromosames From white (206 chiro-
moscanes froan Russians) and mixed white and Mongolian (224
chromosomes from Tatars and 82 cimmosomes from Bashking
popuiations. The catarct-ssociated mutation (CFOT) was de-
tected in alfected individuals from the POCallected pedigree
only.

Sequencing of Primate Gewes

To determine nucleotide sequences for ORFs of functional y-<rys-
tallin genes (CRYGA-CRYGED) In primates, we wsed the PCR ofi-
gomucleotide primers based on heman sequences of redurndant
aligonucheative primers based on macague, chimpanees, and hu-
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Figure 2. [dentification of the mutation in individuals with PCC.
A, The three exons (Ex) that comprise CRYGD. B and €, Sequence
chromatogram from a heterozygous patient carying the P235 mu-
tation (8] and a homozygous wild-type sequence from an unaf-
ferted individual {€). 0, Exon sequence of CRYGD bearing the cat-
aract-associated PS235 mutation,

man lntronie sequences, such that thiese primers danked exons
I, 2, and 3. The MCHs and sequencing were performed as described
above. The y-crystallin gene sequences were determined in species
of the following primate faniles: Hominidae (Pan panisous [py gy
chimpanzee, GenBank accesshon numbers EF467 187, EF467 196,
EF467205, and EF67214); Pan trglodvtes [chimpansee, Gen-
Bank sceession numbers EF467190, EF467199, EF467208, and
EF467217); Govilla govilla [gorilla, GenBank accessbon mumbers
EF46718%, EF467192, ER467200, and EF467210]; Ponge pigrmens
|orangutan, GenBank accession numbers EF467 188, EF467197,
EF467206, and EF67215] ), Hytebatidae (Hytobates far [Ribbon,
GenBank accession numbers EF46T 184, EF407 193, EF467202,and
EF46T21 1) Corropitheciaae (Macaca mudalta |rhesus monkey, Ger.
Bank accesslon numben EF467 186, EF407 195, EF467204, and
EF467213)); Cebidae (Lagothnz kegorricka jeonmon woolly mon-
key, Genilank scovssion numbers EF467 185, EF467 194, EF467203,
and EF46721215; Ateles geoffrond [black-handed spidor monkey,
GenBank accession numbers EF467182, EF67191, EF67200,
andd EF467 208 3; aned Callitrictiadoe (Sayudnig labichs [red chested
mustached tamarin, GenBank accession numibers EF6T7189,
EF467198, EF407207, and EF467216)). In addition, we deter-
mined gene sequence for the putative pseudogene CRYGFPT In
Fan paniscas (GenBank acoession wumber EF492219), G gonilly
(Genlink accession number EF92217), Posge pigesans (Gen-
Bank accession number ER4922200, and 1. far (GenBank aceession
number EF492218), PCR primer ollgonucleotide sequences are
available from the authion on request. Genomic DNA samples

were obtained from Corell Cell Repositories and from our own
collection of primate [XNAs,

Bioinformutic and Structural Analysis

Im addition 1o the sequenced primate genes, we used the sequence
Intormation of the y-crystallin genes from GenBank.™ We alsa
used e information on gene order from compbetely sequenced
manunalian genomes of Moudelphis domeitica, Canis fanilias,
Mus prnscenles, and Bos fanrses, using the UCSC Genome Browsee.™
The rat genome (Raifis neneyicns) was excludid from the synteny
analysis because of a likely error of assembly of the prysiallin
cluster. & multiple alignment of all sequences was made using
the MUSCLE alignment program.™ We reconstrucied the phy-
logeny of the y-crystallin genes, using a- Bayesean approach
as implemented in Mritayes, with | milllen iterations (momc
ngen = 100000 in MrBayes) with the General Time Reversibbe
medel. ™ Sequence divergence between genses was estimated using
the codem] program i the PAML package.™ Exon 1, which en-
codes 3 aa, was-omitted from the phylogenetic analysis.

Results
A Newel Pathogenic Mutation in the GRYGD Gene

Elsewhere, we established a link between PCC and the
cluster of y-crystallin genes (CRYG) al chromasome 2q43-
35 im a large, umique pedigree of a family from a Central
Asian popuolation.™ This population of mixed white and
Mongolian origin is characterized by tribe ancestry, high
endogamy, and complex ethnic genesis. Two inherited
monogenic diseases were accumulated in these popula-
tions: an autosonal dominant cataract (PCC), with fre-
quency of the mutant gene of ~0.20%, and autosomal
recessive obesity, with frequency of the mulant gene of
~2.47%. 15 The large 7-gencration PCC-aHecled pedi-
gree characterized by high endogamy and-a high coeffi-
clent of inbreeding (>3%) was selected for the molecular-
genetic study, OF the 157 piedigree individuals, 105 had
PCC, and DNA samples from 100 members, including 54
affected individuals, were available for mutation analysis
of the CRYG cluster (fig. 1)

We amplified and sequenced the coding regions of the
CRYGA-CRYGD genes and identified a novel nonsynon-
yinous CTOT (F2Z35) mutation in the coding region of exon
2 of the CRYGID gene, which was found 1o cosegregate
with the disease (fig. 2). The presénce or absence of the
miutation was confirmed by sequence analysis of four af-
fected and four unaffected individuals from the MCC-af-
fected pedigree and then by restriction enzyme-digestion
assav (as described In the “Material and Methods® section)
of DNA samiples from all available members from the PCC-

The figure iz available in its entirety in the online
edition of The American Journal of Human Genetics.

Figure 3. Sequence alignment of y-crystallins, The legend is
available in its entirety in the online edition of The Amercan
Jowmal of Human Genetics,
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Figure 4. Sequence patterns in the interacting h’agments of two
yeorystallin domaing. Comelated serine and proline residues in CRYGD
are shown in red and green, respectively. H. sop =M. sopiens; P,
trog = Fan trogiodytes; F. panfs = Pan paniscus; £ pyg = Forgo pyg-
maeus; 6. gor=0. gorlla; M. mul =Macoce mulotta; A. genf=A
geaffrovi; L logot =L legotnicha; 5. lofr=35. [abiatus; B, tour=28,
towris; O fom=C fomillarns: R por= R nonvegicas: M. mus = Mus
musculus,

affected pedigree, All-affected individuals—but none of
the refated unaffected individuals from the PCC-affected
pedigree or other unaffected, unrelated control individ-
tals—were found to be heterogygous for this mutation.
Theee common synonymous SHNPs in CRYGE (C192T)and
CRYGO (T30 and T392C) were also detected. These poly-
umernircilﬂngus, however, showed nocosegregation with
PCC in this pedigree. We found no CRYGEC 0T cataract-
associated mutation in unaffected individuals from the
same genelic isolate orin 512 control chiromaosomes from
populations of white or mixed white and Mongolian or-
igin (see the “Material and Methods” section). The data
strongly demonstrated that the nensynonymouns C7OT
(P235) substitution in CRYGE s the only mutation in the
y-crystallin gene cluster thal segregates with PCC,

Commpensatory Evolution Reveals Stractural Clharacteristics
af the 5-Crystallins

Mutations that have a pathogenlic cffect when they are
harbored in a human gene can be benlgn in other, some-
times closely d, organisms, = Such cases are Wit
a5 “compensated pathogenic deviations™ (CPDs), since it
Is thought that the deleterious elfect of such mutations is
neutralized by another, compensatory mutation. Unlike
mutations i y-¢ r}':.lililinh deseribed elsewhere, the mu-
tation wie descrilse here also appeats to be a CPD, such

that the disease-causing vadani is found in the normal
CRYGD sequence of several wild-type organisms, includ-
ing one primate trig_ .

The basis of compensations of CPDs is usually the main-

tenance of structural stability within a single molecule,
" although, in a few cases, the compensatory mutation
and the CPD may be located on two different interact-
ing proteins.® To Investigate the molecular nature of
the compensation of the P233 sabstitution, we assembled
sequences of the y-crystallin genes from the available
mammalian genomes (human, Llll[JlI'rIlll?'.L'l:, macadue,
dog, mouse, rat, cow, and opossam) and the getew se-
quenees {or several primutes thal we determined in this
study (A geoffrop, 5, labiatus, 1. lagobdcha, Macaca mulalta,
M. dar, Fongo pygmiceas, G. gorifla, Pan paisous, and For
frogiodhies). The resulting multiple alignment was ana-
lyeed on the basis of the available crystal structure of the
human CRYGL protein™ (Protein Pata Bank 1D 1h4a).

e - and y-crystatlin polypeptides feld into Greek key
motifs thal form two structurally similar domains,* = On
the yD-crystallin structure, site 23 interacts with position
449, and, since many compensatory substitutions for CPDs
have been found in Interacting sites, we surveyed the
amino acid at site 49 in mammalian yD-crystallin genes.
However, we found that site 49 and the neighboring sites
are generally conserved throughout evolution and show
e evidence of compensatory evolution with site 23 (g,
45,

Thus, we underteok & correlation analysis in search of
compensatory substitutions in the entire y1-crystailin pro-
Lein, We searched tor the compensatory site on the basis
of the expected pattern of compensatory evolution™; that
is, all species harboring serine at site 23 must have a single
predicted compensatory amino acid at another site. No
single shte conformed to this prediction. However, sites
109 and 136 conformed In conjunction, such tha the
pathogenic state 523 was not observed together with the
hsmnan state inoeither site 109 or 136 (Gg. 4). Thus, in the
course of evolution at site 23, in the common ancestor of

Figure 5. Contact regions Tn two symmetrical crystallin domains
and four similar Greek key motifs form Z-strands in two joined
protein demains, The sample is based on the structure of the human
yD-crystallin protein,
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Figure 6. Gene order of paralogous y-ciystallin genes in mammalian genomes

primates, the ancestral serine changed o profine. In &
labiatus, the proline reversed to the ancesteal sering, ap-
parently without deleterious effects, whereas the samo re-
versal in humans results In cataract fonmation, The dele-
terious effect of P235 substitution in humans is most likely
related to the P1I6S substitution that also occurred in the
primate, apparently the Homnidee-Hylobatidee common
ancestor, Interestingly, the amino acid is also reverted to
the ancestral state (S1361P) in 5 fabialues that have 235 in
the wild-type allele. In general, the presence of serine at
site 23 appears 1o be tolerated under the condition that
cither site 109 or site 136 1s occupicd by & proline. Re-
markably, site 109 comresponds to the same position in the
second domain as site 23 in the first 5 D-crystallin domain,
whereas the corresponding site of the interaction site 49
in the second domain is site 137 (fig. 5).

Apparent Selection and Gene Comversion in the -Crystallin
Crene Family

There is a large diversity of crystallin genes in higher an-
imals; the g-crystallin family is mammalian specific.™ The
y-crystallin family is located in tandem with one of the
genes (CRYGEPD) slightly removed from the rest of the
cluster (fig. &), The high sequence similarity of some of
the y-crystallin genes in humans' and a phylogenetic
analysis of the gene family in rats™ indicated that the 4-
crvstallin genes undergo gene conversion, which is ap-
parently restricted to exon 2. In addition, it ts thought
that two of the six y-crystallin genes (CRYGEPD and
CRYGEPT) have tumed into @ pseudogene in humans angd
chimpanzees, as evidenced by the presence of stop codons
in the beginning of the second codon.''* Several discases
ire caused by gene conversion from a degenerate pseudo-
gene into a lunctional gene,™ induding catarctogenesis
by gene conversion of the G-crystallin pseudagene to one
of the g-crystallin functional genes,” The presence of
closely refated pseudogenes in the p-crystallins coupled
with the reponed gene-conversion events opens up the

possibility that the seme mechanism is the case of some
[raction of fmilial cataracts.

Gene conversion can make it particularly difficult to-es-
tablish orthology™; therefore, we relied on synteny to e
solve orthologous relationships within the y-crystallin gene
family. Indeed, the syntenic structure is well preserved
within the mammalian clade, with only ane of the genes
(CRYGFPT) separated from an othenwise tandem amange-
ment of the y-crystallin genes in the common ancestor of
placental mamamals (fig. 6).

In Tats, gene conversion dppears to preferentially af-
fect the second exon of the y-crystallins.™ Thus, we con-
strscted sepatate phylogenies for exons 2 and 3 for all six
of the y-crystallin genes for all available mamanals, which,
for the first time, included primates (g. 7). On a phylog-
eny, gene-conversion events appear at a peint of com-
mon ancestry of paralagous sequences.™ In exon 2, gene
conversicn was found across all of the genes in the 4-
crystallin family and in all surveyed taxa, but [t was par-
ticutarly common in nonprimate mammals and in
CRYGD, CRYGEPL, and CRYGEFPI (g, TA).

Since the divergence of the macaque and human lin-
eages, there have been at least two ixed gene-conversion
events in the macague genome (one between CRYGEP]
and CRYGEP? and one between CRYGED and the precon-
verted CRYGE or CRYGEP T sequence). Inthe human-chim-
panzee lineage, there lave been a gene-conviersion event
between CRYGE and CRYGEPI after the macague split and
# profmbie gene-conversion event arouncd the thne of di-
vergence from macagues (fig. 74). The rate of gene con-
version in primates appears to behigher in CRYGEP?,
CRYGERL, and CRYGD, since only one gene-conversion
evient involving other genes (between CRYGE and CRYGC)
was fixed around the time of divergence of the surveyed
primate species (fig. 74}, The rate of gene conversion in
exon 3 was not as high asin exon 2, but some conversion
events were still observed (fig. 7A) Exon 3 of CRYGEF]
and CRYGFF] was involved in at least Ave gene-conversion
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Table 1. Sequence Divergence between Human and
Macague y-Crystallin Genes

Mo, of Substitutions

Gene Honsynonymaous Synonymous dnizds® ~
ERYEA 412 6,25 1338 .05
CRYER T.22 14,93 L1001 <001
CRYGE 516 508 1953 N5
CRYGL 932 4,31 322 Hs
CRYEERD 11.46 15.12 041 <001
CAYGFPT 2122 17,06 2236 <01

* The vate of synonymous (ds) and nensynonymous {dn) evalution.

" The P value of a v test of the number of synonymous amd nonsy-
nanymaous substitutions observed compased with the mumber expected
under peulrality, NS = not significant.

events since the radiation of placental mammals: two in
rodents, one each in dog and cow, and one in primates
before the divergence of humans and macagques.

The relatively high rate of gene conversion in primates
that Involves two of the genes that have been pseudo-
genized in humans and a functional gene reveals the pos-
sibility that some of the degencrate mutations that have
accunlated in the pseudogene may be transferred to the
functional gene, with defeterious or pathogenic conse-
quences. Such frequent gene conversion between a pseu-
dogene and a functional gene should lead toa pattern of
negative selection in the pseudogene, because selection
would act against degenerate mutations in the pseudogene
If gene conversion events frequently transfer such muta-
tions to & functionat gene™*

Adthough CRYGEPT and CRYGEPE are thought to be peeu-
dogenes in humans and chimpanzees,'™ (s not known
whether they are functional in other primates, We retrieved
the macaque CRYGEP! and CRYGEPI sequences from or-
thologous (determined by synteny) sections of the ma-
caque genome, and we compared the obtained sequences
with those of other y-crystatlin genes from different spe-
cies. The macaque CRYGFPT sequence contained three
frameshift mutations, strongly suggesting that it is a pseu-
dogene, The functional status of CRYGEP] was not as ap-
parent. Although the macaque CRYGEPD gene showed
seven amine acid changes in evolutionarily conserved
sites in all y-crystalling, no inframe stop codons or frame-
shift mutations were observed.

A common way 1o test the strength ol selection acting
on protein-coding genes is lo compare the rate of syn-
onymous (ds) and nonsynonymous idn) evolution™ A
neutrally evolving sequence, such as a pseudogende, 1s ex-
puected o show the same rate of evolution in these two
types of sites (duzds = 1), We compared the rates of ev-
olution between human and macague sequences for all
six genes in the y-crystalline cluster (table 1) We found
no evidence to support a neutral level of evolution in
CRYGEPT (dneds = 0.1041) that would suggest that CRY-
GEPI is an active gene in the macague; however, we alsa
found that the dn:ds ratio significantly differs from 1even
for the CRYGEPD pseudogene (dnsds = (0.2230). Such ap-

parent selection is commonly observied on the phenotypic
level"; however, to our knowledge, it has been observed
only once on a molecular level, In a mouse c-ubiquitin
cluster by an uneven crossing-over event. ™ We determined
the CRYGEP sequence in Fan paniscus, Posgo prgiaeons,
and H. far and found signs of pseudogenization of the gene
in different primate species (table 2 (see the “Discussion®
section). To our knowledge, this is the first study that ob-
serves apparent selection in nonfunctional sequenice due
to gene conversion with a functional gene,

Discussion

To date, six different mutations in the CRYGL gene
have heen found in patients with cataracts: R14C,*
B365,"% RSB, W1S6X," P23T,*" and E107A® (MIM
+123650.0001-123690.0006). The seventh mutation iden-
tified here (P23%) appears to be the cause of the nonnuclear
PCC, This mutation is accumulated in an isolated popu-
lation (with frequency of ~0.26%) along with autosomal
recessive obesity (with frequency of the mutant-gene allele
of ~2.5%), We found no connection or cosegregation of
these pathologies, which were probably inherited from
different ancestral founders, The PCC type of cataract is
characterized by a nonprogressive phienotype and pariial
opacity of the lens, which has a variable location on the
periphery between the fetal nucleus of the lens and the
equator. The opacities are irregular and look similar to a
bunch of grapes or a lump of cotton balls and may be
present simultaneously in different lens fayers.” Another
amino acid substitution at the same site has been descriled
elsewhere, a proline—=threonine substitution (F23T) ina
Family with congenital cataracts.” - Generally, the clin-
ical manifestation of the POC-affected family was different
from that of patients with other forms of familial cataracts
caused by the PZ3T mutation of the CRYGD gene. The
FZAT mutation lyas been shown to cosegregate with var-
iabde phenotypes, such as the lamellar cataract in an In-
dian family and the fasciculiform, coralliform, and ceru-
lean cataracts (MIM 608983) in a Moroccan farnily 4%+
The segregation frequency of PCC strongly comesponds
te an autosomal dominant form of inheritance (Irequency
[£5D] of 0.562004) with >90%-97% penetrance,’™
Thus, the varability of clinical phenotype may be caused
Iy epigenetic factors during embryonic development or
by gene modifiers.

In vitro experimental data about the nature of the P23T
substitution suggested that this change does not sig-
nificantly alter the stability structure of the protein but,
rather, affects the protein solubility,™ resulting in clus-
ters of the P23T-mutant protein. Because of a high sbmi-
larity of the side chains of thrionine and serine, Evans et
ab.™ also considered the impact of a nonnatural P233 sub-
stitution and found that P235 also affects the solubility of
ybrcrystatiing although not as profoundly. This effect may
Ire caused Dy a change in the hydrogen-binding charac-
teristics of the protein-water interface, A substitution of a
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Table 2. Signs of Pseudogenization in the Primate CRYGFPI Pseudogene

Speches Sign(s) af Pseudagenization

M. sapiens 56 Y-STOP and 1-nt deletion at site 422

Pan troglodytes

Pt paniseus

6. gorilla 56 Y-<STOP

Fongo prgmaeus 42 C-STOP

M. lar Second intimn splice sites AT,.GG
Macace mudatio

5B Y—STOF, 1-nt deletion at site 422 and deletion of the 5 end of exon 3 sites #52-267
56 Y-+5T0P, 1-nt deletion at site 422, deletion of the 5 end of exon 3 sites 252-267, and A insertion at site 435

1 M—=K, G defetion at site 30, 28-nt insestion at site 42%, and &-ot insertion at site 511

proline, since it s an imino acid that does not have a
hydrogen bond-forming NH group, is particularly capable
of affecting solubility in water, Thus, it is likely that the
P235 substitution is compensated for in another part of
the yD-crystallin protein.

This observation is in agreement with our observation
that the probable compensatory substitution is a reversal
to 2 proline in structurally reciprocal sites in a different
dormain. The distibution patterns of the proline/serine
residues that we describe here may play an important role
in the profein-water-sysiem stabilization. In particular,
these sites can be the part of the crystallin interaction
interface with other lens proteins where, possibly, $D-¢rys-
tallins are connected with each other. Substitutions in
these sites may lead to protein aggregation insolution that
dramatically changes the lens crystal ransparency. The
observation that two sites, 109 and 136, may compensite
for the same CPD (P235) is not completely unexpected,
since examples of compenssory interactions imvolving
maore than two interacting sites have been described, ™

We find evidence to support active gene conversion
between the pseudogene CRYGEP and the functional
CRYGD gene copy in recent evolution (since the diver-
gence of human and macague Hneages). In addition, we
find that a conversion event between these two genes also
occurted sometime in the primate lneage before the di-
vergence of hzmans and macaques (fig, 7). The phivlogeny
can reveal only fixed gene-conversion events, such that,
if gene conversion events still ocour but are not fixed, they
will not be abserved. In particular, the probability of fix-
ation of a gene-conversion event will be much lower if it
brings a deleteriows substitution into a functional gepe, ™"
Thus, gene conversion between the pseudogenes and the
functional gene copies may have Goourred with a much
higher frequency on a mutational level than is apparent
from the phylogeny that reveals only fixed events on an
evolutionary scale.

The observation of apparent negative selection in pseu-
dogenes depends on the assumption that these genes be-
came pseudogenes before the divergence of humans and
macagues, There are no shared stop codons or frameshift
mutations between the human and macaque pseudogencs;
however, frequent gene conversion, which isseen between
these preudogenes and their funclional copies, will erase
such shared stop codons. To demonsteate this point, we
sequenced the CRYGEP] pseudogene from Pan paniscus,
. gorilla, Porrgo pygmaeus, and 1, lar, in addition 1o an

already available sequence from H. sapiens, P troglodytes,
and Macdoa mdatta. We found that the CRYGFPT sequence
isd pseudogene in each of these species; however, whiereas
the higher ape species share a stop codon, other species
show different signs of pseudogenization (table 2). The
possibility of very recent and independent pseudogeni-
zations of the same gene in four separate lineages is ex-
tremely remote and is unlikely to explain our observations.

There are two nonexclusive ways in which gene con-
version between a functional gene and a pseudogendc can
lead to apparent negative selection. The first i gene con-
version of the funciional sequence over that of the psea-
dogene. A comparison of pseudogene sequences from two
spiecies would reveal apparent negative selection (dn < ds)
if such gene-comversion events were fxed after the diver-
gence of the two species. Alternatively, selection may act
on mutations in the pseudogene if such mutations are
deleterious when they are converted to the fundional gene.
Whereas the first model is simple and requires only one
fixed gene conversion of & functional copy 1o the pseu-
dogene, the latter model encompasses many parameters,
such as mutation rate and gene-conversion rate, o a pap-
ulation level, To delincate the exact conditions under
which gene conversion from a pseudogend to a functional
gene can lead to apparent selection in a pseudogens, we
would require an extensive population genetics model,
which is bevond the scope of our work here, However, it
is clear that, for apparent selection to shiow such a strong
pattern of selection (dnxds for the pseudogene yF-crystal-
lin was very similar to dn:ds for ether functional CRYG
genes and substantially deviales from a neutral expecta-
tion of doxds = 1; see table 1), the rate of gene conver-
sion should be at least on the order of the rate of emer-
gence of the potentially deleterious substitutions in the
pseudogene,

Since we observe apparent selection in the pseudogene,
it is reasonable to hypothesize that some mutations that
may cause cataracts in humans may originate in func.
Honal genes from gene-conversion evients from either the
CRYGEPT or the CRYGEPT pseudogene. Indeed, the acti-
vation of the CRYGEPT pseudogene may lead to Coppocks
like cataracts,' and gene conversion leading to genétic
disorders has been observed for several discases,™ includ-
ing cutaract formation through gene conversion in the g-
crystallins.”” The observation that the CRYGD gene has
the most cataract-causing mutations described in humans
(including F237) of all functional CRYG genes” may be
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explained either by a higher level of expression of the
CRYGD gene compared with the other CRYG genes' or
by a higher rate of gene conversion of CRYGE with pseu-
dogenes, which may harbor such mutations,

W checked the sequence of mutations known to cause
cataracts in humans against those of the two pseudogenes
(g 30 OF the seven surveved mutations, we fouiwd one
that corresponded to a state found in g pseudogene—P23T
i CRYGEY, which is the most common and likely inde-
pendently derived mutation underlying clinical heteroge-
neity for different forms of cataracts, 1t is unclear whether
this or other mutations also originate through gene con-
version. Nevertheless, our evolutionary analysis suggested
that negative selection of y-crystallin pseudogenes is likely
driven v gene conversion of the pseudogenes with func-
fional genes thal may result in cataractogenic y-crystallin
alleles,

We describe a human polymorphic congenital cataract
caused by a mutation that reversed an amino acid in the
CRYGD gene o an ancestral state found in nonprimate
manunals, This cataract-associated mutation may be com-
pensated for by indirect mechanisms refated to the overall
protein solubility, through substitutions in a symmetric
protein domain, In addition, we found genc-conversion
events in the p-crystafling gene cluster in several mam-
malian species that invelve the interaction of pseudogenes
and functional genes in the primate lineage, The observed
negative sefection in the pseudogene in the course of hu-
man-macague divergence is likely to be the result of ap-
parent selection due to frequent gene conversions be-
tween the pseudogenes and the functional genes. The data
suggest that some cataractogenic mutations might appear
in funictional y-crystallin genes from pseudogenes through
gene-conversion events contritruting to conservation of
the pseudogene sequence.
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Web Resources

Accesslon numbers and URLs for data prescnded herein ane as
forllows:

GenBank, httpe/fwwwnchl nbmnih gov/Genbank) (for séquence
information on CRYGA faccession numbers MI17315 and
M7 4], CRYGE jaccesslon number M19364), CRYGE [acces-
ston numbsers KOZ003 and Ke3004], CRYGI [accession mumbiers
K02005 and KO3006), CRYGEP!D Jaccession numbers KO3007
and BOIOUK], and CRYGEPT [accession numibsers KOS and
KO0; Pan parniscus CRYGA, CRYGE, CRYGG, CRYGD, and
CRYGEP faccesston numbers EF467 187, EF46T 196, EF467205,
FFa67 214, and EF92219, respectivelyl; Pan trogladites CRYGA,

CRYGE, CRYGC, and CRYGD [accession numbers EF467 190,
EFR67 199, EF467208, and EFG67217, respectivelyl, . gonilia
CRYGA, CRYGE, CRYGC, CRYGI, and CRYGEPI [accession
numbers EF6718Y, EF67 192, EF46T201, EF67210, and
EF492217, respectivelyf; Pomgo pygmaens CRYGA, CRYGE,
CRYGE, CRYGD, and CRYGEPI Jaccession numbers EFA67 188,
EF467 197, EF467206, FFA67215, and EF492220, respectively]:
H. bar CRYGA, CRYGE, CRYCGC, CRYGE, and CRYGEFPT Jacoes-
ston numbers EF07 184, FF467 193, EF467202, EF407211, and
EF492218, respictivelyl Macuca mmilaita CRYGA, CRYGE, CRYGU,
and CRYGD [accession numbers EF467186, EF467195,
EF467204, and EF467213, respectively]; L. lagericha CRYGA,
CRYGE, CRYGC, and CRYGEY [accession mambers EF467 185,
EF467 194, EF4672003, and EF67212, tespectively]; A, geoffrap
CRYGA, CRYGE, CRYGE, and CRYGD accession numbers
EF467 182, EF467191, EF67200, and EFS67200, respectively];
and S fabiatis CRYGA, CRYGE, CRYGC, and CRYGE Jacces.
sion numbsers FFA67 18%, ER67 198, ER4a7207, and EF467216,
respectively])

Online Mendellan inheritsnce in Man (OMIM), http:/fwww.nchi
i gov/Omim/ (for PCC and other genetic forms of
calaracts)

Primerd, htp/ffrodowimiteda

Protein Daty Bank, hitp:/fwwwpdboorg! (for the human CRYGD
protein (D 1h4ali

University of Calilornia Santa Cruz (LCSC) Genome Browser,
hatp: fgenome wcsc.edu)
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Abstract

The impsict of synanymous nucleotide substitutions on finess in manvmals remains controversial, Despite some indications of sclective
constraint, synonymous sites are often assumed 1o be neutral, and the rate of their evolution is used as a proxy for mutation rate, We
subdivide all sites into four classes in terms of the mutable CpG o context, nonCpd, postC, preG, and postCpreG, and compare four-fokd
synonymous sites and intron sites residing outside transposable elements. The distribution of the rate of evolution across all synonymous
sites 15 trimasdal. Rate of evolution at nonCp( synonymous sites, not preceded by C and not followed by G, is ~ 0% below that a1 such
intron sites. In contrast, rte of evolution at postCpre(i synonymous sites is ~30% above that ot such mtron sites. Finally, synonymous
and intron postC and preG sites evalve at similar rates. The nelationship between the levels of polvmorphism at the corresponding
synonymous and intron sites 15 very similar 1o that between their rades of evolution, Within every class, synonymous sites sare occupied by
G oor O much more ofien than intron sites, whose nucheotide composition is consistent with neutral matation-drift equilibrium. These
patterns suggest that synonymous-sites are under weak selection in faver of G and €, with the average eoefficient s~0.25/N.~10" 7, where
N, is the effective population size. Such selection decclerites evolution and reduces variability at sites with symmetric mutation, but has
the opposiie effects at sites where the Favored nucleotides ane more matablk. The amino-acid conrposition of proteins dictates that many
aynonymous sites are CpGprone, which causes them, on average. to evolve faster and 10 be more polymorphic than intron sites. An
WVETRgEe penotype Carmes ~ 107 subaptinl nueleatides at synonvmous siles, iniplying synergistic epistasis in selection against them.
Published by Elsevier Lid.

Keawords: Mutation; Selection: Synonymous site; Evolution: Genetee dofl

1. Introduction

Throughout all life, synonymous codons are used non-
randomly (Grantham et al., 1980; see Li, 1997, Chapuer 7,
for review). There is a general agreement that selection
plays a major role in this phenomenon (Andersson and
Kurfand, 1990; McVean and Vieira, 2001; Duret, 2002;
Carlini and Siephan, 2003; Niclsen and Akashi, 2003).
Synonymous substitutions alfect mRNA translation (Ike-
mura, 1985 Sorcnsen ef al., 1989 Sharp et al, 1995
Akashi, 1995, 1999, b, 2003) and thus can cause transla-

*Cosresponding anthor. Tel: 1301433 8044; fax: 13014502288,

Eopril andidresses; Rondrasi@nchinlmmbgov (FA Kondrashov),
ogursovimebiabm.ni gov (ALY, Opurisev).
kondrashovie nch nlnsnih gov (A5 Kondrashov),

0023-3193/8 - see fromt matter Published by Elsevier Lid,
doi: 10, 1016 jtbi 3005, 10,020

tional selection which influences codon usage in many,
although perhaps not in all (Kanava et al, [999),
organisms, Svnonymous substitutions alse affect impor-
tant properties of mRNAs which are “not directly related
to the codon-anticodon interaction’” (Duan and Antesana,
2003), in particular, their secondary structeres (Hanl et al.,
1994; Innan and Stephan, 2000; Duan et al., 2003; Katz
and Burge, 2003; Chamary and Hurst, 2005a).

However, the importance of selection at syoonymous
sites in mammals remains unclear, Although their codon
wsage is abviously non-random, duee (o clevated freguencies
of G and C at synonymous siies (Debry and Marzlofl,
1994; Eyre-Walker, 1999}, the causes of this pattern are
controversial. Some authors argue for an important role of
selection (Debry and Marelufl, 1994; Evee-Walker, 1999;
Keightley and Gaffoey, 2003; Urrntia and Furst, 2003;
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Nielsen and Akashi, 2003; Chamary and Flurst, 2004;
Comeron, 2004 Lu and Wu, 2005 Chamary and Hurst,
2005a), but others disagree (e. g.. Sharp et al., 1995; Smith
and Hurst, 1999 Durer and Hurst, 2000; Urrutia and
Turst, 2001 Duret, 2002; Subramanian and Kumar, 2003)
and favor alternative explanations, such as biased mutation
(Wolle et al, 1989 or biased gene conversion (Dwret,
2002).

The arguments for or against seleclion al synonymous
sites in mammals are wndermined by conflicting data on
whether evolution at four-fold synonymous sites is slower
than at presumably neutral intron or pscudogene sites,
which is often thought to be the obhigatory signature
of any selection at synonymous sites, Hughes and Yager
{1997y and Chamary and Hurst (2004) reporied similar
levels of rat-mouse divergence at synonymous and intron
sites, Bustamante et al. (2002) found that synonymous
sites evolve more slowly than homologous pseudogene
sites, Subramanian and Kumar (2003) reported that in
primates synonymous sites evolve faster than intron
sites, and Hellman et al. (2003) reached the opposite
conclusion.

Because effective nentrality of synonymous substitutions
in mammals is widely accepted, mutation raws are
rautinely estimated through rates of synonymous substitu-
tion in mammalian cvolution (Smith and Hurst, 1999
Keightley and Evre-Walker, 2000; Kumar and Subrama-
nian, 2002} and patterns in synonymous substitutions are
generalived to the whole genome (Duret et al, 2002).
Similarly, levels of intrapopulation variability and rates of
interspecies divergence a1 synonymous sites have been
accepted as the neutral point of reference in tests for
positive selection (e.g. Fay et al, 2001

We stisdy selection al synonymous sites through patterns
in human-chimpanzee divergence and in  intrahuman
polvmorphism. Using such a close pair of species
guarantees against errors caused by multiple substitutions
it the same site (Li, 1997) and by ambiguous alignments of
introns. Similar 1o several previous analyses, ours takes
into account elevated mutability in mammals of the CpG
context, Le. of nucleotides within 3'CGY segments on the
DMA sequence (see Li, 1997; Nachman and Crowell,
2000). However, the commonly used classification of sites
into those residing and not residing within a CpG context
{e.g. Hellman et al.. 2003} may obscure the patterns in
divergence, since substitutions at a site can affect its
placement within this classification (Keightley and Gaff-
ney, 2003},

Thus, we subdivide all sites imo lour non-overlapping
classes: those not preceded by C and not followed by G
{nonCpG, Keightley and Galfney 2003), preceded by C but
not followed by G (postC), followed by G but not preceded
by C (prea). and preceded by C and followed by G
(postCpre(i).  Sites from  the last three classes are
CpGprone, as they can reside within CpG context, This
approach makes it possible to disentangle the impacts of
mutation and selection and to show that weak selection in

favor of G and C is a major factor of evolution of
SYRONYMOUS Sies in mammals.

2. Materials and methods
201 Bata

We obtained the human chimpanzee (hgl7-panTrol)
alignments and annotation from the Genome Center at
U.C. Santa Cruy (Karplchik et al,, 2003). Transposable
element (TE)-derived intron sites are those masked by
RepeatMasker in these alignments, The first 40 and the fast
40 aucleotides of an intron, as well as all sites preceded
and/or followed by a human: chimpanzee mismaich were
excluded from the analysis. Expression level was assayed
by the number of ESTs. Mapped polymorphisms were
taken from the U.C. Santa Cruz Genome Center annota-
tion of dbSNP release 123 to assembly hgl7 of the human
genome. For our analyses we used polymorphisms that
were obtained in genome-wide, non-exon targeted assays.
Only SNPs with the following Submitter Handles in
dbSKP Matfiles were used: CSHL-HAPMAP, BCM_SSA-
HASNP, SC_JOCM, SSAHASNE, WI_SSAHASNE, TSC-
CSHL, WUGSC_SSAHASNP, SC SNP, SC. The daa
used are located as follows.

Human-chimpanzee alignments:

hitp://bgdownload.cse. ucse.edu/goldenPath hgl 7/
vsPanTrol laxtNet/

Human genome annotation:
http://hgdownload.cse.vese.edu/goldenPath g1 7/
database/knownCGene gz

Human polymeorphisms mapping 1o the human genorme:
httpe/hedownload cse ucse.edu/goldenPath/hg ] 7/
database/sap.xt.gs

Human polymorphism asnotation in db&NP Oafiles:
[/ Tip.nebindm.pik.gov/snp/human/ ASN1_lat/

2.2, Review of theary

Consider stochastic mutation-selection-drift equilibrium
it a locus (site) with four alleles: A, T. G. and C. Assuming
that all mutation rates arc low (well below &', where N,
is the cffective population size). a population (approxi-
mately) is fixed with one of the alleles most of the time, and
occasionally undergoes switches between fixations of
different aileles. The frequency of the ih allele, p,. 15 the
fraction of time when it s fixed. When the population is
fixed for the ith allele, the Qux of switches o ixation of the
Jih allete (the per generation probability of a switch), f,. ;.
is the corresponding mutation rate g, times the
population size N, tmes the probability g, that @ mutant
carrying the jth allele which appeared in a population fixed
with the ith allele will reach fixation. The formula for g,
can be found in Bulmer (1991, Eq. (7). Equilibrium allele
lrequencics ,-lfﬁ can be obtained by solving the system of
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linear equations which describes the equality of the total
rates of switches from and o fixations of each allele
(Bulmer, 1991, Eq. (100)

F;r‘f,ui‘ S S ) tﬂ‘i’f! >d +Pr.‘_lr(.':u,| + Pl
Prlfrsat+frsa+frsch=pal s +pelasr +Pcfes
Pl liiaa Haar Hluaed=palraa + 2ol ran HPefeng
Pellooqg *f oo ¥ eapd =Pafase+ Pl ract Pefan e

(RF]

‘The total rate of evolution (per generation probability of
a switch between some allele fixations) at equilibrium is

R "Piﬂiﬂ--r * paaFfaachd- +.P:E"’Uc-.;\. +f v+ Feaa)
21

and the total heterozygosity at equitibrinm s

P =gl Wi st + pascHaso + pascHascd + e,
(k3]

where M. is the expected contribution 1o helerozygosity
by a mutant carrying the jth allele which appeared in a
population where the ith allele is fixed (see MeVean and
Charlesworth, 1999, Eq. (10)).

Table 1
Propeerties of sites classifisd according 1o ther possible Cpt context

3. Results
3. Inrron sives: daca

Table | presents data on frequencics of the four
nucleotides, rate of evolution R (assayed through
human-chimpanzee divergence, e the [raction of mis-
matches in the alignments), and the level of ntrabuman
polymorphism P (assaved through the density of SNPs) at
four-fold synonymous sites and intron sites within 133533
loci that contain 53792 introns. Firsy, let us congider
introns.

At nonCpG sites, frequencies of G and C are only
slightly below 25%. In contrast, postC sites are strongly
depleted of G, preG sites are strongly depieted of C, and
postCpreG sites are depleted of both G and C (this
difference is highly statistically significant, as-well as all the
differences mentioned below), O course, this is just
another way of saying that introns are depleted of CpG
contexts (Bird, 1980). B and P are the lowest at nonCpG
sites, and the highest at postCpreG sites. AL intron sites of
TE origin, frequencics of G and C, as well as P and R, are
higher than at nonTE intron sites from the corresponding
classes.

Fig. | presents data on polarized polymorphisms. those
where the ancestral allele is G or C and the derived allele 15

All nonCpls
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03139 0.3236 04367
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0.0 56% 001468 (L0328

HCHE Y (000G (0235
GSAMKD (34 %) 193572 (15%) IE046T (16%)
02362 L1 e (23] [UEER:]
02399 [ Red 2] 03540

10859 04751 01245
01.4480 1042 1363
001351 001182 GO2193
0001529 0001251 G.002267

31



FoA, Koadresior el ol | Journal of Theoretival Biskagy 290 (X068 1 6586246

0.0025 . . .

nonCpG posiC prad postCpral

{ay Type of sites

00025 T T T

0002 & -

00015 <

0,001

Dengity of SMPs

0.0005

postCprG

nonCpG pastC preG
iy Type of sites

.002s T T T

o002t |
% noosh -
-
:g 0,001
&

0.0005

nonCpG posts preG posiCpreG

wh Type of sites

Fig. 1. Densibies of reaprocal polymorphisms, GO = AT (black bamd vs
AT =G (pray barsh, at intron nonTE sites {a), mtron TE sites (b and
Tour-lokd synonymons sites (c).

A or T(GC > AT, Lercher et al.. 2002b), and the reciprocal
(AT =GO (eurrently. the lack of a close enough outgroup
for Homo and Pan genomes make it impossible w obtain
the analogous data on polarized substitutions). At nonTE
intron sites, there s only a small excess of GC>AT
polvmorphisms over AT>GC polymorphisms. In con-
trast, at TE intron sites this excess is much larger, especially
at CpGprone sites.

Fig. 2 presents data on human-chimpanzce divergence at
orthologous intron sites located within TEs from differemt
familics. On average, TEs which were inserted more
recently evolve much laster.

3 oos . . | ;
by o
;: %o.u@s - -
_g ¢ ooef Alus E
Bs Al
g.g s MERL1 L2 miR 3
o
Z % 001 F 3
8 E 0.005 3

=
E o i i | -

0 20 40 &0 0 100

Approximate time of expansian, Mya

Fig, 2 The depemubence of homan-chimpansce divergence between
orthelogous within-intron copics of tansposable elements from differcm
tamitics and subfamilies on the approximate ages of their expansions
(Rapitonoy and Jurka, 1996; Intermational Humon Geneme Sequencing
Comsortiuny, 2000, The selid Tne shows the average human—chimpanice
dvergence of all intrivn sequenses identifiod as TEs by Repeat™asker, and
the dotted lime shows the divergence of mtron sequences. which remiin
ummaskesl,

A2 Intron sives: equilthriim with asymmerrie nuration ar
monTE sites

The patterns observed at intron sites are consistent with
their sefective neutrality. NonTE sites appear to be close o
mutation--drift equilibrium. while sites of TE origin are
losing G's and C's at CpGprone sites,

The ratio of firnenCps: MirinenCpay Mewcpas a0d pigg.
epen Uhe rates of transversions (of each of the two possible
ones) outside CpG, transitions outside CpG, transversions
within CpG, and transitions within CpG, is ~1:3:530
among mammatian nucleotide substitutions (Nachman and
Crowell, 2000; Ebersherger et al., 2002; Kondrashov, 2003;
our dav; prgoncpe 04 X 1™, Thaus, @t mutation-drilt
equilibriuin, postC (pre) sites must be depleted of G (C),
and postCpreG sites must be depleted of both G and C.
CpGprone sites also must evolve faster and be more
polymorphic than nonCpG sites.

Indeed, at CpGprone sites some mutation rates are the
same as 4t ponCpG cites but other mutation rates are
higher. At a selectively newtral site (locus) with only two
alleles, By and Bs. the equilibrivm frequency of By (e
the probability that B is fixed at a random moment) s
eftn+r) (e.g. Sucoka, 1962), and R, defined as the per
generation [regquency of switches between lixations of By
and of Ba, is 2we/(u+¢), where v and v are rates of
mutaiion from By to By and back (e.z. Bulmer. 1991,
Egs. (6} and (7)), Thus, R doubles when ¢ increases from w
o infiniy. P, defined as heterozygosity, is 4N 0 /(e 4+ v}
{McYean and Charlesworth, 1999, Eg. (101, Without
selection, P always (with any number of alleles) changes
with the mutation rates in exactly the same way as does R,

This analvsis can be extended to mutation-drift equili-
brium at a site with four nucleoudes (alleles), A, T, G, and
C (Bulmer., 1991, Eq. (10). sce Méthods). Fig. 3 shows how
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frequency of G

o 5 0 15 20
M, excess of mutation at CpG

Fig. 3. Frequencies of G (broken red lmes ) and rates of evolution & m the
units of frqonrps 150hd Black linesh at the muttion-drift equilibrivn
withaul selection as functions of AL, where jipgoncps = L fhnpescps = 3
Frncpo = (14 4M) o coacpa. A0 fraops = 14 M) e nancpa. PostC
sites (shown) ond peels (not shown) sites evolve at identhal mtes.
Frequency of C at preQi sates 15 the sanse as lrequency of G a pastC snes,
and ot postCprel stes Mrequencies of G and © are wbentical. Properties of
nonCple sites correspond 1o M =1,

the predicted parameters of such sites depend on M, the
relative excess of transitions within the CpG context. For
mtron nonTE sites, the frequencies of G observed at
postCpreG and postC sites. 5.4% and 4.2% (Table 1),
imply M =384 and M = %0, respectively (Fig. 3), in
excellent agreement with M-9.0 which follows from direct
data on mutation rates {Kondrashov, 2003), Excesses of &
{of Ppat postCpreG or at postC sites over the correspond-
ing parameters of nonCpG sites are (Table 1) 1.784 (1.517)
or 1415 (1.350) and imply M = 145, M =32 M = o,
ar M =20, respectively (Fig. 3} However, since under
selective neatrality R and P are essentially independent of
M when M =35 (Fig. 3). frequencies of mutable nucleotides
are more suitable for indircct estimates of high values
of M.

Similarity of the levels of the reciprocal polymorphisms
GO= AT and AT = GC suggest that nonTE intron sites are
close 1o mutation-drilt equilibrium  without selection
(Eyre-Walker, 1997; Smith and Eyre-Walker, 2001),
although, on average, these sites are slowly losing G
and C (Fig, 1a; Lercher and Hurst, 2002). This conclusion
is supported by direct data on their evolution, obiained
for a small fraction of Hewmo-Pon genome alignments for
which @ suitable outgroup is- available (Webster et al.,
2003).

3.3 Tmron sites: loss of CplG context in transposabie
elements

Intron sites of TE ongin deviate substantially from
mutation-drift equilibrium and rapidly tose G and C &
CpGprone sites (Fig. 1bh. Al the moment of insertion,
many TEs have a higher (and not a lower, Duret and
Hurst, 2000) GC-comtent and a higher proportion of
mutable CpG contexts than nonTE intron sites (Chien

el al, 2001} It takes almost 100 Myr for a TE-derived
intron scgment 1o reach mutation- drifl equilibrium (Fig. 2)
and, before this happens. the segment remains more GC-
rich and CpG-rich and, thus, evolves faster and is more
polymorphic than @t equilibrivm.

However, even within the nonCpG class, R and P at TE
intron sites are ~1 3% higher than at nonTE intron sites,
although for CpGprone classes these excesses are higher
(Table 1), This pattern can be caused by slow dissolution of
other (dilferent from CpG) mutable contexts within TE-
derived intron segments (Hwang and Green, 2004) andor
by negative selection alfecting ~10% of nonTE intron sitcs
(Shabalinae et al., 2000}, Stll, we will use nonTE intron sites
as i neviral mutation- drift equilibrivm point of reference,
since they appear to be much closer to this equilibrivm
than any other sites.

34, Four-fold synonvmous sites: dita

The average rate of evolution at four-fold synonymous
sites 15 similar to that at intron sites (Hughes and
Yager, 1997; but see Smith and Hurst, 1998; Chamary
and Hurst, 2004) apparcntly suggesting the lack of
selective. constraint, However, this overall similarity 1s
misleading (Chamary and Hurst, 2004) and hides a
complex pattern,

Svnonvmous sites from all the four classes are strongly
enriched by G and C. relative to the corresponding
intron sites (Table 1). In particular. frequencics of
Goand C at postCpreG synonymous sites are 2.5 times
above those expected @t mutation-drilt equilibrium with
M =9 and observed at postCpreG nonTE sites within
inirons,

In contrast, there i no uniform relationship between R
or P at synonymous and the corresponding nonTE intron
sites. NonCpG o synonymous sites evalve 10%  slower.
postC and preCi synonymous sites evolve at approximately
the same rate, and postCpreG. synonymous sites evolve
~30% faster, with the levels of polymorphism displaying a
very similar pattern (Table 1), As the result of this
diversification of P and R at synonymous sites, the ratios
of their values at nonCpG, postC or preG, and PostCpreds
synonymous sites are ~1:1.5:2.5,

In contrast to nonTE intron sites, GC = AT polymorph-
1sms al synonymous sies are =23 limes more common
than AT=GC polymorphisms (Fig. le; Smith and Eyre-
Walker, 2001),

3.5 Four-fold synonvinous sites: selection for G and C

There 5 no reason 1o assume thal context-dependent
mutation rates are different between exons and introns,
However, the observed contrasts between non'TE intron
sites and four-fold synonymous sites can be  readily
explained by weak selection. Let us make an oversimplified
assumption that uniform., constant selection with the
coclficient ~0.25N,”' favors G or C over A or T at all
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synonvmous gites, Intermediate dominance will be as-
sumed, with selective advantage 25 to homozygotes for the
favored allele. Watwrally, such selection will always
increase frequencies of G and €. In contrast, R and P
will be affected differently at sites from different classes
being reduced at nonCpG sites, but elevited at postCpreG
sites,

Indeed, constant selection always reduces R and P if all
mutation rates are equal or if less mutable alleles are
favored (e.g. Akashi, 1999b,¢). However, constant selec-
tion favoring more mutable allele(s) may increase R (Eyre-
Walker, 1992; Eyre-Walker and Bulmer, 1995; McVean
and Charlesworth, Figs. 5¢ and 6¢) and P (McVean and
Charlesworth, 1999, Fig. 2). At a site with two alleles, B,
and B, and sclection for Ba with cocfficient s at
equilibrivm & = 28 /[(1 = ¢ W+ ve®)] (Bulmer, 1991,
Eq. (&) and {7)) and

_ AN e ¥ " O )
Tk ve S\ e 25
1 T T T T P et o | [}
A 2 . -
g T i &
s R 44 g‘é
E ue i ".klu Ji'ﬂ"m s E
ik e 52
; i 7 228
o ; : ™ ¢ g
E ozl o 4

4 -2 4] 2 4 (] a 10
ih) S=ANes, sabection tor G and C

Fiz. 4. Fqulibrium allele frequencies (hroken red lines), rates of evolution
0 the units of oy gascp (50fid blue Ies), and kevels of polymorphism in
the umis of 2N iy aoceper (30lid grien lines) as functions of § = 4N
{a) Two allches, By and By, under sebection with cocllicient s in favor of By
{b) Four allebes. A, T, G, and C, uisder selection with codficient & in favor
of G oand C. o M =9, PostC sites {shown) and preG sites (not shown)
evodue ot wentical mtes, Frequency of © at preG sites 15 the sme a8
Trequency of G at postC sates, amd Trequencies of G and O are identical at
nonlpli and postCpreG sites.

(McVean and Charlesworth 1999, Eg. (13), where
8§ = 4N If Bz is more muable than By (e=wu), R and P
are maximal at some §>0 (Fig. 4a).

The analogous patterns persist in the case of four alleles
(Bulmer, 1991, Eq. (103} MeVean and Charlesworth, 1999,
Eq. (10)), see Methods). Thus, at nonCpG sites, where
mutation is symmetric, R and P are maximal at §= 0. In
contrast, al Cpliprone sites B and P are maximal a1 a
positive 8, e, under selection favoring more mutable altele
G oand/or C (Fig. 4b).

These patterns can be used 1o estimate & rooghly,
Freguencies of G at nonCpG, postC or preG, and
postCpre(G synonymous sies imply §~0.8, ~1.25, and
1.1, respectively (Table 1 and Fig. 4b), The values of &
and P at synonymous sites deviate from their values at the
corresponding nonTE intron sites by —10%. 0%, and
+30% at nonCpG. postC or preG. and postCpre( sites,
respectively, which implies 5~0.9, $~1.3 {or, aliernatively,
8§ =), and $~0.9 (or 5= 3.0), respectively (Fig. 4b). Thus,
it appears that S~1, so that a typical value of 5 at a
synonymous site is ~0.235 1

The 2.5-fold dilference between the levels of reciprocal
GC>AT and AT=>GC polymorphisms ai synonymous
sites {Maside et al., 2004) of all classes (Fig. le) suggests a
higher 5~0.55N,7" (data not reported). However, the
different levels of reciprocal polvmorphisms may be to
some extent caused by factors other than selective
advantage of G and C (Smith and Evre-Walker. 2001;
Lercher et al., 20024, b), which work even at nonTE intron
sites (Fig, la). Thus, s~0.35N.7" is probably an over-
estimztion.

A6, Hererogenelty of the observed patterns across genes

The position of a mammalian gene within isochores,
genome regions with different GC-contents (see Eyvre-
Walker and Hurst, 2001} affects the patterns described
above. Mot surprisingly, genes located within GC-rich
genome regions (as assaved by GC-comtent of their introns)
have proportionally more G (Fig, 5e) and C (data not
reported) an their synonymiows sites. Stll, the relationships
between rates of evolution #t nonTE intron sites and four-
fold synonymous sites from the corresponding classes
remain the same for genes with all GC-contents, except for
those which are very GC-poor, where synonymous sites do
not evolve faster than intron sites (Fig. 5b). Perhaps, a
factor which favors G and C at synonymous sites is
counterbalanced, in genes residing within the most GC-
poor genome regions, by another factor responsible for the
low regional GC-content. The patterns in P depend on the
regional GC-content similarly (data not reported).

In contrast, the nucleotide frequencies (Fig., 6a). R
(Fig. 6b), and P (data not reported) depend very Little on
the expression kevel of a gene (Duret and Mouchiroud,
20000, A slight increasc of the rate of evolution a
CpGprone sites with the expression may by due to positive
correlation of expression with the GC-content of the gene
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Fig. 5 Frequencies of noclecdade €6 {a) and the rates of evolution (b} at
for-Todd synonymeis (20lid hnes) sied nonTE intron sites (hroken lines)
feomi the four chisses (nonCpli—bles, postC—egreen, preG—yellow,
postUpreli—red) in genes split binto ten bins of equal stees nccording to
the GC-content of their mrons

in mammals (Lercher et al, 20020 Urrotia and Hurst,
2003).

A7 Hewerageneity of the ohserved patterns within genes

The observed patterns are not exactly uniform within
genes. Synonymous sites are more GC-enriched within first
exons than within last exons of genes. The difference s
particularly substantial, 0% vs, 34%, for postCpreG sites.
Indeed, first exons are often covered by CpG oislands,
located in the 5 ends of genes (Takai and Jones, 2003).
However, the rate of evolution of postCpreG sites within
first exons is not higher, and even slightly lower than within
lasl exons (data not reported). Perhaps. cocfficients of
selection in favor of G and C are higher within first exons,
and execed, at some sites; the values which leads 1o the
maximal K. Alernatively, CpG contexts may be less
mutable within Cpi islands. Diflerent patterns i codon
bias at the beginnings vs. the ends of genes have also been
observed in bacteria (Tlartl e al., 1994), In contrast, there
15 no dilference between GC-contents of first and last
introns of genes, although postCpreG sites located close to
edges of all introns are more GC-rich and evolve [aster
than such sites deep inside introns (data not reported).
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Fig. 6, Fregquencies of nucleotide G {a) and the raves of evolution () at
Tour-fold synonymous (sofid limes) and nonTE miron sites (broken [ines)
sites from the four dasies fonCpl— blue, posiC—green, preti—yellow,
presCpreGe—rad) in genes sphit inte ten bas of équal sives acconding 10
their cxpression levels,

3.8 Move detailed classification of sites

Table 2 presents data on nonTE intron sites and
four-fold synonymous sites subdivided into  classes
according to all 4 x4 immedigte contexts (the genetic
code does not admit postA  four-fold  synonymous
sites), Not surprisingly (e.g. Hess et al., 1994; Hwang and
Green, 2004), there is some heterogenenty within sites
lumped into nonCpG, postC. or preG inclusive classes of
our 22 classification. In particular, there i$ a strong
tendency for postApreA sites to be occupied by A more
often than by T, and postTprel sites are occupied by T
more often than by A, implying the lack of strand
asymmetry in this pattern. Apparently, al postApreA
(postTpreT) sites A=T {T=A) substitutions are rarer
than T=A (A=T) substitutons,

Sull, CpG s by far the mosl important context,
which is not surprising since s impact on the
mutation rate iz an order of magnitude higher than
thae of all other comtexts (Hwang and Green, 2004).
Also. predictions based on the Tull 4 x 4 classification of
sites are currently impossible, due o lack of dati on the
impacts of contexts, other than CpG., an the mutation rate
in priimates.
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Tahle 2
Properties of sites classified according to all 4 x 4 mmediale contexts’
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4. Discussion

Elevated frequencies of nucleotides G and C at synon-
vmous sites, as well as complex relationships between the
rates of divergence and levels of polymorphism at
SYNONVMELUS Siles vs, intron sites sugeests that the majority
of synonymous sites of human and chimpanzee génes are
under weak selecuion that Favers nucleotides G and C.
Comparison of the properties of such sites with those of
intron sites of nonTE origin (Table 1}, which appear 1o be
close 1o selectively neutral mutation-drft equilibrivm
(Fig. 1), and 10 theoretical predictions (Fig. 4b) implies
that the average cocfficient of selection s in [avor of
nucleotides G and C at a heman synonymous sile is
~0.25N,7". with not oo much variation across individual
sites, The data are clearly inconsistent with strong selection
for G and/or C al some synonvmous sites and selective
neutrsility at other sites: elevated frequencies of G oand O
can be generated in this way, but elevated raves of
evolution (Eyre-Walker, 1992) and levels of polymorphism
(MeVean and Charlesworth, 1999) at CpGprone sites
cannot (Fig. 4b).

A variety of methods produced the following estimates
for = ~LAN."" in Escherichia coli (Hartl et al., 1994),
=~ 22N~ in Drosophila simulans (Akashi, 1995), ~4.6N,~"
in B psendoobsenra (Akashi and Schaeffer, 1997), and
~A0.65N."" in D, americana (Maside e al., 2004) and D,
mirandy (Bartolome et al., XW05). Thus, in the units of the

corresponding 1/, values, selection at synonymous sites is
apparently weaker in hominids than in Drosophile. In D
simnilans, No~5 = 10° (Avala and Hartl, 1993). Estimates of
N, in hominids are to some extent controversial: in modern
humang and chimpanzees N~(1-2) = 10° (Yu et al,
2003}, however, in the human chimpanzee common
ancestor it was either the same (Rannala and Yang,
2003} or 2-5 times higher (Satta et al, 2004). Thus, the
absolute strength of selection i synonymous siles in
hominids, s~10°, is close 1o or even higher than in
Drosophita, where s~5 = 107°,

Since coeflicients: of selection al syponymous siles can
vary over many orders of magnitude, their concentration
within a narrow range may appear unlikely (Gillespie,
1994). A plausible cause for this concentration is synergis-
tic epistasis (L1, 1987; Akashi, 1993, p. 1074; Akashi, 1996,
p. 1303). expected. for example, if synonymous sites are
imvolved in maintaining the structure of mBRNA (Innan and
Stephan. 2001; Kaiz and Burge, 2003; Chamary and Hurst,
20052). With synergistic epistasis, selection against a
deleterious nucleotide is negligible when most of the sites
of the molecule are occupied by beneficial nucleotides;
however, selection gradually gets stromger when  the
namber of deleterious nucleotides increases and eventually
hecomes sullicient to arrest their further accumulation
(Kondrashov, 1994; Pigancan ¢t al., 2001; Berg et al.,
2004}, This bappens when 5 grows past ~0. 1N~ (Akashi,
1996; Ohta, 2002), and the funther growth of s (past
~5.0N.7", Maside et al., 2004 Fig. 2b) can eventually
eliminate almost all deleterious nucleotides, making selec-
tion negligible again. Thus, at mutstion-selection-drift
cquilibrium, coeficients of selection against deleterious
nucleotides at the majority of sites must be confined
between ~0.0N, " and ~50N,7" (Akaghi. 1996). Iligh
values of & in hominids probably suggest that their mENAs
are far from optimal.

Two factors dilferentially affect the rates of evolution at
mammalian nonTE intron vs, Tour-fold  synonymous
sites. First, synonymous sites are CpGprone much more
often, which s dictated by aminc-acd composition
of proteins amnd the genetic code. ln  particular,
highly mutable postCpreG sites are 3 times more
COmmOon among synonymous 5iies than among intron sites
{Table 1). Second. the interplay of mutation biases and
constant selection for G apd C reduces R oand £ at
synonymous nonCpl sites, but increases them at such
postCpreG sites.

Together, these two factors cause the average values
of R and P across all four-fold synonymous siles o be
~20% and ~10%, respectively; above the R and £ values
for intron sites of nonTE ongin. An clevated rate of
evolution of synonymous sites, where seteclion favors more
mutable G:C pairs, has been reported for Drosephifa
(McVean and Vieira, 2001). However, in hominids, £ and
P are also clevated at intron sites of TE origin, due o their
deviation from mutation-drilt equilibrivm, and not o
sclection (Table 1. Figs. | and 2) It is & mere coincidence
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(Chamary and Hurst, 2004) that the average rate of
evolution at all four-fold synonymous sites is very close to
that at all imtron sites (MHughes and Yager, 1997
Subramanian and Kumar. 2003), Similarly, all four
nucleotide frequencies at four-fold synonymous sites are
close to 25% (Table 1) due 1o selection in favor of G and ©
being counterbalanced by their clevated mutability, and
not to-selective neatrality.

With s~0.25N,7", selection is weak enough 1o allow
fixations  of many slightly  deleterions nucleotides, 1T
suboptimal nucleotides (mostly, A and Ty with s~10°
occupy ~30% from ~3x 107 svnonvinous sites in the
diploid mammalian genome. an organism carries ~107
deleterious nucleotides at such sites, which constitute ~ 100
tethal equivalents, The survival of a population of such
organisms requires synergistic epistasis among loci (Kon-
drashov, 1993}, A substantial fraction of new mutations
replaces a suboptimal nueleotide with the optimai one and,
thus, are slightly heneficial.

Qur analysis makes it possible to expliin  several
abservations, Al synonymous sties. the frequeney of C is
higher than the frequency of G {Chamary and Hurst, 2004)
because four-fold postC sites, where G s rare, ane =2
mes more common than preG sites, where C s rare,
(Table 1) This fact, dictated by the genetic code,
where all codon Families with € @t the sccond position
are four-fold degenerate, could be responsible Tor strand
asymmetry in evolution at synonymous sites (Webster and
Smith. 2004). Synonvmous sites of constitutive exons have
higher frequencies of G and C and evolve more rapidly
than such sites of alternatively spliced exons (lida and
Akashi, 20000 because selection in Favor of G and C wm
SYnOnVmous sites s stronger in constitutive exons. 1If
synonyimous sites are released from selective constraint, for
example after a pene turms inte-a pseadogene, this leads 1o
a large, lemporary increase in the rate of their evolution
(Bustamante et al.,, 2002), due o the above mutation-drift
equilibrivm frequencies of mutable C and G at CpGprone
synonymous sites. The same mechanism leads o tempora-
rily elevated rates of evolution of newly inserted transpo-
sons (Fig. 2).

Since biased gene conversion can lead to the same
dynamics as selection {e.g. Lercher et al., 2002a), we cannot
formally discriminate between the two. However, an
imporiant role of biased gene conversion o creating the
patterns described above is unlikely (Evre-Walker, 1999,
because of the contrasts between exons and introns of the
same  gencs. While selection can obwviously be very
different a1 synonymous exon siles vs. intron sites, it s
unclear how the rate of biased gene conversion could
change drastically at exonjintron boundaries. The in-
creased probability of fixation of AT>GC mutations
(Webster and Smith, 2004), as well as the excess of
G = AT over AT =GO polymorphisms (Fig. Ic) can be
due o selection for G and C (Smith and Evre-Walker,
2001; Lercher et al., 2002a,b; Wehster et al., 2003). The
EXOT-INIron. contrasts also argue against Lranscription-

coupled repair bias (Green et al., 2003: Majewski, 2003) as
a cause of pauerns reported here.

Widespread, weak advantage of nucleotides G and C at
SYNONYIMOUS sites supports selection on mRNA stability as
an important factor in the dynamics of such sites (Chamary
and Hurst, 2005a). In contrast, this advantage appears 1o
be inconsistent with the possible involvement of such sites
in splice regulation (Eskesen et al., 2004: Fairbrother et al,,
2004; Willie and Majewski, 2004), since GC-content at
such sites diminishes near exon-intron junctions (Chamary
and Hurst, 2005b).

The available methods of estimating K., the evolutionary
distance at synonyvmows sites (Yanog, 1997) do not
accommodate  trimodal  distributions of the rates of
evolution and nucleotide frequencies at individual sites
(Table 1). Since the context of a synonymous site is mostly
determined by the surrounding non-synonymous sites, a
synonymous site remmins within the same class for a long
time. Even for a relatively close mouse-rat pair, diver-
genees at CpGprone four-fold synonymous sites, estimzted
using the Tamura-Nei formula (Tamura and Nei, 1993),
are well below, relative to the divergence at nonCpG sites,
of what is expected from the 1:1.5:2.5 ratos observed in the
human-chimpanzee pair (data not reported). This indicates
that multiple substitutions ovcurred at CpGprone synon-
ymous sites since rat-mouse divergence, and that the
Tamura-Nei formula, which assumes equal rates of
reciprocal substitutions, underestimates divergences at
such sites. In the case of mouse-human divergence.
saturation at CpGprone sites is much more pronounced
(dats not reported). Thus, estimates of K, between distant
mammals are unreliable.

Even the correct values of K, should not be used 10
cslimate mutation rawes in mammals, due 1o lack of
neuttality (Kondrashov, 2001). Probably, seutral diver-
genoe between a pair of mammals (and, thus, the mutation
rates outside CpG context multiplied by the number of
generations of their independent  evolution) can be
approximated as ~1.1 times the (correctly estimated) K,
at nonCpGr four-fold synonymous sites. Whether synon-
vimous sites are a suitable newtral point of reference (Fay
et al., 2001, 2002; Anisimova et al., 2002; Smith gnd Eyre-
Walker, 2002; Evre-Walker, 2002) in tests for positive
selection, is not clear (Akashi. 1995), although the answer
may be affirmative for hominds, sinee selection with
s~0.25N,”" at synonymous sites affects R and P in almost
the same way (Fig. 4b).
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C codes for calculating the properties of mutation
drifi-selection equilibrium are available from fip://ip.
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Abstract

Background: The glyowylate cycle is thought to be present in bacteria, protists, plants, fungi, and
mernatodes, but not in other Metazoa. However, activity of the glyoxylate cycle enzymes, malate
synthase (M5) and isocitrate lyase (ICL), in animal tissues has been reported, In arder to clarify the
starus of the MS and 1CL genes in animals and get an insight into their evolution, we undertock a
comparative-genomic study.

Results: Using sequence similarity searches, we identified MS genes in arthropods, echinoderms,
and vertebrates, including platypus and opossum, but not in the numerous sequenced genomes of
phaicantal mammals. The regions of the placental mammals’ genomes expected to code for malate
synthase, as determined by comparison of the gene orders in vertebrate genomes, show clear
similarity to the opossum M3 sequence but contain stop codons, indicating that the M5 gene
biecame a pseudogene in plcental mammals, By contirast, the ICL gene is undetectable m arimals
other than the nematodes that possess a biunctional, fused ICL-M5 gene. Ewarvination of
phylogenctic trees of MS and ICL suggests multiple horizontal gene transfer events that probably
went in both directions between several bacterial and eukaryotic lineages, The strongest evidence
was obtained for the acquisition of the bifunctional ICL-MS gene from an as yet unknown bacterial
source with the corresponding operonic organization by the commaon ancestor of the nematodes.

Conclusion: The distribution of the M3 and ICL genes in animals suggests that either they encode
atvernmative enzymes of the glyoxylate cycle that are not orthologous to the known M3 and ICL or
the animal M5 acquired a new function that remains to be characterized. Regardless of the ultimaze
solution 1o this conundrum, the genes for the glyoxylate cycle enzymes present a remarkable
variety of evolutionary events ncluding unusual horizontal gene transfer from bacteria to animals.

Reviewers: Arcady Mushegian (Stowers Institute for Medical Research), Andrey Osterman
(Burnham Institute for Medical Research), Chris Ponting (Oxford University).
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Background

Glyoxylate cycle is a distinct, anaplerotic variant of the tri-
carboxylic acid (TCA) cycle the net effect of which is the
conversion of two molecules of acetyl-CoA to succinate
gluconeogenesis. The glyoxylate cycle shares three of the
five involved enzymes with the TCA cycle. skips the wo
rate-limiting decarboxylation steps of the later, which are
catalyzed by isocitrate dehydrogenase and «-ketoglutarate
dehydropenase (Figure 1; [1,2]). The glyoxylate cycle devi-
ates from the TCA cycle when isocitrate, instead of being
decarbonylated into o-ketoglutarate by isocitrare dehydro-
genase, is converted into ghyoxylate and succinate by isoc-
itrate lyase (1CL)., Malate synthase (MS) completes the
shorteut by producing malate from glvoxylate and aceyl-
CoA (Figure 1). Succinate produced by the ghyoxylate
cycle is utilized, primarily, for carbohydrate synthesis.
Both 1CL and MS are essential for the function of this
pathway and are thought w be dedicated, glyoxylate cycle-
specific enzymes such that their activities are often consid-
ered w0 be signatures of this pathway |2].

It is widely accepted that the gheaxvlate cycle operates in
hacteria |2], fungi | 3], some protists [4,5], and plants [6];
in addition, recent reports |7,8] identified a bifunctional
enyme in nematodes with both ICL and MS activities
that apparently evolved by the fusion of the respective
genes (see also [2]). Although several authors reported
ICL andfor MS activity in other Metazoa, including birds
[9], reptiles [10,11], and placental mammals [12-20], the
claim that the glyoxylate cycle functions in animals other
than nematodes remains controversial [21,22]. One of the
major problems with regard to the existence of the glyox-
ylate cycle in Metazoa is the failure 1o identify the 1CL and
MS genes in metaroan genomes, except for those of the
nematodes, Here, we undertake a bioinformatic analysis
aimed at detection of onthologous genes for the two gly-
oxylate cycle-specific enzymes in the available complete
and draft genomes of various animals and reveal the exist-
ence of a MS pseudogene in placental mammals. We fur-
ther examine the phylogenies of these enzymes and derive
evolutionary scenarios that include multiple horizontal
gene wansfer (HGT) events.

Results

Isocitrate lyase and molate synthose genes and
pseudogenes in animals

In addition 1o the pwv'mu.sh' identified 1CL homaologs in
the nematodes Caenorhabditis and Steongyloides, a putative
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ICL gene has been annotated in the mosquito Anopheles
gambize and the sea anemone Nematostella vecrensis, and
we also found an incomplete homolog in the mosquito
Aedes aggypr. However, the extremely high similarity of
the protein sequence of the mosquito and bacterial genes
{only 20% divergence between A. gambiae and E. coli) and
the lack of introns in the mosquito sequence strongly sug-
gested a bacterial contamination. Indeed, such contami-
nation appears to be common at least in the A, gambiae
genome (8. L Mekhedov and EVE, unpublished obsgrva-
tions). In contrast, the predicted sea anemone 1CL
sequence contained introns and was identical o several
EST sequences. In addition, we identifted 1CL homolgos
among EST sequences for two other Cnidarians (Acropara
millepora, Hydractinia echinata) and several nematodes
(Ancylostoma ceplanicum, Globodena rostochiensts, Heterodera
gheines, Parastrongylmides richosurs, Pristionchus pacificus,
Meloidogyme hapla, Meloidogyme javanica, Xiphinema index).
The high sequence conservation of [CL (Table 1) implies
that, if intact copies of this gene were present in other
completely sequenced metazoan genomes, we would
have been able to derect them easily. Thus, it appears that,
of all Metazoa with sequenced genomes, only nematodes
and Cridaria encode [CL,

In comtrast, apparent MS orthologs are readily identifiable
in several animal genomes including nemartodes (C. ele-
gans, C. briggsae, . remanet), cnidarians (N, vectensis),
insects (A, gambiae, A, acgypi, Bombyx mort), echinoderms
[Strongvlocenironss purpuratus), and vertebrates (Damio
rette, Tetraodon rigroviridis, Fugu rubripes, Xenopus tropicalis,
Momodelphis  demestica). The Ownithorkychus - anatinus
(platypus) and Onzias latipes (fish) genomes also appear
1o possess the MS gene. In addition, for an insea (Spadop-
tera frugiperda), two enidarians (Hydractinia echinata, Acro-
pora millepora), & variety of nematodes (Ancplostoma
caninum, Ancylostoma ceylaniciem, Globodera rostochiensis,
Hererarhabdinis bacteriophora, Heterodera glyeines, Heterod-
era-schachtii, Melotdogyne arenaria, Meleidegyne incognita,
Meleidogyme javanica, Parastrongyloides trichosuri, Pristion-
ehus pacificus, Trichosongylus wirinus, Trichuris vulpis,
Xiphinema index), a primitive chordare (Branchiostona flor-
idae, lancelet), and several vertebrates (Trichosurus vialpec-
wla, Hippoglossus hippogicssus, Onzias latipes, Salmo salar,
Pimephaies promelas, Xenopus laevis, Gasterosteus aculeatus,
Fundulus heteroclin), we detected at least one EST corre-
spondding to the MS gene. However, these sequences were
excluded from further analysis because they did not cover
the entire coding sequence. None of the detected MS
homologs from animals have been characterized experi-
mentally although some of them are annotated in Gen-
bank as proteins similar 0 the nematode malate
synthase/isocitrate lvase bifunctional protein, In the
genome sequence of the sea anemone (a Coidarian) N,
pectensis, we detected two distinc MS genes; however, we
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thase pathway that may have been recently lost in placental mammal common ancestor.

strongly suspect that one of these is a comamination from
an animal source because STs comesponding to this
genes were not detectable, and it clustered with verte
brates anc sea urchin in a phylogenetic tree that included
insect M5 genes as an outgroup (data not shown).

Despite the lack of experimental evidence, there are sev-
eral indications that animal M8 homologs (in addidon
those from nematodes) are functional enzymes. Firstly,
the coding sequences of these penes do not contain non-
sense of frameshift mutations or large insertions or dele-
tions, and the protein sequences retain the conserved

motifs characteristic of bacterial MS (data not shown).
Secondly, the gene structure is preserved between closely
related species, and all introns have the canonical splicing
sites (G AG), suggesting that the transcripts of these
genes are properly spliced. Thirdly, most of these
sequences contain regions that are identical or nearly
identical to EST sequences. Finally, the rate of non-synon-
ymous substitutions in these genes is substantially lower
than the rate of synonymouws substitutions, which indi-
cates that these genes are subject 1o purifying selection at
the level of the protein function fi'.]hle 1)
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We have not found the MS gene in more than 15
sequenced genomes of placental mammals. Given the
substantial number of genomes searched, the high conser-
vation of the M5 sequence in other animals {Table 2), and
the fact that the closely related opossum sequence was
used as the queny to search other mammalian genomes, it
seems most unfikely thar we have missed this gene. A
THLASIN search of the placental mammal genome
sequences using the opossum MS sequence as the query
showed several marginally significant hits 1o the same
genomic region where the MS is found in the opossum
genome. However, these searches detected only a small
portion of the MS sequence in placental mammal
genomes, and some of the identifiable sequences con-
tained stop codons (Table 3), A comparison of the gene
orders in the cormesponding genomic regions shows that
the sequences similar 1o M5 were located in the exact posi-
tioi occupied by the MS gene in other animals (Figure 2),

Thus, it appears that these searches detect the true
orthologs of M8 but the gene was inactivated and became
a psendogene in the placental mammal lineage, Although
the general synteny conservation in this genomic region
extends 1o the chicken genome (Figure 2), we found no
evidence of a functional gene or a pseudogene in that
region in chicken. Thus, it appears likely that the M8 gene
has been independently disrupted beyond recognition in
the chicken penome. Similarly, the gene order is con-
served between A gambiae and the numerous sequenced
genomes of Drosophila species (data notshown), however,
we have not been able 1o find any traces of a pseudogene
in Drosophila,

The presence of the detectable MS pseudogene in several
mammalian genomes seemed unexpected because pseu-
dogenes are Llsua.JIy ol rm:gnixable-. after » 100 million
years that separate the mammalian orders from their com-
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Table I: Protein divergence (p-distance) of isocitrate lyase from selected genomes.

Evglena grocilis  Arcbidopsis  Socchorompees G itis  Dictyostel e, Escherichia col Brucela
thabana cRreitae edepan detcaideun i renfarolti relitensit
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thakana
Soccharonyces 0.758 0479
cereviEoe
Caenarhabudits G4 0.606 0612
elepani
Dictyostelam 0.708 0.600 0.608 0369
drcoddeury
Chlomydamen a.716 L Oal4 0.380 0.357
o reindiardtl
Escherichi colf 0.703 0.580 0.606 0.403 0,383 0.360
Brircelto 0710 0.607 [T 0275 0344 0.348 0363
seliienss
Sualfisdobies oz 0565 0.598 0397 0394 0.370 0.are 0.36%
soifoliaric s

mon ancestor, as indicated by several studies of human
and mouse genome divergence |23,24]. However, the
rodent lineage appears to evolve substantially faster than
other mammalian orders |25-27], and indeed, the MS
pseudogene was not detected by genome-wide TBLASTN
searches of rodent genomes (Table 3). Thus, some ances-
tral pseudogenes might have evolved beyond recogniion
anly in the fastest evolving mammalian orders but remain
recognizable in others.

Horizontal gene transfer in the evolution of glyoxylate
cycle enzymes in eukaryotes

Several lines of evidence suggest that there was extensive
HGT of bacterial MS and 1CL genes into several eukaryotic
lineages | 28], The two genes are fused o form a bifune-
tional gene in the nematodes and Fuglena, butin the nem-
atodes, the 1CL domain precedes the MS domain, whereas
Fugiena has the reversed domain order [5]. Since ICL and
MS are encoded in the same ace operon in many bacteria,
and the gene order in the operon also varies, it has been
suggested that nematodes and Buglena acquired these
genes via HGT from bacteria with the respective gene
orders in the ace operon | 3] This hypothesis predicts thar,
in phylogenetic trees, the domains from the bifunctional
eukaryotic genes should cluster with homologs from bac-
teria that have the same gene order in the ace operon. In
practice, testing this prediction was not a straightforward
task. The [CL domain of the bifunctional enaymes of the
nematodes showed very high (>70% identity) sequence
similarity o the 1CL of o-protecbacteria, in particular,
those of the genus Brucella, and clustered with these bac.
terial proteins in the phylogenetic tree (Figure 3). How-
ever, in the sequenced e-proteobacterial genomes, the M8
gene is located in a region distant from the ICL gene such
that there is no ace operon. Interestingly, the M5 domain
sequence of the bifuncrional nematode ensyme showed

by far greater similarity to the MS from a different assem-
blage of bacteria, in particular, several species of Gram-
positive bacteria of the genus Bacillus (~57% identity), in
contrast to the much lower similarity 1o the M3 of Brucella
(~25% identity). In the phylogenetic tree of MS, the nem-
atode sequences did not cduster with any specific bacterial
clade but rather was positioned at the root of the bacterial
subtree (Figure 3). This might result from acceleration of
evolution of the MS domain in the nematode lineage and/
or the absence of the actual bacterial source of the nema-
tode gene in the current databases, Taken together, the evi-
dence seems to be compelling for the horizontal transfer
of the ICL-MS gene from bacteria into the nematode line-
age. The most fikely scenario would involve HGT into the
nematode lineage of a “hybrid”™ eoe operon containing a
"prowobacterial-type” ICL and a “Gram-positive-type”
M3; a bacterial genome with such a “hybrid® ace operon
(or the acwal fusion of the two genes) remains 1o be dis-
covered.

Interestingly, the ICL and MS genes in the cnidarian
genome appear to be encoded in tandem but on the oppo-
site strands, in the convergent, 5°-5" orentation. However,
without further sequencing of this genomic region from
other cnidarians, it is unclear if the two genes originate
from an ancestral ace operon bt one of them was
invened in the sea anemaone or the current gene organiza-
tion is an assembly artifact. In the reconstucted phyloge-
nies (Figure 3), the sea anemone 1CL and MS genes cluster
within different sets of bacteria which, as in the case of
nematodes, might reflect acquisition of a “hybrid® ace
operon from an unknown bacterial source

With regard 10 the bifunctional gene of Euglena, specific
phylogenetic inferences were not feasible because of the
extremely high rate of evolution in the Fuglena lineage
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Table 1: Pairwise comparisons of malate synthase genes in Coelo
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Thie lewer hall of the table shows the rates of evoluton in nonsynonymous sites, and the upper half shows the rates of evolution in smonymous
sites. Maogt of the synonymaus evolution rates wers a1 the saturathen levels. However, In each case, the estimated nontynonymaous subatimution rate

was signficantdy lower than the corresponding synonymols rate, which

(Figure 3). Nevertheless, acquisition of a MS-1CL operon
via HGT remains a distinct possibility. In addition o the
apparent HGT of the bifuncrional gene into the nematade
lineage, the phylogenetic tree of 1CL suggests at least three
other independent instances of bacteria-to-eukaryotes
HGT - into the  Nematostella, Dichyestelium . and
Chlamydomonadaceaelineages (Figure 3a). The rest of
the eukaryotic ICLs, i, those from plants, fungi, and the
ciliate Tetrahpmena, form a well-defined clade with one of
the two copies of the ICL gene from Mycobacrerfa and
Anagromyxobacter dehalogenans (Figure 3a). The mono-
phyly of this clade is additionally supponed by the pres-

Table 3: Malate synthase preudogenas in placental mammak

i indicative of purifying selection at the umino scid sequence level,

ence of a distinctive inserted domain which seemsto be a
derived shared character (Figure 4). Thus, considering all
the evidence, the most likely evolutionary scenario for 1CL
seems to include the following events (Figure 5): 1) early
acquisition of the 1CL gene by an ancestral eukaryote from
bacteria, most likely, the mitochondral endosymbiont,
it} evolution of the insertion domain, possibly, by inter-
nal duplication with subsequent radical divergence, iii)
secondary, reverse HGT of the 1CL gene from an early
eukaryore to a bacterium (possibly, an ancestral Mycobac-
terium), i) loss of the 1CL gene at the outset of animal
evolution, iv) at least five addidonal HGTS from bacteria
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The phylogenies of isocitrate lyase (a) and malate synthase (b). The tree was constructed using the Bayesian approach
with the posterior probabilities shown on the tree. Posterior probabilities of 1.0 are not shown,

to eukaryotes, resulting in displacement of the ancestral
enkaryotic form of 1CL by various bacterial forms in
chlamydomaonads, ictyostelium, Fuglena, cnidaria, and
nematesdes, In the case of nematodes and Euglena, and
possibly, cnidaria as well, HGT was accompanied by
fusion of 1CL and MS genes, probably, facilivated by the
juxtaposition of these genes in the respective bacterial ace
aperons (it is also conceivable that the fusion occumed
within a bacterial genome prior to the HGT). An alterna-
tive scenario would involve the origin of the eukaryotic-
type 1CL in a distinet bacterial lineage ( possibly, an ances-
tral Myvobacterium) with subsequent HGT into an early
prokaryote. Given that all bacteria that have the eukaryo-
tic-type 1CL also possess a second, typical bacterial 1C1,
this scenario seems less likely, Regardless of the exact evo-
lutionary scenario of 1CL, the unusaal, for animals, acqui-
sition of the bifunctional 1C1-MS enzyme by nematodes
via HGT from a bacterial source appears undeniable,

The MS phylogenetic tree is less well-resolved than the 1CL
tree (Figure 3b), and the multiple alignment of MS has
not revealed any plausible derived shared characters, such
as lineage-specific large insens (Figure 4), complicating
the inference of the evolutionary scenario. In order 1o
assess the monophyly of eukanvotic M8, we compared

intron positions in eukanyotic genes, Many introns are
conserved in orthologons genes from plants and animals,
whereas independent gain of introns in the same position
in different lineages is unlikely [29,30], Therefore, the
presence of even one shared intron strongly suggests
manophyly of the respective genes as opposed 1o origin
via independent HGT events. Indeed, although plants and
coelomate animals did not form a clade in the M5 tree
{Figure 3b) and instead appeared to cluster with different
bacterial species, plant and coelomate M5 gepes shared
one intron in the same position (Figure 6), which is best
compatible with their origin from a common eukaryotic
ancestor. In contrast, the nematode and the enidarian
gene do not sharve introns with other animal, fungi or
plant genes (or with each other), in either the MS and 1CL
sequences, which is consistent with a history of HGT (see
abiwe).

Discussion and conclusion

The evolution of glyoxylate cycle enzymes, 1CL and MS,
seems 1o have involved a remarkable array of events.
These include at least three independent gene fusions, in
nematodes, Fuglena, and Anaerommyxobacter dehalogenans,
multiple HGTs, and gene loss, in particular, in animals,
The probable acquisition of the bifunctional ICL-MS gene
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Figure 4

Multiple alignment of isocitrate lyase in the vicinity of the plant- and fungal-specific insertion.

via HGT from bacteria in nematodes and cnidarians is of
special note because the very reality of acquisition of new
genes by animals via HCGT from bacteria is a highly contro-
versial topic, and there are very few strongly supported
cases [31-35]. The HGT of the bifunctional 1CL-MS s sup-
ported by multiple lines of evidence, namely: i) unusually
high similarity between the respective animal and bacte-
rial genes, at leasy, in the case of 1CL, §i) confident place-
ment of the ICL and M5 domains of the animal
bifunctional enzymes within specific bacterial branches in
phylogenetic trees, iit) juxtaposition of IC] and MS that is
not seen in other eukaryotes but is common in bacteria
(ace operons), iv) absence of shared intron positions
between the bifunctional enzymes and the stand-alone
homologs from other eukaryotes. Collectively, these

observations seem 10 make the nematode and cnidarian
TCL-MS true “smoking guns® of HGT from bacteria to spe-
cific lineages of animals. We believe that this is an impor-
tant proof of principle that justifies a systematic search for
ather such cases. )

Given that maost archaea lack the ghyoxylate cpcle eneymes
(with a few exceptions thav, in all likelihood, can be anrib-
uted 10 HGT from bacteria (|36, Figure 3)), it appears
maost likely that eukaryotes originally acquired these genes
from the mitochondrial endosymbiont. The ICL gene was
lost early in metazoan evolution but was reacquired in the
nematode and enidarian lineages. In contrast, the MS
gene was generally retained throughout the evolution of
the eukaryotes but became a pseudogene in placental
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Figure 5

The inferred scenario for ICL and MS during eukary-
otic evolution, The schematic shows only selected
branches of the phylogenetic tree of eukaryotes, those that
are relevant to inferred events in the evolution of the glyoxy-
late cycie. Block arrows show horizontal gene transfer, and
crosses show gene loss; MSP seands for malate synthase
pseudogene,

mammals. Combined with conflicting experimental data,
these observations stress the conundrum around the fune-
tion of the glyoxylate cycle-specific enzymes in coelomate
animals. One possibifity is that these enzymes, [C1 and
MS, have been lost in Coelomates, but M5 was recruited
10 perform a new function. However, there is cummently no
experimental evidence of any function of M5 other than
its involvement in the glyoxylate cycle, and no indication
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of acceleration of evolution of the MS gene in the Coelo-
mate lineage, which would be expecied in the case of a
substantial change of function. Alternatively, the ICL gene
might have been lost after a different, perhaps, distantly
refated or unrelated gene evalved the isocitrate lyase func.
tion in the Coelomate lineage - a potential case of non-
orthologous gene displacement, a fairly commuon evolu-
tionary phenemenon [37]. This explanation is compati-
ble with several experimental reports that demonstrate the
presence of the ICL and M$ activities in Coelomates [9-
20], However, since the validity of these experimental
results has been challenged |21,22], determination of the
function(s) of the MS in Coelomates would be a major
step towards the resolution of the conundmm.

The functional significance of the pseudogenization of MS
in placental mammals and possible independent loss of
M8 in birds is another enigma, One possibility is that the
generally higher ransaminase activity in warm-blooded
mammals [38] enhanced the removal of the toxic glyoxy-
late through transamination by several glyoxylate-animo-
transferases ([39-43], Figure 1), rendering the M5 activity
non-essential, The alternatives are that, even if other Coe-
lovmiates possess the ghyoxylate ovele, placental mammals
andl birds have lostiventirely, or yet another gene evolved
the malate synthase function in an additional case of non-
orthologous gene displacement.

The extreme evolutionary mobility of the glyoxylate eycle
emrymes might seem puseling although, as far as prokary-

Minodel phis domestica 97 TERFLRALGSTAH Q" VIFD DENCTTFFNG RGL YN FOAV 137
Xenopus tropicalis 100 TERFHRALLSSACKR (P VIFD DINCPTFENGUKGE FNLYOVY 140
anio rerio 103 TORLI MELKSTAQGLO" VIFD DGENCPTYRNGE KGE YNVYOAV 143
Tetraodon nigroviridis 97 TERFI KALCTPAQG O VDFD_DGNCPTYHNCE KOG HNVMVEAY (37
Fugu rubripes 97 TERFI KALQTPAEGH Q" VDFD DONCPTYHNOL RGEEDVLEAY 137
Strongyl ecenirotus purpuratus 93 T OHFTRSLOSSAQGE QP TIFD. DOHCPTRATON EGLYNVYRAV 133
Anophel es gambeae 98 T HFTRCLYAEVQGE (0 VIFD. DOHCP TWERNTVLGLFNVIRAV 1538
Caenorhabditis clegans 534 REMV NAMMSOANVEM AIFE DERSPTWINGLEGO MLYDAY 574
Caenorhabditis briggsae 537 REMVI NAMMNSGANVEM ADFE DENSPTWENOLEGO NLYDAV 567
Yarrowia lipolytica 118 REMI NALNSDVWIYM ADFE DSSAPTUWSNMVDGOAWNLYDGN 158
Candida albicans 105 REMV NALNSNVATYM ADFE_DSLTPAVWENLVEGOWNLYDGY 145
Saccharomyces cerevisiae 109 RNMVLI NALMNAPYNTYM TIFE_DEASPTWSMWYGOWVMLYDAL 149
Cryprococcus neoformins a7 BEMVT NALNSGAKTFM ADFE"DENSPTVERMYLGOANLYDAT 137
Aspergil lus fumigatus 101 FEMANALNAPAVWIYM AIFE® [ESAPTWANM NGCAMNMLYTAL 141
Kl uyveronvees lactis 109  RMMUVNALNSIVETYM TIDFE_DBASPTWNMV YWWMLYDAE 149
Arabidopsis thaliana 110 REM I NALMSGAKVEN AIFE_ DALSPEVWERLMRGHVNLEDAY 150
{xyza saliva 110 REMVE NALNSGAKVEM ADFE_DALSPTWENLMRGOWVNLEDAV 150
Dictyostelium dizcoideum 98 RENMVT NALNSGAKVEM ATFE  DANCPNWENS] FCEXOMNM DAN 136
Figure &

Multiple alignment of malate synthase in the vicinity of the intron common to higher animals and plants. The
presence of an intron is shown with the carrot symbol (%) while the absence of one is shown with an underscore ().
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atic metabolic pathways are concerned, it is not entirely
unprecedented |44]. The key biological consideration
appears t be that the two eneymes of the glyoxylate cycle
comprise a compact, readily transferable functional unit,
especially, when the two genes are juxtaposed or fused.
Acquisition of this unit immediately endows the recipient
with new metabolic capabilities - to produce succinate
and w eliminate the toxic glyoxylate - which could be a
selective advamage, at least, under some metabolic
TERImEs,

Methods

We employed a series of similarity searches for isocirate
Iyases and malare synthases in GenBank, and complete
and draft genomes of all Metazoans available at NCBEand
EMBL. The genomies searched and the parameters of the
searches where identical for the two proteins.

The Saccharomyces cerevisige sequences (isocitrate lyase -
NC_001137; malate synthase - NC_001146) 1o the non-
redundant protein sequence database at NCBI [45] using
the BLASTT program [46] in order to identify all Metazoan
homologues that have already been annotated in protein
seqquence, This approach identified isotrate lyase genes
that were annotated in A, gambice (XP_561347), C. elegans
{NP_S503306), C. briggsae (CAEG2276), Serongyloides ratti
(BADR9436) and 8. stercomalis (AAFQ0535), and malate
synthase genes in A, gambige (XP_315354), C. elegans
{WP_503306), C. briggsae (CAE62276), S, purpuratus
(XP_782946), 0. revie (XP_685378) and T. nigroviridis
(CAF1513), These hnmm[{\gm were identified unam-
biguously, with low expectation values (E< 1 = 100%) and
with at least 40% identity

Al genes thar were predicted from complete genomes
rather than obtained by direct sequencing of mRNAs
{genes from A gambiae, [ revic and T, nigroviridis in this
case) were checked for consistency of the annotation. To
do this, the predicted protein sequence were mapped to
the complete genomes available at the UC Santa Crox
Genome Browser [47] using the BLAT program [48] and
checked for cormect splice sites in introns (GT.AG), for
start and stop codons in the first and last exons, and for
the absence of nonsense or frameshift mutations in the
retrieved sequence. Where appropriate, the annotation
was modified to fit these criteria, and the resulting protein
sequence checked by alignment o closest homologues
that have been sequenced directly from an mRNA

The next step of the sequence query was a recursive BLAST
search of the available drafi and complete Metazoan
genomes, First, all isocitrate lyase and malate synthase
protein sequences, which were identified in the step
described above, were compared with the nucleotide
sequences of these genomes using the TRLASTN program
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[46]. When a homolog was found in one of the genomes,
it was annotated according to the sequence similarity with
thie respective protein sequence, and then checked for cor-
rect splice sites, start and stop codons, and the lack of
frameshifi and nonsense mutations. To complete the
search cycle, the newly identified genes was then used as a
query in a new TBLASIN search of the Metazoan
genomes. The following genomes were queried. Homo
sapiens, Pan troglodytes, Macaca mularta, Mus musculus, Rar-
g norvegicus, Cavia porcellus, Canis familiaris, Felis catus,
Bos taurus, Dazypus movemcinctus, Fohinops weifairi, Loxo-
domta africana, Onetolagus cuniculiis, Sorex araneus, Myotis
lucifugus, (holemur garnettis, Spermophilus tridecemlineatus,
Monodelphis domestica, Ornithorhynchus anatinus, Callus
gallus, Xenopus ropicalis, Takifugy rubripes, Tetrasdon negro-
virtdis, Danio rerio, Ciona savignyt, Ciona intestinalis, Strong-
plocentrotus  purpuratus, Bombyr  mor,  Aedes  aegypn,
Angpheles gambiae, Tribolium castaneunt, Nematostefla vecr-
ensis, Caenorhabditis elegans, Cenorhabditis briggsae and
twelve Diosophila species, To marginalize the possibility
that the ICL and MS gene sequences are the result of bac-
terial contamination, we checked for the presence of an
introns by BLAT |48] and ESTs by a TBLASTN search [46]
in dbEST [44].

Finally, position-specific search implemented in PSI-
BLAST | 50] was used to search for possible missed homo-
logues among the annotated genes from human, mouse,
rat and Drosaphila genomes and a ScanProsite [51] search
of all genes in the LniProt (Swiss-Prot and TrEMBL) [32]
and PDB |53] databases, This procedure has not revealed
any Metazoan  isocitrate  Iyase or malate  synthase
sequences that were not picked up with the BLASTP or
THLASTN searches,

Syntenic regions of genomes revealed by BLAST and BIAT
searches of genes adjacent 1o the 1CL and MS genes; only
assembled genomes were considered. Multiple protein
alignments were constructed using the MUSCLE program
[54] with default parameters and manually checked for
errors and for consistency of the alignment with the Scan-
Prosite |51] 1CLand MS aminoacid patterns. Rates of syn-
onymous and nonsynenymeus evolution were caleulated
with the PAML package [55].

Frylogenetic mees were constructed by two methods, the
neighbor joining procedure with 10,000 bootstrap repli-
cates using with the MEGA program |56] and the Bayesian
inference approach implemented in the MrBayes program
[57] run with a GTR model assuming a gamma-distribu-
tion of substitution rates across sites for 1 million itera-
tions (meme ngen = 1000000 in MrBayes), The two
methods revealed, largely, congruent phylogenies.
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Abbreviations

a-ketoglutarate -KGl, o-keroghmarate dehydrogenase -
KGIVH, acetyl-CoA - Ac-CoA, aspartate - ASP, citrate- CIT,
gluconeogenesis - GNG, glutamate - GLLU, glycogene -
GLYC, ghvosylate-Glyox, isocitrate - 18C, isocitrate lyase -
ICL, malate-MAL, malate synthase - MS, oxalacetate -
OAA, phosphoenolpyruvate - PEP,  succinate-SLIC,
transaminases {aminotransferases) - TRAM.

Reviewers' comments

Reviewer’s report |

Arcady Mushegian, Stowers Institute for Medical Research
{with additional contribution from Manisha Goel).

This is an interesting work, starting o trace the unusual
path of evolution of malate synthase and isocitrate lvase
in animal kingdom, with additional discussion of what
might have been going on with these genes in bacteria,

I suggest that the authors do the following:

1, Due diligence with the databases of unfinished
genomes: | did a quick thlasin against the environmental
sequence genomes at NCBLand saw at least one entry that
codes for the same domain tandem as the wo-domain
nematode prowin: is itone ORF or two, from a nematode
ar perhaps from a bacterium? The unfinished bacterial
genomes - perhaps the donor of two genes to the nema-
tede lineage can be identified among them?

Author response: We significantly expanded the scope of
searches in the revised version, Indeed, there are some very sim-
ilar sequences of the 1CL-MS5 fused nematode gene in the envi-
ronmental sequence database. We find sequences thar are
highly similar te the rematode gene in nwo different configura-
tions, with ICL and MS$ or not fused, Unfortunately, however,
it i3 fmpossible to el whether these sequences are jrom bacteria
or eukarpotes, and therefore, we canrot use this information 1w
resolve any of the tssues regarding the potential donsr of the
TCL-MS fused gene in the nematodes,

When the authors say ‘gene ransfer into the nematode
lineage!, how do they know it is not an earlier event
{search Schmidrea genome traces perhaps, also Coelenter-
ata)? The same daabases, plus ESTs, are needed 1o
account for additional 1CLs (1 think | can see some in cor-
41'5}.

Author response: Since the submission of the first draft of
this manuscript, the cnidartan Nemarostella vectensis genome
draft has been completed, and now we have included the 1CL
and MS gene sequences found in this genome fnte our analysis.
Interestingly. the sea anemone genes appear 10 cluster with bac-
tertal genes as well, albeit with different lineages of bacteria
than the nenatode genes. We believe that HGT of the fused
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gene (or operom, with subsequent fusion) in the nematode lin-
eage is the most parsimonious solution, An earlier HGT, e.g.
o the common ancestor of Metazoa, woubkd require genes losses
in addition.

Reviewer's report 2
Andrel Osterman, Burnham Institute for Medical Research

‘The strength of the manuscript by F. Kondrashov et al. on
Evolution of glyaxylate oycle eneymes in Metazoa is in the
detailed analysis of possible evolutionary scenarios thar
included multiple horizontal gene ransfer (HGT) events
from bacteria 1o eukaryotes beyond a symbiotic ancestor
of extant mitechondria. Such a case-study is a best possi-
ble contribution fo the heated debates on this exciting
albeit highly controversial topic. Based on a solid compar-
ative analysis of genomic sequences of multiple bacterial
and eukanyotic species, which included the delineation of
intronfexon strucires and “psevdogenized” regions in
genomes of Metazoa, the authors presented several plau-
sible scenarios. While differing in details, all of them inev-
itably include several independent cross-kingdom HGT
and gene fusion events, In that tegard this paper is a
highly recommended reading and thinking material, A
weaker aspect of this study is a relatively low impact on
our understanding of a metabolic driving force behind
these amazing events. Despite a heroic attempt o build
on the existing fragmental and highly controversial bio-
chemical data, an emerging picture remains largely
obscure, The above notion hardly argues against the
authaors of this study, bt rather provides another illustra-
tion of a profound disregard of the basic metabolic bio-
chemistry by the overwhelming majority  of  the
experimental research community in the post-genomic
era, A juxtaposition of a monumental effort (and quite a
stunning progress) on elucidating minute details of sign-
aling cascades, transcription. machinery and other com-
plex systems versus an apparent lack of any drive to finally
straighten out basic questions such ax (i) presence or
absence of malate synthase activity or (i) actual function
of a-malate synthase homologs in placental animals, can
hardly be reconciled other than by a popular misconcep-
tion of the actual depth of our knowledge of basic metab-
olism. Contrasting this problem and putting it in a
fundamental evolutionary context is another (likely unin-
tended) impact of this article

Crwerall, | firmly support the publication of the submited
article in *Biology Direct®, and | believe that it is a perfect
fit for the mission of this distinguished Journal.

Author response; Actwally. the original motvation behind
this article was W apply computational approaches in an
attempt to resolie the paradox of the ghaylate cyle in mam-
mals and bivds: several [aboratories have reported that this
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pathuay wis funcional bur the participant enzymes could not
be idertified. As it happens, the paradox only deepened as we
ascertained the presence of “orphan® MS in many animals and
psewdogenes in mammals, So it was very much our intent,
indeed, our primary goal, o attract attention 10 the mysteriols
Junction of the amimal M35, and hopefully, to stimulate relevant
biochemical experimentation. The discovery of interesting cases
of FIGT was, in asense, a by-product of our research, even if it
might have the greatest general impact of the observations
reported here.

Reviewer's report 3
Chris Ponting, Oxford University

This is an interesting study aiming at resolving the long-
standing issue of whether malate synthase and isocitrate
lyase genes are functional in many animal genomes, 1t is
argued that the malate synthase gene is functional in non-
eitherian mammals, other vermebrates, echinoderms and
arthropods, but that eutherians have lost this gene
through  pseudogenization. Meanwhile, the isocitrate
Ivase gene appears to be absent from all animials with the
notable exception of nematode worms {where it is fused
with malate synthase). It is argued that these two genes
wene transferred horizontally into several cukaryotic line-
aAges

One of the issues with which the authors had to contend
was of contamination, | agree that the homologues pur-
ported o be in mosquito genome sequences appear o
result instead from contamination from bacterial sources.
Cerntainly there is evidence that the mosquito genomes are
contaminated with these bacterial genes, particularly
berause they appear 1o be single exon genes present
between clone gaps in unplaced sequence, Contamina-
tion might also be an explanation for the postulated hor-
izontal gene wansfer of ICL im0 Dictpestelium  and
Chlamydomonas lineages, but this wasn't (but should have
been) considered by the authors.

Author response;Contamination can be 4 sevious problem in
studies such as this ome. We have dore our best to exclude the
possibiliy. of bacterial or ether contaminations of Metazoan
sequences by examining gene structure, EST sequences, and
level of sequence similarity, We concluded that the 1CL
sequence from the mosiquite Anopheles gambeae and one of the
MS sequences from the enidarian Nematostella vectensis are
likely contaminants, By contrast. other Metazoan 1CL and MS
genes, including those of Diceyostelium and Chlamydomonas,
contained inerons, and most have several independent EST
sequences in GenBank which effectively nules out bacterial con-
tamination.

A main finding of this report is that the isocirate lyase
gene is absent from “completely sequenced metasoan

hitp:iwww.biclogy-direct. comicontent/1/1/31

genomes®, Whilst this appears true, there are numerous
isocirate lyase ESTs from enidarians apparent in public
databases. The authors will need w determine whether
these represent independent horizontal or else vertical
acquisitions, or else consider whether they are contami-
nants of the type seen in mosguito genomes,

Author response:lndeed, these EST sequences are identical to
the ICL and one of the M5 genes from the genome. Thus, we
have included the sequences from the recemtly completed
gerome draft of Nematostella vectensis; however, we hawe mot
included the EST sequences of other species with FSTs for which
we could noe obtain the cognate genamic sequences.

Table 2 shows PAML non-synonymous and synonymous
substitution rates between diverse metazoans. The vast
majority of these estimates are not meaningful since satu-
ration of substitution will have occurred, and so Table 2
should not be kepr. 1 the authors believe me 1o be in error
here, they should demonstrate their point using classic
tests for saturation.

Authar response: Indeed many of the values reported in that
table are beyond saturation, However, what i clear from this
table is that the nonsynonymous divergence (which 5 nowhere
nedr saturation levels) i much lower than the rate of synony-
mows divergence, thus demonstrating functional constraint.
Therefore, we opted to keep the table after adding a note of cau-
tion 1o the reader regarding the interpretation of the estimates
of the syronymous divergence,

I do not think the authors have presented sufficient evi-
dence that there “was extensive HEGT of bacterial MS and
1CL genes into several eukaryotic lineages®. They imply
that these genes have been acquired independently from
separate bacterial sources before being fused in pema-
todes. They discount the possibility that the evolutionary
rate of nematodde malate synthase might be panicularky
high without explanation and instead choose a scenario
that the bacterial source is as yet unknown, 1 do not con-
sider that this provides “compelling® evidence for hori-
zomtal transfer of both ICL and MS genes from bacteria,
which has implications for the title of the manuscript.

Author response: Suppose the genes in the nemarode, as well
as Chlampydomonas, Dictyostelium and Nemarostella (bue not
other eukaryotic species) have experienced a substantial accel-
eration of the evolution rate. In erder for such acceleravion to
result in the nesting of these sequences within bacteral clades
{which is what we observe) this acceleration must have been
coupled with extensive convergent evolution as well. We befieve
that such convergent mode of evolution 5 highly unlikely, to say
the least, and a much more parsimoniows explanation for the
phyvlogenetic tree reported here & a series of HGT events, Thus,
we stand by our statement that the evidence for several cases of
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HGT from bacteria to specific eubaryotic lineages, including
nenatodes and Cridaria, i compelling, and there was no rea-
son to modify the title of the paper. Pantly in constderarion of
these comments, the discussion of HGT was expanded in the
revised version of the paper.

Maoreover, if one considers that the horizontal acguisition
of ICL by slime mold and Chlamydemenas lineages might
instead be accounted for by contamination of sequences
by bacterial sources, there is even less evidence for the
“four additional HGTs from bacteria w enkaryotes” pro-
posed

Author response: As discussed above in our response 1o
Mushegian®s comments, it 15 highly unlikely thar the source of
ICH, and MS sequences from Chlamydomonas, Dictyostelium
and Nematostella iz bacterial contamination sirnce the genes in
these species have introns and ESTs corresponding 1o these
gemes are available for all three o fthese species. We mention
these observations in the revised text.
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ABSTRACT

An extra copy of a gene is though to provide some functional
redundancy, leading to a higher rate of evolution in duplicated genes. We
estimate the impact of gene duplication on selection in tuf elongation
factor paralogs and find that without gene conversion, they evolved
significantly slower compared with when gene conversion has been a
factor in their evolution. Thus, tuf gene copies evolve under selection that
ensures their functional uniformity, and gene conversion reduces selection
against amino acid substitutions that effect the function of the EF-Tu

protein.
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Introduction

Gene duplications are routinely assumed to evolve under weaker selection
than nonduplicated genes because extra gene copies are thought to be, at least
partially, redundant [1-3]. Such functional redundancy, which may take place
regardless of a fitness increase associated with a gene duplication [4], leads to a
relaxation of selection and a subsequent acceleration of evolution in recently
duplicated genes [3-7]. However, commonly used methods of investigating the
acceleration of the rate of evolution in duplicated genes are not applicable to
individual gene families. Here, we employ a new method of investigating the
strength and mode of selection acting on duplicated genes by analyzing the
impact of paralogous gene conversion on the rate of evolution of gene copies.
We performed this comparison on the paralogs of the elongation factor tuf gene
(EF-Tu protein) in gamma proteobacteria. EF-Tu plays a crucial role in protein
synthesis by binding aminoacylated tRNAs to the ribosome, which is essential in

all living organisms [8-10].

Gene conversion and selection

The impact of gene conversion, a form of recombination, on the evolution
of the involved gene copies is well known [11-15]. Conversion between gene
copies prevents their divergence, leading to concerted evolution [3,11], and will

occur until gene copies become too diverged, such that recombination cannot
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occur between them [8,14]. This process can either increase the strength of
selection acting on gene copies, or weaken it. If a gene duplication does not
bring enough fitness advantage (is partially redundant), the strength of selection
acting on two copies of the gene is expected to be relaxed compared to that of
the same single copy gene [4]. Gene conversion can reduce such relaxation of
selection in a duplicated gene by spreading “degenerate” mutations (mutations
that are benign in one copy but deleterious if present in both gene copies, which
is a direct result of genetic redundancy [2,5]), thereby increasing the efficiency of
selection against such mutations. Alternatively, gene conversion can eliminate
such degenerate mutations by gene converting the original copy over the copy

that carries the degenerate mutation.

Gene conversion can also reduce the strength of selection acting on the
gene copies. This may occur if there is selection against functional divergence of
gene copies, which may occur, for example, with evolution of expression rate of
interacting protein subunits [16]. Thus, if a mutation occurring in one of the gene
copies is deleterious, but is benign as long as it occurs at the same time in both
copies, gene conversion can relax selection acting against such mutations. If
fithess increases with the number of gene copies in a non-epistatic fashion there
will be no genetic redundancy, such that the strength of selection against
deleterious mutations will be the same regardless of the number of gene copies
[4]. Therefore, gene conversion will have no impact on the selection pressure in

gene duplicates as long as the duplication event increased fithess in a non-
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epistatic fashion [4]. In essence, frequent gene conversion ensures that gene
copies evolve as a single unit, such that selection and the rate of evolution in the

two converting copies would resemble that of a single copy.

Thus, a comparison in the rate of evolution in lineages with and without
gene conversion can reveal the change in the mode and strength of selection on
gene copies after a gene duplication event. Two highly similar copies of the tuf
gene, tufA and tufB were found in Escherichia coli and Salmonella typhimurium
[17,18], suggesting that this gene undergoes gene conversion. A more recent
phylogenetic analysis of these genes in several complete bacterial genomes
confirmed that the tuf gene undergoes gene conversion in proteobacteria [19].
Since the publication of this study [19], the number of available complete
bacterial genomes substantially increased, enabling a quantitative analysis of this

process.

Faster rate of evolution in nonindependently evolving gene copies

We constructed a phylogeny of the tuf gene in gamma proteobacteria (see
supplementary material online), which revealed that tuf gene copies from the
same genome cluster together, indicating a high rate of gene conversion
(Supplementary Figure 1, [1,19]). Furthermore, the tuf gene copies were found in
the same syntenic region (Supplementary Figure 2, [2,19]) implying that the

phylogenetic pattern observed here (Figure 1, Supplementary Figure 1) is
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unlikely to be the product of multiple independent gene duplications. Although the
deep branches of the phylogeny showed weak bootstrap support, terminal
branches of the tree were reconstructed reliably, making it possible to map the
most recent gene conversion events on the tree (Figure 1, Supplementary Figure
1). All branches in the phylogeny could then be partitioned into two sets: a)
branches that represent evolution that occurred since the last gene conversion
event (red branches in Figure 1), and b) branches that represent the evolutionary
history before the most recent gene conversion event (black branches in Figure

1),

We then measured the rates of synonymous (ds) and nonsynonymous
(dn) evolution on these two types of branches of the tree using the PAML
package ([20], see supplementary methods online). First, we used the rate of
evolution along the branches that have not been affected by gene conversion to
estimate the rate of gene conversion. The average number of synonymous
substitutions per site between gene copies along these branches was 0.030;
assuming that both synonymous substitutions and gene conversion events are
(nearly) neutral, the rate of gene conversion (c) is approximately 30 times faster
than the point mutation rate (1) (ds = p/c, see [15]), which is comparable to the
rate seen in other species [15, 21]. The average number of nonsynonymous
substitutions along the same branches evolution was ~1.5, such that two gene
copies diverge by only 1.5 amino acid substitutions before they undergo gene

conversion. Such a rapid rate of gene conversion in tuf genes suggests that most
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amino acid substitutions that occurred along the branch segments corresponding
to evolution before the last gene conversion event have been subject to selection

in both gene copies.

Next we compared the number of nonsynonymous and synonymous
substitutions to estimate the strength of selection acting in branches before and
after the last gene conversion event. Instead of averaging the dn/ds values from
each branch, we estimated the total number of nonsynonymous and synonymous
substitutions in the two types of phylogenetic branch segments ([22], see
supplementary methods online). We found that the number of amino acid
substitutions in the branches after the last gene conversion event was
significantly lower (Table 1), and the dn/ds ratios were equivalent to 0.0577 in
branch segments without gene conversion and to 0.0758 in branch segments
with gene conversion (p < 0.010, Fisher's exact test), indicating stronger
selection against amino acid substitutions when gene copies evolve
independently. This result is contrary to what is expected under the usual
assumption of the redundancy of gene duplications [2,5]. We observe that when
the gene copies are accumulating amino acid substitutions independently they
are more conserved. However, this result is expected if there is selection to
maintain similar functional characteristics in both gene copies. In that case, the
selection pressure against functionally important amino acid substitutions
occurring in independently evolving genes can be alleviated by gene conversion

maintaining sequence and functional homogeneity of the converting gene copies.
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Because the EF-Tu protein binds to the aminoacylated tRNAs [8-10], the
amino acid residues on the protein-tRNA interface may be particularly important
to the functional properties of EF-Tu. Thus, we compared the rate of protein
evolution at the protein-tRNA interface (using three available crystal structures of
protein-tRNA complexes, Supplementary Figure 3, see supplementary methods
online [23-25]) on the branches representing the rate of evolution after the last
gene conversion versus those branches representing the rate of evolution before
the last gene conversion event. We estimated the number of amino acid
substitutions inside and outside the protein-tRNA interface in the two types of
branches, confirming that amino acid substitutions in the protein-tRNA interface
occurred less frequently when the two gene copies were evolving independently,

than if their evolution was affected by gene conversion (Table 1).

A novel mode of selection?

The acceleration of evolution in non-independently evolved gene copies,
preferentially affecting the protein-RNA interface, suggests that the tuf gene
copies are subject to a different type of selection than is generally expected in
duplicated genes. It appears that the tuf elongation factor genes are evolving
under selection that is aimed at functional homogenization of its copies,
preventing their sequence divergence. Thus, some substitutions that are
deleterious if present in one copy, would be (nearly) neutral when present in both

copies simultaneously. This selection may be based on the functional interaction
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of proteins coded by diverging gene copies; to our knowledge, such selection in
duplicated genes has yet to have been described. There may be several reasons
why functional heterogeneity of EF-Tu proteins is deleterious. Different tRNA-
binding coefficients of EF-Tu copies may lead to inefficient regulation of their
expression, or cause translation rate heterogeneity. The subfunctionalization of
EF-Tu gene copies that may lead the two copies to preferentially function with
different tRNAs may be particularly deleterious if the different copies interfere
with the function of the other copy through the formation of nonfunctional protein
complexes with the non-specific RNA. Thus, selection for functional uniformity
may also be thought of as selection against subfunctionalization (functional
specialization). We expect for such selection for functional uniformity to be
particularly strong in gene copies where independent functional or expressional
regulation is not straightforward, such as when gene copies are located in

different operons, which is the case with the Tu elongation factor (17-19).

Methods

Rationale for our comparison

Nonorthologous gene conversion is a form of recombination that leads to
the replacement of one DNA sequence with another [26]. This process appears
to occur rapidly [27], and leads to concerted evolution, which is the observation

of non-independent evolution of paralagous sequences [26]. On a phylogenetic
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tree, gene conversion events look identical to independent duplications (see
Supplementary Figure 1), however, further support for gene conversion can be
obtained through a comparison of synteny (Supplementary Figure 2). It is
expected for the two sequences to diverge slightly before a conversion event
reverts the diverging sequences to an identical state [28,29] involving either the
entire or just a fraction of the paralogous copies [26,28]. Thus, novel mutations
that arise in one of the copies can either be removed by conversion by reverting
to the original state or may spread to other copies by the reciprocal gene

conversion event.

Gene conversion can change the nature of selection acting on mutations
arising in gene copies [29,30]. Consider a haploid organism with two gene copies
with an extremely fast rate of gene conversion. Since a novel mutation would
either rapidly disappear or spread to the other copy through gene conversion,
only two genotypes (both copies mutant or wild-type) would be visible to
selection. Thus, in a system with an infinite rate of gene conversion, selection is
equivalent to that acting on a single gene copy since novel mutants would be
screened by selection in both copies simultaneously [31,32]. In a haploid system
with a relatively fast but not an instantaneous rate of gene conversion there will
be a time period between the emergence of a novel mutant and a gene
conversion event, such that the intermediate genotype (one copy mutant and one
copy wild type) may persist or even fix in the population. Thus, substitutions fixed

in the population without the influence of gene conversion will be subject to
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selection pressure that considers the state of the two gene copies independently,
while substitutions that have been converted and then fixed must have been
subject to selection pressure that considered their impact on both copies

simultaneously.

Phylogeny and genome location of the tuf gene

We assembled all tuf genes from all the complete genomes of gamma
proteobacteria available in GenBank [33] Majority (47 out of 56) of the gamma
proteobacteria genomes contained two copies of the gene, while no genomes
with three copies of the gene were found. To make sure that no copies of the tuf
gene were omitted, we performed TBLASTN [34] searches of the tuf protein
sequence against the complete genomes. We found no evidence to suggest that

any tuf gene copies were missed in our analysis.

Gene conversion can maintain a high sequence similarity between gene
copies. A phylogenetic comparison of gene copies from several genomes is often
used to reveal gene conversion, with a clustering of gene copies on the branches
of the phylogenetic tree in multiple closely related species [27]. We reconstructed
the phylogeny of tuf genes from the 56 complete genomes of gamma subdivision
of proteobacteria using a neighbor joining approach as implemented in MEGA3
[35] with 10 000 bootstrap replicates, and a Bayesean approach as implemented

in MrBayes [36] with 1 million iterations (mcmc ngen = 1000000 in MrBayes)
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using the General Time Reversible model [36]. Both methods yielded congruent
phylogenies. All gene copies of the tuf gene tended to cluster together on the
branch tips of the phylogenetic tree (Supplementary Figure 1) indicating that they
undergo rapid concerted evolution in gamma proteobacteria. While the accuracy
of the phylogenetic reconstruction is questionable for deep branches of the tree,
the reconstruction of the terminal branches is robust, as shown by the high

bootstrap values on the phylogeny (Supplementary Figure 1).

Genomic location

One of the ways to rule out the possibility of multiple independent recent
gene duplications, which in theory can produce the same phylogenetic pattern, is
to analyze the genomic location (synteny) of the gene copies [37]. Genomic
location of gene duplicates is not expected to change in the course of gene
conversion, while independent gene duplications should place the new non-
tandem copies in a random location. While it is unlikely that so many
independent duplications occurred in the case of the tuf gene, we nevertheless
looked at the genomic location of tuf genes in an attempt to find evolutionary

changes of genomic location in the course of gene conversion.

Both of the tuf gene genomic locations are conserved within genomic
regions that code for proteins with translation-related function (Supplementary

Figure 2, [37]), with the tufA gene being close to the fusA gene coding for the
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elongation factor EF-G and the tufB gene being closer to the CoA gene. In two
cases, we have observed a change in the genomic location of one of the tuf

genes, which is most likely related to the mechanism of conversion [38].

Estimating the rate of evolution

We then estimated the rates of nonsynounymous (dn) and synonymous
(ds) substitution rates on all of the branches of the phylogenetic tree using the
PAML package [39]. We only used branches with ds < 1.0 when reporting the
rate of evolution in branches representing evolution before and after gene
conversion. An accumulation of slightly deleterious polymorphisms may skew the
evolutionary dn/ds estimates in terminal branches [40,41], which were
overwhelmingly branches representing evolution occurring before a gene
conversion event. However, the direction of this effect is opposite to the
difference between terminal and deeper branches that we report here [40,41],
and cannot explain our results. Instead of the average rate of evolution
(average(dn/ds) = average(N/Ns / S/Ss)), where N and S are the
nonsynonymous and synonymous substitutions per gene, respectively, and Ns
and Ss are the number of nonsynonymous and synonymous sites, we looked at
dn/ds = sum(N)/sum(Ns) / sum(S)/sum(Ss). This approach is appropriate when
for many of the averaged ratios the numerator or the denominator is close to zero
[42]. To estimate the number of substitutions occurring on the branch segments

not affected by gene conversion we estimated each clade separately (species
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connected by red or blue branches in Supplementary Figure 1). To estimate the
number of substitutions on the deeper branches effected by gene conversion
(black branches in Supplementary Figure 1) we allowed different dn/ds ratios
(model=2 parameter in PAML control file) for the branches effected and not

effected by gene conversion.

We used three crystal structures of the tRNA- protein complex (PDB ids:
1b23, 1ob2 and 1o0b5; [43-45]) to compare the rate of evolution between the
tRNA-protein interface versus the rest of the protein globula. We defined the
protein-tRNA interface by selecting residues that were within 4A of any tRNA
nucleotide in any of the three available structures and nearest neighbors of
contact residues in the protein chain (Supplementary Figure 3). We used PAML
[39] to estimate the number of substitutions occurring along different types of
branches separately for the tRNA-protein interface and the rest of the protein. A

phylogeny-independent method yielded similar results (data not shown).
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Table 1. The influence of gene conversion on the number of substitutions in tuf gene copies

Branch segments Branch segments affected Significance by Fisher's exact
not affected by gene by gene conversion test
CONVersion

Number of synonymous substitutions 615.6 6101.3 P < 0.010

in the entire protein

Mumber of nonsynonymous 92.8 1205.3 P<0.010

substitutions in the entire protein

Number of nonsynonymous 4] " P 00022

substitutions in the

protein—tRNA intarface

Number of nonsynonymous 80.7 11134 P 0.0022
substitutions outside the

protein-tRNA interface
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Figure 1. Neiphbor-jcining tuf gene phylogeny with bootstrap vahies, for selectad spocies of y-protechacteria. Red branch segmants denote evolution that occurred in tha
absance of gene conversion, whorsas black branch segments denote evelutionary history before the most recent geno conversion ewent,
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Figure S1. tuf gene phylogeny in 56 gamma proteobacteria species. Red and
blue branches represent evolution that occurred without the action of gene
conversion, while black branches represent the evolutionary history before the
most recent gene conversion event. Red branches signify cases where gene
conversion occurred since the last speciation event, while blue branches signify
cases where at least one speciation event occurred after the most recent gene

conversion event.
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Figure S2. Synthenic region around the tuf gene copies.
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Figure S3. The RNA-proten interface of the EF-To protein and a IRMNA molecule (PDB o 1b23) [18]. The t(RNA molecule 15 shown mn graen, the RMNA-
protein interface of the EF-Tu protein is shown in blue and white, such that the residues where substitutions Ihal cccumed m the course of evolubion
prior to the most recent gene conversion event are shown in blue
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The most common form of protein-coding gene overlap in
eukaryotes is a simple nested structure, whereby one gene is embedded in
an intron of another. Analysis of these structures in vertebrates, fruit flies,
and nematodes revealed substantially higher rates of evolutionary gains
than losses that could not be attributed to any obvious functional

relationships between nested gene members. Thus, accumulation of
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nested gene structures seems to be increasing genome organizational

complexity via a neutral process.

Eukaryotes are typically more complex than prokaryotes on the molecular,
systems, and phenotypic scales of biological organization. In particular, genomes
of multicellular eukaryotes possess a complex architecture that involves
substantial overlapping of their transcribed regions [1-3] and protein-coding
genes [4-6], forming an interleaving mosaic of exon and intron sequences.
Although it is clear that such complex genome organization is made possible by
the presence of introns, the rates and mechanisms of evolutionary events leading
to gains and losses of overlapping gene arrangements have not been studied

previously.

Evolutionary dynamics of nested gene structures

The most common form of overlap between protein-coding genes in
eukaryotes is a nested gene structure, and in a majority of such structures, the
internal gene lies entirely within one intron of the external gene [5, 6]. Thus, we
investigated the evolution of this class of nested gene structures in vertebrates,
Drosophila, and Caenorhabditis. A search of NCBI annotation records yielded
428, 815, 440, and 608 nested gene pairs in H. sapiens, D. melanogaster, C.

elegans, and C. briggsae genomes, respectively. After eliminating gene pairs that
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might have been misannotated (see Supplementary Material), we arrived at sets
of 128, 792, 429, and 233 nested gene pairs, respectively. Only a small minority
of the protein sequences encoded by internal genes from each of these three
major taxa show significant sequence similarity to internal genes products in the
other two taxa (data not shown), suggesting that either these structures emerged
independently and relatively late during evolution, or that they were extensively

and repeatedly lost.

By examining gene annotations and constructing sequence alignments,
we identified the closest species with a completely sequenced genome in which
each nested gene structure was absent. Absence of the nested structure in an
appropriate outgroup species indicates its emergence (gain) in the respective
lineage, whereas presence of the nested structure in the outgroup indicates its
loss (Figure 1). Gains were found in all three taxa, with the emergence of 55
internal genes in at least 40 independent events in vertebrates, 52 internal genes
in at least 48 events in Drosophila, and 22 internal genes in as many events in
Caenorhabditis. The rate of these acquisitions was approximately uniform
throughout the course of evolution (Figure 2). In contrast, losses of nested gene
structures were much rarer, with no losses in vertebrates, 17 in Drosophila, and 2

in Caenorhabditis.

Acquisition of nested gene structures
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At least four scenarios are plausible for the formation of a nested gene structure:
a) An internal gene can evolve by insertion of a DNA sequence into an intron of a
pre-existing gene, b) an internal gene can evolve de novo from an intronic
sequence of a pre-existing gene, c) a gene can become internal after an adjacent
gene acquires an additional exon(s), or d) a gene can become internal after

fusion of two genes that flank it from the opposite sides (Figure 3).

By comparing the gene structures and encoded protein sequences of
internal and external genes to complete gene sets from the respective species,
we deduced the mechanisms of formation of vertebrate nested gene structures
(Table 1). Nearly all nested gene structures appear to have emerged by insertion
of a DNA sequence, which arose by gene duplication or retrotransposition, into
an intron of a pre-existing gene. The origin of an internal gene was classified as a
retrotransposition when it was intronless in a given species, whereas its non-
nested orthologs in a sister species contained introns. A duplication at the DNA
level was inferred when both the internal gene and its non-nested ortholog in a
sister species had introns. In cases where the internal gene and an non-nested
ortholog in a sister species were both intronless, retrotransposition and
duplication at the DNA level could not be discriminated. Five internal genes in
humans are candidates for de novo origin from intron sequences (see
supplementary data), including one case with no sequence similarity beyond
apes (PLAC4) and another with no similarity beyond old world monkeys (STH)

(Table S1). Analysis of the 12 recently sequenced Drosophila genomes showed
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that the majority of de novo genes originate in introns [7]. Consistent with this
observation, we found 11 internal genes in D. melanogaster with no sequence
similarity to any genes in the genome of the closely related D. yakuba. We did
not identify any nested gene structures that evolved via the remaining two

scenarios.

No functional significance of nested gene structures

At least three hypotheses could explain the parallel accumulation of
nested gene structures in different taxa. First, a nested structure might confer a
selective advantage due to a functional or co-regulatory relationship between its
members [8-12]. Second, according to the transcriptional collision model,
members of a nested gene structure could interfere with each other’s
transcription [13, 14], resulting in alternative expression of these genes in
different tissues or during different times in development. Finally, acquisition of a
nested gene structure could be a neutral process [15-20], driven by the presence
of numerous long introns that provide niches for insertion of genes. Each of these
hypotheses leads to a distinct prediction about the relationship between the
expression of internal and external genes in a nested pair. The functional co-
regulation hypothesis predicts a positive correlation between levels of their
expression in similar tissues, the transcriptional collision hypothesis predicts a

negative correlation, and the neutral hypothesis predicts no correlation.
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We compared correlations of gene expression levels in 73 tissues
between 109 nested gene pairs and 1000 random sets of 109 adjacent genes in
the human genome (see Supplementary Material). Although weak positive
correlations were detected in both cases, there was no significant difference
between the sets of nested and non-nested genes (mean correlation coefficients
were 0.33 + 0.03 for nested gene pairs and 0.33 £ 0.0008 for non-nested pairs),
which is consistent with the neutral hypothesis. The observation that external
genes have substantially more and longer introns than average in the respective
species (Ref. 6 and Supplementary Material) is also compatible with the neutral
hypothesis. Furthermore, examination of the available functional information for
nested gene pairs (Table S1) did not reveal any obvious connections [6]. Fixation
of originally neutral or even slightly deleterious sequence segments, such as
introns and transposable elements, through genetic drift acting in relatively small
populations is a common phenomenon in eukaryotic evolution that may be
partially responsible for the evolution of complex phenotypes [16-20]. The
increase in organizational complexity of intron-rich genomes via emergence of

nested gene structures appears to be another facet of this process.

Predicting the course of genome structure evolution

The neutral hypothesis implies that the preferential evolutionary gain of
nested gene structures is due to metazoan genomes being far from neutral

equilibrium with respect to birth and death of intron-contained genes [16]. We
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estimated the rate of acquisition of nested gene structures as approximately 0.4,
0.9, and 0.2 events per million years in the H. sapiens, D. melanogaster, and C.
elegans lineages, respectively (see Supplementary Material). Since animal
genomes currently contain ~500-800 nested gene pairs, these rates indicate that
nested gene structures began to emerge ~1 billion years ago, perhaps
concurrent with the substantial intron gain that apparently occurred at the onset
of metazoan evolution [21]. The present results suggest that metazoan introns
are still far from saturation by internal genes and that the organizational
complexity of metazoan genomes will continue to increase for many millions of
years via the emergence of new nested gene structures. By the time metazoan
genomes reach organizational complexity equilibrium, the overlap of functional
elements is expected to be much greater than what we observe in extant taxa

and will likely include numerous Russian doll-like nested structures.

Conclusions and perspective

We have shown that the evolution of metazoan genomes is accompanied
by a steady rise in the prevalence of nested arrangements of protein-coding
genes, leading to increasingly complex genome architectures. In addition to
overlaps between protein-coding genes, animal genomes contain numerous
complex arrangements involving genes that encode small RNAs. In particular, a
substantial fraction of microRNA (miRNA) and small nucleolar RNA genes are

either fully contained within introns of protein-coding genes or overlap with
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protein-coding exons [22]. MIRNA genes are highly dynamic components of
animal genomes, and it will be of major interest to determine whether the trend of

increasingly complex genome organization applies to these genes as well.
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Sister 1 Sister 2 QOutgroup

Figure 1

Figure 1. Phylogenetic analysis of gains and losses of nested gene structures.
Gain or loss of a nested gene structure must have occurred if, within a pair of
sister species, the structure is present in one but absent in the other. a, Absence
of the nested structure in the outgroup indicates its gain in sister 1. b, Presence

in the outgroup indicates its loss in sister 2.
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Figure 2. Dynamics of gain and loss of nested gene structures. Gains and losses
of internal genes are labelled on the a) vertebrate, b) Drosophila and c)
nematode phylogenies in red and blue, respectively. Nested gene structures that
have a different nested state in the most distant outgroup, and therefore cannot
be resolved between gains or losses, are shown in green. Independent events,
or those that occur in different introns, are shown in parentheses. Events that

could not be timed with a high enough resolution are shown on the side of each

phylogeny.
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Figure 3. Scenarios for the origin of a nested gene structure.
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a, Evolution of an internal gene by insertion of a DNA sequence into an intron of
a pre-existing gene. b, de novo evolution of a gene from an intronic sequence of
a pre-existing gene. c, Internalization of a gene after exon(s) acquisition of an
adjacent gene. d, Internalization of a gene via fusion of two flanking genes. Color
key: pink — internal gene, green — exons of the external gene, blue and yellow —

flanking genes.



Table 1. Mechanisms of origin of human internal genes.
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After After human - After human Total
human - 0possum - chicken

mouse
Duplication 2 2 4 8
Retrotransposition 3 11 6 (5) 21 (20)*
Duplication or 2 3(2) 16 (2) 21 (6)
retrotransposition
De novo candidates 2 1 2 5

Independent events are shown in parentheses.
*One retrotransposition event was not dated to the degree of accuracy as other
cases.

Supplementary Methods

Identification and quality control of nested gene pairs

Sequences and annotations for H. sapiens, D. melanogaster, C. elegans, and C.
briggsae genomes were downloaded from the NCBI GenBank [23] database at
ftp://ftp.ncbi.nih.gov/genomes/. After selecting the longest isoform of each gene,
we identified 428, 815, 440, and 608 nested gene pairs in each genome,
respectively. Several measures were taken to exclude erroneously annotated
nested genes. For the H. sapiens, D. melanogaster, and C. elegans genomes,

we retained only RefSeq genes [24]. We also excluded all human genes with the
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labels “hypothetical” or “predicted” in the defline of the GenBank-derived fasta
file. For the D. melanogaster and C. elegans genomes, we kept only those genes
that showed >95% sequence identity over >90% of the length of the best
nucleotide BLAST [25] hit with complete mRNAs sequenced from the same
species. The mRNAs were obtained from GenBank with the Entrez retrieval
system [23], using the species names and “complete” as key words and setting
the limits option to MRNA molecules. Because annotation of the C. briggsae
genome was the least reliable, we required that all C. briggsae genes have
significant BLAST hits to protein sequences from the final set of C. elegans
genes. In addition, all cases of nested gene evolution involving C. briggsae gene
annotations were checked manually against C. elegans annotations using the

BLAT program [26] on the UCSC genome browser [27].

Comparative genomic analysis of nested gene structures

Genes that passed the above inclusion criteria were compared to the genomes of
sister species and outgroups. We used the protein BLAT alignment tool on the
UCSC genome browser, as well as the TBLASTN program [25], to compare
protein sequences of internal and external genes to complete genomes. If an
ortholog for an internal gene was not identified using either of these two
methods, a TBLASN search was performed against the orthologous intron from
the external gene. Thus, in order to classify a nested gene structure as having
been gained or lost in evolution, we required that both the internal and external

genes be found in the sister species and an outgroup. It is easier to find an
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internal gene within the orthologous intron of an external gene in an outgroup,
which was our expectation for an evolutionary loss, than it is to find it in the entire
genome of the outgroup, which was the requirement for an evolutionary gain
(Figure 1). Thus, our approach was conservative and could have slightly biased
the results in favor of discovery of evolutionary losses. Also, the requirement of
finding both genes in both genomes prevented us from misidentifying as
evolutionary events genes that are absent due to incomplete genome
sequences. For vertebrates, an additional method was employed to analyze the
evolution of nested gene structures. Alignments of regions in the sister and
outgroup species orthologous to the nested gene pair were constructed using
OWEN [28]. We began all alignments with a strict requirement of 16 successive
matches and p < 10® and progressively relaxed these parameters to 8
successive matches and p < 0.01, using the greedy algorithm to resolve any
conflicts. Presence or absence of an internal gene in the orthologous external
gene was judged based on the quality of the alignment. A gap in the alignment
opposite the entire span of an internal gene in human indicated the absence of
the internal gene in that genome. Both methods yielded the same results, with
the exception of 5 cases, which are candidates for de novo gene creation.
Candidate de novo genes were identified when both TBLASTN and BLAT
revealed no sequence similarity of an internal gene in a sister species. We did
not apply the latter method to invertebrate genomes due to the higher degree of
their divergence, which also prevented us from performing a systematic analysis

of the modes of internal gene evolution in invertebrates.
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Analysis of gene expression

Gene expression data were obtained from [29], which included 73 healthy human
tissues measured on the HG-U133A Affymetrix array. We computed the
correlation of mean levels of expression of internal and external genes for 109
nested genes in humans. We next identified all adjacent pairs of RefSeq
annotated genes in the human genome and randomly selected 109 such pairs
1000 times. We than compared the correlation coefficient of the 109 nested
genes to the average correlation coefficient of the 1000 trials of 109 adjacent

pairs.

Estimating the rate of nested gene evolution

Of the 128 definite nested gene structures in the human lineage, we identified 55
that emerged after the divergence of human and zebrafish lineages ~450 million
years ago [30]. Assuming that these 128 nested gene structures are
representative of the overall 428 annotations in the human genome, the
observed number of internal gene gains give an estimate of ~ 0.4 gains per
million years for all nested genes in the human genome (55/128 * 428/450). In
the D. melanogaster lineage, 48 internal genes were gained since the divergence
of D. melanogaster and D. pseudoobscura ~55 million years ago [31], indicating
a rate of ~0.9 gains per million years. Our analysis of the C. elegans genome
was more restricted due to large distances between the C. elegans, C. briggsae,

and Pristionchus pacificus genomes. Because we never considered cases where



97

sequence similarity was not high enough to determine orthology, we described
only a handful of cases of nested gene evolution. Nevertheless, an
approximation was still possible due to the total number of nested genes showing
a high enough sequence similarity between C. elegans, C. briggsae, and P.
pacificus genomes. Of the 440 total C. elegans internal genes, exactly one half
(220) were found in C. briggsae and P. pacificus, 11 of which were gains. Thus,
the overall rate of nested gene gain was 22 per ~100 million years of evolution

separating C. elegans and C. briggsae [32], or ~0.2 per million years.
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