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ABSTRACT OF THE THESIS

Algorithmic and Visual Aids for Physical Discovery Using Bispectral Mode Decomposition

by

Juan A. Gonzalez

Master of Science in Engineering Science (Aerospace Engineering)

University of California San Diego, 2023

Professor Oliver T. Schmidt, Chair

Triadic interactions are the fundamental mechanism of energy transfer in fluid flows and

arise due to the quadratic non-linearity of the Navier-Stokes equation. The bispectral mode

decomposition (BMD) is a direct means of revealing flow structures that are associated with

these interactions and accomplishes this by computing modes generated by the interaction of

two separate modes. The mode bispectrum, summed mode spectrum, and bispectral modes

are the primary results produced through the use of the BMD, with local maxima in the mode

bispectrum and summed mode spectrum representing the most prominent triadic interactions of

the flow.

However, these results are often difficult to analyze due to uncertainty in determining
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what constitutes a local maxima. In this work, a radial search algorithm that has been developed

is applied to both the mode bispectrum and summed mode spectrum of open cavity flow data to

find their respective maxima. Once found, these maxima are reconstructed into two new visual

aids, the sparse mode bispectrum and an arrangement of the bispectral modes. The sparse mode

bispectrum condenses the results of radially searching the mode bispectrum and summed mode

spectrum, while local maxima found through the radial search of the mode bispectrum have

their corresponding bispectral modes arranged in the relative shape of the mode bispectrum.

These visualizations aim to present the most important information and results from the BMD

according to the radial search algorithm, allowing for the identification of the most pertinent flow

physics while also easing the use of the BMD.
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Chapter 1

Background

The turbulent energy cascade, a concept first presented by Richardson [20] with the first

statistical theory proposed by Kolmogorov [10], describes the energy transfer from larger scales

of motion to smaller scales. This energy cascade is a consequence of the triadic interactions

found in fluid flows which arise due to the quadratic non-linearity of the Navier-Stokes equations.

Introduced by Kraichnan’s cornerstone works [11] [12], these triadic interactions, in Fourier

space, are wavenumber triplet vectors {k j,kk,kl}, or frequencies, { f j, fk, fl}, that sum to zero:

k j ±kk ±kl = 0, (1.1)

f j ± fk ± fl = 0. (1.2)

Triadic interactions in turbulent flows have since been the subject of many studies and

investigations. Domaradzki et al [4] concluded that nonlocal energy transfers from large scales

to small scales in incompressible turbulent flows with high Reynolds numbers and from small to

large scales at low Reynolds numbers. Minnie et al [17] showed that the large scale flow plays

an important role in the development and the statistical properties of the small scale turbulence.

Furthermore, non-linear triadic interactions have been showcased by Farazmand and Sapsis [5]

to cause extreme dissipation events due to the spontaneous transfer of energy from large scales to

the mean flow via non-linear triad interactions. Indeed, it becomes clear that triadic interactions
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are the fundamental mechanism of energy transfer in fluid flows.

The bispectral mode decomposition (BMD) is a modal decomposition technique that

directly extracts flow structures associated with triadic interactions [25]. Other decomposition

methods, such as the proper orthogonal decomposition (POD) [1] and dynamic mode decompo-

sition (DMD) [23], have been used to decompose flow data into coherent structures [24]. Such

decomposition methods, however, are not inherently designed to account for the non-linearity

present from triadic interactions. Therefore, electing to utilize the BMD on flow data may

provide new insight previously missed due to this crucial characteristic of the method.

In this work, the BMD will be applied to direct numerical simulation (DNS) data of an

open cavity flow. Key results of the BMD, in particular the mode bispectrum and summed mode

spectrum, can often be difficult to interpret due to difficulty in determining their local maxima.

These maxima in the mode bispectrum are of interest as they identify quadratically interacting

frequency components. A radial search algorithm has been developed and applied to both the

mode bispectrum and summed mode spectrum to aid in determining their respective maxima.

Once found, these maxima are reconstructed into two new visualizations that contain the most

relevant results from the BMD, allowing for the identification of the most pertinent flow physics.

However, as the DNS of an open cavity flow is the numerical data analyzed by the

BMD and radial search algorithm, we take the time now to discuss its formulation and expected

physical phenomena. Discussion behind the mathematics and characteristics of the BMD, radial

search algorithm, and visualizations are reserved for Chapter 2; they are the core methods behind

the analysis presented in this work.

1.1 Direct Numerical Simulation

Direct numerical simulation (DNS) is a technique used to study flows of particular

interest by directly solving the Navier-Stokes equations numerically without any turbulence

model; i.e, turbulence is explicitly resolved [3]. As this simulation is computationally expensive,
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Figure 1.1. Visulization of the open cavity used in the DNS. The spanwise direction (z) is
spatially homogeneous and restricted to a domain of z ∈ [0,1.9688] as shown.

the physical region that is simulated often tends to be quite small [19]. However, studies of DNS

of open cavity flows are not new and have been analyzed with various fluid flow conditions and

geometries. Studies have analyzed DNS of open cavity flow with conditions such as high speed

flow [6], subsonic flow [27], and cubical open cavities [13].

The DNS data of the open cavity was provided by Professor Medeiros’ lab from the

University of São Paulo. The streamwise direction of the flow in the open cavity will be defined

as the x-axis, the transverse direction y-axis, and the spanwise direction as the z-axis. The

spanwise direction will be assumed spatially invariant with a domain of z ∈ (−∞,∞), but as

this is in practice periodic, the DNS considers z to be in the domain z ∈ [0,1.9688]. Table 1.1

showcases how the open cavity is discretized for the DNS while Figure 1.1 is a visualization of

the open cavity without any flow.

Besides the physical domain of the open cavity, the fluid parameters used are also relevant

for the DNS. The fluid used for the simulation is air at an initial temperature 300K. Table 1.2 lists

3



Table 1.1. Discretization of the open cavity for the DNS. The length-depth ratio, L/D, is 2.
Dimensional units are normalized by depth.

Axis Nodes Domain Nodes in
Cavity

Domain of
Cavity

x Nx = 216 x ∈ [−1.6598,6.3402] Nx = 99 x ∈ [0.304,2.304]
y Ny = 186 y ∈ [−1,4] Ny = 82 y ∈ [0,−1]
z Nz = 64 z ∈ [0,1.9688] Nz = 64 z ∈ [0,1.9688]

Table 1.2. Flow parameters used in the DNS of the open cavity flow.

Flow Parameter Value

Reynolds (characterized by depth, ReD) 1500
Mach (Ma) 0.5

Specific heat ratio (γ) 1.4
Prandtl (Pr) 0.71

Initial temperature (T0) 300K

relevant fluid flow parameters used in the DNS. For more details on the methodology behind the

DNS of the open cavity, readers are directed towards works such as [14] and [15] by Professor

Medeiros and Mathias. Insight is provided into the schemes used for their numerical simulation

process, along with mesh and domain convergence analysis. Several DNS open cavity flow cases

similar to the one presented here are discussed at length in those works.

This is not to say that the BMD was immediately applied to the DNS data in its current

state. Due to the spatial homogeneity available in the z-axis of the open cavity, the discrete

Fourier transformation (DFT) in the z-direction can be utilized to transform the DNS data to

wavenumber space. Using MATLAB’s fft function, this entails implementing

X [k+1] =
N−1

∑
n=0

x(n+1)W kn
N , (1.3)

where Wn = e− j 2π

N [8]. Notably, indexing starts at one instead of zero due to MATLAB’s indexing

convention. Using the DFT leads to a reduction from three-dimensions to two-dimensions.

This is useful for increasing computational efficiency, convergence of spectral estimates, and
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interpretability [25]. The wavenumbers we will be considering are wavenumbers kz ≤ 3, where

kz are the spanwise wavenumbers in the z-direction and are nonnegative integer values. How the

use of the DFT affects the mathematics behind the BMD will be explored in Chapter 2, section

1. For now, we move on and discuss physical phenomena that is expected to arise due to the

geometry of the flow.

1.2 Rossiter Modes

As the simulation described in the previous section is of an open cavity flow with a short

cavity, L/D = 2, we expect there to be Rossiter modes in the spectrums produced by the BMD.

Rossiter modes are the frequencies that correspond to large-amplitude, self-sustained oscillations

of the pressure, velocity, and density fields in and around the cavity [9]. They are caused by the

shear layer spanning across the cavity (which separates the cavity from external flow) rolling into

discrete vortices colliding with the cavity trailing edge. This disturbance propagates upstream

and interacts with the cavity leading edge producing new vortices and starting the cycle once

more. Figure 1.2 is a two-dimensional schematic of the open cavity flow that showcases this

phenomena occurring at an arbitrary time.
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Figure 1.2. Schematic of the open cavity flow showcasing the Rossiter mode feedback loop.
This snapshot is taken at the mid-plane of the open cavity geometry and shows the streamwise
velocity at an arbitrary time.

Rossiter modes are named after J. E. Rossiter [22] who was the first author that studied

this phenomena and proposed an empirical equation that accurately predicts the frequencies

these oscillations occur. The equation is the following,

f =
U(m− γ)

L( 1
K +Ma)

, (1.4)

where f is the frequency, L is the length of the cavity, γ and K are empirical constants, Ma is

the tunnel Mach number, U is the tunnel speed, and m is an integer 1, 2, ..., etc that corresponds

to the Rossiter mode being predicted. This means that m = 1 corresponds to the first Rossiter

mode, m = 2 corresponds to the second Rossiter mode, and so on. For the empirical constants,

γ = 0.25 for an open cavity with L/D = 2 while K = 0.57 in general. The predicted Rossiter

mode frequencies will be compared with the frequencies found using the BMD in Chapter 3.

The frequency triads corresponding to Rossiter modes will be of particular interest.
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Chapter 2

Methods

First, flow structures associated with triadic interactions are extracted using the BMD.

Once the modal decomposition is complete, we sift through the results using a radial search algo-

rithm to determine the location of local maxima and therefore, the frequencies that correspond to

the most prominent triadic interactions. Following the steps of this process, we will first discuss

the mathematics behind the BMD and then the radial search algorithm.

2.1 Bispectral Mode Decomposition

Triadic interactions are characterized by quadratic phase coupling which can be detected

by the bispectrum, but unlike the classical bispectrum, the BMD establishes a casual relationship

between the three frequency components of a triad. The BMD accomplishes this by computing

modes associated with frequency triads as well as computing a mode bispectrum that identifies

resonant three-wave interactions. This requires modes that exhibit quadratic phase coupling

over extended portions of the flow field. To compute such modes, the decomposition optimally

represents the data in terms of an integral measure of the bispectral density between two frequency

interactions. Mathematically, the integral measure is the following,

b( fk, fl)≡ E
[∫

Ω

q̂∗
k ◦ q̂∗

l ◦ q̂k+l dx
]
= E

[
q̂H

k◦lWq̂k+l
]
= E [q̂k◦l, q̂k+l] , (2.1)

7



where W is the diagonal matrix of spatial quadrature weights and Ω is the spatial domain over

which the flow is defined. The operations (.)∗, (.)T , and (.)H correspond to the scalar complex

conjugate, transpose, and complex transpose, respectively.

We then take into account the casual relation between the sum-frequency component and

the product of the l-th and k-th frequency components that form a resonant triad and define two

linear expansions:

φ
[i]
k◦l(x, fk, fl) =

Nblk

∑
j=1

ai j( fk+l)q̂
[ j]
k◦l, (2.2)

φ
[i]
k+l(x, fk, fl) =

Nblk

∑
j=1

ai j( fk+l)q̂
[ j]
k+l, (2.3)

that share a common set of expansion coefficients ai j. φk+l is of particular interest as these are

the bispectral modes of the BMD and reveal the flow structures that are generated through triadic

interactions. Certain bispectral modes computed from the data set will be shown and discussed

in Chapter 3, section 4. φk◦l , on the other hand, are multiplicative cross-frequency fields and are

maps of phase-alignment between two frequency components that many not be directly observed.

While they are computed during the use of the BMD on the data set, they are not a focus in our

analysis and as such will not be discussed further.

We can equations rewrite equations 2.2 and 2.3 in a more compact manner through the

following,

φ
[i]
k◦l = Q̂k◦lai, (2.4)

φ
[i]
k+l = Q̂k+lai, (2.5)

where ai = [ai1( fk+l),ai1( fk+l), · · · ,aiNblk( fk+l)]
T denotes the i-th vector of expansion coeffi-
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cients for the (k, l) frequency doublet and Q̂ are data matrices of the form

Q̂k◦l =


| | |

q̂[1]
k◦l q̂[2]

k◦l · · · q̂[Nblk]
k◦l

| | |

 , (2.6)

Q̂k+l =


| | |

q̂[1]
k+l q̂[2]

k+l · · · q̂[Nblk]
k+l

| | |

 . (2.7)

To compute modes that optimally represent the data in terms of the bispectral density,

we seek the set of expansion coefficients a1 that maximizes the absolute value of b( fk, fl) in 2.1.

The optimal

a1 = arg max
∥a∥=1

∣∣∣E [
φ
[1]H
k◦l Wφ

[1]
k+l

]∣∣∣ , (2.8)

which can be simplified and thus written compactly as,

a1 = argmax
∣∣∣∣aHBa

aHa

∣∣∣∣ , (2.9)

by introducing,

B = B(x,x
′
, fk, fl)≡

1
Nblk

Q̂H
k◦lWQ̂k+l, (2.10)

as the weighted bispectral density.

This problem is directly related to the numerical range of the weighted bispectral density

and therefore the largest absolute value the numerical range can attain defines the numerical

radius to be

r(B) = max |λ | : λ ∈ F(B). (2.11)

Finally, it has been shown before [28][21] that the numerical radius corresponds to the largest
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eigenvalue, λmax, that the Hermitian matrix,

H(θ) =
1
2
(eiθ B+ e−iθ BH), (2.12)

can attain for some angle 0 ≤ θ < 2π , i.e.,

r(B) = max
0≤θ<2π

λmax(H(θ)), (2.13)

which is chosen to be solved with an efficient algorithm such as He and Waston’s [7] rather

than through a brute-force method that discretizes the interval θ ∈ (0,2π]. Once equation 2.13

is solved, we will have the complex mode bispectrum. However, we are solely interested in

visualizing it’s modulus, |λ1( fk, fl)|. This is the magnitude mode bispectrum but as we are solely

focusing on the modulus, we will simply be referring to it as the mode bispectrum throughout

this work.

A necessary discussion now is the use of the spatial homogeneity of the data set as initially

mentioned in Chapter 1. As stated previously, we applied the DFT on the data of the DNS of

open cavity flow because the three-dimensional data is periodic in the z-direction. Doing so

improves computational efficiency, the convergence of the spectral estimate, and interoperability

of results [25]. This means that the BMD will be considering triadically consistent wavenumber

triplets {k1, k2, k1 + k2}. For our case with spanwise wavenumbers in the z-direction, kz, the

triadically consistent triplets are {kz1, kz2, kz1 + kz2}. The BMD is therefore computed from the

discrete-space discrete-time transformed data q̂(z,k, f ), where we denote the position vector of

the remaining inhomogeneous directions by z = [x,y]T . The bispectral density matrix specializes

as,

B(x,x′, fk, fl)→ B(z,z′,ki,k j, fk, fl), (2.14)

and is computed from q̂(z,ki, fk), q̂(z,k j, fl), and q̂(z,ki+ j, fk+l). The resulting bispectral modes

are two-dimensional and will be two-dimensional for the rest of the analysis.
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Now that the bispectral modes and mode bispectrum have been computed using the

methods outlined, move on to the summed mode spectrum. Following [25] once more, we define

the summed mode spectrum to be,

Λ1( f3)≡
1

N( f3)
∑

f3= f1+ f2

|λ1( f1, f2)|, (2.15)

where N( f3) is the number of frequency doublets { f1, f2} that contribute to any frequency

f3 = f1 + f2. This definition is analogous to the common definition of a summed bispectrum

for time signals and is graphically equivalent to summing λ1 along diagonals of slope -1 (see

Figure 3.3 in Chapter 3, section 2). Summing along these diagonals means summing λ1 values

that correspond to a constant frequency in the mode bispectrum.

The above was intended as a summary of the mathematics behind the BMD and greatly

followed the process outlined by Schmidt in [25]. For more detail and background, readers are

directed to that work. However, there are a few slight differences worth noting. Primarily, the

MATLAB code used to compute the BMD, and thus the results in Chapter 3, is not the exact

same as the MATLAB code discussed in [25]. Instead, the code used here is a recently published

update that is currently available on the MathWorks website [26]. This updated code computes

the energy transferred into and out of f3. Another major difference to note is the option of using

Mengi and Overton’s [16] algorithm to solve equation 2.13, which was the algorithm we elected

to use whenever the BMD was computed. Furthermore, we will be using the cross-BMD as

we are interested in the cross-correlated inputs: the wavenumber triplets {kz1, kz2, kz1 + kz2}.

Nevertheless, we will continue to refer to the decomposition simply as the BMD rather than the

cross-BMD.

Mode bispectrums, bispectral modes, and summed mode spectrums have now been

defined and computed using the BMD. To sift through the data contained in these plots, we now

move on to our second core method of analysis, the radial search algorithm.
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2.2 Radial Search

It was decided to search the λ1 computed by the BMD with a radial search algorithm in

order to find local maxima. This radial search algorithm was developed with several functionali-

ties built-in that are intended to provide users not only with quality of life features, but also to

aid in their analysis of the results from the BMD. It will be used on the aforementioned mode

bispectrum not only to find maxima, but to assist in determining what frequency interactions

possibly interesting bispectral modes occur at. Radially searching the mode bispectrum and

summed mode spectrum culminates in a new type of visualization we will call the sparse mode

bispectrum. The intended purpose of the sparse mode bispectrum is to condense the results

from radially searching the mode bispectrum and summed mode spectrum into one succinct

visualization that summarizes the key results of the BMD.

The output array of the BMD code that makes up the complex mode bispectrum has

dimensions (N f req × N f req), where N f req refers to the total number of frequencies. When

searching the mode bispectrum λ1 values, we are interested in the modulus and as such the

following is done before beginning the radial search,

loge |λ1| . (2.16)

Each loge |λ1| value in the mode bispectrum is compared to neighboring loge |λ1| values that fit

inside a circle that has a user-defined radius of fr. In essence, every loge |λ1| value that is inside

the circle in the mode bispectrum defined by:

f 2
1 + f 2

2 ≤ f 2
r , (2.17)

is compared to the loge |λ1| value at the center of this circle. This is analogous to the equation

of a circle in a Cartesian coordinate system centered at zero. However, as we are interested in

each comparing each loge |λ1| value to its neighbor in the mode bispectrum and each occurs at
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various frequency components, fk and fl , we are therefore rarely centered at fk = fl = 0. The

center is constantly redefined by the frequency triad that corresponds to the loge |λ1| currently

being compared to its neighbors and as such, the circle that is considered at any one time is more

accurately defined by:

( f1 − fk)
2 +( f2 − fl)

2 ≤ f 2
r , (2.18)

where fk and fl correspond to the frequencies of the triad of the current loge |λ1| value we are

centered about while f1 and f2 correspond to the frequencies of the loge |λ1| inside the circle. If

loge |λ1( fk, fl)| ≥ loge |λ1( f )| , f ∈ {( f1 − fk)
2 +( f2 − fl)

2 ≤ f 2
r | f ̸= 0}, (2.19)

then the value at the center of this circle is greater than or equal to all other neighboring values

and is considered a maxima by the radial search algorithm. Values that satisfy 2.19 are saved

along with their corresponding frequencies. If users elect to choose a greater fr value a larger

circle is formed and it is less likely for a maxima to be detected as the centered value is compared

to more neighboring values. Figure 2.1 showcases visually how the radial search algorithm

works when radially searching the array that makes up the mode bispectrum.

Once the relevant loge |λ1( fk, fl)| maxima values have been found through radially search-

ing the mode bispectrum, we will analyze the bispectral modes, φk+l , at the same frequencies, fk

and fl , where these maxima occurred. An accompanying code automates this process and uses

the radial search algorithm to arrange these bispectral modes in the relative shape of the mode

bispectrum. Bispectral modes are arranged in such a manner so as to give insight to the modes’

behavior relative to the mode bispectrum. These bispectral modes will be the last visualization

we explore and can be found in Chapter 3, section 4.

The radial search algorithm works not only for arrays with dimensions (N f req ×N f req),

but also for vectors that are length (N( f3)×1). These are vectors that have a length equal to the

number of frequency doublets that contribute to any frequency f3. This is a necessary function
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Figure 2.1. Visualization of the radial search algorithm. The center value colored in orange
is compared to all values inside the circle defined by equation 2.18, which are colored in
yellow. If the orange value is greater or equal to all the yellow values, then it is considered a
maxima. Otherwise, it is not considered a maxima and the radial search is re-centered to the next
neighboring value where the process is repeated. Values that are not completely inside the circle,
such as the 8 black values near the radial search circle, are not considered in the comparison.

for the radial search algorithm because we are interested in also finding the maxima of the

summed mode spectrum. As the summed mode spectrum is a spectrum, this implies the radial

search algorithm has a peak finder capability built-in. The radial search algorithm accomplishes

this by comparing Λ1( f3) values from 2.15 to its neighbors. Like the radial search of the mode

bispectrum, we accomplish this by treating one Λ1( f3) value as a center and compare it to values

that correspond to frequencies doublets that are less than or greater than the current frequency f3.

This is equivalent to comparing Λ1( f3) values that are to the left and to the right of the center at

f3 on a number line. As such, one Λ1( f3) value at f3 is compared to its neighbors that are in the

interval,

f3 − fr ≤ f ≤ f3 + fr, (2.20)

where f3 = f1 + f2 as before. If

Λ1( f3)≥ Λ1( f ) f ∈ { [ f3 − fr, f3 + fr] | f ̸= f3}, (2.21)

then Λ1( f3) is greater than or equal to all other neighboring Λ1( f ) values and is considered a
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maxima. Like before, the value is saved along with the corresponding frequencies of the triad.

An analog to this one dimensional radial search would be a linear search of a number line that

is length 2 fr. Similarly to radially searching the mode bispectrum, increasing fr makes the

search stricter and less likely to consider values maxima as they are being compared to more

neighboring values.

Now that we radially searched the mode bispectrum and summed mode spectrum in

order to for their respective maxima, we can create the sparse mode spectrum. The sparse mode

bispectrum takes inspiration from the visualization of the mode bispectrum found in Moczarski

and et al’s work [18]. In their work, the mode bispectrum is plotted as a scatter plot with the size

and color of points representing |λ1( fk, fl)|. This scatter plot is accompanied by three dashed

lines that are plotted diagonally with slope -1 and represent the frequencies f = f1 + f2 for the

three modes found at f = {0,1,2}.

For the sparse mode bispectrum, however, we will be using the results of the radial search

algorithm as its foundation. Visually speaking, the sparse mode bispectrum consists of a scatter

plot with colored points that vary in size and dashed diagonal lines of slope -1. The dashed

lines contain information from the summed mode spectrum, the color (and intensity) of the

points plotted contain information from the energy terms output by the BMD, and the size of the

points contain information from the mode bispectrum. We will now go over each aspect of the

visualization in more detail.

The dashed lines in the sparse mode bispectrum will correspond to the maxima found

from applying the radial search algorithm to the summed mode spectrum. As such, they represent

peaks in the summed mode spectrum and are labeled as f3 in the plot as these frequencies are

simply f3 = f1 + f2 as defined before. The exact value of Λ1( f ) is not represented in the sparse

mode bispectrum; we are only concerned with the frequency f3 these peaks occur at.

The points in the sparse mode bispectrum are the points found by radially searching the

mode bispectrum. Only the loge |λ1( fk, fl)| values which are greater than their neighbors in a

circle of radius fr are considered. These values are not what determines the color of the scatter

15



points. Instead, the frequencies fk and fl that correspond to that particular maxima in the mode

bispectrum are used to find the corresponding energy terms computed by the BMD which then

determine the color of the point. The color of the point represents whether energy was gained

into f3 or lost from f3. If points are colored blue, energy was lost from f3. Likewise, points

colored red indicate that energy is going into f3. Points that are simply white circles indicate

no loss or gain of energy. The more intense the color the larger in magnitude the energy that

has been transferred. For clarity, the range of values and their associated color are represented

by a color bar. The color bar has its color range correspond to the absolute maximum energy

term computed by the BMD of the entire data set rather than solely to the points that are plotted.

This is done so that the sparse mode bispectrum can suggest whether the intensity of energy

transferred at the found points of interest are small or large relative to the rest of the mode

bispectrum. If the visualization were to consist of exclusively pale blue and red points then that

would indicate that the largest energy transferred occurred at a frequency interaction not found

by the radial search algorithm. The color bar is a gradient from blue to white to red and is a

slightly modified version of the code bluewhitered.m from Nathan Childress readily available

on the MathWorks website [2]. Points in the sparse mode bispectrum are outlined in black for

visual clarity; white circles on a white background would be obfuscated greatly.

Lastly, we include the information provided by the loge |λ1( fk, fl)| values of the mode

bispectrum through the size of the circles plotted. The smallest maxima are half the size

of the largest maxima found in the mode bispectrum. This is done because if the value for

loge |λ1( fk, fl)| is surprisingly small in magnitude then it would be difficult to see the circle in

the visualization if no sizing convention was used. Users can easily change this sizing convention.

For example, users can elect to use the sizing convention where the smallest maxima in the mode

bispectrum is a third of the size of the largest maxima.

Due to the reasons discussed above, the sparse mode bispectrum is able to contain

information from the mode bispectrum, the summed mode spectrum, and the energy terms output

from the BMD. A few of the quality of life features of the radial search algorithm have not yet
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been discussed and are worth mentioning here before showcasing results. By default, the radial

search returns all of the maxima found through its search in a list which is then sorted from

greatest maxima value to least maxima value. Users may request n maxima and the radial search

will instead return the first n maxima from the sorted list. For example, if a user requests n = 10

maxima, only the ten largest maxima found by the radial search will be returned. However, this

occurs only if there are > n maxima found, otherwise, the radial search will behave like usual

and return all maxima found.

Other quality of life features not yet mentioned are visual settings designed with the intent

of improving the visual clarity of the visualizations that are produced using the radial search

algorithm, such as changing the distance between the bispectral modes when they are arranged

in the relative shape of the mode bispectrum. As this discussion has been about visualizations,

it is best to move onto Chapter 3 to see the visualizations and features in practice as discussed

throughout this chapter.
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Chapter 3

Results and Discussion

Before presenting the final results of our analysis, it is important to note the spectral

parameters that were used when computing the BMD as they can affect the end results. The

spectral parameters used, along with the appropriate variables, are defined and reported in Table

3.1. The algorithm used to solve equation 2.13 also affects the results of the BMD, and as

mentioned in the previous chapter, Mengi and Overton’s algorithm was used whenever the BMD

was computed. Also, while the spanwise wavenumbers considered are the integers 0 ≤ kz ≤ 3,

for the purposes of our primary discussion, we will be focusing on the self-interaction in the

spanwise wavenumber triplet {0,0,0}. Spanwise wavenumber triplets {kz1 , kz2, kz1 + kz2 ≤ 3}

were analyzed with the BMD and radially searched; they can be found in the appendix as

additional results.

Finally, our results will be presented with the dimensionless frequency that corresponds

to the Strouhal number. However, The notation of f will be maintained for continued readability.

We will explicitly note whenever this distinction affects our analysis.
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Table 3.1. The spectral parameters used for the BMD. Nt denotes the number of snapshots, N f f t
denotes the number of fast Fourier transformations, Novl p denotes the number of overlap between
blocks, Nblks denotes the number of blocks, and tol denotes the tolerance used by the algorithm
to solve equation 2.13. The variables u,v, and w refer to the streamwise, transverse, and spanwise
velocities, respectively. Variable T denotes the temperature and ρ denotes the density. All the
variables have a ˆ above them due to the use of the DFT in the z-direction.

Variables Nt ∆t N f f t Novl p Nblks tol

û v̂ ŵ T̂ ρ̂ 5000 0.25 256 128 38 10−8

3.1 Mode Bispectrum

Figure 3.1. Mode bispectrum for spanwise wavenumber triplet {0,0,0}. The x-axis corresponds
to frequencies f1 while the y-axis corresponds to frequencies f2. The color bar indicates the
value of loge |λ1|.

Figure 3.1 showcases the mode bispectrum for the spanwise wavenumber triplet {0,0,0}.

Values that correspond to ( f1,0, f1), i.e. values parallel to the x-axis at f2 = 0, correspond to the
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intrinsic dynamics of the flow and are where unstable global modes would appear. Triads of

the form { f1, f2 =− f1,0} correspond to non-linear interactions of the mean flow deformation,

while harmonic interactions correspond to triads of the form { f1, f1,2 f1}. What’s particularly

interesting about this mode bispectrum is its grid-like pattern appears to have maxima which are

easy to pick out visually. Consequently, this mode bispectrum helps verify the validity of our

radial search algorithm. We elect to use a radial search frequency of fr = 0.2 as it will produce

a radial search circle that is large enough- and thus restrictive enough- to pick out relevant

loge |λ1| values. The search radius is something for users to define and can be determined

through trial-and-error (as done here) or through other satisfying means. Applying the radial

search to the mode bispectrum in Figure 3.1 produces Figure 3.2.

A radial search with fr on the mode bispectrum as shown in Figure 3.2 results in a total

of 28 maxima found. The fr we chose to search with has proven to be restrictive enough to find

the maxima we were initially interested in. If we are interested in finding the frequency f3 these

maxima occur at we simply have to add the values represented by ( f1, f2) as f3 = f1 + f2. We

elect now to utilize the radial search algorithm’s feature to report the n = 10 largest maxima.

This does not produce a distinctive visual change compared to Figure 3.2; the only difference

is there would be 10 maxima labeled rather than the current 28. As such, we do not re-plot the

figure and instead report the exact values in Table 3.2 which can then be compared to those

labeled in Figure 3.2.

As shown in Table 3.2, only one global mode is considered to be in the top ten maxima

and it is the ninth largest local maxima; the global mode that occurs at f1 = 0.44. As this is

the only global mode we found, we label it as f0 = 0.44 and quickly see that the other nine

maxima are all harmonic combinations of this frequency. We see from Table 3.2 that the global

maxima has the triad {2 f0,− f0, f0}, the second largest maxima is { f0, f0,2 f0}, the third largest

maxima is {3 f0,− f0,2 f0}, and so on. Each of the top ten maxima found with the radial search is

some harmonic sum or difference interaction with the frequency f0 = 0.44, which itself appears

to be an unstable global mode. The eighth largest maxima caused by the triad { f0,− f0,0}

20



Figure 3.2. Mode bispectrum for spanwise wavenumber triplet {0,0,0} after a radial search of
fr = 0.2 is applied. The locations with a maxima are marked with a + symbol. Accompanying
these points are coordinates in the form ( f1, f2). The mode bispectrum has been enlarged for
visual clarity and legibility of coordinates.
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Table 3.2. Top ten maxima of the mode bispectrum for spanwise wavenumber triplet {0,0,0}
along with the frequencies f1, f2 and f3 they occur.

f1 f2 f3 loge |λ1|

0.89 −0.45 0.44 −0.457
0.45 0.44 0.89 −0.479
1.33 −0.44 0.89 −2.488
1.33 −0.89 0.44 −2.552
0.89 0.44 1.33 −2.562
1.78 −0.89 0.89 −4.032
0.89 0.89 1.78 −4.036
0.44 −0.44 0.00 −4.502
0.44 0.00 0.44 −4.519
1.78 −1.33 0.45 −4.775

indicates a difference-interaction of the fundamental instability with itself that leads to a mean

flow deformation. This means that the mode bispectrum detected a non-linear self-interaction that

generated a mean flow deformation, with the radial search algorithm confirming this interaction

as one of the 10 largest in the entire bispectrum. It is worth noting the frequency harmonic values

differ ±0.01 from being exactly n f0 (where n is an integer). This discrepancy is due to rounding

errors and is insignificant to the conclusions drawn.

With these initial results of the BMD and radial search algorithm, we now turn to the

summed mode spectrum as it is a proxy for the frequency interactions that are expected to have

the largest energy transfers and will therefore bring more insight into this flow.
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3.2 Summed Mode Spectrum

Figure 3.3. Mode bispectrum for spanwise wavenumber triplet {0,0,0} with 4 lines of slope -1
highlighted. Each diagonal line corresponds to a (unique) constant f3 = f1 + f2. There are more
f3 than indicated by the four diagonal lines; this depiction is for emphasis on the relationship
between the mode bispectrum and the summed mode spectrum.

As mentioned in Chapter 2, section 1, the summed mode spectrum is defined from the

BMD with equation 2.15. Graphically, this is equivalent to summing values along a slope of -1 as

shown in Figure 3.3. Computing the necessary values by summing along all diagonals of constant

f3 gives us Figure 3.4, the summed mode spectrum for spanwise wavenumber triplet {0,0,0}.

Immediately, one can see several peaks in the spectrum. To identify the ones we believe to be

worth analyzing, we apply the radial search algorithm in one-dimension (a misnomer discussed in

Chapter 2, section 2) with fr = 0.2 to keep the results consistent with what was found previously.

Doing so gives us the accompanying summed mode spectrum found in Figure 3.5. Peaks in
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Figure 3.4. Summed mode spectrum for spanwise wavenumber triplet {0,0,0}. Each f3
corresponds to a diagonal line of slope -1 in the mode bispectrum. Note: both axes are in log
scale.

the summed mode spectrum correspond to frequencies that are involved in quadratic non-linear

interactions but without discerning between the contributing triads.

A total of five maxima were found in the summed mode spectrum using this process.

Unfortunately, the maxima at f3 = 0 is not labeled in either of the two above figures due to

plotting in log− log scale. This is something that is rectified in the sparse mode bispectrum

visualizations as we will see in the next section.

Nevertheless, though the radial search found 28 maxima in the mode bispectrum, only

five were found in the summed mode spectrum. Several maxima in the mode bispectrum are

along the same diagonal meaning they contribute to the same f3 frequency. As such, there

will necessarily be fewer maxima in the summed mode spectrum than the mode bispectrum.

Notably, the radial search algorithm did not consider the peak at f3 = 0.22 relevant. As our

chosen fr is 0.2, both peaks at f3 = 0.22 and f3 = 0.42 would be compared. Clearly shown by

the two figures, f3 = 0.42 has a larger value so f3 = 0.22 is not considered a maxima. The five
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Figure 3.5. Summed mode spectrum for spanwise wavenumber triplet {0,0,0} after a radial
search of fr = 0.2 is applied.

values found with the one-dimensional radial search are reported in Table 3.3. Interestingly,

excluding repeating results, the order of the frequencies, f3, that correspond to the maxima found

in the mode bispectrum in Table 3.2, are in the same order as those found in the summed mode

spectrum shown in Table 3.3. This indicates that the maxima found in the mode bispectrum have

a significant impact on the maxima found in the summed mode spectrum.

Furthermore, the peaks in the summed mode spectrum are a proxy for the frequency

interactions that are expected to have the largest energy transfers and are therefore expected to

Table 3.3. The five maxima of the summed mode spectrum for spanwise wavenumber triplet
{0,0,0} ordered from greatest to least Λ1( f3) value.

f3 Λ1( f3)

0.44 0.0058
0.89 0.0044
1.33 0.00085
1.78 0.00027
0.00 0.00013
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be the Rossiter modes of the open cavity flow. As mentioned in Chapter 1, section 2, Rossiter

modes correspond to large-amplitude, self-sustained oscillations of the pressure, velocity, and

density fields in and around the cavity [9]. Utilizing equation 1.4, we can empirically compute

the frequencies where these modes are expected to occur and compare with the results of the

summed mode spectrum. As we are using the dimensionless frequency corresponding to the

Strouhal number as noted at the beginning of this chapter, the equation will be slightly different.

The equation is now,

f =
m− γ

1
K +Ma

, (3.1)

to keep inline with the definition of the Strouhal number, St = f L
U . The definitions of each

variable is the same as before in equation 1.4. Again, we will continue to use f to refer to the

dimensionless frequency for readability. The frequencies obtained are presented in Table 3.4.

Table 3.4. Rossiter mode frequencies according to equation 1.4. Only the first four are presented
as the largest frequency computed from the BMD parameters is f = 2 and Rossiter mode five
would occur beyond f = 2.

Rossiter mode, m f

1 0.33
2 0.78
3 1.22
4 1.66

By comparing the non-zero f3 values found in Table 3.3 with the frequencies f found in

Table 3.4, we see that Rossiter modes were predicted to occur at lower frequencies. In general,

they were predicted to occur at ≈ f3 −0.11 rather than what was obtained using the BMD. The

peak at f3 = 0 found by the radial search algorithm is not indicative of a Rossiter mode, but

rather, the frequency interactions that correspond to the mean flow deformation of the flow. This

means that the values reported in Table 3.2 are more specifically non-linear triadic interactions

resulting in the Rossiter mode frequencies for this flow. The peak seen at f3 = 0.22 but not

detected by the radial search algorithm in the summed mode spectrum is not believed to be a
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Rossiter mode. Rossiter modes often have comparable strength [9] [22]; this peak is noticeably

lower in magnitude when compared to the other four. Additionally, the empirical equation 1.4

predicted Rossiter modes occurring at frequencies lower than the ones found in the summed mode

spectrum, not higher. Nevertheless, as the peaks in the summed mode spectrum are frequency

interactions that are expected to have the largest energy transfers, we will create a sparse mode

bispectrum (and summed mode spectrum) with a radial search frequency of fr = 0.15 in the next

section to confirm whether or not this is true for the peak at f3 = 0.22. For now, we conclude that

the interactions presented in Table 3.2 are actually sum and difference interactions of Rossiter

modes, with the difference interaction between the second Rossiter mode and the first leading to

the global maxima found in the mode bispectrum.

Now that both the mode bispectrum and summed mode spectrum have been computed

and analyzed with the radial search algorithm, we move on to the sparse mode bispectrum.

3.3 Sparse Mode Bispectrum

The sparse mode bispectrum aims to condense all of the relevant information and results

obtained from radially searching the mode bispectrum and the summed mode spectrum. Figure

3.6 presents the visualization for the spanwise wavenumber triplet {0,0,0}. The same 28 maxima

found in Figure 3.2 are now colored with respect to their corresponding energy transfer value.

Clearly, most of the maxima found in the mode bispectrum do not gain or lose energy; a majority

of the points in Figure 3.6 are simply white indicating little-to-no energy transfer. The few

colored points are blue and indicate energy being from f3, with the two largest occurring at

f3 = 0.44 and f3 = 0.89.
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Figure 3.6. Sparse mode bispectrum for spanwise wavenumber triplet {0,0,0} after a radial
search of fr = 0.2 is applied. Recall, each dashed line f3 corresponds to a maxima found in the
summed mode spectrum and are diagonal lines of slope -1 in the mode bispectrum.

Using the radial search algorithm to report only the top ten values and the ability to

re-scale the circles for visual clarity, we obtain Figure 3.7, meaning we now exclusively see

the values reported in Table 3.2 in the sparse mode bispectrum. Re-scaling the circles makes it

easier to compare the relative loge |λ1| values as they are only represented through the size of

the circles and appeared to be close in Figure 3.6. In fact, the lighter blue circles in Figure 3.6

appear so close in size to the dark blue circles one may come to the erroneous conclusion that

they have the same loge |λ1| value in the mode bispecturm. As mentioned in Chapter 2, section

2, the sizes of the circle are relative and it is up to users to determine what scaling (if any) is
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Figure 3.7. Sparse mode bispectrum for spanwise wavenumber triplet {0,0,0} with only the top
ten values after a radial search of fr = 0.2 is applied. All circles have been scaled by a factor of 4
for improved visual clarity meaning the smallest circles are now 1

8 th the size of the largest circle.
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necessary for their visualization.

For our sparse mode bispectrum, after re-scaling, it is clear that the two largest loge |λ1|

values are also responsible for the largest energy loss from f3. Furthermore, the local maxima

found by radial search algorithm correspond to the largest energy transfers. For this particular

flow, all dashed lines- with the exception of the dashed line for f3 = 0- correspond to the Rossiter

modes discussed in the previous section. The dashed line for f3 = 0 corresponds to the mean

flow deformation and interestingly, does not have any notable energy transfer terms. The first

and second Rossiter modes are responsible for the largest energy transfer, with the energy being

transferred from f3 rather than to f3. The third Rossiter mode also has an appreciable energy

transfer, but it is noticeably smaller than the energy transferred by the first two Rossiter modes.

By the fourth Rossiter mode, there appears to be no notable energy transfer. This indicates that

the energy being transferred is primarily in the first two Rossiter modes at f = 0.44 and f = 0.89

with diminishing effects. Due to the sparse mode bispectrum having the same axis convention as

the mode bispectrum, we can conclude that no notable energy transfer occurred in the intrinsic

dynamics as seen by the white circles parallel to the x-axis at f2 = 0 in Figure 3.6.

Currently, it appears there is a relationship between the largest energy transfers and the

peaks corresponding to the Rossiter modes found in the summed mode spectrum. However, as

noted previously while analyzing the results in Figure 3.4, there appears to be one more peak

at f3 = 0.22 that was not detected by the radial search algorithm due to the search parameter

being too strict. This peak is not a Rossiter mode, yet it is possible that triadic interactions

resulting in the subharmonic frequency of the first Rossiter mode may also be responsible for

energy transfer in this flow. To determine if this is true, we elect to use a less strict radial search

frequency of fr = 0.15 and reproduce the summed mode spectrum (Figure 3.8) and sparse mode

bispectrum (Figure 3.9). Two more peaks are found in the summed mode spectrum, f3 = 0.22

and f3 = 0.67. The first peak corresponds to the subharmonic frequency of the first Rossiter

mode while the second corresponds to the ultraharmonic frequency (with some slight rounding

error). The second peak is part of an interesting double peak behavior not originally noted in the
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Figure 3.8. Summed mode spectrum for spanwise wavenumber triplet {0,0,0} after a radial
search with fr = 0.15 is applied.

summed mode spectrum, but besides this, both new peaks are shown to have no notable energy

transfer terms. The top ten values of Figure 3.9 are not constructed into a new visualization as

this would simply result in Figure 3.7 again.

Through this exercise, we can see that the sparse mode bispectrum is able to condense

a majority of the information from radially searching both the mode bispectrum and summed

mode spectrum. The Rossiter modes were displayed as dashed lines occurring at frequencies

greater than zero, with the dashed line at f3 = 0 corresponding to the mean flow deformation. A

second sparse mode bispectrum was produced using a less restrictive radial search frequency,

but together, these two visualizations seem to imply that only the largest local maxima in the

mode bispectrum are responsible for the energy transferred for the spanwise wavenumber triplet

0,0,0. The largest maxima found are the non-linear triadic interactions resulting in the Rossiter

modes of the open cavity flow, with the first and second modes being responsible for the largest

energy transfers. As before, the choice of fr is left to users to determine in a manner they deem

acceptable or useful to their analysis and is easily modified by the radial search algorithm as
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Figure 3.9. Sparse mode bispectrum for spanwise wavenumber triplet {0,0,0} after a radial
search of fr = 0.15 is applied. All circles have been scaled by a factor of 4 again.
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shown between Figure 3.7 and Figure 3.9. We now move onto our final visualization for this

data, the bispectral modes arranged in the shape of its respective mode bispectrum.

3.4 Bispectral Modes

The bispectral modes, φk+l , are flow structures that form due to non-linear triadic in-

teractions in the numerical data. They are arranged here in the relative shape of the mode

bispectrum so as to showcase these flow structures while maintaining the context of where they

occurred in the mode bispectrum. The information gained from radially searching the summed

mode spectrum, as well as the information presented in the sparse mode bispectrum, are not

necessary for this visualization’s formation. Rather, only the results of radially searching the

mode bispectrum are required. As the information presented in the sparse mode bispectrum

summarizes results from the mode bispectrum and summed mode spectrum, it is intended as

a companion to this bispectral mode visualization. We will be plotting the two-dimensional

bispectral modes of the streamwise velocity, û. Figure 3.10 showcases the 28 bispectral modes

found when radially searching with fr = 0.2. These bispectral modes correspond to the maxima

found in the mode bispectrum as seen originally in Figure 3.2.
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Figure 3.10. Bispectral modes for spanwise wavenumber triplet {0,0,0} in the relative shape of
the mode bispectrum. The top of each figure is written as φ f1+ f2 .

Figure 3.10 is incredibly busy with all 28 bispectral modes. Several of the smaller inset

figures overlap with each other, making the visualization messy and difficult to read. As such,

Figure 3.10 is a perfect example as to why one would utilize the radial search algorithm’s feature

to select only the top n maxima. Choosing n = 10 maxima as before and changing the sizes of

the inset figures to remove as much overlap as possible produces Figure 3.11.
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Figure 3.11. Bispectral modes for spanwise wavenumber triplet {0,0,0} arranged in the relative
shape of the mode bispectrum for the top ten maxima in the mode bispectrum.

In Figure 3.11, we see that the bispectral modes across a diagonal- and thus in the f3

direction- appear extremely similar. In fact, the diagonal of f3 = 0.44 which consists of φ0.44+0.00,

φ0.89−0.44, φ1.33−0.89, and φ1.78−1.33 have similar behavior except for φ1.33−0.89’s inverted colors,

implying the values are negatives (and thus occurring in the opposite direction) of the other

three bispectral modes. This behavior does not appear to have an easily discernible pattern.

Nonetheless, behaviors such as these are much easier to notice due to the the visualization’s

organization; the information and characteristics behind the mode bispectrum are kept when the

bispectral modes are arranged in its relative shape.
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Conclusion

In this work, we utilized the BMD on DNS data of open cavity flow after moving to

wavenumber space due to the periodicity present in the domain. The BMD extracted flow

structures that are associated with triadic interactions and energy transfers in the numerical

data. From there, we produced the mode bispectrum, summed mode spectrum, and bispectral

modes. To determine where interesting phenomena may be occurring, we utilized a radial search

algorithm on the aforementioned results with a frequency search radius of fr = 0.2. Doing so

led to 28 maxima identified in the mode bispectrum and five maxima in the summed mode

spectrum. We condensed the information from the radial search, mode bispectrum, summed

mode spectrum, and energy transfers from the BMD into one concise visualization named the

sparse mode bispectrum. Using this visualization, we conclude that the largest energy transfer

for the spanwise wavetriplet {0,0,0} occurs at the two largest maxima found radially searching

the mode bispectrum and occur at frequencies f3 = 0.44 and f3 = 0.89. These peaks were found

to also be the two largest values in the summed mode spectrum according to the same radial

search strictness and are the first two Rossiter modes of the open cavity flow. The 10 largest

maxima found by the radial search algorithm were all non-linear triadic interactions resulting in

the Rossiter mode frequencies of the open cavity flow, with the exception for the ninth largest

maxima. The ninth largest maxima was found to be the first Rossiter mode and corresponds to

an unstable global mode as it was found as part of the flow’s intrinsic dynamics.

Moving from the sparse mode bispectrum, we plotted the bispectral modes that cor-

responded to the 28 maxima found in the mode bispectrum. The resulting visualization was

crowded with excessive overlap, though the general shape of the bispectral modes were visible.
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Focusing on the top ten maxima instead led to a much clearer image and led us to see a general

pattern between the bispectral modes: along a constant diagonal of f3 they appeared to be

visually the same. However, we found one bispectral mode to have inverted values, namely

the mode φ1.33−0.89, indicating that this mode has the inverse behavior compared to the modes

along the same diagonal. This only refers to a change in phase and is not a significant physical

phenomena. However, this example has illustrated the key advantage of arranging bispectral

modes in the relative shape of the mode bispectrum; information from the mode bispectrum’s

structure is not lost.

In the future, we could continue to analyze this data set and focus more on the physical

phenomena involved rather than succinct visualizations of the BMD. For example, there appeared

to be a peak at fr = 0.22 in the summed mode spectrum for this flow which be the subharmonic of

the unstable global mode: the first Rossiter mode. However, producing a sparse mode bispectrum

with a radial search frequency of fr = 0.15 showed no notable energy transfer terms in this peak

or the peak at f3 = 0.67. While the additional results found in the appendix do provide a bit

more insight into the flow, questions remain regarding the double peaks found in the summed

and the relationship between the Rossiter modes and energy transfer.

Furthermore, We could utilize other analytical and decomposition techniques, such as

the aforementioned POD and DMD in Chapter 1, and compare with the results presented here.

Insight into the relevance of this peak and the double peak behavior of the spectrum may be

obtained. Furthermore, doing so would lead to comparisons the advantages and disadvantages of

applying a radial search to the BMD versus other contemporary methods of analysis.

Finally, we could take the approach described in this work and apply it to other data

sets that have more interesting and complex mode bispectrums. Mode bispectrums without

clear-cut maxima, such as those easily discernible (visually speaking) in Figure 3.1, will likely

showcase the advantages of applying a radial search to the results of the BMD in the first

place. Phenomena that may have been missed would instead be detected through the concise

visualizations presented in this work.
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Appendix A

Additional Results

In this section, the mode bispectrum, summed mode spectrum, sparse mode bispectrum,

and bispectral modes are presented for {kz1, kz2 , kz1 + kz2 ≤ 3} spanwise wavenumber triplets.

The spectral parameters used to compute the BMD are the same as those reported in Table 3.1.

The radial search frequency used is fr = 0.2 as no notable energy transfer terms were found

in the sparse mode bispectrum whenever a peak at f3 = 0.22 was found in the summed mode

spectrum. The sparse mode bispectrum has the same sizing scaling (a factor of 4) as in Figure

3.7. The bispectral modes were found to always have at least one inverse variation occur along a

diagonal, but no discernible pattern was found. In general, all mode bispectrums presented in the

appendix appear to have notable spectral leakage along the f3 direction (diagonal lines of slope

-1). For information as to how these visualizations should be interpreted, refer to Chapters 2 and

3.

A.1 Spanwise Wavenumber Triplet {kz1, kz2, kz1 + kz2 = 1}

This section contains all spanwise wavenumber triplets where kz1 + kz2 = 1, which

consists of only {0,1,1}. The peaks detected by the radial search algorithm in the summed

mode spectrum shown in Figure A.2 are the same peaks as detected in Figure 3.5. Notably,

this summed mode spectrum is an order of magnitude weaker compared to the spectrum for

{0,0,0}. Double peaks can be found in the summed mode spectrum between Rossiter modes
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Figure A.1. Mode bispectrum for spanwise wavenumber triplet {0,1,1}.

and a peak can be seen at f3 = 0.22. Both energy transfer into and from f3 can be found in this

spanwise wavenumber triplet, with the energy into f3 being greater in the Rossiter modes and

the energy from f3 being greater in the mean flow deformation. Figure A.3 shows notable energy

transfer terms in the mean flow deformation, a behavior that was not present for the spanwise

wavenumber triplet {0,0,0}. Once again, the largest energy transfers occur at the largest local

maxima, with the magnitude decreasing as the Rossiter mode increases.
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Figure A.2. Summed mode spectrum for spanwise wavenumber triplet {0,1,1}.

Figure A.3. Sparse mode bispectrum for spanwise wavenumber triplet {0,1,1}.
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Figure A.4. Bispectral modes for spanwise wavenumber triplet {0,1,1}.
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A.2 Spanwise Wavenumber Triplet {kz1, kz2, kz1 + kz2 = 2}

This section contains all spanwise wavenumber triplets where kz1 +kz2 = 2. For spanwise

wavenumber triplet {0,2,2}, the peaks detected by the radial search algorithm in the summed

mode spectrum shown in Figure A.6 are the same peaks as detected in Figure 3.5 with the

exception of f3 = 0.0031 being added. This summed mode spectrum is similar in order of

magnitude compared to the spectrum for {0,1,1}. Double peaks can be found in the summed

mode spectrum between Rossiter modes and a peak can be seen at f3 = 0.22. Both energy

transfer into and from f3 can be found in this spanwise wavenumber triplet. Figure A.7 shows

notable energy transfer terms in f3 = 0.0031, which is close to the mean flow deformation f3 = 0

and is interpreted as such. Once again, the largest energy transfers occur at the largest local

maxima, with the largest energy transfer occurring at the first Rossiter mode and indicates energy

into f3. The magnitude of energy transfer is decreasing as the Rossiter mode increases, with a

majority of the terms indicating energy from f3.

For spanwise wavenumber triplet {1,1,2}, the peaks detected by the radial search

algorithm in the summed mode spectrum shown in Figure A.10 are the same peaks as detected

in Figure 3.5. Notably, this summed mode spectrum is weaker in order of magnitude compared

to the spectrum for {0,1,1}. Double peaks can be found in the summed mode spectrum near

the Rossiter modes and there is no longer a peak at f3 = 0.22. Only energy transfer from f3

can be found in this spanwise wavenumber triplet. Figure A.11 shows notable energy transfer

terms in the mean flow deformation f3 = 0. Once again, the largest energy transfers occur at the

largest local maxima, with the largest energy transfer occurring at the mean flow deformation.

The magnitude of energy transfer is decreasing as the Rossiter mode increases, with a majority

of the terms indicating energy from f3.
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Figure A.5. Mode bispectrum for spanwise wavenumber triplet {0,2,2}.

Figure A.6. Summed mode spectrum for spanwise wavenumber triplet {0,2,2}.
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Figure A.7. Sparse mode bispectrum for spanwise wavenumber triplet {0,2,2}.
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Figure A.8. Bispectral modes for spanwise wavenumber triplet {0,2,2}.
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Figure A.9. Mode bispectrum for spanwise wavenumber triplet {1,1,2}.

Figure A.10. Summed mode spectrum for spanwise wavenumber triplet {1,1,2}.
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Figure A.11. Sparse mode bispectrum for spanwise wavenumber triplet {1,1,2}.
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Figure A.12. Bispectral modes for spanwise wavenumber triplet {1,1,2}.
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A.3 Spanwise Wavenumber Triplet {kz1, kz2, kz1 + kz2 = 3}

This section contains all spanwise wavenumber triplets where kz1 +kz2 = 3. For spanwise

wavenumber triplet {0,3,3}, the peaks detected by the radial search algorithm in the summed

mode spectrum shown in Figure A.14 are the same peaks as detected for {0,2,2}. This summed

mode spectrum is similar in order of magnitude compared to the spectrum for {0,1,1} and

{0,2,2}. Double peaks can be found in the summed mode spectrum between Rossiter modes

and a peak can once again be seen at f3 = 0.22. Both energy transfer into and from f3 can be

found in this spanwise wavenumber triplet. Figure A.15 shows notable energy transfer terms

in f3 = 0.0031, which is close to the mean flow deformation f3 = 0 and is interpreted as such.

Once again, the largest energy transfers occur at the largest local maxima, with the largest

energy transfer occurring at the first Rossiter mode and indicates energy into f3. The magnitude

of energy transfer is decreasing as the Rossiter mode increases, with a majority of the terms

indicating energy into f3.

For spanwise wavenumber triplet {1,2,3}, the peaks detected by the radial search

algorithm in the summed mode spectrum shown in Figure A.10 are the same peaks as detected

in Figure 3.5. Notably, this summed mode spectrum is weaker in order of magnitude compared

to all previous spectrums. Double peaks can be found in the summed mode spectrum near the

Rossiter modes and there is no longer a peak at f3 = 0.22. Energy transfer into and from f3

can be found in this spanwise wavenumber triplet. Figure A.19 shows notable energy transfer

terms in the mean flow deformation f3 = 0. Once again, the largest energy transfers occur at the

largest local maxima, with the largest energy transfer occurring at the mean flow deformation.

The magnitude of energy transfer is decreasing as the Rossiter mode increases, with a majority

of the terms indicating energy into f3.

From these additional results, we are able to draw a few conclusions. It appears the

self-interaction wavenumber triplets {0,0,0} and {1,1,2} consist of only energy from f3; no

energy goes into f3. The peak at f3 = 0.22 seems to appear only when kz = 0 is part of the
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Figure A.13. Mode bispectrum for spanwise wavenumber triplet {0,2,2}.

wavenumber triplet, though there are no notable energy transfer terms found along this diagonal

(searches with smaller fr values were done to confirm this, but are not presented). Moreover,

kz = 0 leads to the double peak behavior in the summed mode spectrum occurring between the

Rossiter modes rather than just before the modes. Spanwise wavenumber kz = 0 also appears to

have the largest impact on the summed mode spectrum’s order of magnitude and implies kz = 0

is the spanwise wavenumber most responsible for energy transfer. This is further reinforced by

the magnitude of the energy transfer terms found in the sparse mode bispectrum. The energy

transfer terms found in the sparse mode bispectrum for {0,0,0} is three orders of magnitude

larger than those found in {1,2,3}. Finally, the largest energy transfer always occurred at the

largest local maxima for all sparse mode bispectrums, indicating that the mode bispectrum and

energy transfer terms are related.
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Figure A.14. Summed mode spectrum for spanwise wavenumber triplet {0,3,3}.

Figure A.15. Sparse mode bispectrum for spanwise wavenumber triplet {0,3,3}.

51



Figure A.16. Bispectral modes for spanwise wavenumber triplet {0,3,3}.
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Figure A.17. Mode bispectrum for spanwise wavenumber triplet {1,2,3}.

Figure A.18. Summed mode spectrum for spanwise wavenumber triplet {1,2,3}.
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Figure A.19. Sparse mode bispectrum for spanwise wavenumber triplet {1,2,3}.
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Figure A.20. Bispectral modes for spanwise wavenumber triplet {1,2,3}
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