
Lawrence Berkeley National Laboratory
Applied Math & Comp Sci

Title
CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. I. HYDRODYNAMICS AND SELF-
GRAVITY

Permalink
https://escholarship.org/uc/item/8d19v9fd

Journal
The Astrophysical Journal, 715(2)

ISSN
0004-637X

Authors
Almgren, AS
Beckner, VE
Bell, JB
et al.

Publication Date
2010-06-01

DOI
10.1088/0004-637x/715/2/1221

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8d19v9fd
https://escholarship.org/uc/item/8d19v9fd#author
https://escholarship.org
http://www.cdlib.org/

ar
X

iv
:1

00
5.

01
14

v1
 [

as
tr

o-
ph

.I
M

]
 1

 M
ay

 2
01

0

CASTRO: A New Compressible Astrophysical Solver. I.

Hydrodynamics and Self-Gravity

A. S. Almgren1, V. E. Beckner1, J. B. Bell1, M. S. Day1, L. H. Howell2, C. C. Joggerst3,

M. J. Lijewski1, A. Nonaka1, M. Singer2, M. Zingale4

ABSTRACT

We present a new code, CASTRO, that solves the multicomponent compress-

ible hydrodynamic equations for astrophysical flows including self-gravity, nuclear

reactions and radiation. CASTRO uses an Eulerian grid and incorporates adap-

tive mesh refinement (AMR). Our approach to AMR uses a nested hierarchy of

logically-rectangular grids with simultaneous refinement in both space and time.

The radiation component of CASTRO will be described in detail in the next

paper, Part II, of this series.

Subject headings: methods: numerical, hydrodynamics, equation of state, gravi-

tation, nuclear reactions

1. Introduction

In this paper, Part I of a two-part series, we present a new code, CASTRO, that solves

the multicomponent compressible hydrodynamic equations with a general equation of state

for astrophysical flows. Additional physics include self-gravity, nuclear reactions, and radi-

ation. CASTRO uses an Eulerian grid and incorporates adaptive mesh refinement (AMR).

Our approach to AMR uses a nested hierarchy of logically-rectangular grids with simulta-

neous refinement of the grids in both space and time. Spherical (in 1D), cylindrical (in 1D

1Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley,

CA 94720

2Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA

94550

3Dept. of Astronomy & Astrophysics, The University of California, Santa Cruz, Santa Cruz, CA 95064;

Los Alamos National Laboratory, Los Alamos, CA 87545

4Dept. of Physics & Astronomy, Stony Brook University, Stony Brook, NY 11794-3800

http://arxiv.org/abs/1005.0114v1

– 2 –

or 2D), and Cartesian (in 1D, 2D or 3D) coordinate systems are supported. The radiation

component of CASTRO will be described in detail in the next paper, Part II, of this series.

There are a number of other adaptive mesh codes for compressible astrophysical flows,

most notably, ENZO (O’Shea et al. 2005), FLASH (Fryxell et al. 2000), and RAGE (Gittings et al.

2008). CASTRO differs from these codes in several ways. CASTRO uses an unsplit version of

the piecewise parabolic method, PPM, with new limiters that avoid reducing the accuracy of

the scheme at smooth extrema; the other codes are based on operator-split hydrodynamics,

though the most recent release of FLASH, version 3.2, includes an unsplit MUSCL-Hancock

scheme. The different methodologies also vary in their approach to adaptive mesh refine-

ment. RAGE uses a cell-by-cell refinement strategy while the other codes use patch-based

refinement. FLASH uses equal size patches whereas ENZO and CASTRO allow arbitrary

sized patches. ENZO and FLASH enforce a strict parent-child relationship between patches;

i.e., each refined patch is fully contained within a single parent patch; CASTRO requires

only that the union of fine patches be contained within the union of coarser patches with a

suitable proper nesting. Additionally, FLASH and RAGE use a single time step across all

levels while CASTRO and ENZO support subcycling in time. All four codes include support

for calculation of self-gravity.

It is worth noting that CASTRO uses the same grid structure as the low Mach number

astrophysics code, MAESTRO (see, e.g., Nonaka et al. (2010)). This will enable us to map

the results from a low Mach number simulation, such as that of the convective period and

ignition of a Type Ia supernova, to the initial conditions for a compressible simulation such

as that of the explosion itself, thus taking advantage of the accuracy and efficiency of each

approach as appropriate.

2. Hydrodynamics

In CASTRO we evolve the fully compressible equations forward in time. The equations

expressing conservation of mass, momentum, and total energy are:

∂ρ

∂t
= −∇ · (ρu) + Sext,ρ, (1)

∂(ρu)

∂t
= −∇ · (ρuu)−∇p+ ρg + Sext,ρu, (2)

∂(ρE)

∂t
= −∇ · (ρuE + pu) + ρHnuc + ρu · g + Sext,ρE . (3)

Here ρ, u, and E are the mass density, velocity vector, and total energy per unit mass,

respectively. The total energy, E = e + u · u/2, where e is the specific internal energy.

– 3 –

The pressure, p, is defined by a user-supplied equation of state, and g is the gravitational

acceleration vector. The source terms, Sext,ρ, Sext,ρu, and Sext,ρE are user-specified external

source terms for the mass, momentum, and energy equations, respectively. For reacting

flows, we evolve equations for mass fractions, Xk:

∂(ρXk)

∂t
= −∇ · (ρuXk) + ρω̇k + Sext,ρXk

. (4)

where the production rates, ω̇k, for species k are defined by a user-supplied reaction network.

The reaction network also determines the energy generation rate Hnuc. The mass fractions

are subject to the constraint that
∑

kXk = 1. Again, a user-specified external source,

Sext,ρXk
, may be specified. Finally, CASTRO includes passively advected quantities, Cadv

k ,

and auxiliary variables, Caux
k that satisfy

∂(ρCadv
k)

∂t
= −∇ · (ρuCadv

k) + Sext,ρCadv
k
, (5)

∂(ρCaux
k)

∂t
= −∇ · (ρuCaux

k) + Sext,ρCaux
k
. (6)

Advected and auxiliary variables are updated similarly, but they differ in their usage. In

particular, auxiliary variables are passed into the equation of state routines. Examples

of auxiliary and advected variables, respectively, might include the electron fraction, Ye,

used in simulations of core collapse supernovae, and angular momentum in two-dimensional

simulations of a rotating star in cylindrical (axisymmetric) coordinates. Both of these

evolution equations include user-specified sources, Sext,ρCadv
k

and Sext,ρCaux
k

. We refer to

U = (ρ, ρu, ρE, ρXk, ρC
adv
k , ρCaux

k) as the conserved variables.

3. Equation of State and Reaction Network

CASTRO is written in a modular fashion so that the routines for the equation of state

and reaction network can be supplied by the user. However, for the test problems presented

later we use routines that come with the CASTRO distribution.

Each equation of state must provide an interface for obtaining thermodynamic quantities

from ρ, e, and Xk. One equation of state which is supplied with the CASTRO distribution

is the gamma-law equation of state, which relates pressure and temperature, T , to ρ and e

via:

p = ρe(γ − 1) =
ρkBT

µmp
. (7)

Here, γ, is the ratio of specific heats (e.g. γ = 5/3 for a monatomic gas), kB is Boltzmann’s

– 4 –

constant, mp is the mass of the proton, and the mean molecular weight, µ, is determined by

1

µ
=
∑

k

Xk

Ak
, (8)

with Ak the atomic weight of species k.

The CASTRO distribution also includes more complex equations of state describing stel-

lar matter, including the Helmholtz equation of state (Timmes & Swesty 2000; Fryxell et al.

2000) which includes degenerate/relativistic electrons, ions (as a perfect gas), and radi-

ation, and the Lattimer-Swesty equation of state, which describes dense nuclear matter

(Lattimer & Swesty 1991). For tabular equations of state, it is common that ρ, T , and Xk

are inputs, in which case a Newton-Raphson iteration is typically used to invert the equation

of state.

CASTRO can support any general reaction network that takes as inputs the density,

temperature, and mass fractions, and returns updated mass fractions and the energy release

(or decrease). The input temperature is computed from the equation of state before each

call to the reaction network. In general, we expect the reaction network to evolve the species

according to:
dXk

dt
= ω̇k(ρ,Xk, T). (9)

Reaction rates can be extremely temperature-sensitive, so in most cases, the reaction network

should be written to evolve the temperature for the purposes of evaluating the rates. Close

to nuclear statistical equilibrium, the energy release and change in abundances can rapidly

change sign if the rates are not evaluated with a temperature field consistent with the evolving

energy (Müller 1986). At the end of the burning step, we use the energy release to update

the total energy, E. The density remains unchanged during the burning.

4. Gravity

CASTRO supports several different options for how to specify and/or compute the

gravitational acceleration. The simplest option is a gravitational field that is constant in

space and time; this can be used for small-scale problems in which the variation of gravity

throughout the computational domain is negligible. This option is available in 1D Cartesian

coordinates, 2D cylindrical or Cartesian coordinates, and 3D Cartesian coordinates.

A second approach uses a monopole approximation to compute a radial gravity field

consistent with the mass distribution. Because the algorithm subcycles in time we construct

a separate 1D radial density profile at each level at each time needed. Once the radial density

– 5 –

profile is defined, gravity is computed as a direct integral of the mass enclosed. This field is

then interpolated back onto the original grids.

The most general option is to solve the Poisson equation for self-gravity, i.e. solve

∇2φ = 4πGρ, (10)

for φ, and define g = −∇φ. This can be used in any of the coordinate systems. At bound-

aries away from the star we set inhomogeneous Dirichlet boundary conditions for φ; these

values are determined by computing the monopole approximation for g on the coarsest level,

integrating this profile radially outward to create φ(r), and interpolating φ onto the domain

boundaries to define the boundary conditions for the solve. Boundaries that pass through

the center of the star use symmetry boundary conditions.

The Poisson equation is discretized using standard finite difference approximations and

the resulting linear system is solved using geometric multigrid techniques, specifically V-

cycles and red-black Gauss-Seidel relaxation. For multilevel calculations, special attention is

paid to the synchronization of the gravitational forcing across levels, which will be discussed

in Section 6.

There is also an option to add the gravitational forcing due to a specified point mass to

either of the self-gravity options described above.

5. Single-Level Integration Algorithm

The time evolution of U can be written in the form

∂U

∂t
= −∇ · F+ Sreact + S, (11)

where F is the flux vector, Sreact are the reaction source terms, and S are the non-reaction

source terms, which includes any user-defined external sources, Sext. We use Strang splitting

(Strang 1968) to discretize the advection-reaction equations. In other words, to advance the

solution, U, by one time step, ∆t, we first advance the nuclear reaction network by ∆t/2,

U(1) = Un +
∆t

2
Sn
react, (12a)

then advect the solution by ∆t, ignoring the reaction terms,

U(2) = U(1) −∆t∇ · Fn+1/2 +∆t
S(1) + S(2)

2
, (12b)

– 6 –

and finally advance the nuclear reaction network by another ∆t/2,

Un+1 = U(2) +
∆t

2
S
(2)
react . (12c)

The construction of F is purely explicit, and based on an unsplit Godunov method. The

solution, U, and source terms, S, are defined on cell centers; we predict the primitive vari-

ables, Q = (ρ,u, p, ρe,Xk, C
adv
k , Caux

k), from cell centers at time tn to edges at time tn+
1/2 and

use an approximate Riemann solver to construct fluxes, Fn+1/2, on cell faces. This algorithm

is formally second-order in both space and time.

5.1. Single-Level Flow Chart

At the beginning of each time step, we assume that, in the case of self-gravity, g is

defined consistently with the current mass distribution in U. The algorithm at a single level

of refinement is composed of the following steps:

Step 1: Advance the nuclear reaction network through a time interval of ∆t/2.

Define U(1) = Un with the exception of

(ρE)(1) = (ρE)n +
∆t

2
(ρHnuc)

n, (13)

(ρXk)
(1) = (ρXk)

n +
∆t

2
(ρω̇k)

n. (14)

where (ρHnuc)
n and (ρω̇k)

n are computed using calls to the user-defined reaction net-

work. Note that ρ is unchanged during this step.

Step 2: Advect the solution through ∆t.

Advance the solution using time-centered fluxes and an explicit representation of the

source term, neglecting the contribution from reactions which are taken into account

in Steps 1 and 4 (the asterisk superscript notation indicates that we will later correct

this state to effectively time-center the source terms):

U(2,∗∗) = U(1) −∆t∇ · Fn+1/2 +∆tS(1). (15)

where

S
(1)
U =

Sρ

Sρu

SρE

SρXk

SρCadv
k

SρCaux
k

(1)

=

Sext,ρ

(ρg)(1) + Sext,ρu

(ρu · g)(1) + Sext,ρE

Sext,ρXk

Sext,ρCadv
k

Sext,ρCaux
k

(1)

. (16)

– 7 –

The construction of the fluxes is described in detail in Section 5.2. We note that in

the single-level algorithm we can use the gravitational forcing computed in Step 3 of

the previous time step, since the density has not changed.

After the advective update, we ensure that the solution is physically meaningful by

forcing the density to exceed a non-negative, user-defined minimum value. We also

ensure that the mass fractions are all non-negative and sum to one.

We also have an option for a user-defined sponge in order to prevent the velocities in

the upper atmosphere from becoming too large, and subsequently, the time step from

becoming too small. We multiply the velocity by 1/(1+∆t κ fdamp(ρ)), where κ is the

sponge strength, and fdamp is a smooth function of density that varies from 0 to 1. Full

details of the sponge are given in Zingale et al. (2009). Finally, we adjust (ρE)(2,∗∗) to

be consistent with u(2,∗∗).

Step 3: Correct the solution with time-centered source terms and compute gravity at tn+1.

We correct the solution by effectively time-centering the source terms. First, we correct

U with updated external sources:

U(2),∗ = U(2,∗∗) +
∆t

2

(

S
(2,∗∗)
ext,U − S

(1)
ext,U

)

. (17)

Next, we evaluate gravity using ρ(2,∗). If using full gravity we solve

g(2,∗) = −∇φ(2,∗), ∇2φ(2,∗) = 4πGρ(2,∗), (18)

where we supply an initial guess for φ(2,∗) from the previous solve. In the single-level

algorithm described here, g(2,∗) is saved to be used as g(1) in Step 2 of the next time

step. This suffices in the single-level algorithm because ρ does not change between the

end of Step 3 of one time step and the start of Step 2 of the next time step.

We then correct the solution with the updated gravity:

(ρu)(2) = (ρu)(2,∗) +
∆t

2

[

(ρg)(2,∗) − (ρg)(1)
]

, (19)

(ρE)(2) = (ρE)(2,∗) +
∆t

2

[

(ρu · g)(2,∗) − (ρu · g)(1)
]

. (20)

For all other conserved variables other than ρu and ρE,U(2) = U(2,∗). We note here

that the time discretization of the gravitational forcing terms differs from that in

the FLASH (Fryxell et al. 2000) and ENZO (O’Shea et al. 2005) codes, where the

gravitational forcing at tn+
1/2 is computed by extrapolation from values at tn and tn−1

(see also Bryan et al. 1995). Our discretization of the gravitational terms is consistent

with our predictor-corrector approach in the handling of other source terms.

– 8 –

Step 4: Advance the nuclear reaction network through a time interval of ∆t/2.

Define Un+1 = U(2) with the exception of

(ρE)n+1 = (ρE)(2) +
∆t

2
(ρHnuc)

(2), (21)

(ρXk)
n+1 = (ρXk)

(2) +
∆t

2
(ρω̇k)

(2). (22)

We also include an option to modify any component of the new-time state as needed

to account for special user requirements.

Step 5: Compute the new time step.

The time step is computed using the standard CFL condition for explicit methods,

with additional constraints (such as one based on rate of burning) possible as needed.

The user sets a CFL factor, σCFL, between 0 and 1. The sound speed, c, is computed

by the equation of state, and for a calculation in ndim dimensions,

∆t = σCFL min
i=1...ndim

{∆ti} , (23)

where

∆ti = min
x

{

∆xi
|ui|+ c

}

. (24)

minx is the minimum taken over all computational grid cells in the domain.

This concludes the single-level algorithm description. We note that whenever the kinetic

energy dominates the total energy, making the calculation of e from E numerically unreliable,

we use a method similar to the dual-energy approach described in Bryan et al. (1995) to

compute the internal energy with sufficient precision. In practice, this involves evolving ρe

in time and using this solution when appropriate.

5.2. Construction of Fluxes

We use an unsplit Godunov method with characteristic tracing and full corner coupling

in 3D (Miller & Colella 2002) to compute time-centered edge states. We have replaced the

PPM limiters in Miller & Colella (2002) with an updated PPM algorithm that is designed to

preserve accuracy at smooth extrema and is insensitive to asymmetries caused by roundoff

error (Colella & Sekora 2008; McCorquodale & Colella 2010). CASTRO also has options to

use the unsplit piecewise-linear algorithm described in Colella (1990); Saltzman (1994), or

– 9 –

to retain the PPM limiters in Miller & Colella (2002), which were originally developed in

Colella & Woodward (1984) using a split integrator.

There are four major steps in the construction of the face-centered fluxes, Fn+1/2 that

are used in Step 2 in Section 5.1 to update the solution. We also include details on the

solution of the Riemann problem. In summary,

Step 2.1: Rewrite the state, U(1), in terms of primitive variables, Q(1).

Step 2.2: Construct a piecewise parabolic approximation of Q(1) within each cell.

Step 2.3: Predict average values of Q(1) on edges over the time step using charac-

teristic extrapolation.

Step 2.4: Compute fluxes, Fn+1/2, using an approximate Riemann problem solver.

We expand each of these steps in more detail below.

Step 2.1: Compute primitive variables and source terms.

We define Q(1) = (ρ,u, p, ρe,Xk, C
adv
k , Caux

k)(1). The pressure, p, is computed through

a call to the equation of state using ρ, e, and Xk. Note that we also include ρe in

Q; this quantity is used in the approximate Riemann solver to avoid an EOS call to

evaluate the energy flux, analogous to the effective dynamics for γ = p/(ρe) + 1 in the

Colella & Glaz (1985) approximate Riemann solver.

For the overall integration algorithm, we want to include the effect of source terms

except for reactions in the characteristic tracing (Step 2.2). (Reactions are treated

separately using a symmetric operator split approach in Steps 1 and 4 of the algo-

rithm.) The time evolution equations written in terms of the primitive variables, Q,

and omitting contributions from reactions, are

∂Q

∂t
=

−u · ∇ρ− ρ∇ · u

−u · ∇u− 1
ρ
∇p

−u · ∇p− ρc2∇ · u

−u · ∇(ρe)− (ρe + p)∇ · u

−u · ∇Xk

−u · ∇Cadv
k

−u · ∇Caux
k

+ SQ

– 10 –

where

SQ =

Sρ

Su

Sp

Sρe

SXk

SCadv
k

SCaux
k

=

Sext,ρ

g + 1
ρ
Sext,ρu

pe
ρ
Sext,ρE + pρSextρ +

pXk

ρ
Sext,ρXk

Sext,ρE
1
ρ
Sext,ρXk

1
ρ
Sext,ρCadv

k
1
ρ
Sext,ρCaux

k

(25)

Here, c is the sound speed, defined as c =
√

Γ1p/ρ, with Γ1 = d log p/d log ρ|s, with

s the entropy. The remaining thermodynamic derivatives are pe = ∂p/∂e|ρ,Xk
, pρ =

∂p/∂ρ|e,Xk
, and pXk

= ∂p/∂Xk|ρ,e,Xj,(j 6=k)
. Often, the equation of state is a function of

ρ, T , and Xk, and returns derivatives with these quantities held constant. In terms of

the latter derivatives, our required thermodynamic derivatives are:

pe =

(

∂e

∂T

∣

∣

∣

∣

ρ,Xk

)−1
∂p

∂T

∣

∣

∣

∣

ρ,Xk

,

pρ =
∂p

∂ρ

∣

∣

∣

∣

T,Xk

−

(

∂e

∂T

∣

∣

∣

∣

ρ,Xk

)−1
∂p

∂T

∣

∣

∣

∣

ρ,Xk

∂e

∂ρ

∣

∣

∣

∣

T,Xk

,

pXk
=

∂p

∂Xk

∣

∣

∣

∣

ρ,T,Xj,(j 6=k)

−

(

∂e

∂T

∣

∣

∣

∣

ρ,Xk

)−1
∂p

∂T

∣

∣

∣

∣

ρ,Xk

∂e

∂Xk

∣

∣

∣

∣

ρ,T,Xj,(j 6=k)

.

Step 2.2: Reconstruct parabolic profiles within each cell.

In this step we construct a limited piecewise parabolic profile of each q in Q (we use

q to denote an arbitrary primitive variable from from Q). These constructions are

performed in each coordinate direction separately. The default option in CASTRO is

to use a new limiting procedure that avoids reducing the order of the reconstruction at

smooth local extrema. The details of this construction are given in Colella & Sekora

(2008); McCorquodale & Colella (2010). In summary:

• Step 2.2a: For each cell, we compute the spatial interpolation of qn to the

high and low faces of cell qi using a limited cubic interpolation formula. These

interpolants are denoted by qi,+ and qi,−.

• Step 2.2b: Construct quadratic profiles using qi,−, qi, and qi,+.

qquadi (x) = qi,− + ξ(x) {qi,+ − qi,− + q6,i[1− ξ(x)]} , (27)

– 11 –

q6 = 6qi − 3 (qi,− + qi,+) , (28)

ξ(x) =
x− ih

h
, 0 ≤ ξ(x) ≤ 1 , (29)

where h is the mesh spacing in the direction of interpolation. Also, as in Miller & Colella

(2002), we compute a flattening coefficient, χ ∈ [0, 1], used in the edge state

prediction to further limit slopes near strong shocks. The computation of χ is

identical to the approach used in FLASH (Fryxell et al. 2000), except that a flat-

tening coefficient of 1 indicates that no additional limiting takes place, whereas a

flattening coefficient of 0 means we effectively drop order to a first-order Godunov

scheme, which is opposite of the convention used in FLASH.

Step 2.3: Characteristic extrapolation.

We begin by extrapolating Q(1) to edges at tn+
1/2. The edge states are dual-valued,

i.e., at each face, there is a left state and a right state estimate, denoted qL,i+1/2 and

qR,i+1/2 (we write the equations in 1D for simplicity). The spatial extrapolation is

one-dimensional, i.e., transverse derivatives are omitted and accounted for later.

• Step 2.3a: Integrate the quadratic profiles. We are essentially computing the

average value swept out by the quadratic profile across the face assuming the pro-

file is moving at a speed λk, where λk is a standard wave speed associated with

gas dynamics.

Define the following integrals, where σk = |λk|∆t/h:

Ii,+(σk) =
1

σkh

∫ (i+1/2)h

(i+1/2)h−σkh

qquadi (x)dx (30a)

Ii,−(σk) =
1

σkh

∫ (i−1/2)h+σkh

(i−1/2)h

qquadi (x)dx (30b)

Substituting (27) gives:

Ii,+(σk) = qi,+ −
σk
2

[

qi,+ − qi,− −

(

1−
2

3
σk

)

q6,i

]

, (31a)

Ii,−(σk) = qi,− +
σk
2

[

qi,+ − qi,− +

(

1−
2

3
σk

)

q6,i

]

. (31b)

• Step 2.3b: Obtain a left and right edge state at tn+
1/2 by applying a characteristic

tracing operator (with flattening) to the integrated quadratic profiles. Note that

– 12 –

we also include the explicit source term contribution.

qL,i+1/2 = qi − χi

∑

k:λk≥0

lk · [qi − Ii,+(σk)] rk +
∆t

2
Sn
q,i, (32a)

qR,i−1/2 = qi − χi

∑

k:λk≤0

lk · [qi − Ii,−(σk)] rk +
∆t

2
Sn
q,i. (32b)

In non-Cartesian coordinates, volume source terms are added to the traced states.

Here, rk and lk are the standard right column and left row eigenvectors associated

with the equations of gas dynamics (see Toro 1997).

An unsplit approximation that includes full corner coupling is constructed by

constructing increasingly accurate approximations to the transverse derivatives.

The details follow exactly as given in Section 4.2.1 in Miller & Colella (2002),

except for the solution of the Riemann problem, which is described in Step 2.4.

Step 2.4: Compute fluxes

The fluxes are computed using an approximate Riemann solver. The solver used here

is essentially the same as that used in Colella et al. (1997), which is based on ideas

discussed in Bell et al. (1989). This solver is computationally faster and considerably

simpler than the approximate Riemann solver introduced by Colella & Glaz (1985).

The Colella and Glaz solver was based on an effective dynamics for γ and was designed

for real gases that are well-approximated by this type of model. The approximate

Riemann solver used in CASTRO is suitable for a more general convex equation of

state.

As with other approximate Riemann solvers, an important design principle is to avoid

additional evaluations of the equation of state when constructing the numerical flux.

For that reason, we include ρe in Q and compute (ρe)L,R. The information carried in

ρe is overspecified but it allows us to compute an energy flux without an inverse call

to the equation of state.

The numerical flux computation is based on approximating the solution to the Riemann

problem and evaluating the flux along the x/t = 0 ray. The procedure is basically a

two-step process in which we first approximate the solution in phase space and then

interpret the phase space solution in real space.

• Step 2.4a: To compute the phase space solution we first solve for p∗ and u∗, the

pressure between the two acoustic waves and the velocity of the contact discon-

tinuity, respectively. These quantities are computed using a linearized approx-

imation to the Rankine-Hugoniot relations. We first define Γ1,L/R by using the

– 13 –

cell-centered values on either side of the interface. Next, we compute Lagrangian

sound speeds, WL =
√

Γ1,LpLρL and WR =
√

Γ1,RpRρR and the corresponding

Eulerian sound speeds cL,R =
√

Γ1,L,RpL,R/ρL,R. Then,

p∗ =
WLpR +WRpL +WLWR(uL − uR)

WL +WR

, (33a)

u∗ =
WLuL +WRuR + (pL − pR)

WL +WR
. (33b)

From u∗ and p∗ we can compute

ρ∗L,R = ρL,R +
p∗ − pL,R
c2L,R

, (34a)

(c∗L,R)
2 = Γ1,L,Rp

∗
L,R/ρ

∗
L,R, (34b)

(ρe)∗L,R = (ρe)L,R + (p∗ − pL,R)
(e+ p/ρ)L,R

c2L,R
, (34c)

v∗L,R = vL,R, (34d)

where v generically represents advected quantities (which includes transverse

velocity components). Here, the notation ∗
L,R refers to values on the left and right

side of the contact discontinuity.

• Step 2.4b: The next step in the approximate Riemann solver is to interpret this

phase space solution. If u∗ > 0 then the contact discontinuity is moving to the

right and numerical flux depends on the speed and structure of the acoustic wave

connecting QL and Q∗
L associated with the λ = u − c eigenvalue. Similarly if

u∗ < 0 then the contact is moving to the left and the numerical flux depends on

the speed and structure of the acoustic wave connecting QR and Q∗
R associated

with the λ = u+ c eigenvalue. Here we discuss in detail the case in which u∗ > 0;

the other case is treated analogously.

For u∗ > 0 we define λL = uL − cL and λ∗L = u∗L − c∗L. If p
∗
L > pL then the wave is

a shock wave and we define a shock speed σ = 1/2(λL+λ
∗
L). For that case if σ > 0

then the shock is moving to the right and we define the Godunov state QG = QL;

otherwise QG = Q∗
L. The rarefaction case is somewhat more complex. If both λL

and λ∗L are negative, then the rarefaction fan is moving to the left and QG = Q∗
L.

Similarly, if both λL and λ∗L are positive, then the rarefaction fan is moving to the

right and QG = QL. However, in the case in which λL < 0 < λ∗L, the rarefaction

spans the x/t = 0 ray and we need to interpolate the solution. For this case, we

define

QG = αQ∗
L + (1− α)QL (35)

– 14 –

where α = λL/(λL − λ∗L). This choice of α corresponds to linearly interpolating

Q through the rarefaction to approximate the state that propagates with zero

speed.

As noted above the case in which u∗ < 0 is treated analogously. When u∗ = 0 we

compute QG by averaging Q∗
L and Q∗

R. For the Riemann problem approximation,

we allow for user-specified floors for ρ, p and c to prevent the creation of non-

physical values.

The fluxes can then be evaluated from the final QG. A small quadratic artificial

viscosity that is proportional to the divergence of the velocity field is added to the flux

in order to add additional dissipation at strong compressions. We also scale all the

species fluxes so that they sum to the density flux, as in the sCMA algorithm described

by Plewa & Müller (1999).

6. AMR

Our approach to adaptive mesh refinement in CASTRO uses a nested hierarchy of

logically-rectangular grids with simultaneous refinement of the grids in both space and time.

The integration algorithm on the grid hierarchy is a recursive procedure in which coarse

grids are advanced in time, fine grids are advanced multiple steps to reach the same time as

the coarse grids and the data at different levels are then synchronized.

The AMR methodology was introduced by Berger & Oliger (1984); it has been demon-

strated to be highly successful for gas dynamics by Berger & Colella (1989) in two dimensions

and by Bell et al. (1994) in three dimensions.

6.1. Creating and Managing the Grid Hierarchy

6.1.1. Overview

The grid hierarchy is composed of different levels of refinement ranging from coarsest

(ℓ = 0) to finest (ℓ = ℓfinest). The maximum number of levels of refinement allowed, ℓmax, is

specified at the start of a calculation. At any given time in the calculation there may not

be that many levels in the hierarchy, i.e. ℓfinest can change dynamically as the calculation

proceeds as long as ℓfinest ≤ ℓmax. Each level is represented by the union of non-overlapping

rectangular grids of a given resolution. Each grid is composed of an even number of cells in

each coordinate direction; cells are the same size in each coordinate direction but grids may

– 15 –

have different numbers of cells in each direction. Figure 1 shows a cartoon of AMR grids in

two dimensions with two levels of refinement.

In this implementation, the refinement ratio between levels ℓ and ℓ + 1, which we call

rℓ, is always two or four, with the same factor of refinement in each coordinate direction.

The grids are properly nested, in the sense that the union of grids at level ℓ+1 is contained

in the union of grids at level ℓ. Furthermore, the containment is strict in the sense that,

except at physical boundaries, the level ℓ grids are large enough to guarantee that there is a

border at least nproper level ℓ cells wide surrounding each level ℓ + 1 grid (grids at all levels

are allowed to extend to the physical boundaries so the proper nesting is not strict there).

The parameter nproper is two for factor two refinement, and one for factor four refinement,

since four ghost cells are needed for the PPM algorithm.

6.1.2. Error Estimation and Regridding

We initialize the grid hierarchy and regrid following the procedure outlined in Bell et al.

(1994). Given grids at level ℓ we use an error estimation procedure to tag cells where the

error, as defined by user-specified routines, is above a given tolerance. Typical error criteria

include first or second derivatives of the state variables or quantities derived from the state

variables, or the state variables or derived quantities themselves. A user can specify that any

or all of the criteria must be met to refine the cell; one can also specify criteria that ensure

that a cell not be refined. For example, one could specify that a cell be refined if ρ > ρcrit
and ((∇2T) > (∇2T)crit or |∇p| > |∇p|crit), where ρcrit, (∇

2T)crit, and |∇p|crit are constants

specified by the user.

The tagged cells are grouped into rectangular grids at level ℓ using the clustering al-

gorithm given in Berger & Rigoutsos (1991). These rectangular patches are refined to form

the grids at level ℓ + 1. Large patches are broken into smaller patches for distribution to

multiple processors based on a user-specified max grid size parameter.

At the beginning of every kℓ level ℓ time steps, where kℓ ≥ 1 is specified by the user at

run-time, new grid patches are defined at all levels ℓ + 1 and higher if ℓ < ℓmax. In regions

previously covered by fine grids the data is simply copied from old grids to new; in regions

which are newly refined, data is interpolated from underlying coarser grids.

– 16 –

6.1.3. Enlarging the Domain

The finest resolution of a calculation can vary in time; however, the coarsest resolution

covering the domain does not change during a single run. However, a feature has been added

to the CASTRO distribution that allows a user to restart a calculation in a larger domain

covered by a coarser resolution, provided the data exists to initialize the larger domain. This

is useful in simulations during which a star expands dramatically, for example. Using this

strategy one could periodically stop the simulation, double the domain size, and restart the

calculation in the larger domain.

6.2. Multilevel Algorithm

6.2.1. Overview

The multilevel time stepping algorithm can most easily be thought of as a recursive

procedure. In the case of zero or constant gravity, to advance level ℓ, 0 ≤ ℓ ≤ ℓmax the

following steps are taken. Here the phrase, “Advance U” refers to Steps 1–4 of the single-

level algorithm described in the previous section.

• If ℓ = 0, compute the new time steps for all levels as follows

– compute the appropriate time step for each level, ∆tℓ
′,∗ using the procedure de-

scribed in Step 5 of the previous section,

– define Rℓ′ as the ratio of the level 0 cell size to the level ℓ′ cell size

– define ∆t0 = minℓ′(Rℓ′∆t
ℓ′,∗),

– define ∆tℓ
′

= ∆t0/Rℓ′ for all ℓ
′, 0 ≤ ℓ′ ≤ ℓmax

• Advance U at level ℓ in time as if it is the only level, filling boundary conditions for

U from level ℓ− 1 if level ℓ > 0, and from the physical domain boundaries.

• If ℓ < ℓmax

– Advance U at level (ℓ+ 1) for rℓ time steps with time step ∆tℓ+1 = 1
rℓ
∆tℓ.

– Synchronize the data between levels ℓ and ℓ+ 1

∗ Volume average U at level ℓ+ 1 onto level ℓ grids.

∗ Correct U in all level ℓ cells adjacent to but not covered by the union

of level ℓ + 1 grids through an explicit refluxing operation as described in

Berger & Colella (1989).

– 17 –

6.2.2. Monopole Gravity

When we use the monopole gravity assumption in a multilevel simulation, we can no

longer exploit the fact that ρ at level ℓ at the end of Step 3 of one time step is unchanged

when one reaches the beginning of Step 2 of the next level ℓ time step. If ℓ < ℓmax, then

potential changes in ρ come from two sources:

• ρ at level ℓ under the level ℓ + 1 grids is replaced by the volume average of ρ at level

ℓ+ 1;

• the explicit refluxing step between levels ℓ and ℓ + 1 modifies ρ on all level ℓ cells

adjacent to but not covered by the union of level ℓ+ 1 grids.

In addition, because the grids are dynamically created and destroyed through regridding,

at the beginning of Step 2 of a level ℓ time step, there may not be a value for g from the

previous step, because this region of space was previously not covered by level ℓ grids.

In order to address all of these changes, we simply compute g(1) at the beginning of

Step 2 of each time step at each level, rather than copying it from g(2,∗) from Step 3 of

the previous time step as in the single-level algorithm. This captures any changes in grid

structure due to regridding, and reflects any changes in density due to refluxing or volume

averaging.

6.2.3. Full Gravity Solve

Overview

Solving the Poisson equation for self-gravity on a multilevel grid hierarchy introduces ad-

ditional complications. We start by defining some necessary notation. We define Lℓ as an

approximation to ∇2 at level ℓ, with the assumption that Dirichlet boundary conditions are

supplied on the boundary of the union of level ℓ grids (we allow more general boundary

conditions at physical boundaries), and define a level solve as the process of solving

Lℓφℓ = 4πGρℓ

at level ℓ.

We define Lcomp
ℓ,m as the composite grid approximation to ∇2 on levels ℓ through m, and

define a composite solve as the process of solving

Lcomp
ℓ,m φcomp = 4πGρcomp

– 18 –

on levels ℓ through m. The solution to the composite solve satisfies

Lmφcomp = 4πGρm

at level m, but satisfies

Lℓ′φℓ′ = 4πGρℓ
′

for ℓ ≤ ℓ′ < m only on the regions of each level not covered by finer grids or adjacent to

the boundary of the finer grid region. In regions of a level ℓ′ grid covered by level ℓ′ + 1

grids the solution is defined as the volume average of the solution at ℓ′ + 1; in level ℓ′ cells

immediately adjacent to the boundary of the union of level ℓ′ +1 grids, a modified interface

operator is used that reflects the geometry of the interface (see, e.g., Almgren et al. (1998)

for details of the multilevel cell-centered interface stencil).

In an algorithm without subcycling one can perform a composite solve at every time

step, as described in Ricker (2008), to solve for φ on all levels. Because the CASTRO

algorithm uses subcycling in time, however, we must use level solves at times when the

solution is not defined at all levels, and then synchronize the solutions at different levels as

appropriate. Even without changes in ρ due to volume averaging and refluxing, replacing a

composite solve by separate level solves generates a mismatch in the normal gradient of φ at

the boundary between each level. We correct these mismatches with a multilevel correction

solve, which is a two-level composite solve for a correction to φ. In addition to correcting

the solutions once the mismatch is detected, we add a correction term to later level solve

solutions in order to minimize the magnitude of the correction that will be needed.

Multilevel Algorithm

At the start of a calculation, we perform a composite solve from level 0 through ℓfinest to

compute φ at all levels. In addition, after every regridding step that creates new grids at

level ℓ+ 1 and higher, a composite solve from level ℓ through ℓfinest is used to compute φ at

those levels.

Following an approach similar to that described in Miniati & Colella (2007), at the

start and end of each level ℓ time step we perform a level solve to compute φℓ. The difference

between φcomp
ℓ and φℓ at the start of the time step is stored in φℓ,corr. This difference is added

to φℓ at the beginning and end of this level ℓ time step. Thus φℓ+φℓ,corr is identical to φcomp
ℓ

at the start of the time step; at the end of the time step it is an approximation to what the

solution to the composite solve would be. In the event that the density does not change over

the course of the time step, the effect of this lagged correction is to make φℓ + φℓ,corr at the

end of the time step identical to φcomp
ℓ at that time, thus there is no mismatch between levels

– 19 –

to correct. In general, when the density is not constant, the effect of the lagged correction

is to make the correction solve that follows the end of the time step much quicker. We now

describe the two-level correction step. In the discussion below, we will refer to the two levels

involved in a correction solve as the “coarse” and “fine” levels.

At the end of rℓ level ℓ + 1 time steps, when the level ℓ + 1 solution has reached the

same point in time as the level ℓ solution, and after the volume averaging and refluxing steps

above have been performed, we define two quantities on the coarse grid. The first is the

cell-centered quantity, (δρ)c, which carries the change in density at the coarse level due only

to refluxing. The second is the face-centered flux register,

δF ℓ
φ = −Ac∂φ

c

∂n
+
∑

Af ∂φ
f

∂n
, (36)

which accounts for the mismatch in the normal gradient of φ at coarse-fine interfaces. Here

Ac and Af represent area weighting factors on the coarse and fine levels, respectively. We

define the composite residual, Rcomp, to be zero in all fine cells and in all coarse cells away

from the union of fine grids, and

Rcomp = 4πG(δρ)c − (∇ · δFφ)|
c, (37)

on all cells adjacent to the union of fine grids, where (∇·)|c refers to the discrete divergence

at the coarse level, where the only non-zero contribution comes from δFφ on the coarse-fine

interface. We then solve

Lcomp
ℓ,ℓ+1 δφ = Rcomp (38)

and define the update to gravity at both levels,

δg = −∇(δφ). (39)

This update is used to correct the gravitational source terms. We define the new-time state

after volume averaging but before refluxing as (ρ,u, ρE, ...), and the contributions to the

solution on the coarse grid from refluxing as ((δρ)c, δ(ρu)c, δ(ρE)c, ...). Then we can define

the sync sources for momentum on the coarse and fine levels, Ssync,c
ρu , and Ssync,f

ρu , respectively

as follows:

Ssync,c
ρu = (ρc + (δρ)c) (gc,n+1 + δgc)− ρc gc,n+1

=
[

(δρ)cgc,n+1 + (ρc + (δρ)c) δgc)
]

Ssync,f
ρu = ρf δgf .

These momentum sources lead to the following energy sources:

Ssync,c
ρE = Ssync,c

ρu ·
(

uc + 1/2 ∆tc S
sync,c
ρu / ρc

)

Ssync,f
ρE = Ssync,f

ρu ·
(

uf + 1/2 ∆tf S
sync,f
ρu / ρf

)

– 20 –

The state at the coarse and fine levels is then updated using:

(ρu)c,n+1 = (ρu)c + δ(ρu)c + 1/2∆tcS
sync,c
ρu , (ρu)f,n+1 = (ρu)f + 1/2∆tfS

sync,f
ρu ,

(ρE)c,n+1 = (ρE)c + δ(ρE)c + 1/2∆tcS
sync,c
ρE , (ρE)f,n+1 = (ρE)f + 1/2∆tfS

sync,f
ρE .

(The factor of 1/2 follows from the time-centering of the sources.)

To complete the correction step,

• we add δφ directly to φℓ and φℓ+1 and interpolate δφ to any finer levels and add it

to the current φ at those levels. We note that at this point φ at levels ℓ and ℓ + 1 is

identical to the solution that would have been computed using a two-level composite

solve with the current values of density. Thus the new, corrected, φ at each level plays

the role of φcomp in the next time step.

• if level ℓ > 0, we transmit the effect of this change in φ to the coarser levels by updating

the flux register between level ℓ and level ℓ− 1. In particular, we set

δFφ
ℓ−1 = δFφ

ℓ−1 +
∑

Ac∂(δφ)
c−f

∂n
. (40)

Performance Issues

The multilevel algorithm is not as computationally expensive as it might appear. Because

multigrid is an iterative solver, the cost of each solve is proportional to the number of V-

cycles, which is a function of the desired reduction in residual. We can reduce the number

of V-cycles needed in two ways. First, we can supply a good initial guess for the solution;

second, we can lower the desired reduction in residual.

In the case of level solves, we always use φ from a previous level solve, when available,

as a guess in the current level solve. Thus, even in a single-level calculation, φ from the

beginning of the time step is used as a guess in the level solve at the end of the time step.

If no regridding occurs, then φ at the end of one time step can be used as a guess for the

level solve at the start of the next time step. The extent to which ρ changes in a time step

dictates the extent to which a new computation of gravity is needed, but this also dictates

the cost of the update.

Similarly, there is no point in solving for δφ to greater accuracy than we solve for φ.

When we do the correction solve for δφ, we require only that the residual be reduced to

the magnitude of the final residual from the level solve, not that we reduce the correction

residual by the same factor. Thus, if the right-hand-side for the correction solve is already

– 21 –

small, the cost of the correction solve will be significantly less than that of the initial level

solve.

7. Software Design and Parallel Performance

7.1. Overview

CASTRO is implemented within the BoxLib framework, a hybrid C++ /Fortran90

software system that provides support for the development of parallel structured-grid AMR

applications. The basic parallelization strategy uses a hierarchical programming approach

for multicore architectures based on both MPI and OpenMP. In the pure-MPI instantiation,

at least one grid at each level is distributed to each core, and each core communicates with

every other core using only MPI. In the hybrid approach, where on each socket there are

n cores which all access the same memory, we can instead have one larger grid per socket,

with the work associated with that grid distributed among the n cores using OpenMP.

In BoxLib, memory management, flow control, parallel communications and I/O are

expressed in the C++ portions of the program. The numerically intensive portions of the

computation, including the multigrid solvers, are handled in Fortran90. The fundamental

parallel abstraction in both the C++ and the Fortran90 is the MultiFab, which holds the

data on the union of grids at a level. A MultiFab is composed of FAB’s; each FAB is

an array of data on a single grid. During each MultiFab operation the FAB’s composing

that MultiFab are distributed among the cores. MultiFab’s at each level of refinement are

distributed independently. The software supports two data distribution schemes, as well as a

dynamic switching scheme that decides which approach to use based on the number of grids

at a level and the number of processors. The first scheme is based on a heuristic knapsack

algorithm as described in Crutchfield (1991) and in Rendleman et al. (2000). The second is

based on the use of a Morton-ordering space-filling curve.

Each processor contains meta-data that is needed to fully specify the geometry and

processor assignments of the MultiFab’s. At a minimum, this requires the storage of an

array of boxes specifying the index space region for each AMR level of refinement. One of

the advantages of computing with fewer, larger grids in the hybrid OpenMP–MPI approach

is that the size of the meta-data is substantially reduced.

– 22 –

7.2. Parallel Output

Data for checkpoints and analysis are written in a self-describing format that consists of

a directory for each time step written. Checkpoint directories contain all necessary data to

restart the calculation from that time step. Plotfile directories contain data for postprocess-

ing, visualization, and analytics, which can be read using amrvis, a customized visualization

package developed at LBNL for visualizing data on AMR grids, or VisIt (VisIt User’s Manual

2005). Within each checkpoint or plotfile directory is an ASCII header file and subdirectories

for each AMR level. The header describes the AMR hierarchy, including number of levels,

the grid boxes at each level, the problem size, refinement ratio between levels, step time,

etc. Within each level directory are the MultiFab files for each AMR level. Checkpoint and

plotfile directories are written at user-specified intervals.

For output, each processor writes its own data to the appropriate MultiFab files. The

output streams are coordinated to only allow one processor to write to a file at one time

and to try to maintain maximum performance by keeping the number of open data streams,

which is set at run time, equal to the number of files being written. Data files typically

contain data from multiple processors, so each processor writes data from its associated

grid(s) to one file, then another processor can write data from its associated grid(s) to that

file. A designated I/O Processor writes the header files and coordinates which processors are

allowed to write to which files and when. The only communication between processors is for

signaling when processors can start writing and for the exchange of header information. We

also use the C++ setbuf function for good single file performance. While I/O performance

even during a single run can be erratic, recent timings on the Franklin machine (XT4) at

NERSC indicate that CASTRO’s I/O performance, when run with a single level composed

of multiple uniformly-sized grids, matches some of the top results for the N5 IOR benchmark

(roughly 13GB/s) (Franklin Performance Monitoring 2010). For more realistic simulations

with multiple grids at multiple levels, CASTRO is able to write data at approximately 5

GB/s sustained, over half of the average I/O benchmark reported speed.

7.3. Parallel Restart

Restarting a calculation can present some difficult issues for reading data efficiently. In

the worst case, all processors would need data from all files. If multiple processors try to read

from the same file at the same time, performance problems can result, with extreme cases

causing file system thrashing. Since the number of files is generally not equal to the number

of processors and each processor may need data from multiple files, input during restart is

coordinated to efficiently read the data. Each data file is only opened by one processor at

– 23 –

a time. The IOProcessor creates a database for mapping files to processors, coordinates the

read queues, and interleaves reading its own data. Each processor reads all data it needs

from the file it currently has open. The code tries to maintain the number of input streams

to be equal to the number of files at all times.

Checkpoint and plotfiles are portable to machines with a different byte ordering and

precision from the machine that wrote the files. Byte order and precision translations are

done automatically, if required, when the data is read.

7.4. Parallel Performance

In Figure 2 we show the scaling behavior of the CASTRO code, using only MPI-

based parallelism, on the jaguarpf machine at the Oak Ridge Leadership Computing Facility

(OLCF). A weak scaling study was performed, so that for each run there was exactly one

643 grid per processor. We ran the code with gravity turned off, with the monopole approx-

imation to gravity, and with the Poisson solve for gravity. The monopole approximation to

gravity adds very little to the run time of the code; with and without the monopole approxi-

mation the code scales excellently from 8 to 64,000 processors. For the 64,000 processor case

without gravity, the time for a single core to advance one cell for one time step is 24.8 µs.

Good scaling of linear solves is known to be much more difficult to achieve; we report

relatively good scaling up to only 13,824 processors in the pure-MPI approach. An early

strong scaling study contrasting the pure-MPI and the hybrid-MPI-OpenMP approaches

for a 7683 domain shows that one can achieve at least a factor of 3 improvement in linear

solver time by using the hybrid approach at large numbers of processors. Improving the

performance of the linear solves on the new multicore architectures is an area of active

research; more extensive development and testing is underway.

We also ran a scaling study with a single level of local refinement using the monopole

gravity approximation. In this MPI-only study, there is one 643 grid at each level for each

processor. Because of subcycling in time, a coarse time step consists of a single step on

the coarse grid and two steps on the fine grid. Thus, we would expect that the time to

advance the multilevel solution by one coarse time step would be a factor of three greater

than the time to advance the single-level coarse solution by one coarse time step, plus any

additional overhead associated with AMR. From the data in the figure we conclude that

AMR introduces a modest overhead, ranging from approximately 5% for the 8 processor

case to 19% for the 64,000 processor case. By contrast, advancing a single-level calculation

at the finer resolution by the same total time, i.e., two fine time steps, would require a factor

– 24 –

of 16 more resources than advancing the coarse single-level solution.

8. Test Problems

In this section we present a series of calculations demonstrating the behavior of the hy-

drodynamics, self-gravity, and reaction components of CASTRO. The first set contains three

one-dimensional shock tube problems, including Sod’s problem, a double rarefaction prob-

lem, and a strong shock problem. We follow this with Sedov-Taylor blast waves computed in

1D spherical coordinates, 2D cylindrical and Cartesian coordinates, and 3D Cartesian coor-

dinates. Our final pure-hydrodynamics test is a 2D Rayleigh-Taylor instability. We use this

problem to contrast the differences in the flow found using dimensionally split and unsplit

methods with piecewise linear, PPM with the old limiters, and PPM with the new limiters.

We then present two examples that test the interaction of the self-gravity solvers with

the hydrodynamics in 3D Cartesian coordinates. In the first case a star is initialized in

hydrostatic equilibrium and we monitor the maximum velocities that develop; in the sec-

ond, the homologous dust collapse test problem, a uniform-density sphere is initialized at

a constant low pressure, and collapses under its own self-gravity. These tests more closely

examine the 3D spherical behavior we expect to be present in simulations of Type Ia and

Type II supernovae.

We perform a test of the coupling of the hydrodynamics to reactions. This test consists

of a set of buoyant reacting bubbles in a stratified stellar atmosphere. We compare the

CASTRO results to those of the FLASH code.

Finally, we note that a previous comparison of CASTRO to our low Mach number

hydrodynamics code, MAESTRO, can be found in Nonaka et al. (2010). In that test, we

took a 1-d spherical, self-gravitating stellar model and watched it hydrostatically adjust as

we dumped energy into the center of the star. The resulting temperature, pressure, and

density profiles agreed very well between the two codes.

8.1. Shock Tube Problems

To test the behavior of the hydrodynamics solver, we run several different 1D shock tube

problems. The setup for these problems consists of a left and right state, with the interface

in the center of the domain. All calculations use a gamma-law equation of state with γ = 1.4.

We show results from each problem run using 1D Cartesian coordinates, but we have verified

that the results are identical when each problem is run in 2D or 3D Cartesian coordinates

– 25 –

and the interface is normal to a coordinate axis. The length of the domain is always taken

as 1.0, with the interface in the center. We use a base grid of 32 cells, with two additional

levels of factor 2 refinement, for an effective resolution of 128 cells. The refinement criteria

are based on gradients of density and velocity. In the case of the double rarefaction we

also present results from runs with two levels of factor 4 refinement (effective resolution of

512 cells) and three levels of factor 4 refinement (effective resolution of 2048 cells). In each

case, analytic solutions are found using the exact Riemann solver from Toro (1997). All

calculations are run with the new PPM limiters and a CFL number of 0.9. For each problem

we show density, pressure, velocity, and internal energy.

8.1.1. Sod’s Problem

The Sod problem (Sod 1978) is a simple shock tube problem that exhibits a shock,

contact discontinuity, and a rarefaction wave. The non-dimensionalized initial conditions

are:
ρL = 1

uL = 0

pL = 1

ρR = 0.125

uR = 0

pR = 0.1

(41)

This results in a rightward moving shock and contact discontinuity, and a leftward moving

rarefaction wave. Figure 3 shows the resulting pressure, density, velocity, and internal energy

at t = 0.2 s. We see excellent agreement with the exact solution.

8.1.2. Double Rarefaction

The double rarefaction problem tests the behavior of the hydrodynamics algorithm in

regions where a vacuum is created. We run the problem as described in Toro (1997). The

non-dimensionalized initial conditions are:

ρL = 1

uL = −2

pL = 0.4

ρR = 1

uR = 2

pR = 0.4

(42)

This results in two rarefaction waves propagating in opposite directions away from the center.

As a result, matter is evacuated from the center, leaving behind a vacuum. Figure 4 shows

the CASTRO solutions at t = 0.15 s. The agreement with the exact solution is excellent at

the 128-cell resolution for density, pressure and velocity; the internal energy is more sensitive,

but clearly converges to the analytic solution except at the center line. This is a very common

– 26 –

pathology for this problem, since the internal energy, e, is derived from equation (7) using

values of p and ρ which are both approaching zero in the center of the domain (Toro 1997).

8.1.3. Strong Shock

The final shock-tube problem we try is a strong shock. We initialize the problem as

described in Toro (1997). The initial conditions are:

ρL = 1

uL = 0

pL = 1000

ρR = 1

uR = 0

pR = 0.01

(43)

The initial pressure jump of six orders of magnitude results in a strong rightward moving

shock. This large dynamic range can cause trouble for some hydrodynamics solvers. The

shock is followed very closely by a contact discontinuity. A leftward moving rarefaction is

also present. Figure 5 shows the CASTRO results at t = 0.012 s. We see good agreement

between the CASTRO results and the exact solution.

8.2. Sedov

Another standard hydrodynamics test is the Sedov-Taylor blast wave. The problem

setup is very simple: a large amount of energy is deposited into the center of a uniform

domain. This drives a blast wave (spherical or cylindrical, depending on the domain geom-

etry). An analytic solution is provided by Sedov (1959). We use a publicly available code

described by Kamm & Timmes (2007) to generate the exact solutions.

The Sedov explosion can test the geometrical factors in the hydrodynamics scheme. A

cylindrical blast wave (e.g. a point explosion in a 2D plane) can be modeled in 2D Cartesian

coordinates. A spherical blast wave can be modeled in 1D spherical, 2D axisymmetric

(cylindrical r-z), or 3D Cartesian coordinates.

In the Sedov problem, the explosion energy, Eexp (in units of energy, not energy/mass

or energy/volume), is deposited into a single point, in a medium of uniform ambient density,

ρambient, and pressure, pambient. Initializing the problem can be difficult because the small

volume is typically only one cell in extent, which can lead to grid imprinting in the solution. A

standard approach (see for example Fryxell et al. 2000; Omang et al. 2006 and the references

therein) is to convert the explosion energy into a pressure contained within a certain volume,

– 27 –

Vinit, of radius rinit as

pinit =
(γ − 1)Eexp

Vinit
. (44)

This pressure is then initialized to pinit in all of the cells where r < rinit. We use the

gamma-law equation of state with γ = 1.4.

To further minimize any grid effects, we do subsampling in each cell: each cell is divided

it intoNsub subcells in each coordinate direction, each subcell is initialized independently, and

then the subcells are averaged together (using volume weighting for spherical or cylindrical

coordinates) to determine the initial state of the full cell.

For these runs, we use ρambient = 1 g cm−3, pambient = 10−5 dyn cm−2, Eexp = 1 erg,

rinit = 0.01 cm, and Nsub = 10. A base grid with ∆x = 0.03125 cm is used with three levels

of factor 2 refinement. For most geometries, we model the explosion in a domain ranging

from 0 to 1 cm in each coordinate direction. In this case, the base grid would have 32

cells in each coordinate direction and the finest mesh would correspond to 256 cells in each

coordinate direction. For the 2D axisymmetric case, we model only one quadrant, and the

domain ranges from 0 to 0.5 cm. All calculations were run with a CFL number of 0.5, and

the initial time step was shrunk by a factor of 100 to allow the point explosion to develop.

We refine on regions where ρ > 3 g cm−3, ∇ρ > 0.01 g cm−3 cm−1, p > 3 dyn cm−2, or

∇p > 0.01 dyn cm−2 cm−1.

Figure 6 shows the CASTRO solution to a spherical Sedov explosion at time t = 0.01s,

run in 1D spherical, 2D cylindrical, and 3D Cartesian coordinates. For the 2D and 3D

solutions, we compute the radial profile by mapping each cell into its corresponding radial

bin and averaging. The radial bin width was picked to match the width of a cell at the

finest level of refinement in the CASTRO solution. The density, velocity, and pressure plots

match the exact solution well. As with the double rarefaction problem, the internal energy

is again the most difficult quantity to match due to the vacuum region created at the origin.

Figure 7 shows the same set of calculations run with 4 levels of factor 2 refinement. Here

the agreement is even better. Figure 8 shows the CASTRO solution at time t = 0.1s to a

cylindrical Sedov explosion, run in 2D Cartesian coordinates.

8.3. Rayleigh-Taylor

The Rayleigh-Taylor instability results when a dense fluid is placed over a less-dense

fluid in a gravitational field (Taylor 1950; Layzer 1955; Sharp 1984). The interface is unstable

and a small perturbation will result in the growth a buoyant uprising bubbles and dense,

falling spikes of fluid. This instability provides a mechanism for mixing in many astrophysical

– 28 –

systems. Despite its seemingly simplistic nature, only the linear growth regime is understood

analytically (see for example Chandrasekhar 1961). In the non-linear regime, Rayleigh-

Taylor instability calculations are often used as a means of code validation (Dimonte et al.

2004).

For our purposes, the R-T instability provides a good basis to compare different choices

of the advection algorithm. We model a single-mode Rayleigh-Taylor instability—a pertur-

bation consisting of a single wavelength that disturbs the initial interface. Short-wavelength

perturbations have a faster growth rate than long-wavelength perturbations, so grid effects

can easily drive the instability on smaller scales than our initial perturbation. No viscous

terms are explicitly modeled.

We choose the density of the dense fluid to be ρ2 = 2 g cm−3 and the light fluid is

ρ1 = 1 g cm−3. The gravitational acceleration is taken to be g = −1 cm s−2 in the vertical

direction. The gamma-law equation of state is used with γ = 1.4. Our domain has a width

of Lx = 0.5 cm and a height of Ly = 1 cm. The initial interface separating the high and low

density fluid is centered vertically at Ly/2, with the density in the top half taken to be ρ2
and the density in the lower half ρ1. Since g and ρ1, ρ2 are constant, we can analytically

integrate the equation of hydrostatic equilibrium to get the pressure in both the high and

low-density regions of the domain:

p(y) =

{

pbase + ρ1gy y < Ly/2

pbase + ρ1gLy/2 + ρ2g(y − Ly/2) y > Ly/2
(45)

where y is the vertical coordinate, and pbase is the pressure at the base of the domain. We

take pbase = 5 dyn cm−2.

To initiate the instability, the interface is perturbed by slightly shifting the density,

keeping the interface centered vertically in the domain. We define the perturbed interface

height, ψ, to be a function of position in the x-direction as

ψ(x) =
A

2

[

cos

(

2πx

Lx

)

+ cos

(

2π(Lx − x)

Lx

)]

+
Ly

2
(46)

with the amplitude, A = 0.01 cm. We note that the cosine part of the perturbation is done

symmetrically, to prevent roundoff error from introducing an asymmetry in the flow. The

density is then perturbed as:

ρ(x, y) = ρ1 +
ρ2 − ρ1

2

[

1 + tanh

(

y − ψ(x)

h

)]

(47)

The tanh profile provides a slight smearing of the initial interface, over a smoothing length

h. We take h = 0.005 cm.

– 29 –

In Figure 9, we present simulation results for the Rayleigh-Taylor problem at t = 2.5s

for several different variants of the hydrodynamics. All calculations were run with 256× 512

grid cells. In the bottom right image we show the results obtained using the unsplit PPM

with the new limiter used in CASTRO. The left and middle images on the bottom row

are results using the unsplit piecewise linear method and unsplit PPM with limiters as in

Miller & Colella (2002), respectively. The results with all three methods are reasonably

good; however, the piecewise linear and original PPM limiter both exhibit mild anomalies

at the tip of both the bubble and the spike.

In the upper row, we present results for the Rayleigh-Taylor problem using operator-

split analogs of the unsplit methods. The details of the algorithms such as limiters, Riemann

solver, etc. are the same as in the unsplit methods; the only difference is the use of operator

splitting. We note that all three of the operator-split methods produce spurious secondary

instabilities. This behavior is a direct result of the operator-split approach. Physically,

for these low Mach number flows, the density field is advected by a nearly incompressible

flow field, and remains essentially unchanged along Lagrangian trajectories. However, in

regions where there is significant variation in the local strain rate, an operator-split inte-

gration approach alternately compresses and expands the fluid between subsequent sweeps.

This alternating compression / expansion provides the seed for the anomalies observed with

operator-split methods.

We note that both the CPU time and the memory usage are roughly a factor of two larger

for the unsplit algorithm than for the split algorithm in this two-dimensional implementation.

For a pure hydrodynamics problem with gamma-law equation of state this factor is nontrivial;

for a simulation that uses the full self-gravity solver, a realistic reaction network, a costly

equation of state, or significant additional physics, the additional cost of the hydrodynamic

solver may be negligible.

In 3D one might expect the ratio of CPU time for the unsplit algorithm relative to

the split algorithm to be be even larger than in 2D because of the additional Riemann

solves required to construct the transverse terms. However, this effect is counterbalanced

by the need to advance ghost cells in the split algorithm to provide boundary conditions

for subsequent sweeps. Consequently, we observe an increase in CPU time that is slightly

less than the factor of two observed in 2D. The 3D implementation of the unsplit algorithm

in CASTRO uses a strip-mining approach that only stores extra data on a few planes at a

time, so we see an increase of less than 10% in the memory required for the unsplit integrator

compared to the split integrator in 3D.

– 30 –

8.4. Stationary Star Gravity

A challenging problem for a hydrodynamics code is to keep a star in hydrostatic equi-

librium. Because of the different treatment of the pressure, density, and gravitational ac-

celeration by the hydrodynamics algorithm, small motions can be driven by the inexact

cancellation of ∇p and ρg. This is further exaggerated by modeling a spherical star on a 3D

Cartesian grid. Here we test the ability of CASTRO to maintain hydrostatic equilibrium for

a spherical, self-gravitating star.

Our initial model is a nearly-Chandrasekhar mass, carbon-oxygen white dwarf, which

is generated by specifying a core density (2.6 × 109 g cm−3), temperature (6 × 108 K),

and a uniform composition (X(12C) = 0.3, X(16O) = 0.7) and integrating the equation of

hydrostatic equilibrium outward while constraining the specific entropy, s, to be constant.

In discrete form, we solve:

p0,j+1 = p0,j +
1

2
∆r(ρ0,j + ρ0,j+1)gj+1/2, (48)

s0,j+1 = s0,j, (49)

with ∆r = 1.653125×105 cm. We begin with a guess of ρ0,j+1 and T0,j+1 and use the equation

of state and Newton-Raphson iterations to find the values that satisfy our system. Since

this is a spherical, self-gravitating star, the gravitation acceleration, gj+1/2, is updated each

iteration based on the current value of the density. Once the temperature falls below 107 K,

we keep the temperature constant, and continue determining the density via hydrostatic

equilibrium until the density falls to 10−4 g cm−3, after which we hold the density constant.

This uniquely determines the initial model. We note that this is the same procedure we follow

to initialize a convecting white dwarf for the multilevel low Mach number code, MAESTRO,

described in Nonaka et al. (2010).

We map the model onto a (5 × 108 cm)3 domain with 1923, 3843, and 7683 grid cells,

and center the star in the domain. We let the simulation run to 1 s, and compare the

maximum magnitude of velocity vs. time and the magnitude of velocity vs. radius at t = 1 s,

a time greater than two sound-crossing times. We only consider regions of the star at

r < 1.8 × 108 cm, which corresponds to a density of ρ ≈ 5.4 × 105 g cm−3. Note that the

density reaches the floor of 10−4 g cm−3 at r = 1.9× 108 cm. We turn on the sponge at the

radius where ρ = 100 g cm−3 and the sponge reaches its full strength at the radius where

ρ = 10−4 g cm−3 with a sponge strength of κ = 1000 s−1. We use a CFL of 0.9 and no

refinement. We use the Helmholtz equation of state (Timmes & Swesty 2000; Fryxell et al.

2000) and no reactions are modeled.

Figure 10 shows a plot of the maximum magnitude of velocity vs. time. At each of the

– 31 –

three resolutions, we show the results using a monopole gravity approximation and Poisson

solve for gravity. We note that in each simulation, the maximum velocity is not strictly

increasing, leading us to believe that over longer periods of time the velocities will remain

small. We note that sound speed at the center of the star is approximately 9.4×108 cm/s, so

at the highest resolution, the peak velocity is less than 1% of the sound speed. The monopole

and Poisson cases match up very well, except for the finest resolution. The reason why we

see larger peak velocities in the finest resolution Poisson solver simulation is due to the large

velocities at the edge of the star.

Figure 11 shows a plot of the magnitude of velocity vs. radius at t = 1 s. Again, at each

of the three resolutions, we show the results using a monopole gravity approximation and

Poisson solve for gravity. Here, we see clear second order convergence in the max norm, and

the monopole and Poisson simulations agree best at the highest resolution. We also see how

in the finest resolution runs, the velocities at the edge of the star can become large, but this

is likely outside the region of interest for a typical simulation.

8.5. Homologous Dust Collapse

As a second test of the gravity solver in CASTRO we implement the homologous dust

collapse test problem, a ‘pressure-less’ configuration that collapses under its own self-gravity.

An analytic solution that describes the radius of the sphere as a function of time is found

in Colgate & White (1966). Our implementation of this problem follows that described in

FLASH 3.2 User’s Guide (2009); Monchmeyer & Muller (1989). The problem is initialized

with a sphere with a large, uniform density, ρ0, of radius r0. The pressure everywhere should

be negligible, i.e., the sound crossing time should be much longer than the free-fall collapse

time (see, for example, FLASH 3.2 User’s Guide 2009). Colgate & White (1966) use p = 0.

We choose a value that does not appear to affect the dynamics. As the sphere collapses, the

density inside should remain spatially constant, but increase in value with time.

Following FLASH 3.2 User’s Guide (2009), we take ρ0 = 109 g cm−3 and r0 = 6.5 ×

108 cm. The pressure is not specified, so we take it to be 1015 dyn cm−2. Outside of the

sphere, we set the density to ρambient = 10−5 g cm−3. Finally, since the sharp cutoff at the

edge of the sphere is unphysical, we smooth the initial profile by setting

ρ = ρ0 −
ρ0 − ρambient

2

[

1 + tanh

(

r − r0
h

)]

(50)

with the smoothing length, h = 4×106 ≪ r0. We use the gamma-law equation of state with

γ = 1.66.

– 32 –

Figure 12 shows the radius vs. time for the 1D, 2D, and 3D simulations as compared to

the exact solution. In all three cases we see excellent agreement with the exact solution.

8.6. Reacting Bubbles in a Stellar Atmosphere

A final test is a code comparison of the evolution of three reacting bubbles in a plane-

parallel stellar atmosphere. This problem is almost identical to the setup described in Section

4.2 of Almgren et al. (2008) with two minor differences. First, we eliminate the stably

stratified layer at the base of the atmosphere by setting the lower y extrema of the domain

to 5.00625 × 107 cm—this way, the bottommost row of cells in the domain is initialized

with the specified base density (2.6×109 g cm−3) and temperature. Second, we set the base

temperature of the atmosphere to 6×108 K (instead of 7×108 K) to minimize the amount of

reactions occurring near the lower domain boundary. Three temperature perturbations are

seeded in pressure-equilibrium with a range of heights and widths as specified by equation

(87) and Table 1 of Almgren et al. (2008). We use a uniform computation grid of 384× 576

cells and a domain width of 2.16× 108 cm.

We compare the evolution to the FLASH code (Fryxell et al. 2000), version 2.5, using

the standard dimensionally-split PPM hydrodynamics module that comes with FLASH.

The lower boundary condition in both cases provides hydrostatic support by integrating the

equation of hydrostatic equilibrium together with the equations of state into the ghost cells,

assuming a constant temperature, as described in Zingale et al. (2002). The left and right

boundary is periodic. We use the same single step (12C + 12C → 24Mg) reaction module

described in Almgren et al. (2008). Both codes use the general stellar equation of state

described in Fryxell et al. (2000); Timmes & Swesty (2000) with the Coulomb corrections

enabled.

Figures 13 and 14 show contours of the temperature andX(24Mg) after 2.5 s of evolution

for both FLASH and CASTRO. We see excellent agreement between the two codes in terms

of bubble heights and contour levels.

8.7. Type Ia Supernova

As a final example, in Figure 15 we show a 2D snapshot of temperature from a 3D

calculation of a Type Ia supernova (Ma & Aspden 2010; Ma et al. 2010). This simulation

uses a realistic stellar equation of state and a turbulent flame model, and is typical of more

realistic CASTRO applications. The domain is 5.12 x 108 cm on a side, and is covered with

– 33 –

512 643 grids. There are two levels of factor two refinement, with approximately 1.8% of the

domain covered by level 2 grids with an effective resolution of 2.5 x 105 cm. Figure 16 is a

close-up of the center of the domain so that the level 2 grids are more visible.

9. Summary

We have described a new Eulerian adaptive mesh code, CASTRO, for solving the mul-

ticomponent compressible hydrodynamic equations with a general equation of state for as-

trophysical flows. CASTRO differs from existing codes of its type in that it uses unsplit

PPM for its hydrodynamic evolution, subcycling in time, and a nested hierarchy of logically-

rectangular grids. Additional physics includes self-gravitation, nuclear reactions, and radia-

tion. Radiation will be described in detail in the next paper, Part II, of this series.

CASTRO is currently being used in simulations of Type Ia supernovae and core-collapse

supernovae; examples of simulations done using CASTRO can be found in Joggerst et al.

(2009); Woosley et al. (2009). Further details on the CASTRO algorithm can be found in

the CASTRO User Guide (CASTRO User Guide 2009).

We thank Alan Calder for useful discussions on test problems and Stan Woosley for

numerous invaluable interactions. In comparing to other codes, we benefited from help-

ful discussions with Brian O’Shea about Enzo, Paul Ricker about gravity in FLASH, and

Michael Clover about RAGE. Finally, we thank Haitao Ma, Jason Nordhaus and Ken Chen

for being patient early users of CASTRO. The work at LBNL was supported by the Office of

High Energy Physics and the Office of Mathematics, Information, and Computational Sci-

ences as part of the SciDAC Program under the U.S. Department of Energy under contract

No. DE-AC02-05CH11231. The work performed at LLNL was under the auspices of the U.S.

Department of Energy under contract No. DE-AC52-07NA27344. MZ was supported by

Lawrence Livermore National Lab under contracts B568673, B574691, and B582735. This

research used resources of the National Energy Research Scientific Computing Center, which

is supported by the Office of Science of the U.S. Department of Energy under Contract No.

DE-AC02-05CH11231. This research used resources of the Oak Ridge Leadership Compu-

tational Facility (OLCF), which is supported by the Office of Science of the Department of

Energy under Contract DE-AC05-00OR22725.

– 34 –

REFERENCES

Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H., & Welcome, M. L. 1998, Journal of

Computational Physics, 142, 1

Almgren, A. S., Bell, J. B., Nonaka, A., & Zingale, M. 2008, Astrophysical Journal, 684, 449

Bell, J., Berger, M., Saltzman, J., & Welcome, M. 1994, SIAM J. Sci. Statist. Comput., 15,

127

Bell, J. B., Colella, P., & Trangenstein, J. A. 1989, Journal of Computational Physics, 82,

362

Berger, M. J., & Colella, P. 1989, Journal of Computational Physics, 82, 64

Berger, M. J., & Oliger, J. 1984, Journal of Computational Physics, 53, 484

Berger, M. J., & Rigoutsos, J. 1991, IEEESMC, 21, 1278

Bryan, G. L., Norman, M. L., Stone, J. M., Cen, R., & Ostriker, J. P. 1995, Computer

Physics Communications, 89, 149

CASTRO User Guide. 2009, https:ccse.lbl.gov/Research/CASTRO/CastroUserGuide.pdf

Chandrasekhar, S. 1961, Hydrodynamic and hydromagnetic stability, ed. S. Chandrasekhar,

dover reprint, 1981

Colella, P. 1990, Journal of Computational Physics, 87, 171

Colella, P., & Glaz, H. M. 1985, Journal of Computational Physics, 59, 264

Colella, P., Glaz, H. M., & Ferguson, R. E. 1997, unpublished manuscript

Colella, P., & Sekora, M. D. 2008, Journal of Computational Physics, 227, 7069

Colella, P., & Woodward, P. R. 1984, Journal of Computational Physics, 54, 174

Colgate, S. A., & White, R. H. 1966, ApJ, 143, 626

Crutchfield, W. Y. 1991, Load Balancing Irregular Algorithms, Tech. Rep. UCRL-JC-107679,

LLNL

Dimonte, G. et al. 2004, Physics of Fluids, 16, 1668

FLASH 3.2 User’s Guide. 2009, http://flash.uchicago.edu/website/codesupport/

– 35 –

Franklin Performance Monitoring. 2010, N5 IOR Aggregate Write,

http://www.nersc.gov/nusers/systems/franklin/monitor.php

Fryxell, B. et al. 2000, Astrophysical Journal Supplement, 131, 273

Gittings, M. et al. 2008, Computational Science and Discovery, 1, 015005

Joggerst, C. C., Almgren, A., Bell, J., Heger, A., Whalen, D., & Woosley, S. E. 2009,

Astrophysical Journal

Kamm, J. R., & Timmes, F. X. 2007, submitted to ApJ supplement, May 2007, see

http://cococubed.asu.edu/code pages/sedov.shtml

Lattimer, J. M., & Swesty, F. D. 1991, Nuclear Physics A, 535, 331, code obtained from

http://www.astro.sunysb.edu/dswesty/lseos.html

Layzer, D. 1955, ApJ, 122, 1

Ma, H., & Aspden, A. J. 2010, Private communication

Ma, H., Woosley, S., Almgren, A., & Bell, J. 2010, in American Astronomical Society Meeting

Abstracts, Vol. 215, American Astronomical Society Meeting Abstracts, 343.01–+

McCorquodale, P., & Colella, P. 2010, Journal of Computational Physics, to appear

Miller, G. H., & Colella, P. 2002, Journal of Computational Physics, 183, 26

Miniati, F., & Colella, P. 2007, Journal of Computational Physics, 227, 400

Monchmeyer, R., & Muller, E. 1989, A&A, 217, 351

Müller, E. 1986, A&A, 162, 103

Nonaka, A., Almgren, A. S., Bell, J. B., Lijewski, M. J., Malone, C., & Zingale, M. 2010,

ApJS, submitted

Omang, M., Børve, S., & Trulsen, J. 2006, Journal of Computational Physics, 213, 391

O’Shea, B. W., Bryan, G., Bordner, J., Norman, M. L., Abel, T., Harkness, R., & Kritsuk, A.

2005, in Lecture Notes in Computational Science and Engineering, Vol. 41, Adaptive

Mesh Refinement – Theory and Applications, ed. T. Plewa, T. Linde, & V. G. Weirs

(Springer), 341–350

Plewa, T., & Müller, E. 1999, Astronomy and Astrophysics, 342, 179

http://www.nersc.gov/nusers/systems/franklin/monitor.php

– 36 –

Rendleman, C. A., Beckner, V. E., Lijewski, M., Crutchfield, W. Y., & Bell, J. B. 2000,

Computing and Visualization in Science, 3, 147

Ricker, P. M. 2008, ApJS, 176, 293

Saltzman, J. 1994, Journal of Computational Physics, 115, 153

Sedov, L. I. 1959, Similarity and Dimensional Methods in Mechanics (Academic Press),

translated from the 4th Russian Ed.

Sharp, D. H. 1984, Physica D Nonlinear Phenomena, 12, 3

Sod, G. A. 1978, Journal of Computational Physics, 27, 1

Strang, G. 1968, SIAM J. Numerical Analysis, 5, 506

Taylor, G. 1950, Royal Society of London Proceedings Series A, 201, 192

Timmes, F. X., & Swesty, F. D. 2000, Astrophysical Journal Supplement, 126, 501

Toro, E. F. 1997, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer)

VisIt User’s Manual. 2005, https://wci.llnl.gov/codes/visit/home.html

Woosley, S. E. et al. 2009, Journal of Physics Conference Series, 180, 012023

Zingale, M., Almgren, A. S., Bell, J. B., Nonaka, A., & Woosley, S. E. 2009, Astrophysical

Journal, 704, 196

Zingale, M. et al. 2002, Astrophysical Journal Supplement, 143, 539

This preprint was prepared with the AAS LATEX macros v5.2.

– 37 –

Fig. 1.— Cartoon of AMR grids with two levels of factor 2 refinement. The black grid covers

the domain with 162 cells. Bold lines represent grid boundaries, the different colors represent

different levels of refinement. The two blue grids are at level 1 and the cells are a factor of

two finer than those at level 0. The two red grids are at level 2 and the cells are a factor of

two finer than the level 1 cells. Note that the level 2 grids are properly nested within the

union of level 1 grids, but there is no direct parent-child connection.

– 38 –

 0

 10

 20

 30

 40

 50

8 64 512 4096 13824 32768 64000

A
ve

ra
ge

 T
im

e
pe

r
T

im
e

S
te

p
(s

ec
on

ds
)

Number of Processors

No Gravity: 1 level
Monopole Approximation: 1 level

Poisson Gravity: 1 level
Monopole Approximation: 2 levels

Fig. 2.— Weak scaling behavior of the CASTRO code on the jaguarpf machine at the OLCF.

For the two-level simulation, the number of cells that are advanced in a time step increases

by a factor of three because of subcycling. To quantify the overall performance, we note that

for the 64,000 processor case without gravity, the time for a single core to advance one cell

for one time step is 24.8 µs.

– 39 –

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
ns

ity

x

128
exact

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ve
lo

ci
ty

x

128
exact

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
es

su
re

x

128
exact

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

in
te

rn
al

 e
ne

rg
y

x

128
exact

Fig. 3.— Adaptive CASTRO solution vs. analytic solution for Sod’s problem run in 1D at

an effective resolution of 128 cells.

– 40 –

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
ns

ity

x

128
512

2048
exact

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ve
lo

ci
ty

x

128
512

2048
exact

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
es

su
re

x

128
512

2048
exact

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

in
te

rn
al

 e
ne

rg
y

x

128
512

2048
exact

Fig. 4.— Adaptive CASTRO solutions vs. analytic solution for the double rarefaction prob-

lem run in 1D at effective resolutions of 128, 512 and 2048 cells.

– 41 –

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
ns

ity

x

128
exact

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ve
lo

ci
ty

x

128
exact

 0

 200

 400

 600

 800

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
es

su
re

x

128
exact

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

in
te

rn
al

 e
ne

rg
y

x

128
exact

Fig. 5.— Adaptive CASTRO solution vs. analytic solution for the strong shock problem run

in 1D at an effective resolution of 128 cells.

– 42 –

 0

 1

 2

 3

 4

 5

 6

 0 0.05 0.1 0.15 0.2 0.25 0.3

de
ns

ity

r

1-d
2-d
3-d

 0

 1

 2

 3

 4

 5

 6

 0 0.05 0.1 0.15 0.2 0.25 0.3

ve
lo

ci
ty

r

1-d
2-d
3-d

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.05 0.1 0.15 0.2 0.25 0.3

pr
es

su
re

r

1-d
2-d
3-d

10-5

100

105

1010

1015

1020

 0 0.05 0.1 0.15 0.2 0.25 0.3

in
te

rn
al

 e
ne

rg
y

r

1-d
2-d
3-d

Fig. 6.— CASTRO solution at t = 0.01s for the spherical Sedov blast wave problem run in

1D spherical, 2D axisymmetric, and 3D Cartesian coordinates. This was run with a base

grid with ∆x = 0.03125 cm and 3 levels of factor 2 refinement for an effective resolution of

∆x = .00390625 cm.

– 43 –

 0

 1

 2

 3

 4

 5

 6

 0 0.05 0.1 0.15 0.2 0.25 0.3

de
ns

ity

r

1-d
2-d
3-d

 0

 1

 2

 3

 4

 5

 6

 0 0.05 0.1 0.15 0.2 0.25 0.3

ve
lo

ci
ty

r

1-d
2-d
3-d

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.05 0.1 0.15 0.2 0.25 0.3

pr
es

su
re

r

1-d
2-d
3-d

10-5

100

105

1010

1015

1020

 0 0.05 0.1 0.15 0.2 0.25 0.3

in
te

rn
al

 e
ne

rg
y

r

1-d
2-d
3-d

Fig. 7.— CASTRO solution at t = 0.01s for the spherical Sedov blast wave problem run in

1D spherical, 2D axisymmetric, and 3D Cartesian coordinates. This was run with a base

grid with ∆x = 0.03125 cm and 4 levels of factor 2 refinement for an effective resolution of

∆x = .001953125 cm.

– 44 –

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5

de
ns

ity

r

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5

ve
lo

ci
ty

r

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 0.1 0.2 0.3 0.4 0.5

pr
es

su
re

r

10-6

10-4

10-2

100

102

104

106

108

1010

 0 0.1 0.2 0.3 0.4 0.5

in
te

rn
al

 e
ne

rg
y

r

Fig. 8.— CASTRO solution at t = 0.1s for the cylindrical Sedov blast wave problem run in

2D Cartesian coordinates. This was run with a base grid with ∆x = 0.03125 cm and 3 levels

of factor 2 refinement for an effective resolution of ∆x = .00390625 cm.

– 45 –

Fig. 9.— Density in a single-mode Rayleigh-Taylor simulation for a variety of advection

schemes. Dimensionally-split method results are shown on the top row; unsplit method re-

sults are shown on the bottom row. We see that the unsplit methods do better at suppressing

the growth of high-wavenumber instabilities resulting from grid effects.

– 46 –

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

|M
ax

 v
el

oc
ity

| (
cm

/s
)

Time (s)

192^3; Monopole Gravity
192^3; Poisson Gravity
384^3; Monopole Gravity
384^3; Poisson Gravity
768^3; Monopole Gravity
768^3; Poisson Gravity

Fig. 10.— Maximum magnitude of velocity vs. time for the stationary star gravity problem.

At each of the three resolutions, we show the results using a monopole gravity approximation

and Poisson solve for gravity. We note that in each simulation, the maximum velocity is

not strictly increasing, leading us to believe that over longer periods of time the velocities

will remain small. We note that sound speed at the center of the star is approximately

9.4 × 108 cm/s, so at the highest resolution, the peak velocity is less than 1% of the sound

speed. The solutions in the monopole and Poisson cases match up very well; the discrepancy

we see at the finest resolution is due to large velocities at the edge of the star, which is

typically outside the region of interest.

– 47 –

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 3e+07 6e+07 9e+07 1.2e+08 1.5e+08 1.8e+08

|V
el

oc
ity

| (
cm

/s
)

Radius (cm)

192^3; Monopole Gravity
192^3; Poisson Gravity
384^3; Monopole Gravity
384^3; Poisson Gravity
768^3; Monopole Gravity
768^3; Poisson Gravity

Fig. 11.— Magnitude of velocity vs. radius at t = 1 s for the stationary star gravity problem.

At each of the three resolutions, we show the results using a monopole gravity approximation

and Poisson solve for gravity. Here, we see clear second order convergence in the max norm,

and the monopole and Poisson simulations agree best at the highest resolution.

– 48 –

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

ra
di

us
 (

cm
)

time (s)

Exact Solution
1D Solution
2D Solution
3D Solution

Fig. 12.— Radius vs. time for the homologous dust collapse problem in 1D, 2D, and 3D

simulations as compared to the exact solution. In all three cases we see excellent agreement

with the exact solution.

– 49 –

0 5.0•107 1.0•108 1.5•108 2.0•108

x (cm)

5.0•107

1.0•108

1.5•108

2.0•108

2.5•108

y
(c

m
)

1.0•108 1.1•108 1.2•108 1.3•108 1.4•108

x (cm)

9.0•107

1.0•108

1.1•108

1.2•108

y
(c

m
)

Fig. 13.— Comparison of FLASH (red) and CASTRO (blue) temperature contours for the

reacting bubble test. Temperature contours at 108, 1.5 × 108, 2 × 108, 2.5 × 108, 3. × 108,

3.5 × 108, 4. × 108, 4.5 × 108, 5. × 108, 5.5 × 108, 6. × 108, 6.5 × 108, 7. × 108, 7.5 × 108,

8. × 108 K are shown, drawn with alternating solid and dashed lines. The inset shows the

detail of the middle bubble. We see good agreement between FLASH and CASTRO.

– 50 –

0 5.0•107 1.0•108 1.5•108 2.0•108

x (cm)

5.0•107

1.0•108

1.5•108

2.0•108

2.5•108

y
(c

m
)

1.0•108 1.1•108 1.2•108 1.3•108 1.4•108

x (cm)

9.0•107

1.0•108

1.1•108

1.2•108

y
(c

m
)

Fig. 14.— Comparison of FLASH (red) and CASTRO (blue) 24Mg mass fraction contours

for the reacting bubble test. Contours are drawn at values of X of 5 × 10−9, 5 × 10−8,

5 × 10−7,5 × 10−6, with alternating solid and dashed lines. The inset shows the detail of

the middle bubble. As with the temperature, we see good agreement between FLASH and

CASTRO.

– 51 –

Fig. 15.— Here we see a 2D slice of the temperature field from a 3D calculation of a Type

Ia supernova with two levels of refinement. There are 512 grids, each containing 643 cells, at

the coarsest level, over 1000 grids at level 1 and over 2000 grids at level 2. Approximately

1.8% of the domain is at the finest resolution.

– 52 –

Fig. 16.— Here we see a close-up of the previous figure, showing more detail of the level 2

grids.

	1 Introduction
	2 Hydrodynamics
	3 Equation of State and Reaction Network
	4 Gravity
	5 Single-Level Integration Algorithm
	5.1 Single-Level Flow Chart
	5.2 Construction of Fluxes

	6 AMR
	6.1 Creating and Managing the Grid Hierarchy
	6.1.1 Overview
	6.1.2 Error Estimation and Regridding
	6.1.3 Enlarging the Domain

	6.2 Multilevel Algorithm
	6.2.1 Overview
	6.2.2 Monopole Gravity
	6.2.3 Full Gravity Solve
	Overview
	Multilevel Algorithm
	Performance Issues

	7 Software Design and Parallel Performance
	7.1 Overview
	7.2 Parallel Output
	7.3 Parallel Restart
	7.4 Parallel Performance

	8 Test Problems
	8.1 Shock Tube Problems
	8.1.1 Sod's Problem
	8.1.2 Double Rarefaction
	8.1.3 Strong Shock

	8.2 Sedov
	8.3 Rayleigh-Taylor
	8.4 Stationary Star Gravity
	8.5 Homologous Dust Collapse
	8.6 Reacting Bubbles in a Stellar Atmosphere
	8.7 Type Ia Supernova

	9 Summary

