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The spontaneous transformations associated with symmetry-breaking phase transitions generate
domain structures and defects that may be topological in nature. The formation of these defects
can be described according to the Kibble-Zurek mechanism, which provides a generic relation that
applies from cosmological to interatomic lengthscales. Its verification is challenging, however, in
particular at the cosmological scale where experiments are impractical. While it has been demon-
strated for selected condensed-matter systems, major questions remain regarding e.g. its degree of
universality. Here we develop a global Kibble-Zurek picture from the condensed-matter level. We
show theoretically that a transition between two fluctuation regimes (Ginzburg and mean-field) can
lead to an intermediate region with reversed scaling, and we verify experimentally this behavior
for the structural transition in the series of multiferroic hexagonal manganites. Trends across the
series allow us to identify additional intrinsic features of the defect formation beyond the original
Kibble-Zurek paradigm.

Topological defects are ubiquitous in nature, emerging
in various forms in a large variety of physical systems
from atomic to cosmic length scales. In the context of
cosmology, Kibble first inspected the link between the
possible topology of the corresponding defects and gauge
symmetry breaking [1]. Subsequently, Zurek derived a
scaling law relating the density of defects and the speed
at which the transition point is crossed [2]. Their com-
bined theory is known as the Kibble-Zurek mechanism.
Under the appropriate conditions, this mechanism is ex-
pected to describe the formation of topological defects
in a system that is driven through a continuous phase
transition at a finite cooling rate. Since Kibble-Zurek
scaling is determined by the critical behavior and should
be the same for all systems in the same universality class,
Zurek proposed the study of condensed-matter analogues
to cosmic systems for its verification.

A variety of condensed matter systems have been in-
vestigated to date in an effort to verify the Kibble-Zurek
mechanism. Early attempts were carried out on liquid
crystals [3, 4], superfluid 4He and 3He [5–8] and super-
conducting rings [9, 10]. More recent studies have been
conducted on multiferroics [11–13], Bose-Einstein con-
densates [14, 15], ionic crystals [16, 17], Landau-Zener
setups [18], and colloidal monolayers [19]; for a review
see Ref. [20]. The case of multiferroics is particularly
interesting, as they have provided the first experimen-
tal setting clearly compatible with a Kibble-Zurek scal-

ing beyond mean-field [11]. On the other hand, for the
same system a drastic reversal of this scaling (termed
“anti-Kibble-Zurek scaling” [11]) has been reported for
fast quenches, although its origin is not understood and
its existence has been questioned [13].

In this work we combine first-principles calculations
and the theory of critical phenomena to provide a global
picture of the Kibble-Zurek mechanism in which, by in-
creasing the cooling rate, defect formation evolves from
the fluctuation-dominated Ginzburg region to the mean-
field regime. This picture naturally encompasses features
of anti-Kibble-Zurek behavior, which can emerge from
the crossover between these two distinct regimes. Our
model system for this investigation is the series of hexag-
onal multiferroic manganites, RMnO3, here with R = Y,
Dy, Er and Tm.

In our scanning probe measurements, both the Kibble-
Zurek scaling and the anti-Kibble-Zurek behavior are
demonstrated unequivocally as a general feature in
hexagonal manganites. In addition, trends that we un-
cover by studying the RMnO3 series as a whole reveal
additional quantitative features suggesting that the topo-
logical defect formation is affected by supplementary in-
gredients beyond the original Kibble-Zurek theory.

We discuss emergence of additional time- and length-
scales as likely candidates for these extra features, which
can appear naturally from the propagation of the phase-
transition front, the vortex-growth process, or directly
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from the eventual discrete nature of the corresponding
symmetry breaking.

We prepared single crystals of YMnO3, DyMnO3, and
ErMnO3 using the floating-zone (FZ) technique as de-
scribed in Methods (see also Supplementary Informa-
tion). To complete our analysis, we also consider data for
TmMnO3 reported in [13]. These RMnO3 compounds
undergo a high-temperature lattice-distortive unit-cell-
trimerizing transition at TY

c ' 1259 K , TDy
c ' 1223 K,

TEr
c ' 1429 K [12], and TTm

c '1514 K [12, 21]. By driving
the systems through this structural transition, topolog-
ical defects are created in the peculiar form of discrete
vortices as sketched in Fig. 1 [11–13, 21–24]. These vor-
tices correspond to particular solutions of the Landau
free energy [24]

F =
a

2
Q2+

b

4
Q4+

1

6
(c+c′ cos 6Φ)Q6+

s

2
[(∇Q)2+Q2(∇Φ)2],

(1)
where Q = (Q cos Φ, Q sin Φ) is the primary order pa-
rameter associated with the condensation of a zone-
boundary K3 phonon. This condensation induces the
spontaneous polarization P ∼ Q3 cos 3Φ (Φ = nπ/3,
with n = 0, 1, . . . , 5). The polarization alternation of
the resulting six trimerization-polarization domain states
around the vortices (see Fig. 1c) enables their real space
imaging by piezoresponse force microscopy (PFM). The
parameters of Eq. 1 for the series of hexagonal mangan-
ites calculated in this work using density functional the-
ory (see Methods) are given in Table I.

Our samples were annealed above the transition tem-
perature and then quenched at cooling rates ranging from
10−2 K/min to ≈ 105 K/min in a temperature interval
around Tc of at least ±100 K. To exclude surface-related
effects, samples were then thinned by about 100 µm be-
fore polishing them and resolving the ferroelectric do-
main structure by PFM at room temperature (see Meth-
ods). The resulting images are shown for DyMnO3 and

YMnO3 DyMnO3 ErMnO3 TmMnO3

a0 (eV/A2) -3.2 -3.6 -3.8 -3.9
b (eV/A4) 5.6 5.8 6.1 5.6
sxy (eV) 4.57 4.47 4.73 4.52
sz (eV) 17.2 18.7 18.9 20.18
ξ0 (Å) 1.48 1.50 1.41 1.40
ξ̃0 (Å) 2.00 2.00 1.90 1.89
Gi 0.27 0.24 0.28 0.27

TABLE I. Parameters of the Landau free energy (1) obtained
from DFT calculations (see Methods). Here a0 denotes the
zero-temperature value of the parameter a (in the simplest
case a = −a0Tcε, where ε = (T − Tc)/Tc is the reduced tem-
perature). The parameter s in (1) is the mean value of the
anisotropic stiffness s = (s2xysz)1/3. The zero-temperature
correlation length ξ0, renormalized zero-temperature correla-
tion length ξ̃0, and Ginzburg number Gi are derived from
these values.
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FIG. 1. Formation of topological defects in the hexagonal
manganites. a, Side and top views of the unit cell show-
ing the arrangement of the tilted MnO5 bipyramids. At the
ordering temperature Tc, sets of three bipyramids tilt to-
wards or (in this case) away from a common center. This
trimerizes the unit cell and induces a spontaneous polarization
±P . The order parameter of the trimerization-polarization is
(Q cos Φ, Q sin Φ) with Q and Φ as sketched. b, Topological
defects are lines (points on the sample surface) around which
Φ changes monotonically in a clockwise or counterclockwise
fashion. Close to Tc this change is gradual due to the “dan-
gerously irrelevant” character of the Z6 anisotropy. At lower
temperature the Z6 anisotropy becomes fully relevant and six
domain states with discrete values Φ = n ·60◦, n = 0, 1, . . . , 5,
emerge. c, Possible arrangement of the six domain states
around the vortex-like topological defect. For each domain
state the bipyramidal tilt pattern is indicated with arrows
representing Q and Φ.

ErMnO3 in Fig. 2; the behavior of YMnO3 is similar.
Both compounds exhibit the characteristic domain pat-
tern in which meeting points of the six trimerization-
polarization domains identify the location of the topolog-
ical vortex defects. DyMnO3 shows an increase of vor-
tex density n up to a cooling rate of 1 K/min, followed
by a striking decrease of n by two orders of magnitude
upon further increase of the cooling rate. ErMnO3 dis-
plays qualitatively the same behaviour, but the decrease
of n sets in at higher cooling rates than in DyMnO3.
Note that previous experiments [12, 13] were performed
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FIG. 2. Spatial maps of the vortex-like ferroelectric domain
pattern in hexagonal manganites for a range of different cool-
ing rates through Tc. Images were recorded by PFM un-
der ambient conditions. Labels denote the respective cooling
rates. Scale bar in all images is 5 µm. a, DyMnO3. b,
ErMnO3. The Kibble-Zurek-like increase of vortex density
with cooling rate, followed by a reversal and decrease of vor-
tex density is clear in both compounds.

at slower cooling rates, and so did not discover the turn
around in the slope of n.

The vortex density as a function of cooling rate for all
four RMnO3 compounds is displayed in Fig. 3, clearly re-
vealing that both the Kibble-Zurek and the anti-Kibble-

FIG. 3. Dependence of domain vortex density on cooling rate
through Tc across the RMnO3 series, for R = Y, Dy, Er,
Tm. Two regimes, one in which the vortex density increases
and one it which it decreases with cooling rate are obvious.
Lines show the fitted Kibble-Zurek behaviour. Error bars
represent the statistical error of the counted vortex number.
Data for TmMnO3 were taken from Ref. [13]. Starlike red
symbols indicate data points taken on flux-grown samples in
Ref. [12]. Insets show PFM images of the domain structure
after quenching at 1 K/min for 5 × 5 µm2 sections. The
TmMnO3 image is sketched as its domain size would exceed
the shown section.

Zurek behaviour are generic features of the vortex for-
mation in the hexagonal magnanites. We also find an in-
triguing dependence on the crystal chemistry, with larger
R3+ radius correlating with higher n at a given cooling
rate within the Kibble-Zurek region, as well as with a
decrease of the cooling rate at which the turn around
occurs. In addition, we observe deviations from Kibble-
Zurek scaling in the ultraslow-cooling regime. We return
to these deviations later, after discussing first the ori-
gin of the turn around between Kibble-Zurek and anti-
Kibble-Zurek behavior.

According to the Kibble-Zurek mechanism, the vortices
are expected to emerge from critical fluctuations with a
density that is essentially determined by the rate of cool-
ing through the phase transition and the critical slowing
down of the system [25]. When the relaxation of the
order parameter becomes slower than the changes intro-
duced by the quenching the thermal fluctuations freeze
out and give rise to a non-equilibrated order-parameter
distribution.

We first revise this picture by making a distinction be-
tween two fluctuation regimes, namely the Gaussian ap-
proximation about mean-field and the Ginzburg (or scal-
ing) regimes [26–28]. Roughly speaking, fluctuations are
assumed to be non-interacting fluctuations in the Gaus-
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sian approximation while their interaction becomes cru-
cial and controls the critical properties in the Ginzburg
regime. These fluctuations determine the vortex density
n expected according to the Kibble-Zurek hypothesis as

n ∼ 1

ξ2(t∗)
=

1

ξ20

(τ0
τq

)2ν/(1+zν)
. (2)

Here ξ(t∗) is the coherence length at the freeze-out time
t∗, which in turn is the time at which the quenching
process becomes faster than the relaxation of the or-
der parameter, τ . For a linear quench with T (t) =
(1 + t/τq)Tc, where τq is the characteristic time set by
the cooling rate r = Tcτ

−1
q , the freeze-out time is given

by t∗ ∼ (τ0τ
zν
q )1/(1+zν) [2, 20]. Here z and ν are the

dynamical critical exponent and the critical exponent
for the correlation length according to τ(ε) = τ0/|ε|zν
and ξ(ε) = ξ0/|ε|ν , where ε = (T − Tc)/Tc, is the (time-
dependent) reduced temperature [29–31].

We see in Eq. (2) that the precise form of the Kibble-
Zurek scaling is fundamentally related to the nature of
the critical fluctuations at the freeze-out. In the mean-
field regime the critical exponents are ν = 1/2 and
z = 2, which leads to a mean-field Kibble-Zurek expo-
nent 2ν/(1 + zν) = 1/2. In addition, the microscopic
correlation length is ξ0 =

√
s/a0 in terms of the Lan-

dau free-energy parameters in Eq. (1) with the expan-
sion a = −a0Tcε. On the other hand, the critical ex-
ponents for Eq. (1) in the Ginzburg regime take the
values ν = 0.672 and z ' 2 of the 3D XY model
[13, 21, 32, 33]. As a result, the Kibble-Zurek exponent
becomes 2ν/(1 + zν) = 0.58. The onset of interaction
between fluctuations characterizing the transition to the
Ginzburg regime modifies not only the critical exponents,
but also “microscopic” parameters such as ξ0, which be-
comes

ξ̃0 =
(5bkBT

π2s̄2
ξ0

)2ν/5
ξ0, (3)

where s̄ = (s2xysz)
1/3 represents an averaged gradient

coefficient (see Supplemental Material).
The crossover between the mean-field and Ginzburg

regimes is defined by the Ginzburg-Levanyuk criterion as
the point at which the order-parameter fluctuations in a
correlation volume of size ξ3 reach the magnitude of the
order parameter itself [26–28]. This crossover can be es-
timated from observables such as the specific heat. Thus,
with Eq. (1) one obtains the so-called the Ginzburg-
Levanyuk number Gi ≡ εcrossover = (bkBTc)

2/[(4π)2a0s̄
3]

[27].
This has to be compared with the reduced freeze-out

temperature ε(t∗) = (τ0/τq)
1/(1+zν) to determine the for-

mation of vortices in the Kibble-Zurek picture. At slow
cooling rates, where ε(t∗) < Gi, the Kibble-Zurek mecha-
nism probes the fluctuation-dominated Ginzburg region.
However, as the cooling rate increases, the freeze-out

Cooling rate

V
or
te
x
de
ns
ity

mean-field

scaling regime

mean-field

scaling regime

FIG. 4. Evolution of the Kibble-Zurek scaling. As the fluctu-
ation regime probed in the experiment changes from Ginzburg
(red dashed line) to mean-field (blue dashed line) behaviour,
the density of defects can display either a dropdown behavior
(red line with non-crossing of red and blue dashed lines) or a
smooth transition (orange line with crossing of red and blue
dashed lines, see inset). The scenario depends on the micro-
scopic parameters of the system, foremost the renormalization
of the relaxation time τ0 when entering the Ginzburg regime
(see text).

eventually occurs so far from Tc that ε(t∗) > Gi and
hence the Kibble-Zurek physics emerges from Gaussian
fluctuations in the mean-field regime. The critical expo-
nents and the microscopic parameters then change ac-
cordingly.

The expected crossover for a system described by Eq.
(1) is illustrated in Fig. 4. Since the Kibble-Zurek expo-
nent 2ν/(1+νz) is larger in the Ginzburg regime than in
the mean-field regime an offset between the related lines
in the double-logarithmic plot is expected. The density
of defects is then expected to show a dropdown (red line
in Fig. 4) when the transition from the Ginzburg to the
mean-field behaviour occurs. The Gi values that we ob-
tain from our density functional theory (DFT) calcula-
tions, given in Table I, are compatible with our observed
crossovers, further justifying our use of the Ginzburg
regime value 0.58 for the Kibble-Zurek exponent in the
scaling regime at slow cooling. We also see in Table I,
however, that the hexagonal manganites have a consis-
tently larger correlation length ξ̃0 in the Ginzburg than
in the mean-field regime, ξ0. This should tend to reduce
the offset shown in Fig. 4 and could even lead to a cross-
ing of the Ginzburg and mean-field graphs (Fig. 4 inset),
along with a smooth transfer between the regimes as indi-
cated by the orange line. A central factor discriminating
between the two scenarios, however, is the renormaliza-
tion of the relaxation time τ0. Equation (3) shows that
the correlation length increases in the Ginzburg regime,
and with this we expect the relaxation time τ0 to go
up. Hence, the dropdown scenario is the more likely one,
providing an explanation for our experimental results in
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Figs. 2 and 3. We expect that experiments at higher
quench rates, which we have not yet been able to access,
should show a second turn around, as vortex densities
begin once again to increase with quench rate following
a mean-field scaling.

It is worth noting that, in the seemingly unrelated case
of a quantum phase transition driven by a noisy control
parameter, the possibility of a dropdown has also been
pointed out [34]. This possibility is in fact analogous in
the sense that the departure from the Kibble-Zurek scal-
ing is also related to the running of the critical exponents
–from their nominal value to the noise-fluctuation limit
in that case.

Next we address the deviations observed in our
ErMnO3 samples in the ultraslow-cooling regime. As
shown in Fig. 3, here the vortex density increases but
without reaching expected value. Such behaviour was
already discussed for other systems [4, 14, 35] and at-
tributed to vortex-antivortex annihilation. This expla-
nation is consistent with our finding that the fall-off is
largest at very slow cooling, when the time spent close
to Tc is large. It is also consistent with its absence in the
flux-grown samples of Ref. [12]; our samples are grown
using the floating zone method which we expect to have
distinctly different stoichiometric modifications. We in-
deed observed that the mobility of vortices below Tc can
vary substantially among samples depending on the an-
nealing gas atmosphere.

We now analyze the pronounced trends with the chem-
istry across the RMnO3 series that are clear in Figure
3. In particular, the vortex density for a given cool-
ing rate in the slow-cooling regime increases by three or-
ders of magnitude from Tm to Dy, i.e. with decreasing
R3+ radius. In the Kibble-Zurek picture this is directly
related to the microscopic parameters ξ0 and τ0. Our
first-principles calculations (see Table I) indicate that
the mean-field value for ξ0 is essentially the same in the
four systems, as is the renormalized value ξ̃0 (' 1.3ξ0)
in the fluctuation regime. Therefore, to obtain a fac-
tor ∼ 103 in the vortex density in either the conven-
tional mean-field or fluctuation-dominated Kibble-Zurek
picture, τ0 would need to change by an unphysical fac-
tor of ∼ 106. Strictly speaking, the renormalization of
ξ0 should be computed at the freeze-out temperature
T∗ = [1 + (τ0/τq)

1/(1+zν)]Tc. However, this does not help
us to reconcile the differences, since to increase the vor-
tex density by the observed factor 103, the freeze-out
temperature would have to reach T∗ ∼ 100Tc >∼ 105 K.
This is again unphysical. We thus see that the vortex for-
mation in the RMnO3 systems displays quantitative fea-
tures challenging the interpretation in terms of the origi-
nal Kibble-Zurek mechanism. Specifically, the trend with
chemistry does not fit with the standard scenario, even
with the role of critical fluctuations beyond the mean-
field description fully taken into account.

Another trend in Fig. 3 is the several-orders-of-

magnitude shift of the cooling rate at which the departure
from the Kibble-Zurek scaling occurs and which is not
predicted by the calculated values for Gi in Table I. It is
striking, however, that the huge spread of the vortex den-
sity in the Kibble-Zurek range is substantially reduced
in the anti-Kibble-Zurek regime (from 1000 to 4), and
in fact almost restores the approximate R-independence
expected from Table I.

At least in part, extrinsic factors may be responsible for
these unexpected trends with chemistry. Temperature-
dependent processes related to chemical or mechanical
impurities could affect the vortex formation differently
across the RMnO3 series, simply because of the substan-
tial increase of Tc from Dy to Tm. In addition, the chem-
ical and mechanical quality of the samples may change
with R. DyMnO3, in particular, is much harder to grow
hexagonally than e.g. TmMnO3 because of the closer
proximity of the competing perovskite phase. In fact,
we find that batches of the same material grown under
slightly different conditions can show, at a specific cool-
ing rate, a vortex-density spread up to factor four with
overall trends with cooling rate like in Fig. 4 (see Sup-
plementary Information).

These factors can modify, in particular, the thermal
conductivity of the samples. This conductivity is an-
other ingredient limiting the overall thermalization of
the system, and is such that the instantaneous temper-
ature can additionally be position dependent across the
sample. If this happens, the local transitions will not
be simultaneous during the experiments. Instead, there
will be a phase-transition front propagating at the speed
vf = dx

dt |T (x,t)=Tc
, which needs to be compared with the

characteristic speed vc = ξ(ε)/τ(ε) = (ξ0/τ0)|ε|z of the
order-parameter relaxation [36–39]. Thus, if the front
propagates much slower than the order-parameter per-
turbations, the formation defects can be heavily sup-
pressed in a composition-dependent fashion.

Finally, we briefly discuss other possible origins of the
anti-Kibble-Zurek behavior. The thermal conductivity
could be one of them since, according to the above, a
maximum in the vortex density can be expected at vf =
vc, followed by quick decrease as the cooling rate (and
hence vc) increases.

On the other hand, the reversal from Kibble-Zurek to
anti-Kibble-Zurek scaling has also been demonstrated in
a recent Bose-Einstein-condensate transition experiment
[15]. In that case, it has been ascribed to vortex-vortex
repulsive interactions. Such interactions could also play
a role in our RMnO3 systems, which certainly display a
rather dense vortex pattern in the crossover region (see
Fig. 2). In addition, there are additional time scales that
can become relevant in the problem. The most obvious
one is the time-scale needed to obtain a fully developed
vortex from the initial seed. Indeed, by increasing the
cooling rate, this process can be expected to be grad-
ually suppressed –simply because the phonons will not
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have time to propagate the order-parameter perturba-
tions [40]– which will eventually lead to a decrease in the
vortex density.

Thus the overall trend in Fig. 3 may still be largely
determined by intrinsic properties, and hence directly re-
lated to the corresponding universality class. In this re-
gard, the discrete nature of the symmetry breaking can
play a crucial role, especially if, as has been repeatedly
underlined (see e.g. [41–43]), the defect formation is de-
cided after crossing the transition temperature. In fact,
a generic feature of Z6 models like Eq. (1) is the emer-
gence of a second correlation length below Tc associated
with the phase of the order parameter supplementing
that of its amplitude [21]. This, however, is missed in
the usual Kibble-Zurek mechanism formulated for U(1)
models. This second correlation length diverges faster
than the standard correlation length [21]. Thus, if the
critical slowing down of the phase itself becomes a dom-
inant process, the vortex density might become affected
in a substantial way.

In summary, we have shown theoretically that the
Kibble-Zurek picture inherently includes a transfer from
the asymptotic scaling, where the system is well inside
the Ginzburg region, to mean-field scaling, where fluc-
tuations represent small perturbations. This transfer is
general since all phase transitions, from the inter-atomic
to the cosmological scale, are formally expected to un-
dergo such a crossover. We matched our predictions
with the experimental behavior in the series of hexag-
onal manganites, and showed that this crossover can be
behind the striking reversal of the topological defect den-
sity as a function of the cooling rate (anti-Kibble-Zurek
scaling). In addition, using density-functional-theory, we
quantified the expected Kibble-Zurek behaviour across
the RMnO3 series. This quantification revealed the pres-
ence of sizeable chemical trends that call for a vital up-
grade of the original Kibble-Zurek considerations for the
systems in this class.

Methods
Sample preparation Samples were grown at ETH
(DyMnO3), PSI (YMnO3) and Lawrence Berkeley National
Laboratory (ErMnO3) by the floating-zone technique as de-
scribed in the supplementary information and elsewhere [44–
46]. Rods were oriented by Laue diffraction and cut into z-
oriented platelets of a few mm lateral size and a thickness of
about 0.7 mm.

For minimizing sample-dependent drifts in measurements
of the cooling-rate-dependent ferroelectric domain vortex den-
sity, all samples of a batch were pre-annealed under identical
conditions by heating above Tc for several hours (YMnO3:
1400 K, DyMnO3: 1270 K, ErMnO3: 1470 K) and cooling
through Tc at a rate of 5 K/min. To reveal the intrinsic
3D bulk domain structure and suppress surface-dependent ef-
fects, samples were then thinned by at least 100 µm by lapping
with Al2O3 powder. This was followed by etch-polishing with
a silica slurry, revealing shiny surfaces with a rms-roughness
below 1 nm before determining the vortex density by PFM.

We found that this density showed systematic variations by
a factor of about two, depending on the location of a sam-
ple in the original floating-zone rod. For our experiment we
selected a sub-set of samples displaying the same vortex den-
sity after the pre-annealing within the statistical error of the
vortex count.

The quench experiments were performed like the pre-
annealing experiments but with a dwell time above Tc of few
tens of minutes and varying cooling rate through Tc. In order
to avoid accumulation of chemical drift occurring during the
quench cycles, each data point was gained from a different
specimen of the preselected set.

First-principles calculations For our density functional
calculations we use the projector-augmented wave method as
implemented in the abinit code [47–50]. We use a plane-wave
cutoff of 30 Ry and a 6× 6× 2 k-point grid. To take into ac-
count correlation effects on the Mn atoms we use the LDA+U
method within the fully localized limit method as introduced
by Lichtenstein et al. [51, 52]. We choose a value of U of 8 eV
and J = 0.88 eV. For all our calculations we adopt an A-type
magnetic ordering of the Mn ions and freeze the rare-earth f
electrons in the pseudopotential cores. To extract the param-
eters in the Landau free energy, Eqn. 1, we first fully relax
the P63/mmc structure to an accuracy of 10−6 Ry/Bohr. We
find unit cell volumes of 364.73 Å3, 364.42 Å3, 367.50 Å3 and
353.00 Å3 for YMnO3, DyMnO3, ErMnO3 and TmMnO3 re-
spectively. We then calculate the force constants using the
finite displacement method and extract the eigenvectors of
the force constant matrix. We then gradually freeze in the
eigenvector of the unstable K3 mode and fit a sixth order
polynomial to extract the a0 and b terms. To calculate the
gradient term s we exploit the fact that in q-space s(∇Q)2

reduces to sq2|Qq|2 and s can then be obtained by fitting
a parabola to the corresponding branch of the force constant
dispersion as shown in [24]. We note that the values of the pa-
rameters are dependent on the choice of exchange-correlation
functional because a scales quadratically and b to the fourth
power with the lattice constant. The trends across the series,
however, are robust to the computational details.

[1] Kibble, T. W. B. Topology of cosmic domains and
strings. J. Phys. A 9, 1387 (1976).

[2] Zurek, W. Cosmological experiments in superfluid he-
lium? Nature 317, 505–508 (1985).

[3] Chuang, I., Yurke, B., Durrer, R. & Turok, N. Cosmology
in the laboratory - Defect dynamics in liquid crystals.
Science 251, 1336–1342 (1991).

[4] Ducci, S., Ramazza, P. L., González-Viñas, W. & Arec-
chi, F. Order parameter fragmentation after a symmetry-
breaking transition. Phys. Rev. Lett. 83, 5210 (1999).

[5] Hendry, P., Lawson, N., Lee, R., McClintock, P. V. &
Williams, C. Generation of defects in superfluid 4He as
an analogue of the formation of cosmic strings. Nature
368, 315 (1994).

[6] Dodd, M. E., Hendry, P., Lawson, N., McClintock, P. V.
& Williams, C. Nonappearance of vortices in fast me-
chanical expansions of liquid 4He through the lambda
transition. Phys. Rev. Lett. 81, 3703 (1998).

[7] Bäuerle, C., Bunkov, Y. M., Fisher, S., Godfrin, H. &
Pickett, G. Laboratory simulation of cosmic string for-



7

mation in the early universe using superfluid 3He. Nature
382, 332–334 (1996).

[8] Ruutu, V. et al. Vortex formation in neutron-irradiated
superfluid 3He as an analogue of cosmological defect for-
mation. Nature 382, 334 (1996).

[9] Carmi, R., Polturak, E. & Koren, G. Observation
of Spontaneous Flux Generation in a Multi-Josephson-
Junction Loop. Phys. Rev. Lett. 84, 4966–4969 (2000).

[10] Monaco, R., Mygind, J., Rivers, R. & Koshelets, V.
Spontaneous fluxoid formation in superconducting loops.
Phys. Rev. B 80, 180501 (2009).

[11] Griffin, S. M. et al. Scaling behavior and beyond equi-
librium in the hexagonal manganites. Phys. Rev. X 2,
041022 (2012).

[12] Chae, S. C. et al. Direct observation of the proliferation
of ferroelectric loop domains and vortex-antivortex pairs.
Phys. Rev. Lett. 108, 167603 (2012).

[13] Lin, S.-Z. et al. Topological defects as relics of emergent
continuous symmetry and higgs condensation of disorder
in ferroelectrics. Nat. Phys. 10, 970–977 (2014).

[14] Su, S.-W., Gou, S.-C., Bradley, A., Fialko, O. & Brand,
J. Kibble-Zurek scaling and its breakdown for sponta-
neous generation of Josephson vortices in Bose-Einstein
condensates. Phys. Rev. Lett. 110, 215302 (2013).

[15] Donadello, S. et al. Creation and counting of defects in
a temperature-quenched bose-einstein condensate. Phys.
Rev. A 94, 023628 (2016).

[16] Ulm, S. et al. Observation of the Kibble-Zurek scaling
law for defect formation in ion crystals. Nat. Commun.
4, 2290 (2013).

[17] Pyka, K., Keller, J., Partner, H. L. & Nigmatullin, R.
Topological defect formation and spontaneous symme-
try breaking in ion Coulomb crystals. Nat. Commun. 4
(2013).

[18] Xu, X.-Y. et al. Quantum Simulation of Landau-Zener
Model Dynamics Supporting the Kibble-Zurek Mecha-
nism. Phys. Rev. Lett 112, 035701 (2014). 1301.2752.

[19] Deutschlander, S., Dillmann, P., Maret, G. & Keim, P.
Kibble-Zurek mechanism in colloidal monolayers. Proc.
Natl. Acad. Sci. U.S.A. 112, 6925–6930 (2015).

[20] Del Campo, A. & Zurek, W. H. Universality of phase
transition dynamics: Topological defects from symmetry
breaking. Int. J. Mod. Phys. A 29 (2014).

[21] Lilienblum, M. et al. Ferroelectricity in the multiferroic
hexagonal manganites. Nat. Phys. 11, 1070–1073 (2015).

[22] Choi, T. et al. Insulating interlocked ferroelectric and
structural antiphase domain walls in multiferroic ymno3.
Nat. Mater. 9, 253–258 (2010).

[23] Zhang, Q. et al. Direct observation of multiferroic vortex
domains in ymno3. Sci. rep. 3 (2013).

[24] Artyukhin, S., Delaney, K. T., Spaldin, N. A. &
Mostovoy, M. Landau theory of topological defects in
multiferroic hexagonal manganites. Nat. Mater. 13, 42–
49 (2014).

[25] Landau, L. D. & Khalatnikov, I. M. On the anomalous
absorption of sound near a second order phase transition
point. Dokl. Akad. Nauk 96, 469–472 (1954).

[26] Landau, L. & Lifshitz, E. Statistical Physics. v. 5 (Else-
vier Science, 2013).

[27] Larkin, A. & Varlamov, A. Theory of fluctuations in
superconductors (Oxford University Press, USA, 2005).

[28] Strukov, B. & Levanyuk, A. Ferroelectric Phenomena in
Crystals: Physical Foundations (Springer, 1998).

[29] Hohenberg, P. & Krekhov, A. An introduction to the

ginzburg–landau theory of phase transitions and nonequi-
librium patterns. Phys. Rep. 572, 1 – 42 (2015).

[30] Salje, E. Application of landau theory for the analysis of
phase transitions in minerals. Phys. Rep. 215, 49 – 99
(1992).

[31] Salje, E. Kinetic rate laws as derived from order param-
eter theory i: Theoretical concepts. Phys. Chem. Miner.
15, 336–348 (1988).

[32] Nelson, D. R. Coexistence-curve singularities in isotropic
ferromagnets. Phys. Rev. B 13, 2222–2230 (1976).

[33] Oshikawa, M. Ordered phase and scaling in Zn mod-
els and the three-state antiferromagnetic potts model in
three dimensions. Phys. Rev. B 61, 3430–3434 (2000).

[34] Dutta, A., Rahmani, A. & del Campo, A. Anti-kibble-
zurek behavior in crossing the quantum critical point of a
thermally isolated system driven by a noisy control field.
Phys. Rev. Lett. 117, 080402 (2016).

[35] Weir, D., Monaco, R., Koshelets, V., Mygind, J. &
Rivers, R. Gaussianity revisited: Exploring the Kibble-
Zurek mechanism with superconducting rings. J. Phys.
Condens. Matter (2013). 1302.7296.

[36] del Campo, A., Kibble, T. W. B. & Zurek, W. H. Causal-
ity and non-equilibrium second-order phase transitions in
inhomogeneous systems. J. Phys. Condens. Matter 25,
404210 (2013).

[37] Volovik, G. E. Defect formation in inhomogeneous 2nd
order phase transition: theory and experiment. Physica
B 280, 122–127 (2000).

[38] Dziarmaga, J., Laguna, P. & Zurek, W. H. Symmetry
breaking with a slant: topological defects after an inho-
mogeneous quench. Phys. Rev. Lett. (1999).

[39] Kibble, T. & Volovik, G. E. On phase ordering behind
the propagating front of a second-order transition. J.
Exp. Theor. Phys (1997).

[40] Zhang, L., Salje, E. K. H., Ding, X. & Sun, J. Strain rate
dependence of twinning avalanches at high speed impact.
Appl. Phys. Lett. 104, 162906 (2014).

[41] Karra, G. & Rivers, R. J. Reexamination of Quenches in
4He (and 3He). Phys. Rev. Lett. 81, 3707–3710 (1998).

[42] Rivers, R. J. Slow 4He Quenches Produce Fuzzy, Tran-
sient Vortices. Phys. Rev. Lett. 84, 1248–1251 (2000).

[43] Antunes, N. D., Gandra, P. & Rivers, R. J. Is domain
formation decided before or after the transition? Phys.
Rev. D 73, 125003 (2006).

[44] Roessli, B., Gvasaliya, S., Pomjakushina, E. & Conder,
K. Spin fluctuations in the stacked-triangular antiferro-
magnet YMnO3. Pis’ma v ZhETF 81, 360–364 (2005).

[45] Ivanov, V. Y., Mukhin, A. A., Prokhorov, A. S., Bal-
bashov, A. M. & Iskhakova, L. D. Magnetic properties
and phase transitions in hexagonal dymno3 single crys-
tals. Phys. Solid State 48, 1726–1729 (2006).

[46] Yan, Z. et al. Growth of high-quality hexagonal ermno3
single crystals by the pressurized floating-zone method.
J. Cryst. Growth 409, 75 – 79 (2015).

[47] Gonze, X. et al. First-principles computation of mate-
rial properties: the ABINIT software project. Comput.
Mater. Sci 25, 478–492 (2002).

[48] Gonze, X. A brief introduction to the ABINIT software
package. Z. Kristallogr. Cryst. Mater. 220 (2005).

[49] Torrent, M., Jollet, F., Bottin, F., Zérah, G. & Gonze,
X. Implementation of the projector augmented-wave
method in the ABINIT code: Application to the study
of iron under pressure. Comput. Mater. Sci 42, 337–351
(2008).



8

[50] Amadon, B., Jollet, F. & Torrent, M. γ and β cerium:
LDA+U calculations of ground-state parameters. Phys.
Rev. B 77, 155104 (2008).

[51] Perdew, J. P. & Wang, Y. Accurate and simple ana-
lytic representation of the electron-gas correlation energy.
Phys. Rev. B 45, 13244–13249 (1992).

[52] Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J.
Density-functional theory and strong interactions: Or-
bital ordering in Mott-Hubbard insulators. Phys. Rev. B
52, R5467–R5470 (1995).

Acknowledgements
We thank A. Varlamov for carefully checking Eq. (3), Thomas
Weber for support concerning powder x-ray diffraction, which
was performed at the X-Ray Service Platform of the Depart-
ment of Materials of the ETH Zurich, and Thomas Lotter-
moser and Andrea Scaramucci for fruitful discussions. This

work was supported by the ERC Advanced Grant Nr. 291151
CCICO. Computational resources were provided by ETHZ
and by a grant from the Swiss National Supercomputing Cen-
tre (CSCS) under project ID p504.
Author contributions
M.F. and N.S. initiated and coordinated the project. K.C.,
E.P. Z.Y., E.B., D.M., and F.L. provided the samples. M.L.
performed the quenching experiments and determined the
vortex density from the subsequent PFM measurements.
Q.M. performed the DFT calculations and developed the
KZ theoretical aspects together with A.C. Q.M., M.L., S.G.,
E.K.H.S., N.S., M.F., and A.C. discussed the results and their
interpretation. Q.M., M.L., N.S., M.F., and A.C. wrote the
manuscript.
∗These authors contributed equally to the manuscript.
Competing financial interests
The authors declare no competing financial interests.


	Global formation of topological defects in the multiferroic hexagonal manganites
	Abstract
	 References




