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Gauge theory and mirror symmetry

Constantin Teleman∗

April 28, 2014

Abstract

Outlined here is a description of equivariance in the world of 2-dimensional extended topological
quantum field theories, under a topological action of compact Lie groups. In physics language,
I am gauging the theories — coupling them to a principal bundle on the surface world-sheet. I
describe the data needed to gauge the theory, as well as the computation of the gauged theory,
the result of integrating over all bundles. The relevant theories are ‘A-models’, such as arise
from the Gromov-Witten theory of a symplectic manifold with Hamiltonian group action, and
the mathematical description starts with a group action on the generating category (the Fukaya
category, in this example) which is factored through the topology of the group. Their mirror
description involves holomorphic symplectic manifolds and Lagrangians related to the Langlands
dual group. An application recovers the complex mirrors of flag varieties proposed by Rietsch.

1 Introduction

This paper tells the story of equivariance, under a compact Lie group, in the higher algebra sur-
rounding topological quantum field theory (TQFT). Speaking in riddles, if 2-dimensional TQFT is
a higher analogue of cohomology (the reader may think of the Fukaya-Floer theory of a symplectic
manifold as refining ordinary cohomology), my story of gauged TQFTs is the analogue of equivari-
ant cohomology. The case of finite groups, well-studied in the literature [Tu], provides a useful and
easy reference point, but the surprising features of the continuous case, such as the appearance of
holomorphic symplectic spaces and Langlands duality, are missing there.

From another angle, this is a story of the categorified representation theory of a compact Lie
group G, with the provision that representations are topological : the G-action (on a linear category)
factors through the topology of G. One floor below, where the group acts on vector spaces, these
would be not the ordinary complex representations of G, but the local systems of vector spaces on
the classifying space BG. There is no distinction for a finite group, but in the connected case, BG
is simply connected, and we must pass to the derived category to see anything interesting. The
same will hold in the categorified story, where simply connected groups will appear to have trivial
representation theory, before deriving. This observation suggests a straightforward homological
algebra approach to the investigation, worthy of featuring as an example in a graduate textbook.
Pursuing that road, however, leads to faulty predictions, even in the simplest case of pure gauge
theory of a point (topological Yang-Mills theory). One reason for this failure is a curious predilection
of interesting TQFTs to break the obvious Z-grading information present, collapsing it to a Z/2
grading, or encoding it in more labored form (as in the Euler field of Gromov-Witten theory [M]).
The result is that homological algebra, which localizes the spectrum of a graded ring to its degree

∗The author thanks the MSRI for its hospitality during the writing of this paper. The work was partially supported
by NSF grant DMS-1007255.
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zero part, loses relevant information, which needs restoration by ulterior guesswork. In our example,
we will see the homological information in the neighborhood of a Lagrangian within a certain
holomorphic symplectic manifold, whereas most of the interesting ‘physics’ happens elsewhere.

The emerging geometric picture for this categorical topological representation theory is sur-
prisingly attractive. Representations admit a character theory, but characters are now coherent
sheaves on a manifold related to the conjugacy classes, instead of functions. The manifold in ques-
tion, the BFM space of the Langlands dual Lie group G∨, introduced in [BFM], is closely related
to the cotangent bundle to the space of conjugacy classes in the complex group G∨C. (For SU2, it is
the Atiyah-Hitchin manifold studied in detail in [AH].) Multiplicity spaces of G-invariant maps be-
tween linear representations are now replaced by multiplicity categories, whose ‘dimensions’ are the
Hom-spaces in the category of coherent sheaves. (In interesting examples, they are the Frobenius
algebras underlying 2-dimensional TQFTs.) There is a preferred family of simple representations,
which in a sense exhausts the space of representations: they foliate the BFM space. Every such
representation is ‘symplectically induced’ from a one-dimensional representation of a certain Levi
subgroup of G: more precisely, it is the Fukaya category of a flag variety of G. This is formally
similar to the Borel-Weil construction of irreducible representations of G by holomorphic induction.
Recall that in that world there is another kind of “L2-induction” from closed subgroups, which is
right adjoint to the restriction functor. The counterpart of näıve induction also exists in our world,
and gives the (curved) string topologies [CS] of the same flag varieties, instead of their Fukaya
categories.

This story might seem a bit unhinged, were it not for the appearance of the governing structure
in the work of Kapustin, Rozansky and Saulina [KRS]. Studied there are boundary conditions in
the 3-dimensional TQFT associated to a holomorphic symplectic manifold X, known as Rozansky-
Witten theory [RW]. Among those are holomorphic Lagrangian sub-manifolds of X, or more
generally, sheaves of categories over such sub-manifolds. (The full 2-category of all boundary
conditions does not yet have a precise definition.) The relation to gauge theory is summarized by
the observation that gaugeable 2-dimensional field theories are topological boundary conditions for
pure 3-dimensional topological gauge theory. The reader may illustrate this with an easy example:
the representations of a finite group F are the boundary conditions for pure F -gauge theory in 2
dimensions; yet these representations are exactly the 1-dimensional topological field theories (vector
spaces) which admit F -symmetry. Modulo the [KRS] description of Rozansky-Witten theory, my
entire story is underpinned by the following

Meta-Statement. Pure topological gauge theory in 3 dimensions for a compact Lie group G is
equivalent to the Rozansky-Witten theory for the BFM space of the Langlands dual Lie group G∨.

I shall offer no elucidation of this, beyond its inspirational value; however, strong indications of
this statement have been known in the physics literature, at least for special G [SW, AF, MW].
Formulating this statement in a mathematically useable way will require an excursion through
much preliminary material in §2-5. A small reward will come in §6, where we illustrate how these
ideas can lead to ‘real answers’.

A closing warning is that the results in this paper are partly experimental: enough examples
have been checked to rule out plausible alternatives, but I do not claim to know proofs in full
generality. In fact, the status of Floer-Fukaya theory makes such claims difficult to sustain, and
the author has no special expertise on that topic. In topological cases, such as for string topol-
ogy (Fukaya theory of cotangent bundles), precise statements and proofs are possible (and easy).
More generally, the results apply to the abstract setting of differential graded (or A∞-categories)
with topological G-action, the question being to what extent the Fukaya category of a symplectic
manifold with Hamiltonian G-action qualifies. (For non-compact manifolds, this depends on the
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‘wrapping’ condition at ∞.) If nothing else, the paper can be read as a template for what a nice
world should look like.

1.1 Acknowledgements

I thank M. Abouzaid, D. Ben-Zvi, K. Fukaya, K. Hori, A. Kapustin, A. Neitzke, C. Woodward
for helpful comments and conversation, and am especially indebted to E. Witten for explaining
the relation to 4-dimensional gauge theory and the Nahm equations. Many thanks are due to the
Geometry group at UT Austin for the invitation to lecture there, where a primitive version of this
material was first outlined [T1]; for later developments, see [T2].

2 Topological field theory

Topological field theory, introduced originally by Atiyah[A], Segal [S] and Witten [W], promised
to systematize a slew of new 3-manifold invariants. The invariants of a 3-manifold M are thought
to arise from path integrals over a space of maps from M to a target X. The latter is often a
manifold, but in interesting cases, related to gauge theory, it is a stack. One example relevant
for us will have X a holomorphic symplectic manifold, leading to Rozansky-Witten theory [RW].
The 2-dimensional version of this notion quickly found application to the counting of holomorphic
curves, the Gromov-Witten invariants of a symplectic manifold X: these are controlled by a family
of TQFTs parametrized by the even cohomology space Hev(X).

2.1 Extended TQFTs

Both theories above have a bearing on my story, once they are extended down to points. In the
original definition, a d-dimensional TQFT is a symmetric, strongly monoidal functor form the cat-
egory whose objects are closed (d − 1)-manifolds and whose morphisms are compact d-bordisms,
to the category Vect of complex finite-dimensional vector spaces; the monoidal structures are dis-
joint union and tensor product, respectively. (Some tangential structure on manifolds is chosen,
as part of the starting datum.) Fully extending the theory means extending this functor to one
from the bordism d-category Bordd, whose objects are points and whose k-morphisms are compact
k-manifolds with corners (and some tangential structure), to some de-looping of the category of
vector spaces: a symmetric monoidal d-category whose top three layers are complex numbers, vec-
tor spaces and linear categories, or a differential graded (dg) version of this. When d = 2, which
most concerns us, the target is usually the 2-category LCat of linear dg categories, linear functors
and natural transformations. The reader may consult Lurie [L], references therein and the wide
following it inspired, for a precise setting of higher categories.

Example 2.1 (2-dimensional gauge theory with finite gauge group F ). This theory is defined
for unoriented manifolds; among others, the functor ZF which sends a point ∗ to the category
Rep(F ) of (finite-dimensional) linear representations of F , the half-circle bordism ⊂: ∅ → {∗, ∗′} to
the functor Vect → Rep(F ) ⊗Rep(F ) sending C to the (2-sided) regular representation of F , the
opposite bordism ⊃: {∗, ∗′} → ∅ to the functor Rep(F ) ⊗ Rep(F ) → Vect sending V ⊗W to the
subspace of F -invariants therein. A closed surface gives a number, which is the (weighted) count
of principal F -bundles. See for instance [FHLT] for a uniform construction of the complete functor
and generalizations.

The first theorem of [L] is that an such extended TQFT Z : Bordd →?? is determined by its
value Z(+) on the point, at least in the setting of framed manifolds. The object Z(+), which
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we call the generator of Z, must satisfy some strong (full dualizability) conditions, but carries no
additional structure, beyond being a member of an ambient d-category.

On the other hand, the ability to pass to surfaces with less structure than a framing on their
tangent bundle forces additional structure on the generator Z(+). The point (conceived together
with an ambient germ of surface) carries a 2-framing, on which the group O(d) acts. Lurie’s second
theorem states that, given a tangential structure, encoded in a homomorphism G→ O(d), factoring
the theory Z from Bordd through the category BordGd of d-folds with G-structure is equivalent to
exhibiting Z(+) as a fixed-point for the G-action on the image of TQFTs in the targetd- category
(more precisely, the sub-groupoid of fully dualizable objects and invertible morphisms).

The best-known case of oriented surfaces, when G = SO(2), requires a Calabi-Yau structure
on Z(+). This can be variously phrased: as a trivialization of the Serre functor, which is an
automorphism of any fully dualizable linear dg category (see Remark 2.3 below); alternatively,
as a linear functional on the cyclic homology of Z(+) whose restriction to Hochschild homology
HH∗(Z(+)) induces a perfect pairing on Hom spaces:

Hom(x, y)⊗Hom(y, x)→ Hom(x, x)→ HH∗ → C.

This case of Lurie’s theorem recovers earlier results of Costello, Kontsevich and Hopkins-Lurie
[C, KS].

The Hochschild homology HH∗(Z(+)) is meaningful in a different guise: it is the space of states
Z(S1) of the theory, for the circle with the radial framing. The circle is pictured here with a germ of
surrounding surface, and therefore carries a Z’s worth of framings, detected by a winding number.
The Hochschild cohomology HH∗ goes with the blackboard framing, and the space for the framing
with winding number n is HH∗ of the nth power of the Serre functor. (Of course, for oriented
theories there is no framing dependence, and these spaces agree.)

2.2 Topological group actions

An important point is that the action of O(2) (and thus G) on the target category Z(+) is topolog-
ical, or factored through its topology. There are several ways to formulate this constraint, which
is vacuous when G is discrete. The favored formulation will depend on the nature of the target
category; in the linear case, and when G is connected, we will provisionally settle for the one in The-
orem 2.5 below. Combined with Statement 2.9 below, this generalizes an old result of Seidel [Sei]
on Hamiltonian diffeomorphism groups.

Here are some alternative definitions:

1. We can ask for a local trivialization of the action in a contractible neighborhood of 1 ∈ G, an
isomorphism with the trivial action of that same neighborhood (up to coherent homotopies
of all orders).

2. Using the action to form a bundle of categories with fiber Z(+) over the classifying stack BG,
we ask for an integrable flat connection on the resulting bundle of categories. (Formulating
the flatness condition requires some care, in light of the fiber-wise automorphisms.)

3. Exploiting the contractibility of the group P1G of paths starting at 1 ∈ G, we can ask for a
trivialization of the lifted P1G-action.

Now, the action of the based loop group ΩG (kernel of P1G → G) is already trivial (being
factored through 1 ∈ G), and the difference of trivializations defines a (topological) represen-
tation of ΩG by automorphisms of the identity functor in Z(+).
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The group ΩG has an E2 structure, seen from its equivalence with the second loop space
Ω2BG; and the representation on IdZ(+) is the 2-holonomy, over spheres, of the flat connection
in #2. Importantly, it is an E2 representation.

Remark 2.2. When G is connected, description #3 above captures all the information for the
action (up to contractible choices), because the space of trivializations of a trivial topological
action of P1G is contractible.

Example 2.3. A topological action of the circle on a category is given by a group homomorphism
from Z = π1S

1 = π0ΩS1 to the automorphisms of the identity: equivalently, a central (in the
category) automorphism of each object. Because there is no higher topology in S1, this also works
when the target is a 2-category, such as the (sub-groupoid of fully dualizable objects in the) 2-
category LCat, the structural SO(2) ⊂ O(2) action gives an automorphism of each category: this
is the Serre functor.

Example 2.4. Endomorphisms of the identity in the linear category Vect are the complex scalars,
so that linear topological representations of a connectedG on Vect are 1-dimensional representations
of π0ΩG ∼= π1G. These are the points in the center of the complexified Langlands dual group G∨C.

Recall that the endomorphisms of the identity in a category (the center) form the 0th Hochschild
cohomology. To generalize the above example to the derived world, we should include the entire
Hochschild cochain complex.

Theorem 2.5. Topological actions of a connected group G on a linear dg-category C are captured
(up to contractible choices) by the induced E2 algebra homomorphism from the chains C∗ΩG, with
Pontrjagin product, to the Hochschild cochains of C.

Example 2.6. From a continuous action of G on a space X, we get a locally trivial action on the
cochains C∗X. Indeed, we get an action of ΩG on the free loop space LX of X. The action is
fiber-wise with respect to the bundle ΩX → LX → X. Let C∗

(
X;C∗Ω̃X

)
be the cochain complex

on X with coefficients in the fiber-wise chains for this bundle. With the fiber-wise Pontrjagin
product, this is a model for the Hochschild cochains of the algebra C∗(X), and the action of ΩG
exhibits the E2 homomorphism in the theorem.

Remark 2.7. The “E2” in the statement is not jus a commutativity constraint, but can contain
(infinite amounts of!) data; see Lesson 3.2.5.

Remark 2.8. One floor below, for 1-dimensional field theories, the category Z(+) is replaced with
a vector space (or a complex), and we recognize #2 above as defining a topological representation
of G. The datum in Theorem 2.5 is replaced by an (E1) algebra homomorphism from the chains
C∗G, with Pontrjagin product, to End(Z(+)); there is no connectivity assumption. Climbing to
the higher ground of n-categories, we can extract an En+1-algebra homomorphism from C∗Ω

nG to
the En Hochschild cohomology; but this misses the information from the homotopy of G below n.

The following key example captures the relevance of my story to real mathematics. (In fact, it
contains all examples I know for topological group actions!)

Conjecture 2.9. Let G act in Hamiltonian fashion action on a symplectic manifold X. Then, G
acts topologically on the Fukaya category of X.
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Proof. A Hamiltonian action of G on X defines, in the category of symplectic manifolds and
Lagrangian correspondences, an action of the group object T ∗G.1 This makes the Fukaya category
of X into a module category over the wrapped Fukaya category WF(T ∗G). A theorem of Abouzaid
[Ab] identifies the latter with that of C∗ΩG-modules. The tensor structure is identified with the E2

structure of the Pontrjagin product, by detecting it on generators of the category (the cotangent
fibers). The resulting structure is equivalent to the datum in Theorem 2.5.

Remark 2.10. It may seem strange to state a conjecture and then provide a proof. However,
the reader will detect certain assumptions which have not been clearly stated in the conjecture:
mainly, functoriality of Fukaya categories under Lagrangian correspondences. If X is non-compact,
equivariance of the wrapping condition at ∞ is essential; the statement fails for the infinitesimally
wrapped Fukaya category of Nadler and Zaslow [NZ], see below. (Another outline argument is
more tightly connected to holomorphic disks and GC-bundles, but that relies on details of the
construction of the Fukaya category.)

Remark 2.11. A closely related notion to the one discussed, but distinct from it, is that of an
infinitesimally trivialized Lie group action. Here, we ask for the action to be differentiable, and the
restricted action to the formal group Ĝ (equivalently, the Lie algebra g) should be homologically
trivialized. An example is furnished by an action of G on a manifold X and the induced action
on the algebra D(X) of differential operators: the Lie action of g is trivialized in the sense that it
is inner, realized by the natural Lie homomorphism from g to the 1st order differential operators.
Theorem 2.5 does not usually apply to such situations. With respect to the alternative definition
#2 above, the relevant distinction is between flat and integrable connections over BG.

2.3 Gauging a topological theory

Given a guantum field theory and a (compact Lie) group G, physicists normally produce a G-gauged
theory in two stages. The theory is first coupled to a ‘classical gauge background’, a principal G-
bundle. (No connection is needed in the case of topological actions.2) Then, we ‘integrate over all
principal bundles’ to quantize the gauge theory.

These two distinct stages are neatly spelt out in the setting of extended TQFTs. Lurie’s theory
already captures the first stage of gauging. Namely, we convert the principal G-bundle into a
tangential structure by choosing the trivial homomorphism G → O(2). (Of course, we may add
any desired tangential structure, such as orientability, by switching to G × SO(2) → O(2), by
projection.) Making Z(+) into a fixed point for the trivial G-action means defining a (topological)
G-action on Z(+). This is the input datum for a classically gauged theory.

Quantizing the gauge theory, or integrating over principal G-bundles, is tricky. It is straightfor-
ward for finite groups: integration of numbers is a weighted sum, and integration of vector spaces
and categories is a finite limit or colimit. (The duality constraints require the limits and colimts to
agree; working in characteristic 0 ensures that [FHLT].) For Lie groups G, integration of the num-
bers requires a fundamental class on the moduli of principal bundles. For instance, the symplectic
volume form is relevant to topological Yang-mills theory. A limited K-theoretic fundamental class
was defined in [TW], and cohomological classes, such as the one relevant to topological Yang-Mills
theory, can be extracted from it. But this matter seems worthy of more subtle discussion than
space allows here.

In fact, the gauge theory cannot always be fully quantized. The generating object for the
quantum gauge theory is the invariant category Z(+)G, which agrees with the co-invariant category

1The moment map µ : X → g∗ appears in the requisite Lagrangian, {(g, µ(gx),x, gx)} ⊂ T ∗G× (−X)×X.
2Flat connections would be needed when G action does not factor through topology, as in B-model theories.
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Z(+)G under mild assumptions. In the framework of Theorem 2.5, we compute the generator Z(+)G
as a tensor product

Z(+)G = Z(+)⊗C∗ΩG Vect (2.1)

with the trivial representation. The 1-dimensional part of the field theory, and sometimes part of
the surface operations, are well-defined; but the complete surface-level operations often fail to be
defined. Thus, for the trivial 2D theory, Z(+) = dg−Vect with trivial G-action, and the fixed-
points are local systems over BG. This generates a partially defined 2D theory, a version of string
topology for the space BG. The space associated to the circle is the equivariant cohomology H∗G(G)
for the conjugation action, and the theory is defined the subcategory of Bord2 where all surfaces
(top morphisms) have non-empty output boundaries for each component.

This example can be made more interesting by noting that the trivial action of G on dg−Vect
has interesting topological deformations, in the Z/2-graded world; the notable one comes from the
quadratic Casimir in H4(BG), and gives topological Yang-Mills theory with gauge group G. When
G is semi-simple, this theory is almost completely defined, and the invariants of a closed surface
(of genus 2 or more) are the symplectic volumes of the moduli spaces of flat connections. (Further
deformations exits, by the entire even cohomology of BG and relate to more general integrals over
those spaces.) These should be regarded as twisted Gromov-Witten theories with target space BG.
A starting point of the present work was the abject failure of the homological calculation (2.1) in
these examples: for topological Yang-Mills theory, (2.1) gives the zero answer when G is simple.

2.4 The space of states

Independently of good behavior of the fixed-point category Z(+)G, the space(s) of states of the
gauged theory are well-defined. More precisely, each g ∈ G gives an autofunctor g∗ of the category.
The Hochshild cochain complexes HCH∗(g∗;Z(+)) assemble to a (derived) local system H(Z(+))
over the group G, which is equivariant for the conjugation action, and the space of states for the
(blackboard framed) circle in the gauge theory is the equivariant homology HG

∗ (G;H). It has a
natural E2 multiplication, using the Pontrjagin product in the group. When Z(+) = Vect, with
the trivial G-action, we recover the string topology space HG

∗ (G) of BG by exploiting Poincaré
duality on G.3

3 The 2-category of Kapustin-Rozansky-Saulina

As the image of the point, an object in the 3-dimensional bordism 3-category, Lurie’s generator for
pure 3-dimensional gauge theory should have categorical depth 2. My proposal for this generator
is a 2-category associated to a certain holomorphic symplectic manifold, to be described in §5.

Fortunately, the existence of the requisite 2-category has already been conjectured, and a pro-
posal for its construction has been outlined in [KRS, KR]. When X is compact, this 2-category
should generate the Rozansky-Witten theory [RW] of X. In particular, its Hochschild cohomology,
which on general grounds is a 1-category with a braided tensor structure, should be (a dg refinement
of) the derived category of coherent sheaves on X described in [RW2]. Just like Rozansky-Witten
theory, the narrative takes place in a differential graded world, and in applications, the integer
grading must be collapsed mod 2 (the symplectic form needs to have degree 2, if the integral grad-
ing is to be kept). To keep the language simple, I will use ‘sheaf’ for ‘complex of sheaves’ and write
Coh for a differential graded version of the category of coherent sheaves, etc.

3The last space goes with the radially framed circle.
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Remark 3.1. The 2-category may at first appear analogous to the deformation quantization of the
symplectic manifold; but that is not so. That analogue — a double categorification — is Coh(X)
with its braided tensor structure. The category [KRS] is a ‘square root’ of that, and I will denote
it
√
Coh(X) or KRS(X).

3.1 Simplified description

The following partial description of the KRS 2-category applies to a Stein manifold X, when
deformations coming from coherent cohomology vanish.4 In our example, X will be affine algebraic.
Among objects of

√
Coh(X) are smooth holomorphic Lagrangians L ⊂ X; more general objects are

coherent sheaves of OL-linear categories on such L. (The object L itself stands for its dg category
Coh(L) of coherent sheaves, a generator for the above.) To make this even more precisee,

√
Coh(X)

is the sheaf of global sections of a coherent sheaf of OX -linear 2-categories, whose localization at
any smooth L as above is equivalent the 2-category of module categories over the sheaf of tensor
categories (Coh(L),⊗) on L; with a bit of faith, this pins down

√
Coh(X), as follows.

For two Lagrangians L,L′ ∈ X, Hom(L,L′) will be a sheaf of categories supported on L ∩ L′,
and a (Coh(L),⊗) − (Coh(L′),⊗) bi-module. Localizing at L, we choose a (formal) neighborhood
identified symplectically with T ∗L, so that we regard (locally) L′ as the graph of a differential dΨ,
for a potential function Ψ : L→ C. Locally where this identification is valid, Hom(L,L′) becomes
equivalent to the matrix factorization category MF (L,Ψ). (See for instance [O].)

3.2 Lessons

Several insights emerge from this important notion.

1. A familiar actor in mirror symmetry, a complex manifold L with potential Ψ, is really the
object in

√
Coh(T ∗L) represented by the graph Γ(dΨ), masquerading as a more traditional

geometric object. The matrix factorization category MF (L,Ψ) is its Hom with the zero-
section. This resolves the contradiction in which the restriction of the category MF (L,Ψ) to
a sub-manifold M ⊂ L is commonly taken to be the matrix factorization category of Ψ|M .
That is clearly false in the 2-category of (Coh(L),⊗)-module categories (the result of localizing
to the zero-section L ⊂ T ∗L). For instance, if the critical locus of Ψ does not meet M , Hom
computed in (Coh(L),⊗)-modules gives zero. Instead, M must be replaced by the object
represented by its co-normal bundle in

√
Coh(T ∗L), whose Hom there with Γ(dΨ) computes

precisely MF (M,Ψ|M ).

2. The well-defined assignment sends (Coh(L),⊗)-module categories to sheaves of categories with
Lagrangian support in the cotangent bundle T̂ ∗L, completed at the zero-section. Namely,
the Hochschild cohomology of such a category K is (locally on L) an E2-algebra over the
second (E2) Hochschild cohomology of (Coh(L),⊗), which is an E3 algebra. The spectrum
of the latter is T̂ ∗L, with E3 structure given by the standard symplectic form. This turns
SpecHH∗(K) into a coherent sheaf with co-isotropic support in T̂ ∗L, and K sheafifies over
it. The Lagrangian condition is clearly related to a finiteness constraint, but this certainly
shows the need to include singular Lagrangians in the KRS 2-category.

3. The deformation of a (Coh(L),⊗)-module category M by the addition of a potential (‘curv-
ing’) Ψ ∈ O(L) shifts the support of M vertically by dΨ in T ∗L. This allows one to move

4My discussion is faulty in another way, failing to incorporate the Spin structures, which must be carried by the
Lagrangians. I am grateful to D. Joyce for flagging their role.
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from formal to analytic neighborhoods of L, if the deformation theory under curvings is
well-understood. For instance, one can compute the Hom between two objects that do not
intersect the zero-section — such as two potentials without critical points — by drawing their
intersection into L: Hom(Γ(dΦ),Γ(dΨ)) = MF (L,Ψ− Φ).

4. More generally, Hamiltonian vector fields on T̂ ∗L give the derivations of
√
Coh(T̂ ∗L) defined

from its E2 Hochschild cohomology. Hamiltonians vanishing on the zero-section preserve the
latter, and give first-order automorphisms of (Coh(L),⊗).

5. The KRS picture captures in geometric terms sophisticated algebraic information. For exam-
ple, the category Vect can be given a (Coh(L),⊗)-module structure in many more ways in the
Z/2 graded world: any potential Ψ with a single, Morse critical point will accomplish that.
The location of the critical point p ∈ L misses an infinite amount of information, which is
captured precisely by the graph of dΨ; this is equivalent to an E2 structure on the evaluation
homomorphism OL → Cp at the residue field (cf. Theorem 2.5).

Parts of this story can be made rigorous at the level of formal deformation theory, see for instance
[F], and of course the outline in [KR]. Lesson 3 also offers a working definition of the 2-category√
Coh(T ∗L) as that of (Coh(L),⊗)-modules, together with all their deformations by curvings. On a

general symplectic manifold X, we can hope to patch the local definitions from here.5 It is not my
purpose to supply a construction of

√
Coh(X) here — indeed, that is an important open question —

but rather, to indicate enough structure to explain my answer to the mirror of (non-abelian) gauge
theory. I believe that one important reason why that particular question has been troublesome
is that the mirror holomorphic symplectic manifold, the BFM space of §5, not quite a cotangent
bundle, so the usual description in terms of complex manifolds with potentials is inadequate.

Remark 3.2. If X = T ∗L for a manifold L, and we insist on integer, rather than Z/2-gradings,
then the cotangent fibers have degree 2 and all structure in the KRS category is invariant under
the scaling action on T ∗L. In that case, we are dealing precisely with (Coh(L),⊗)-modules.

3.3 Boundary conditions and domain walls

The Hom category Hom(L,L′) for two Lagrangians L,L′ ⊂ X with finite intersection supplies a
2-dimensional topological field theory for framed surfaces; this follows form its local description
by matrix factorizations. Since X itself aims to define a 3D (Rozansky-Witten) theory and each
of L,L′ is a boundary condition for it, one should picture a sandwich of Rozansky-Witten filling
between a bottom slice of L and a top one of L′. The formal description is that L,L′ : Id →
RWX are morphisms from the trivial 3D theory Id to Rozansky-Witten theory RWX , viewed as
functors from Bord2 to the 3-category of linear 2-categories, and the category Hom(L,L′) of natural
transformations between these morphisms is the generator for this sandwich theory. Geometrically,
it is represented by the interval, with RWX in the bulk and L,L′ at the ends, and is also known as
the compactification of RWX along the interval, with the named boundary conditions.

Factoring this theory through oriented surfaces requires a trace on the Hochschild homology
HH∗ (cf. §2.1). Now, the canonical description of the only non-zero group, HHdimL, turns out
to involve the Spin square roots6 of the canonical bundles ω, ω′ of L,L′ on their scheme-theoretic
overlap:

HHdimL Hom(L,L′) ∼= Γ
(
L ∩ L′; (ω ⊗ ω′)1/2

)
. (3.1)

5If X is not Stein, deformations will be imposed upon this story by coherent cohomology.
6The cohomology is easy to pin down canonically, as the functions on L ∩ L′.
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A non-degenerate quadratic form on HHdimL comes from the Grothendieck residue (and the sym-
plectic volume on X). A non-degenerate trace on HH∗ will thus be defined by choosing non-
vanishing sections of ω1/2, ω′1/2 on L,L′.

Remark 3.3. A generalization of the notion of boundary condition is that of a domain wall between
TQFTs. This is an adjoint pair of functors between the TQFTs meeting certain (dualizability)
conditions, see [L], §4. A boundary condition is a domain wall with the trivial TQFT. Just as
a holomorphic Lagrangian in X can be expected to define a boundary condition for RWX , a
holomorphic Lagrangian correspondence X ← C → Y should define a domain wall between RWX

and RWY . We shalll use these in §5 and §6, in comparing gauge theories for different groups.

4 The mirror of abelian gauge theory

This interlude recalls the mirror story of torus gauge theory; except for the difficulty mentioned in
Lesson 1 of §3.2, this story is well understood and can be phrased as a categorified Fourier-Mukai
transform. In fact, in this case we can indicate the other mirror transformation, from the gauged
B-model to a family of A-models.

4.1 The Z-graded story

We will need to correct this when abandoning Z-gradings, in light of the wisdom of the previous
section; nevertheless the following picture is nearly right.

Proposition 4.1. (i) Topological actions of the torus T on the category Vect are classified by points
in the complexified dual torus T∨C .
(ii) A topological action of T on a linear category C is equivalent to a quasi-coherent sheafification
of C over T∨C .

Proof. Both statements follow from Theorem 2.5, considering that the group ring C∗(ΩT ) is quasi-
isomorphic to the ring of algebraic functions on T∨C , and that a category naturally sheafifies over
its center, the zeroth Hochschild cohomology.

There emerges the following 0th order approximation to abelian gauged mirror symmetry: if X
is a symplectic manifold with Hamiltonian action of T , and X∨ is a mirror of X — in the sense
that Coh(X∨) is equivalent to the Fukaya category F(X) — then the group action on X is mirrored
into a holomorphic map π : X∨ → T∨C . This picture could be readily extracted from Seidel’s result,
[Sei].

Proposition 4.1 interprets the mirror map X∨ → T∨C as a spectral decomposition of the category
F(X) into irreducibles Vectτ . One of the motivating conjectures of this program gives a geometric
interpretation of this spectral decomposition, in terms of the original manifold X and the moment
map µ : X → t∗.

Conjecture 4.2 (Torus symplectic quotients). The multiplicity of Vectτ in F(X) is the Fukaya
category of the symplectic reduction of X at the point Re log τ ∈ t∗, with imaginary curving (B-field)
Im log τ .

Remark 4.3. This is, for now, meaningless over singular values of the moment map, where there
seems to be no candidate definition for the Fukaya category of the quotient.
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Remark 4.4. The conjecture relies on using the unitary mirror ofX, constructed from Lagrangians
with unitary local systems. Otherwise, in the toric case, the algebraic mirror X∨ is T∨C , obviously
having a point fiber over every point in T∨C ; yet the symplectic reduction is empty for values outside
the moment polytope. That polytope is precisely the cut-off prescribed for the mirror by unitarity.

Example 4.5 (Toric varieties). The following construction of mirrors for toric manifolds, going
back to the work of Givental and Hori-Vafa, illustrates both the conjecture and the need to correct
the picture by moving to the KRS category.

Start with the mirror of X = CN , with standard symplectic form, as the space T∨C := (C×)N

with potential Ψ = z1 + . . . zN . Here, T∨ is the dual of the diagonal torus acting on X, and the
mirror map X∨ → T∨C is the identity.7 For a sub-torus i : K ↪→ T , the mirror of the symplectic
reduction Xq := CN//qK at q ∈ k∗ is the (torus) fiber X∨q of the dual surjection i∨ : T∨C � K∨C ,
with restricted super-potential Ψ. The parameter q lives in the small quantum cohomology of X.
We see here the familiar, but faulty restriction to the fiber of the matrix factorization category
MF (T∨C ,Ψ) of Lesson 3.2, #1. The problem is glaring, because the original MF category is null.

The mirror X∨q projects isomorphically to the kernel S∨C of i∨; this is the map π mirror to the
action of S = T/K on X.

4.2 Fourier transform

As can be expected in the abelian case, the spectral decomposition of Proposition 4.1 is formally
given by a Fourier transform. Specifically, there is a ‘categorical Poincaré line bundle’

P→ BTC × T∨C ,

with an integrable flat connection along BT . (Of course, P is the universal one-dimensional topo-
logical representation of T , and its fiber over τ ∈ T∨C is Vectτ .) Given a category C with topological
T -action, we form the bundle Hom(P,C) and integrate along BTC to obtain the spectral decom-
position of C laid out over T∨C .

Remark 4.6 (B to A). The interest in this observation stems from a related Fourier transformation,
giving a “B to A” mirror symmetry. There is another Poincaré bundle Q → BTC × T∨C , with flat
structure this time along T∨C . It may help to exploit flatness and descend to B(TC × π1(T )∨), in
which case Q is the line Vect with action of the group T × π1(T )∨, defined by the Heisenberg C×-
central extension. (The extension is a multiplicative assignment of a line to every group element,
and the action on Vect tensors by that line.)

Fourier transform converts a category C with (non-topological!) T -action into a local system C̃
of categories over T∨C . The fiber of C̃ over 1 is the fixed-point category CT , and the monodromy
action of π1(T∨) comes from the natural action thereon of the category Rep(T ) of complex T -
representations. For example, when C = Coh(X), the (dg) category of coherent sheaves on a
complex manifold with holomorphic T -action, CT is, almost by definition, the category of sheaves
on the quotient stack X/TC. The analogue of Conjecture 4.2 is completely obvious here.

I do not know a non-abelian analogue of this “B to A” story.

4.3 The Z/2-graded story

In light of Lesson 3.2.1 and Example 4.5, the only change needed to reach the true story is to
replace the (Coh(T∨C ),⊗)-module category Coh(X∨), determined from π : X∨ → T∨C , by an object

7This is readily obtained from the SYZ picture, using coordinate tori as Lagrangians; the unitary mirror is cut off
by |zk| < 1.
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Figure 1: Pictorial representation of
√
Coh(T ∗T∨C )

in the KRS category of T ∗T∨C : the category with T -action sees precisely the germ of a KRS object
near the zero-section.

This enhancement of information relies upon knowing not just the Fukaya category F(X) with
its torus action, but all of its curvings with respect to functions lifted from the mirror map π :
X∨ → T∨C . However, we can expect in examples that a meaningful geometric construction of the
mirror would carry that information. For instance, in Example 4.5, we replace (X∨q ,Ψ|X∨q ) and its
map to S∨C by the graph of dΨ|X∨q in T ∗S∨C ; this is the result of intersecting the graph of dΨ with
the cotangent space at q ∈ K∨C .

Figure 1 attempts to capture the distinction between (CohT∨C ,⊗)-modules and their KRS en-
hancement. The squiggly line stands for (the support of) a general object; its germ at the zero-
section is the underlying category, with topological T -action. In that sense, the zero-section rep-
resents the regular representation of T (its Hom category with any object recovers the underlying
category.) The invariant category is the intercept with the trivial representation, the cotangent
space at 1 ∈ T∨C ; other spectral components are intercepts with vertical axes. We see that the in-
variant subcategory is computed ‘far’ from the underlying category, and a homological calculation
centered at the zero-section will fail.

5 The non-abelian mirror BFM(G∨)

For torus actions, the insight was that gauging a Fukaya category F(X) amounted to enriching
it from a Coh(T∨C ) module to an object in

√
Coh(T ∗T∨C ). In a cotangent bundle, this promotion

may seem modest. A non-abelian Lie group G will move us to a more sophisticated holomorphic
algebraic manifold which is not a cotangent bundle. Let T be a maximal torus of G, W the Weyl
group and B,B+ two opposite (lower and upper triangular) Borel subgroups, N,N+ their unipotent
radicals; Fraktur letters will stand for the Lie algebras and ∨ will indicate their counterparts in the
Langlands dual Lie group G∨.
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5.1 The home of 2D gauge theory

The space BFM(G) was introduced and studied by Bezrukavnikov, Mirkovic and Finkelberg [BFM]
in general, but special instances were known in many guises. Here are several descriptions. Call
T ∗regGC ⊂ T ∗GC the Zariski-open subset comprising the regular cotangent vectors (centralizer of
minimal dimension, the rank of G).

Theorem 5.1. The following describe the same holomorphic symplectic manifold, denoted BFM(G).
(i) The spectrum of the complex equivariant homology HG∨

∗ (ΩG∨), with Pontrjagin multiplication.
(ii) The holomorphic symplectic reduction of T ∗regGC by conjugation under GC.
(iii) The affine resolution of singularities of the quotient T ∗TC/W , obtained by adjoining the func-
tions (eα − 1)/α. (α ranges over the roots of g, eα − 1 is the respective function on TC and the
denominator α is the linear function on t∗.)
(iv) BFM

(
SUn

)
is the moduli space of SU2 monopoles of charge n, and is a Zariski-open subset of

the Hilbert scheme of n points in T ∗C× [AH].
(v) BFM(T ) = T ∗TC

Remark 5.2. The moment map zero-fiber for the conjugation GC-action on T ∗regGC is the (regu-
lar) universal centralizer Zreg = {(g, ξ) | gξg−1 = ξ, ξ is regular}. Zreg is smooth, and BFM(G) =
Zreg/GC, with stabilizer of constant dimension and local slices. This is the only one of the descrip-
tions that makes the holomorphic symplectic structure evident.

The space BFM(G∨) inherits two projections from T ∗regGC: πv, to the space (g∨)∗C/G
∨
C
∼=

tC/W of co-adjoint orbits, and πh, to the conjugacy classes in G∨C. Both are Poisson-integrable
with Lagrangian fibers. The projection πv will have the more obvious meaning for gauge theory,
capturing the H∗(BG)-module structure on fixed-point categories. The projection πh is closely
related to the restriction to T (and to the string topology of flag varieties.)

The symplectic structure on BFM(G∨) relates to its nature as (an uncompletion of) the second
Hochschild cohomology of the E2-algebra H∗(ΩG).8 In fact, BFM(G) contains the zero-fiber of
πv, Z := SpecH∗(ΩG), as a smooth Lagrangian; it comes from the part of Zreg with nilpotent ξ
(cf. Remark 5.2).

Theorem 2.5 and Lesson 3.2.2 sheafify categories with topological G-action over the formal
neighborhood of Z. However, it is the entire space BFM(G∨) which is the correct receptacle for
G-gauge theory: gauged TQFTs are objects in the 2-category

√
Coh(BFM(G∨)). Clearly, that

requires a rethinking of the notion: the definition of ‘topological category with G-action’ as in §2
would complete the BFM space at the exceptional Lagrangian Z. Loosely speaking, we need to
know a theory together with all its deformations of the group action.

The Lagrangian Z replaces the zero-section from the torus case, and plays the role of the regular
representation of G: Hom(Z,L) gives the underlying category of the representation L. The formal
calculation is HomC∗ΩG(C∗ΩG;L) = L, if we use Theorem 2.5 to model representations. Figure 2
below sketches BFM(PSU2).

5.2 Induction by String topology

No map relates BFM(T∨) = T ∗T∨C and BFM(G∨), because of the blow-up, but a holomorphic
Lagrangian correspondence is defined from the branched cover

BFM(G∨) BFM(G∨)×tC/W tCoo // T ∗T∨C . (5.1)

8Of course, the E2 structure is trivial over the complex numbers and the algebra is quasi-isomorphic to its
underlying dg ring of chains.
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Figure 2: BFM space of PSU2; the fiber of πh at 1 is Z∪trivial representation

The right map is neither proper not open.9 A holomorphic Lagrangian correspondences could give
a pair of adjoint functors between the respective

√
Coh 2-categories, thus a domain wall between

T - and G- gauge theories (cf. §3.3). This is indeed the case, and we can identify the functors.

Theorem 5.3. The correspondence (5.1) matches an adjoint pair of restriction-induction functors
between categorical T - and G-representations. Induction from a category C with topological T -action
is effected by string topology with coefficients of the flag variety G/T :

Ind(C) = C∗ΩG⊗C∗ΩT C.

Restriction is the obvious functor.

Remark 5.4. (i) An alternative (slightly worse) description of induction is given by the category
of (derived) global sections RΓ

(
G/T ; C̃

)
for the associated local system C̃ of categories.

(ii) Neither description is quite correct. Just as the BFM spaces carry more information than the
category and the action, so does induction.
(iii) For example, inducing from the representation Vectτ , for a point τ ∈ T∨C which is not central in
G, by either method above, will appear to give zero. (This is what a homological algebra calculation
of the curved string topology of G/T for a non-trivial curving τ ∈ H2(G/T ;C×) gives.) However,
geometric induction gives the fiber of π−1

v (τ). The puzzle is resolved by noting that none of those
fibers meet the regular representation Z, so the underlying categories are null. We are letting G
act on categories without objects, and growing wiser.
(iv) The ‘näıvely induced’ representations can serve to probe the entire BFM space by abelianiza-
tion. It is therefor not conceptually more difficult to understand non-abelian gauged mirrors than
abelian ones. However, the symplectically induced representations of the next section are much
nicer.

9Z maps to 1 ∈ T∨, but most of the zero-section in T ∗T∨C is missed by the map.
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5.3 Alternative model for induction

I close with a new model for the correspondence (5.1), useful in a later mirror calculation. Call
b+,reg ⊂ b+ the open subset of regular elements. Identify b+ =

(
gC/n+

)∗
, B+-equivariantly; the

last space matches the fibers of the bundle, over B+ ⊂ GC, of co-normals to the N+-translation
orbits. Using this to define the left map below and projection on the right gives a holomorphic
Lagrangian correspondence

B+ × b+,reg

B+

ww $$
T ∗regGC//adB+ T ∗TC

having divided by the conjugation action of B∨+. We can also divide out by B+ in the defining
correspondence for BFM(G),

BFM(G) Zreg/B+
oo // T ∗regGC//adB+.

The composition of these two can be shown to yield (5.1) (for the group G).

6 Mirrors of flag varieties

I will now explain the place of flag varieties in the mirror view of gauge theory. Lifting to the
torus-equivariant picture will recover a construction of K. Rietsch [R].

6.1 Flag varieties as domain walls

Let L ⊂ G be a Levi subgroup, centralizer of a dominant weight λ : l → iR. The flag variety
X = G/L is a symplectic manifold with Hamiltonian G-action (the co-adjoint orbit of λ), and as
such it should have a mirror holomorphic Lagrangian in BFM(G∨). This will be true, but we
forgot some structure relevant to gauge theory. Namely, we can use G/L to symplectically induce
categorical representations from L to G.

A categorical representation C of L gives the local system of categories C̃ = G×L C→ X, and
we can construct the Fukaya category of X with coefficients in C̃. (Objects would be horizontal
sections of objects over Lagrangians, and Floer complexes can be formed in the usual way from
the Hom-spaces over intersections.) In fact, the weight λ (or rather, its exponential eλ in the
center of L∨C) defines a topological representation Vectλ of L, and we can think of the ordinary
Fukaya category F(X,λ) as the symplectic induction from the latter. The precise meaning is that
deforming λ in Vectλ achieves the same effect as the matching deformation of the symplectic form.
An imaginary variation of λ (movement in the unitary group L∨) has the effect of adding a unitary
B-field twist to the Fukaya category.

Remark 6.1. Left adjoint to the symplectic induction functor SIndGL is a symplectic restriction
from G to L. This is not the ordinary (forgetful) restriction, which instead is adjoint to string
topology induction (§5). For example, when L = T , the spectral decomposition under T of the
symplectic restriction of C would extract the multiplicities of the F(X, τ) in C, rather than those
of the Vectτ .
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This pair of functors is a new domain wall between pure 3-dimensional G- and L-gauge theories.
On the mirror side, we can hope to represent a domain wall by a holomorphic Lagrangian correspon-
dence between BFM(L∨) and BFM(G∨). We will be fortunate to identify this correspondence as
an open embedding.

To recover the mirror of X in its various incarnations (as a symplectic manifold, or a G-
equivariant symplectic one) we must apply boundary conditions to the two gauge theories, aiming
for the ‘sandwich picture’ of a 2D TQFT, as in §3.3. For example, to find the underlying symplectic
manifold (X,λ), we must apply the representation Vectλ of L and the regular representation Z of
G. I shall carry out this (and a more general) exercise in the final section.

The study of symplectically induced representations can be motivated by the following conjec-
ture, the evident non-abelian counterpart of Conjecture 4.2 (with the difference that it seems much
less approachable).

Conjecture 6.2. For a Hamiltonian G-action on the compact symplectic manifold X and a reg-
ular value µ of the moment map, the Fukaya category F(X//G), reduced at the orbit of µ (and
with unitary B-field iν) is the multiplicity in X of the representation symplectically induced from
Vectµ+iν .

6.2 The Toda isomorphism

The following isomorphism of holomorphic symplectic manifolds is mirror to symplectic induction.
It fits within a broad range of related results (‘Whittaker constructions’) due to Kostant. Its relation
to Fukaya categories of flag varieties is mysterious, and now only understood with reference to the
appearance of the Toda integrable system in the Gromov-Witten theory of flag varieties [GK, K].
From that point of view, the isomorphism enhances the Toda system by supplying the conjugate
family of commuting Hamiltonians, pulled back from conjugacy classes in the group, rather than
orbits the Lie algebra.

The mirror picture of G-gauge theory involves the Langlands dual group G∨ of G, but the
notation is cleaner with G. With notation as in §5, call χ : n→ C× the regular character (unique
up to TC-conjugation) and consider the Toda space, the holomorphic symplectic quotient of T ∗GC

T (G) := (N,χ)\\T ∗GC//(N,χ)

under the left×right action of N , reduced at the point (χ, χ) ∈ n∗ ⊕ n∗.

Theorem 6.3. We have a holomorphic symplectic isomorphism

T (G) = (N,χ)\\T ∗GC//(N,χ) ∼= T ∗regGC//AdGC = BFM(G)

induced from the presentation of the two manifolds as holomorphic symplectic reductions of the
same manifold T ∗regGC.

Proof. The N ×N moment fiber in T ∗GC ∼= GC × g∗C (by left trivialization) is

T := {(g, ξ) ∈ GC × g∗C |π(ξ) = π(gξg−1) = χ},

where π : g∗C → n∗ is the projection. As π−1(χ) consists of regular elements, we may use T ∗regGC
instead. Now, N acts freely on π−1(χ), with Kostant’s global slice, so the N × N action on T is
free also and T (G) = N\T/N is a manifold.
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The moment map fibers T and Zreg (for the Ad-action of GC) provide holomorphic Lagrangian
correspondences

T

~~ ""

Zreg

{{ $$
T (G) T ∗regGC BFM(G)

(6.1)

whose composition T ×T ∗regGC Zreg, I claim, induces an isomorphism. Actually, the clean corre-
spondence must mind the fact that the two actions on T ∗G, of N × N and G, respectively, have
in common the conjugation action of N (sitting diagonally in N × N): so we must really factor
through T ∗regGC//Ad(N), within which the co-isotropics T/AdN and Zreg/AdN turn out to intersect
transversally.

We check that the composition in (6.1) induces a bijection on points: preservation of the Poisson
structure then supplies the Jacobian criterion. Choose (g, ξ) ∈ T; then, ξ, gξg−1 ∈ π−1(χ) are in
the same GC-orbit in g∗C. Kostant’s slice theorem ensures that the two elements are then Ad-related
by a unique ν ∈ N , νgξ(νg)−1 = ξ. There is then, up to right action of N , a unique (g′, ξ′) ∈ Zreg

in the N × N -orbit of (g, ξ). We thus get an injection T (G) ↪→ BFM(G). To see surjectivity,
conjugate a chosen (h, η) ∈ Zreg to bring η into π−1(χ). The result is in T (and is again unique up
to N -conjugation).

Remark 6.4. The space T (G) has a hyperkähler structure; it comes from a third description, as
a moduli space of solutions to Nahm’s equations. This is closely related to a conjectural derivation
of my mirror conjecture (6.5) below from Langlands (electric-magnetic) duality in 4-dimensional
N = 4 Yang-Mills theory. (I am indebted to E. Witten for this explanation.)

6.3 The mirror of symplectic induction

Inclusion of the open cell N × w0 · TC × N ⊂ GC leads to a holomorphic symplectic embedding
T ∗TC ⊂ T (G). Sending a co-tangent vector to its co-adjoint orbit projects T (G) to g∗C//G

ad
C , and

the functions on the latter space lift to the commuting Hamiltonians of the Toda integrable system;
so the theorem completes the picture by providing a complementary set of Hamiltonians lifted from
the conjugacy classes of G.

More generally, if L ⊂ G is a Levi subgroup, with representative wL ∈ L of its longest Weyl
element, and with unipotent group NL = N ∩LC, then χ restrict to a regular character of NL and
the inclusion

N ×NL
w0w

−1
L · LC ×NL

N ⊂ GC

determines an open embedding T (L) ⊂ T (G). The following is, among others, a character formula
for induced representations. It relies on too many wobbly definitions to be called a theorem, but
assuming it is meaningful, its truth can be established form existing knowledge.

Conjecture 6.5. Via the Toda isomorphism, the embedding T (L∨) ⊂ T (G∨) is mirror to symplectic
induction from L to G, representing the flag variety G/L as a domain wall between L- and G-gauge
theories.

Example 6.6. With the torus L = T , a one-dimensional representation of T is described by a
point q ∈ T∨, represented in

√
Coh(T ∗T∨) by the cotangent space at q. Its image under the Toda

isomorphism, a Lagrangian leaf Λ(q) ⊂ BFM(G), is the symplectically induced representation, or
theG-equivariant Fukaya category of the flag varietyG/T with quantum parameter q. The analogue
of the character is the structure sheaf OΛ(q), whose algebra of global sections is the G-equivariant
quantum cohomology of G/T [GK].
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Remark 6.7. It is difficult to prove the conjecture without a precise definitions (of equivariant
Fukaya categories with coefficients and of the KRS 2-category). Nevertheless, accepting that
BFM(G∨) as the correct mirror of G-gauge theory, the conjecture follows from known results
about the equivariant quantum cohomology of flag varieties [GK, C-F, Mi]. The latter describe
qH∗G(G/L) as a module over H∗(BG) = C[g]G, the algebra of Toda Hamiltonians, induced from
the projection πv. The symplectic condition turns out to pin the map uniquely.

6.4 Foliation by induced representations

Recall (Example 2.4) the one-dimensional representations of a Levi subgroup L ⊂ G, corresponding
to the points in the center of L∨C. Let us call them cuspidal : they are not symplectically induced
from a smaller Levi subgroup. (Such a symplectic induction produces representation of rank equal
to the Euler characteristic of the flag variety.) The following proposition suggests that these induced
representations are better suited to spectral theory that the näıvely induced ones of §5.

Theorem 6.8. The space BFM(G∨) is smoothly foliated by symplectic inductions of cuspidal
representations: each leaf comes from a unique cuspidal representation of a unique Levi subgroup
L, with T ⊂ L ⊂ G.

Proof. The leaves are the fibers of N\T∨/N → N\G∨C/N , and induction on the semi-simple rank
reduces us to checking that the part of T∨ which does not come from any T (L∨), for a proper
L ⊂ G, lives over the center of G∨C.

Omit ∨ from the notation and choose (g, ξ) ∈ T. From GC =
∐
wN · wTC · N , we may take

g ∈ wTC for some w ∈W . Split g∗C = n∗ ⊕ t∗C ⊕ n∗+; then,

ξ = χ+ η + ν, for some η ∈ tC, ν ∈ n∗+

gξg−1 = χ+ w(η) + ν ′, for some ν ′ ∈ n∗+

whence we see that w sends each simple negative root either to a simple negative root, or to a
positive root. If w = 1, then g ∈ TC centralizes χ (mod b∗+) and thus lies in the center of GC.
Otherwise, I claim that w = w0w

−1
L , for the Levi L whose negative simple roots stay negative.

Equivalently, the unique simple root system of g comprising the simple negative roots of L and
otherwise only positive roots, is the wL-transform of the positive root system. This can be seen
by choosing a point ζ + ε, with ζ generic on the L-fixed face of the dominant Weyl chamber, and
ε a dominant regular displacement: wL(ζ + ε) must be in the dominant chamber of the new root
system.

Example 6.9 (G = SU2). The dual complex group is G∨C = PSL2(C), whose BFM space is the
blow-up of C × C×/{±1} at (0, 1), with the proper transform of the zero-section {0} × C×/{±1}
removed. This is the Atiyah-Hitchin manifold studied in [AH]. The Z/2-action identifies (ξ, z) with
(−ξ, z−1). Projection to the line of co-adjoint orbits is given by the Toda Hamiltonian ξ2.

The Toda inclusion of T ∗T∨C
∼= C× C× sends a point (u, q) to

ξ2 = u2 − q, z + z−1

4
=
u2

q
− 1

2

(A match of signs is required between z and ξ.) The induced leaves of constant q are given by

ξ = q

√
z −
√
z
−1

2
,
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after lifting to the coordinates ξ,
√
z for the double-cover maximal torus in SL2. We recognize here

the (graph of the differentiated potential in the) S1-equivariant mirror of the flag variety P1.
The one remaining leaf in BFM(PSU2) is the trivial representation of SU2; it is the proper

transform of T ∗1 C×/{±1}, the image in C × C×/{±1} of) the cotangent fiber at 1. If we switch
instead to PSU(2), the new BFM space (on the Langlands dual side) is a double cover of the
former, and there is a new cuspidal leaf over the central point (−I2) ∈ SU2, corresponding to the
sign representation of π1PSU2.

6.5 Torus-equivariant flag varieties

Restricting the G-action to T , the flag manifold G/L is a transformation from L-gauge theory
to T -gauge theory, given by composition of the symplectic induction and string topology domain
walls:

T (L∨) �
� SInd // T (G∨)

Toda

∼ // BFM(G)
ST // BFM(T∨) = T ∗T∨C (6.2)

The equivariant mirror is a family of 2D TQFTs, which can be defined, for instance, by a family
of complex manifolds with potentials parametrized by the Lie algebra tC. This family reflects
the H∗(BT )-module structure on equivariant quantum cohomology. When F(G/L) has been rep-
resented by an object Λ ∈

√
Coh(T ∗T∨C ), the family comes from the projection of T ∗T∨C to the

cotangent fiber, and the TQFTs are the fibers of Λ over tC, the Hom categories with the constant
sections of T ∗T∨C .

To recover this family of mirrors from the double domain wall (6.2), we must use it to pair two
Lagrangians, in T (L∨) and in T ∗T∨C . The Lagrangians are

• the Lagrangian leaf Λ(q) ⊂ BFM(L∨) over a point q in the center of L∨C, describing a cuspidal
representation of L (q is also the quantum parameter for G/L);

• the constant Lagrangian section Sξ of T ∗T∨C , with fixed value ξ ∈ tC.

Note that Sξ is the differential of a multi-valued character ξ ◦ log : T∨C → C.

Remark 6.10. The relevant TQFT picture is a sandwich with triple-decker filling: the base slice is
the representation Vectq of L corresponding to Λ(q), a boundary condition for L-gauge theory. The
filling of the sandwich is a triple layer of L,G, T gauge theories, separated by the SInd and string
topology domain walls in (6.2). The sandwich is topped with the slice Sξ, a boundary condition
for T -gauge theory. Its underlying representation category is null, if ξ 6= 0; Sξ is a deformation of
the regular representation of T by the multi-valued potential ξ ◦ log.

6.6 Rietsch mirrors

Building on ideas of Peterson and earlier calculations of Givental-Kim, Ciocan-Fontanine, Kostant
and Mihalcea [GK, C-F, K, Mi], Rietsch [R] proposed torus-equivariant complex mirrors for all flag
varieties G/L.

Let us recover these from my story by computing the answer outlined above. Recall (§5.3) the
Lagrangian correspondence

T ∗TC ← B+ × b+,reg → T ∗regGC,

appearing in the alternate model for the string topology induction. Compose this with the Toda
construction to define the following holomorphic Lagrangian correspondence between T (G) and
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BFM(T ) = T ∗TC:

T

P

~~ ""

B+ × b+,reg

xx

p

&&
T (G) T ∗regGC T ∗TC

(6.3)

Proposition 6.11. Correspondence (6.3) is the composition ST ◦ Toda of (6.2).

Sketch of proof. In the jagged triangle of correspondences below, the left edge is the Toda isomor-
phism, the right edge the correspondence (6.3) and the bottom edge the string topology domain
wall. The long, counterclockwise way from top to right involves division by the complementary
subgroups N and B+ of GC; so it seems reasonable that the composition should agree with the
undivided correspondence (6.3) on the right edge:

T/Ad(N) //

��

T(G) Too

��

T ∩
(
B+ × b+,reg

)
��

oo

Zreg/Ad(N)

��

// T ∗regGC//AdN Zreg(B+)/B+

yy
%%

T ∗regGC B+ × b+,reg

��

oo

Zreg

B+

{{ %%

B+ × b+,reg

B+

zz %%

BFM(G) T ∗regGC//AdB+ BFM(T)

The argument exploits the regularity of the Lie algebra elements. The intersection in the upper
right corner comprises the pairs (b, β) ∈ B+ × b+ with b centralizing β ∈ E + tC. (E = χ under
n+
∼= n∗.) That is a slice for the conjugation B+-action on the regular centralizer Zreg(B+) in B+,

which makes clear the isomorphism with the fiber product in the center the triangle; and the map
is compatible with the Toda isomorphism on the left edge.

We now calculate the pairing Sξ ⊂ T (L∨) and Λ(q) ⊂ T ∗T∨C by the correspondence (6.3) for
the dual group G∨. We do so by computing in T ∗regG

∨
C

Hom
(
p−1Sξ, P

−1Λ(q)
)
.

The two Lagrangians meet over the intersection

B∨+ ∩
(
N∨ · w0w

−1
L L∨C ·N∨

)
⊂ G∨C.

Lift ξ ◦ log to B∨+ by p; over B∨+, p−1Sξ is the conormal bundle to B∨+ ⊂ G∨C shifted by the graph of
d(ξ ◦ log). (The shifted bundle is well-defined, independently of any local extension of the function
ξ ◦ log.)

The Lagrangian P−1Λ(q) lives over the open set N∨ · w0w
−1
L L∨C · N∨ in G∨C, where it is the

shifted co-normal bundle to the submanifold

M := N∨ · w0w
−1
L q ·N∨ ∼=

N∨ ×N∨

diag(N∨ ∩ L∨C)
,
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shifted into T by the graph of the differential of the following function f :

f : n1 · w0w
−1
L l · n2 7→ χ(log n1 + log n2).

Now, B∨+ and M meet transversally in G∨C, in a manifold isomorphic to a Zariski-open in the flag
variety G∨/L∨; this is the Rw0,wL of [R]-. Transversality permits us to dispense with the conormal
bundles, and identify Hom(Sξ,Λ(q)) with the pairing, in the cotangent bundles, between graphs of
the restricted functions to B∨+ ∩M

HomT ∗(B∨+∩M) (Γ(d(ξ ◦ log)),Γ(df)) ;

this is the matrix factorization category MF
(
B∨+ ∩M ; f − ξ ◦ log

)
. This is the Rietsch mirror of

G/L.
The last mirror comes with a volume form, which defines the trace on HH∗. In the Lagrangian

correspondence, we need instead a half-volume form on each leaf. The two leaves Sξ and Λ(q) do
in fact carry natural half-volumes, translation-invariant for the groups (B and N ×N) and along
the cotangent fibers. Rietsch’s volume form on the mirror Rw0,wL comes from the product of these
half-volumes.
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