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ABSTRACT 

Real-time peer-to-peer ridesharing is a promising mode of transportation that has gained 

popularity during the recent years, thanks to the wide-spread use of smart phones, mobile 

application development platforms, and online payment systems. An assignment of drivers to 

riders, known as the ride-matching problem, is the central component of a peer-to-peer 

ridesharing system. In this paper, we discuss the features of a flexible ridesharing system, and 

propose an algorithm to optimally solve the ride-matching problem in a flexible ridesharing 

system in real-time. We generate random instances of the problem, and perform sensitivity 

analysis over some of the important parameters in a ridesharing system. Finally, we introduce the 

concept of peer-to-peer ride exchange, and show how it affects the performance of a ridesharing 

system. 



3 

Masoud, Jayakrishnan 

1 INTRODUCTION 

Congestion in urban transportation networks is one of the common problems faced by 

many countries around the world. In US alone, 3.7 billion hours and 2.3 billion gallons of gas are 

wasted in traffic jams every year (U.S. Department of Transportation, 2006). In addition to 

having a direct impact on travel time and fuel consumption, congestion imposes indirect costs by 

increasing travel time uncertainty, as well as emission levels which adversely affect population 

health and ecosystems. 

Managing congestion by expanding the infrastructure is costly and damaging to the 

environment. An alternative way would be to make more efficient use of existing capacities on 

the roads. Transit systems are a conventional example for this principle. 

Transit systems in urban networks mainly include buses and rail services. They typically 

carry multiple passengers, and therefore can help reduce vehicle miles traveled (VMT) and ease 

congestion in urban networks. One drawback of transit services is that they operate on fixed 

routes and schedules. This limits transit coverage, both geographically and temporally. 

Moreover, due to government regulations on fairs, transit services usually fail to act as 

financially independent entities, and are in need of subsidies. 

Para-transit services were originally introduced to run as supplementary services 

alongside transit, and as a mean to increase the flexibility of public transport. These services are 

demand-responsive, and usually serve multiple passengers at a time, based on spatiotemporal 

proximity of the requests they receive. Routes and schedules are fairly flexible according to 

demand. Para-transit services include all shuttle-like services that serve customers such as airport 

travelers, employee or student commuters, or the elderly and disabled. Since the passage of 

Americans with Disabilities Act of 1990, however, the term para-transit has been used more 

commonly to refer to the services provided to persons with disabilities, or to the elderly. In this 

paper, we reserve the term para-transit to refer to such services.  

Although para-transit services can be beneficiary to demographics they target, these 

demographics are fairly limited. In addition, most services that fall under this category are 

offered by non-profit organizations that are supported by federal funding. Due to the limit on the 

amount of subsidies, it is not possible to extend these services to the general public. 

These limitations along with the desire for a more comfortable (and possibly quicker) 

ride have resulted in a much higher demand for private sector alternatives, such as taxis. 

Taxis are a private form of demand-responsive transportation alternative. They provide 

door-to-door transportation, but at a higher cost that not everyone can afford. Shared 

taxi/limousine/shuttle services provide an opportunity for customers to share their trips, cutting 

the cost of the journey, and potentially reducing the total miles traveled in the system (which 

translates into lower environmental impact). Over the years, different shared-use services have 

been designed. Flexible route transit systems (Quadrifoglio et al. 2008; Li and Quadrifoglio 

2010; Qiu et al. 2014), and the High-Coverage Point-to-Point Transit system (Cortés and 

Jayakrishnan, 2002) are a few examples.  

In all alternative modes of transportation discussed above, drivers work as system 

employees. Some of the discussed transportation alternatives are more flexible than others in 

terms of routing and scheduling, and some have the potential to benefit the environment and 

customers by allowing them to share (parts of) their trips. In the next family of transportation 

alternatives we discuss, drivers are not employed by the agencies. 
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A different family of transportation alternatives which has attracted considerable 

attention during the recent years is founded based on the principle of shared-use mobility 

(Shaheen and Chan,2015). These alternatives try to reduce the cost of flexible transportation by 

reducing (or completely eliminating) the capital and operating costs. Informal carpooling is one 

of the first and common forms of trip sharing, in which already-familiar individuals use the same 

vehicle for their travel, which typically involves the same origin and destination points. 

Examples include parents who take turns in taking their children to school, colleagues who travel 

to work together, etc. In this form of carpooling, vehicles belong to individuals, and the driver of 

the vehicle has personal interest in the trip, regardless of whether additional passengers are 

present in the car. The incentives for informal carpooling could be saving time through carpool 

lanes, or not having to drive one's own vehicle every single day, if participants take turns in 

driving. This form of carpooling is usually pre-arranged, and happens among individuals who 

share commonalities beyond the time and location of their trips. 

Transportation Network Companies (TNC), such as Uber and Lyft, are among the more 

recent faces of shared-use mobility alternatives. TNCs use private vehicle owners and their 

personal vehicles to provide flexible and on-demand transportation services. These individuals 

work for the company as private contractors instead of employees. This substantially reduces the 

cost of capital and human resources, while generating revenue for both the company and the 

drivers. Essentially, the basic services provided by TNCs act as a lower-cost alternative to taxi 

services, but not only do they not address the problem of increasing travel demand and 

congestion, but they add to it. In terms of sustainability, TNCs bear the same cost to the 

environment as taxi companies. Recently, two of the more prominent TNCs, Uber and Lyft, have 

introduced sharing services Uberpool and Lyft Line. Such services can certainly reduce the cost 

and environmental impacts of the base services. 

Peer-to-peer (P2P) ridesharing systems aim at capturing the benefits of TNCs while 

alleviating their adverse impact on the environment. These systems are founded on the principle 

of sharing economy. Sharing economy, also known as collaborative consumption, is a fairly old 

concept that focuses on the benefits obtained from sharing resources (products or services) that 

would otherwise go unused. This economic model has gained more popularity in the recent 

years, giving birth to many P2P services in different fields (for examples refer to Böckmann, 

2013). The advent of the internet has extended the domains of sharing economy to global 

populations, and has highlighted its benefits. Moreover, new computer platforms allow easy and 

quick development of companion mobile applications that facilitate sharing economy. 

Similar to TNCs, drivers in a P2P ridesharing system use their own vehicles to carry 

passengers, and do not work as agency employees. Contrary to the TNC operations, drivers in a 

P2P ridesharing system are making trips to perform activities of self-interest (as in the case of 

informal carpooling), i.e., they do not roam around the city only to pick up and deliver 

passengers. This setting can lead to services that are more environmentally-conscience and cost-

efficient compared to the sharing services offered by TNCs. 

The overwhelming success and well-reception of TNCs by the public suggest a bright 

future for more environmentally-friendly ridesharing systems. Since founded in 2009, Uber has 

managed to expand its operations in 58 countries and more than 300 cities worldwide. According 

to business insider, in 2014 Uber had more than 160,000 registered driver-partners in the US, and 

the number of new drivers subscribing to Uber each month increased exponentially, approaching 

40,000 (Business Insider, 2015). The company is expected to hit the $10 billion revenue by the 

end of 2015 (Business Insider, 2014). 
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Table 1 summarizes features of the transportation alternatives discussed above. This table 

suggests that ridesharing systems have the potential to outperform other alternatives in terms of 

cost, flexibility, and impact on the congestion and the environment, if they succeed to operate as 

financially independent systems. 

Although P2P ridesharing systems emerged in the US in 1990's, they failed to survive as 

stand-alone entities. The higher cost of car ownership, the possibility of making safe on-the-spot 

electronic payments, and the prevalence of GPS-enabled cellphones which allow easy tracking of 

participants in a rideshare transaction are among the many factors that have influenced a 

promising return of ridesharing systems in recent years. 

A look at the literature on P2P ridesharing suggests that low participation rate has been 

one of the main obstacles of ridesharing systems since the early days (Haselkorn et al., 1995; 

Levofsky and Greenberg, 2001; O'Sullivan, 2011; and RTrip, 2009). The operational advantages 

of ridesharing systems over TNCs could also serve as a potential obstacle in their successful 

implementation. 

Drivers in a ridesharing system are available only during certain time windows, and have 

limited budget and certain origin and destination locations that is of personal interest to them. 

Therefore, the spatiotemporal coverage of drivers in a ridesharing system can be limited. 

Unsuccessful attempts to participate in a ridesharing system, either as a rider or a driver, may 

discourage users from returning to the system. Therefore, having an advanced ride-matching 

technique that maximizes the number of successful driver-rider matches is an indispensable part 

of a ridesharing system. Employing a good ride-matching algorithm not only improves short-

term revenues by increasing the number of served riders, but as well significantly enhances 

customer experience, builds trust and reputation, encourages existing customers to re-use the 

system, and brings prospective customers to consider 

We define a fully-flexible P2P ridesharing system as one that has the following four 

features: (1) Capable of providing multi-hop routes to riders, (2) Capable of optimally routing 

drivers, (3) Capable of making driver-rider matches in real-time, and (4) Equipped with a ride-

matching algorithm produces the optimal (or near-optimal) match for multiple drivers and riders 

simultaneously. We call a ridesharing system that satisfies only the first three features, a semi-

flexible ridesharing system. We discuss these features in the next section in more detail. 

In this paper, we develop a real-time ride-matching algorithm that not only creates a 

maximal set of driver-rides in real-time, but also provides the optimal routing of all participants 

in a semi-flexible P2P ridesharing system. A route plan for a driver involves the exact route the 

driver should take, the time and location of the stops he/she needs to make to pick up/drop off 

riders, and the list of riders that ought to be picked up or dropped off at each stop. A rider's route 

plan involves the time and location the rider is picked up/dropped off by each driver. 

Our formulation of the ride-matching problem perfectly and explicitly incorporates the 

first three components of a flexible system. Note that the semi-flexible ride-matching problem is 

known as a complex problem and computationally challenging to solve in real time. Adding the 

fourth component (multi-driver multi-rider feature) adds additional complexity to the model, and 

renders the optimal solution unattainable in real-time (Masoud and Jayakrishnan, 2015). Still, we 

incorporate the fourth component by introducing the concept of “P2P ride exchange”. We argue 

that as more riders take advantage of such exchange opportunities, the final matching approaches 

the optimal matching obtained for a fully-flexible ridesharing system. 

The rest of this paper is organized as follows: In the following section, we provide a 

review of the relevant literature that attempt modeling and/or solving ride-matching problems. 
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We follow this review by a discussion on how our proposed algorithm contributes to the 

literature. We then talk about the concept of P2P ride exchange, and discuss how this feature, 

when incorporated into the system, can improve the system performance. Finally, we solve a 

series of randomly generated problem instances, and study the effect of relaxing some of the 

assumptions made in the definition of the ridesharing system in section 3. 

Table 1. Transportation alternatives differing in flexibility, cost, and environmental impacts 

 

2 Literature Review 

A ride-matching algorithm can be viewed as the engine of a ridesharing system. This 

problem can be considered as a generalization of the classic Dial-a-Ride (DAR) problem in the 

transportation literature. Dial-a-ride problem optimizes the pick-up and delivery of passengers in 

special settings that typically involve door-to-door transportation, and is commonly used in para-

transit systems. In such systems, passengers in need of rides contact the agencies regarding their 

transportation needs, and the agencies assign vehicles to their requests. In the basic DAR 

problem vehicles and riders are assumed to be homogeneous. All vehicles start from the same 

depot in the morning, to which they return at the end of the day (Savelsbergh and Sol, 

1995;Cordeau and Laporte, 2007a;Cordeau and Laporte, 2007b). Over the years, researchers 

have studied more complicated and practical forms of the DAR problem, by assuming time 

windows for riders' requests (Jaw et al., 1986; Psaraftis,1983), multiple depots (Cordeau and 

Laporte, 2007a), heterogeneity among vehicles and passengers (Carnes et al., 2013; Braekers et 

al., 2014), and the possibility of transfers for passengers (Masson et al., 2014; Stein, 1978; Liaw 

et al., 1996). 

The ride-matching problem is very similar to the more advanced DAR problems, in 

definition and therefore mathematical modeling. The main characteristic of a P2P ride-matching 

problem that differentiates it from DAR is the fact that drivers in a ridesharing system are also 

considered customers. The set of vehicles (and their drivers) is not deterministic (i.e. their 

availability is not generally known in advance). Once they register, drivers are available only in 

narrow sprites in space and time. These characteristics play an important role when it comes to 

developing algorithms to find optimal matchings. Since riders and drivers have very limited 

spatiotemporal proximity compared to the DAR problem, the standard formulation of DAR is not 

the most efficient way to model a ridesharing system (Masoud and Jayakrishnan, 2015). 

If we were to manipulate the mathematical formulation of DAR to model the ride-

matching problem, we would have to add multiple sets of constraints (and decision variables) in 

order to model travel time windows and pre-determined origin and destination locations 

specified by each driver. These additional constraint sets increase the degree of complexity of the 

optimization problem. On the other hand, these additional constraints shrink the feasible solution 
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space of the problem. In this paper, we exploit the latter effect to develop an efficient solution 

algorithm for the ride-matching problem. 

In practice, ridesharing systems usually match a rider with a driver if they share the same 

origin and destination. From a computational point of view, this task can be easily done by 

making a series of comparisons in polynomial time. More sophisticated ridesharing systems ask 

each driver to specify their route, and assign the driver to riders with origin and destinations 

along that route. 

Theoretically, this is a simple form of matching in a ridesharing system, if the goal is to 

match each driver with exactly one rider. This can be easily accomplished by modeling the 

system as a bipartite graph, with riders and drivers modeled as two mutually exclusive sets. 

Although this type of matching can be performed fast, it does not satisfy the requirements of a 

fully flexible system. Schaub et al. (2014) show that even a slight deviation from this simple 

model can make the problem intractable. For example, they show that relaxing drivers' path in 

the problem can make it NP-complete, under specific objective functions. 

The literature of ride-matching in P2P ridesharing systems has been receiving more 

attention during the last couple of years. The first feature of a fully flexible ridesharing system is 

its ability to propose multi-hop route plans to riders. This feature allows riders to transfer 

between drivers, if necessary.  

The general belief among transportation planners that transfers in transport systems are 

intolerable is not entirely accurate. The undesirability of transfers is usually attributed to the 

perception that transfers are time-consuming, or can make the trip unreliable. In the former case, 

if transfers are optimized, they can actually reduce the total travel time; and the latter case will 

not happen if proper measures are taken to ensure reliability of transfers. Furthermore, transfers 

are in fact an inseparable part of a high-quality multi-modal transport system (Vukan, 1981). 

Designing multi-hop ridesharing systems can facilitate integrating these systems with available 

public transportation, providing a seamless transport platform where ridesharing systems can 

serve as feeders to public transit. Masoud and Jayakrishnan (2015) show that considering 

transfers can considerably increase the number of matched riders. In their work, they allow riders 

to specify the maximum number of transfers they are willing to make, and incorporate this 

measure in their formulation of the problem. Agatz et al. (2009), Herbawi and Weber (2011), 

Ghoseiri (2013), and Masoud and Jayakrishnan (2015) consider this feature in their models. 

Another desirable feature in a ridesharing system is its ability to propose optimal routes 

to drivers. Alongside multi-hop routes, this feature plays an important role in increasing the 

number of served riders (Masoud and Jayakrishnan, 2015). Most of the work in the literature 

consider this feature in modeling ridesharing systems (Masoud and Jayakrishnan 2015; Agatz et 

al. 2009, 2011; Teodorovic and DellOrco 2005; Baldacci et al. 2004; Di Febbraro et al. 2013; 

Herbawi and Weber 2012). Ghoseiri (2013) allows drivers to take detours from a pre-determined 

path. Although this approach is superior to considering fixed routes, it still imposes limits on 

routing of drivers. 

A flexible ridesharing system should be equipped with a ride-matching problem that is 

capable to providing optimal (or high-quality near optimal) solutions in a short period of time. 

The majority of works in the literature present a mathematical model a ridesharing system as an 

optimization problem, but don't discuss the solution algorithms (Agatz et al. 2009; Di Febbraro 

et al. 2013). Others propose heuristic solutions (Ghoseiri, 2013; Herbawi and Weber, 2012, 

2011; Calvo et al., 2004; Teodorovic and DellOrco, 2005). Masoud and Jayakrishnan (2015) 

present a formal mathematical formulation of the problem, and propose an algorithm to cut the 
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solution time. The final solution time, however, is appropriate for a system that matches 

participants on a rolling-horizon basis, and not instantaneously. 

Finally, a flexible ridesharing system should be equipped with a ride-matching algorithm 

that can find an optimal match for a set of riders and drivers. A ridesharing system that ignores 

this aspect of matching typically serves riders based on a first in, first out (FIFO) order. That is, 

once a rider is matched, the routes of the drivers involved in the rider's route plan are fixed. 

These drivers can still be considered in the ride-matching problems that need to be solved later, 

but with fixed paths. Fixing drivers' paths comes at an opportunity cost for the riders that enter 

the system later (Note that even with fixing drivers' paths, it is still possible for a driver to carry 

multiple riders, however with lower probability). This is a missing aspect in most existing studies 

in the literature (Herbawi and Weber. (2011); Di Febbraro et al. (2013)). 

Table 2 lists the features of a fully-flexible ridesharing system, and indicates the extent to 

which each study covers these features. This table shows that the work by Masoud and 

Jayakrishnan (2015) is the only study that includes all the features of a fully- (and semi-) flexible 

ridesharing system, as defined in this paper. However, as mentioned before, the solution method 

proposed in Masoud and Jayakrishnan (2015) is suitable for a ridesharing system implemented 

on a rolling-horizon basis, since the solution time of their proposed algorithm does not allow for 

instantaneous matchings. In this paper, we propose an algorithm that can find the optimal 

solution to a semi-flexible ride-matching problem in a matter of seconds, and introduce a 

mechanism that can help transform the optimal solution found by our algorithm to approach the 

optimal solution of a fully-flexible ride-matching problem. Finally, we set aside our initial 

assumption that riders and drivers are two mutually exclusive sets. We assume that a subset of 

riders have access to vehicles, and their registering in the system as riders is simply a preference. 

In case the system is unable to find a match for these riders, they may use their personal vehicles 

and contribute to the ridesharing system as drivers. Under this assumption, we study the best and 

worst case scenarios of the number of riders the system can serve. 

Table 2. Literature on P2P ridesharing 

 

3 RIDESHARING SYSTEM 

In this study, we consider a ridesharing system in which users can postpone registering 

their trips to the moment when they are ready to start their trips. This type of ridesharing system 

that is capable of integrating requests in real-time is called a dynamic system. 
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We divide the set of participants, 𝑃,  in the system into two sets of riders, 𝑅, and drivers 

𝐷. A rider 𝑟 ∈ 𝑅 joins the system hoping to find a set of drivers who can collectively serve 

his/her ride request. A driver, on the other hand, is planning to travel to perform an activity of 

self-interest, and is willing to share the unused capacity of his/her vehicle with those who are in 

need of rides. We start the modeling process assuming that sets 𝑅 and 𝐷 are mutually exclusive, 

although we study the impact of dropping this assumption in later sections. 

We identify a set of stations in the network, where participants can switch between 

drivers/transportation modes, and begin and end this trips (Note that the assumption that 

participants start and end their trips at stations is simply for the sake of simplicity, and does not 

affect the running time of the proposed algorithm). Stations should be located at areas with high 

demand for the ridesharing system, such as high density residential/recreational areas, business 

districts, and central transit stations.  

Furthermore, we discretize the study time horizon into a set of short time intervals, 𝑑𝑡, 

and index the 𝑖𝑡ℎ time interval by 𝑡𝑖. In this study, the length of each time interval is set to one 

minute.  Discretizing the study time horizon into short time intervals allows for using time-

dependent travel times matrices, and alongside discretizing the space dimension through 

introducing stations, provides the basis for the proposed ride-matching algorithm in this paper. 

 In order to participate in the ridesharing system, riders and drivers need to register their 

trips. During the registration process, a participant 𝑝 ∈ 𝑃 is asked to provide information on their 

origin and destination locations, denoted as 𝑂𝑝 and 𝐷𝑝 respectively, their travel time budget for 

the trip, denoted as 𝑇𝑝
𝑇𝐵, and a travel time window for their trip  [𝑇𝑝

𝐸𝐷 , 𝑇𝑝
𝐿𝐴], where 𝑇𝑝

𝐸𝐷 is the 

earliest time interval participant 𝑝 is willing to start the trip, and 𝑇𝑃
𝐿𝐴 is the latest time interval 

they need to have arrived at their destination.  

In addition to travel time budget and travel time window, in attempt to provide a pleasant 

ridesharing experience for the system users, a rider 𝑟 ∈ 𝑅 is asked to provide the maximum 

number of transfers they are willing to make (denoted by 𝑉𝑟), and a driver 𝑑 ∈ 𝐷 is asked to 

provide a limit on the number of people they are willing to have as passengers at any moment in 

time (denoted by 𝐶𝑑). In addition, all participants can indicate their preferences such as age, 

gender, etc on the people they travel with.  

 Although drivers use their personal vehicles, they are encouraged to leave the routing of 

their vehicles to the system. The system attempts to find a route for riders using the empty seats 

in the drivers’ vehicles (and possibly using the available transit system), taking into 

consideration the travel time window and budget constraints of both riders and drivers, 

maximum number of transfers specified by riders, maximum vehicle capacities by drivers, and 

participants’ personal preferences. 

In a network discretized in both time and space, we define a node 𝑛𝑖 as a tuple (𝑡𝑖, 𝑠𝑖), 

and a link 𝑙 as a tuple of two nodes, i.e. 𝑙 = (𝑛𝑖, 𝑛𝑗) = (𝑡i, 𝑠i, 𝑡j, 𝑠j). Based on this definition, a 

participant who travels on link  𝑙 = (𝑡i, 𝑠i, 𝑡j, 𝑠j) leaves station 𝑠𝑖 during the time interval 𝑡𝑖, 

arrives at station 𝑠𝑗 during the time interval 𝑠𝑗. Needless to say (𝑡𝑗 − 𝑡𝑖 + 1)d𝑡 is an upper bound 

on the travel time between stations 𝑠𝑖 and 𝑠𝑗. 

The ridesharing system serves riders on a FIFO basis. Once a rider is matched, the route 

plans of drivers involved in the rider’s route plan are (partially) fixed. The objective of the ride-

matching problem is to find the best path for a rider given the spatiotemporal and quality of 

service constraints on both riders and drivers.  
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All drivers in set 𝐷 and all links on the time-expanded network can potentially contribute 

to form route plans for a rider. In the next section, we introduce the spatiotemporal ellipsoid 

method (STEM) to reduce the size of the input to the problem by eliminating subsets of links and 

drivers that cannot be used by the rider due to the spatiotemporal constraints on the participants. 

Next, we propose an algorithm to solve the ride-matching problem to optimality. 

4 ILLUSTRATIVE EXAMPLE 

Throughout this paper, we use the following problem instance to illustrate the concepts 

and demonstrate different steps of the proposed algorithm. This example contains a network with 

16 stations, one rider, and four drivers. The network is displayed in Figure 1, and the 

characteristics of the participants are presented in Table 1 below. It is assumed that participants 

have no restrictions on the people with whom they travel. 

 
Figure 1. Problem Instance Used For Illustrative Examples throughout the Paper 

5 SPATIOTEMPORAL ELLIPSOID METHOD (STEM) 

The spatiotemporal ellipsoid method (STEM) generates for each rider a time-expanded 

feasible network in which the rider’s optimal route plan could be searched. This network is 

constructed from the links on the original network that are reachable by drivers. STEM first uses 

a simple geometric tool to identify the set of stations spatially reachable by each participant 

(driver or rider). Next, STEM finds the time intervals during which each station can be reached, 

forming the set of feasible links for each participant. Finally, the rider’s time-expanded feasible 

network is generated using the set of feasible links reachable by drivers who are within 

spatiotemporal proximity of the rider. The three steps of STEM are discussed in more detail in 

the following. 
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5.1 Approximating the Set of Reachable Stations 

Spatial proximity of each participant can be determined based on his/her origin and 

destination stations, and travel time budget. Assume, given a participant 𝑝 ∈ 𝑃, we draw an 

ellipse on the network. The focal points of this ellipse are the participant’s origin and destination 

stations, and it’s traverse diameter is an upper-bound on the distance that can be travelled by the 

participant during his/her travel time budget. Such an ellipse is displayed in Figure 2.  

For an ellipse with focal points 𝑓1 and 𝑓2, we know that the total straight traveling 

distance 𝑓1𝑀 + 𝑀𝑓2 for any point 𝑀 on the circumference of the ellipse is equal to the traverse 

diameter of the ellipse, and therefore corresponds to the travel time budget of the participant. 

This means that any station located outside of the circumference of the ellipse cannot be reached 

without violating the time budget constraint of the participant.  Still, note that not all stations 

located inside a participant’s ellipse are necessarily reachable by him/her, due to the fact that 

actual shortest path travel times on the network are expected to be longer than straight-line 

distance travel times over the map.  

This method substantially reduces the number of potential stations a participant can visit, 

simply by evaluating the coordinates of the candidate (and not all) stations in the equation of an 

ellipse. Storing stations in an appropriate data structure based on their geographical location 

makes it easy to find the set of candidate stations1. We call the part of the network confined 

within and on the circumference of participant 𝑝′s ellipse the “reduced network” of participant 𝑝, 

and denoted by 𝐺𝑝.  

 
Figure 2. The reduced network 𝑮𝒓 on the original network 𝑮 

 

Figure 3 displays the reduced networks for the participants in our example. 𝑟1 is planning 

to travel from station 5 to station 12., 𝐺𝑟 is pointed out in figure 3 as the section of the network 

confined inside the dashed green ellipse. The reduced networks for the four drivers in our 

example are also demonstrated in this figure, using solid red ellipses. The shaded area shows the 

intersection of the rider’s reduced network with those of the drivers. We refer to the set of 

stations within the shaded area as the “feasible network” for rider 𝑟, denoted by 𝐺𝑟
𝐹. Feasible 

network is defined for a rider, and contains only the section of the network that the rider can 

reach due to the space proximity provided by drivers in set 𝐷.  

                                                 
1 For example, we can have one array in which stations are stored based on increasing value of their X-

coordinates, and another array in which stations are stored based on the increasing  value of their Y-coordinates 
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Defining reduced networks for participants serves three purposes. First, by studying the 

reduced networks of all participants, it is possible to make an early diagnosis whether a rider can 

be served in the system. For the rider to be served, he/she needs to have both time and space 

proximity by at least one driver along a path that connects the rider’s origin and destination 

stations. Therefore, the minimum requirement for the rider to be served is to have space-

proximity to at least one driver at his/her origin and destination stations. In Figure 3, for 

example, if driver 2 (travelling from station 14 to 5) was not in the set of drivers, the rider could 

not be served, due to lack of space proximity at its origin station (station 5).  

In addition, studying the reduced networks makes it possible to shrink the set of potential 

drivers for each rider. Drivers who do not contribute to the rider’s feasible network can be 

filtered out from the ride-matching problem. As an example, driver 4 in Figure 3 can be filtered 

out from the problem, reducing set 𝐷 = {1,2,3,4} to 𝐷 = {1,2,3}. Driver 3 does not have 

proximity to the rider’s origin or destination, but can contribute to portions of the travel in case 

of a transfer. In fact, in this particular example, the only way the rider can travel from station 5 to 

station 12 is by being picked up by driver 2, transferring to driver 3, and finally transferring to 

driver 1. The exact transfer locations, and deciding whether such a route is feasible at all under 

the participants’ time windows will be examined later. For instance, it might be the case that by 

the time the rider reaches station 6 or 10, driver 2 needs to have traveled beyond those stations to 

reach its destination on time (thereby, a spatiotemporal feasible path for the rider would not 

exist). 

 
Figure 3. Reduced networks of all the participant in our example 

The third benefit of forming reduced networks is that the network-dependent 

computations can be done much faster on 𝐺𝑝 than 𝐺. One example of the computational savings 

attained by replacing 𝐺 with 𝐺𝑝 manifests itself in the second step of STEM (section 5.2), when 

time-proximity of stations is studied. To determine time-proximity, we need to calculate multiple 

shortest path travel times between the origin and destination stations of participants. Shortest 

path travel time matrices can be computed more efficiently on 𝐺𝑝. Figure 4 shows the result of 

calculating the shortest path travel times between the origin and destination stations of 

participants for problems of different sizes (i.e. various number of participants, and various 

network sizes). The surface on the top in this figure shows the running time of Dijkstra’s 

algorithm on 𝐺, and the surface on the bottom shows the same running time on 𝐺𝑝. 
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Figure 4. The surface on the top/bottom shows Dijkstra’s running time on 𝑮/𝑮𝒑.  

Results are averaged over 10 randomly generated networks for each problem 

 

5.2 Constructing the Participants’ Time-Expanded Reduced Networks 

In the previous step, we formed the feasible network for the rider in the problem. 

However, not all stations in the feasible network are necessarily reachable by the rider, since we 

have yet to study time proximity of stations. To study time-proximity, we have to find the set of 

time intervals during which station 𝑖 ∈ 𝐺𝑝 can be reached by participant 𝑝. We denote this set as 

𝑇𝑖
𝑝
, and use the following procedure to obtain its members.      

To from the set of links for participant 𝑝, we first have to identify all the paths in 𝐺𝑝 with 

travel times less than or equal to 𝑇𝑝
𝑇𝐵. To avoid enumerating the paths, we find the first k-

shortest paths in 𝐺𝑟 and 𝐺𝑑 , ∀𝑑 ∈ 𝐷 , such that the travel time on the 𝑘𝑡ℎ shortest path is less 

than or equal to 𝑇𝑝
𝑇𝐵, and the travel time on the (𝑘 + 1)𝑡ℎ shortest path is higher than 𝑇𝑝

𝑇𝐵. After 

finding the 𝑖𝑡ℎ shortest path (𝑖 ≤ 𝑘) on 𝐺𝑝, the set 𝑇𝑖
𝑝, ∀𝑖 ∈ 𝐺𝑝 can be created based on the value 

of 𝑇𝑝
𝐸𝐷, and the time-dependent travel time matrices.  

At this point, we know the time intervals during which each station can be reached. We 

can use this information to construct the “time-expanded reduced networks”, 𝐺𝑝(𝑡), for 

participants. Figure 5 displays the time-expanded reduced network for driver 2 in our example.  

Note that it is possible to have more than one origin and/or destination node in a time-

expanded graph. Recall that each node is represented by as a 2-tuple of a time interval and a 

station. Nodes in the form of (𝑡, 𝑂𝑝), ∀𝑡 ∈ 𝑇𝑂𝑝

𝑝
 are all origin nodes, and nodes in form of 

(𝑡, 𝐷𝑝), ∀𝑡 ∈ 𝑇𝐷𝑝

𝑝
 are all destination nodes. We keep these nodes in origin and destination sets, 

𝑂𝑆(𝑝) and 𝐷𝑆(𝑝) respectively. In Figure 5, 𝑂𝑆(𝑑2) = {(3,14), (4,14)}, and 𝐷𝑆(𝑑2) =
{(27,5), (28,5)}.  
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Figure 5. Time-expanded reduced network for driver 2 in Figure 3  

 

5.3 Generating Rider’s Time-Expanded Feasible Network 

In section 7.1, we generated the feasible network for rider 𝑟, 𝐺𝑟
𝐹, by scanning through the 

stations in the rider’s reduced network, 𝐺𝑟, and checking whether these stations exist in any of 

the drivers’ reduced networks. We can perform the same procedure on the links in the time-

expanded reduced network of the rider , 𝐺𝑟(𝑡). The result is the rider’s time-expanded feasible 

network, 𝐺𝑟
𝐹(𝑡). 

Links that fall entirely within 𝐺𝑟
𝐹(𝑡) are the links that can be traversed by at least one 

driver. At this stage, we can filter out the set 𝐷 even more, by eliminating drivers who do not 

contribute to the rider’s time-expanded feasible network.  

6 Solution Algorithm 

6.1 Pre-Processing 

The STEM algorithm constructs the time-expanded feasible network, 𝐺𝑟
𝐹(𝑡), for rider 𝑟. 

The optimal route plan for the rider can be searched on 𝐺𝑟
𝐹(𝑡). Even though this network is 

substantially smaller than the original network 𝐺, the number of feasible routes for the rider can 

still be very large. Different combinations of links on which to travel, and drivers with whom to 

ride, can make enumerating the paths computationally prohibitive (see Figure 6(b)). In this 

section, introduce an algorithm using which the optimal path for the rider can be found quite 

efficiently.  

Figure 6(a) shows the time-expanded feasible network for the rider in our example. The 

goal is to find an optimal route plan for the rider to travel from his/her origin node to his/her 

destination node. We define the origin node as the node in the rider’s origin set , 𝑂𝑆𝑟 ,with the 

smallest time interval, and the destination node as the node in the rider’s destination set, 𝐷𝑆𝑟, 

with the largest time interval. In our example, the origin node is (3,5), and the destination node 

is (29,12).  

Set of origin nodes:𝑂𝑆(𝑑2) 

Set of destination nodes: 𝐷𝑆(𝑑2) 
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The optimal route plan as defined in this study is a path that minimizes a linear 

combination of the in-vehicle travel time, wait time, and number of transfers. Before searching 

for the optimal path, two preliminary operations need to be performed on the graph. First, the 

nodes that are not descendants of the origin node, and predecessors of the destination node 

should be removed. An example of this operation is demonstrated in Figure 6(a). This figure 

displays the time-expanded feasible network of the rider in our example who is travelling from 

station 5 to station 12. The components of the graph containing nodes (22,7), (23,7), (24,7), and 
(14,9), (15,9) (marked by red rectangles in Figure 6(a)) have to be eliminated from the graph, 

since they are not descendants of the origin node (3,5). This task can be easily accomplished by 

scanning the adjacency matrix of the graph. 

The second operation is to topologically sort the graph. A topological ordering for such a 

graph always exists, since the graph is a directed acyclic one (the graph is acyclic since nodes 

have a time component, and hence we can never go back in time on a path in the network). 

Figure 6(b) displays the resulting graph after performing these two preliminary operations. The 

numbers to the left of nodes in this figure show the topological orders. The numbers on the links 

show the IDs of the drivers who can carry the rider on the links. 

Doing a depth first search (DFS) on the “revised” time-expanded feasible network 

(Figure 6(b)) determines whether a route plan for the rider exists at all. Starting from the first 

node in the topologically ordered graph, if DFS does not conquer a node in the destination set, 

then the rider cannot be matched in the system. Otherwise, if DFS finds a path (establishing that 

the ride-matching problem is spatially and temporally feasible), we will use the proposed 

algorithm to find the “best” path for the rider. 

6.2 Main Algorithm 

Let us start by defining sets 𝐷𝑗
𝐼𝑁 and 𝐷𝑗

𝑂𝑈𝑇as the set of drivers who enter and exit node 𝑗 

respectively, and set 𝐷𝑁𝑗 for each node 𝑗 as a set of tuples (𝑛𝑖, 𝑑) such that there is a link for 

driver 𝑑 from 𝑛𝑖 to 𝑛𝑗  in the revised time-expanded feasible network. Furthermore, we denote by 

𝑉(𝑛𝑗 , 𝑑) the minimum cost of the optimal path from the start node (node 1 in the topologically 

ordered graph) to node 𝑛𝑗 , such that the last link on the path is traversed by driver 𝑑. The goal is 

to find 𝑉𝑟
∗ = min

𝑛𝑗∈𝐷𝑆𝑟,𝑑∈𝐷𝑗
𝐼𝑁

{𝑉(𝑛𝑗 , 𝑑)}. 

We initialize the 𝑁𝑟 × 𝐷𝑟 matrix 𝑉(⋅) to infinity, where 𝑁𝑟 is the number of nodes in 

rider 𝑟’s revised time-expanded graph, 𝐷𝑟 is the set of drivers that contribute to rider 𝑟’s revised 

time-expanded feasible network. To keep track of the optimal solution, we introduce two 

additional matrices of the same size, called Pred_Node and Pred_Driver, and initialize them to 

zero. These matrices keep the predecessor node and the driver that takes the rider to the 

predecessor node on the optimal path, respectively. 

We set the initial condition as 𝑉(𝑛1, 𝑑) = 0, for all 𝑑 ∈ 𝐷1
𝑂𝑈𝑇. In the revised time-

expanded feasible network in Figure 6(b), the initial condition is 𝑉(𝑛1, 𝑑1) = 0.   

After setting the initial condition, we traverse the nodes in the (topologically ordered) 

graph in ascending order. For each node 𝑛𝑗 , and each driver 𝑑 in the set 𝐷𝑗
𝑖𝑛, 𝑉(𝑛𝑗 , 𝑑) is 

computed as: 

𝑉(𝑛𝑗 , 𝑑) = min
𝑛𝑖:(𝑛𝑖,𝑑)∈𝐷𝑁𝑗

{ min
𝑑′∈𝐷𝑖

𝑖𝑛\E𝐷(𝑛𝑖,𝑑′)
{𝑉(𝑛𝑖 , 𝑑′) + 𝐶𝑇𝟏{𝑑≠𝑑′}} + 𝐶(𝑛𝑖 , 𝑛𝑗)}    (1) 
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The indicator function 𝟏{𝑑≠𝑑′} returns 1 if 𝑑 ≠ 𝑑′(i.e., if the rider makes a transfer) and 

returns zero otherwise. 𝐶𝑇 is the penalty (cost) of a transfer. The function 𝐶(𝑛𝑖 , 𝑛𝑗) gives the cost 

of traveling on link (𝑛𝑖 , 𝑛𝑗) = (𝑡1, 𝑠1, 𝑡2, 𝑠2), and can be calculated using (2). The cost of travel 

as defined in (2) is the travel time on the link in case a travel takes place (i.e., 𝑠𝑖 ≠ 𝑠𝑗), or a 

penalty 𝑊 if the rider waits at the station (𝑠𝑖 = 𝑠𝑗) for one time interval. Note that if the rider 

stays in the same station for multiple time intervals, the algorithm will automatically accumulate 

𝑊 the appropriate number of times. This is due to the fact that the same station at different time 

intervals corresponds to separate nodes on the time-expanded feasible network. Further, note that 

𝐶(𝑛𝑖, 𝑛𝑗) in (2) can be easily extended to 𝐶(𝑛𝑖, 𝑛𝑗 , 𝑑), in case a more general driver-dependent 

cost is desired. 

𝐶(𝑛𝑖 , 𝑛𝑗) = {
(𝑡𝑗 − 𝑡𝑖 + 1)𝑑𝑡     𝑠𝑖 ≠ 𝑠𝑗

𝑊                             𝑠𝑖 = 𝑠𝑗
 (2) 

We discuss the set 𝐸𝐷(𝑛𝑖, 𝑑′) used in (1) further down. 

After each computation of 𝑉(𝑛𝑗 , 𝑑) using the recursive function in (1), we save 𝑛𝑖
∗ =

argmin
𝑛𝑖:(𝑛𝑖,𝑑)∈𝐷𝑁𝑗

{ min
𝑑′∈𝐷𝑖

𝑖𝑛\E𝐷(𝑛𝑖,𝑑′)
{𝑉(𝑛𝑖, 𝑑′) + 𝐶𝑇𝟏{𝑑≠𝑑′}} + 𝐶(𝑛𝑖, 𝑛𝑗)}  in Pred_Node(𝑛𝑗 , 𝑑), and 

𝑑∗ = argmin
𝑑′∈𝐷𝑖

𝑖𝑛\E𝐷(𝑛𝑖,𝑑′)

{𝑉(𝑛𝑖, 𝑑′) + 𝐶𝑇𝟏{𝑑≠𝑑′}} in Pred_Driver(𝑛𝑗 , 𝑑). Once the optimal minimum 

cost for the rider is found, these matrices can be used to retrieve the corresponding optimal route 

plan(s). 

 

  
6(a) Time-expanded feasible network 6(b) Revised time-expanded feasible network 

(after performing the preliminary operations) 
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Figure 6.  Time-Expanded Feasible Network For The Rider In Our Example Before And After Revision 

We define 𝐸𝐷(𝑛𝑖 , 𝑑′) ={Pred_Node(𝑛𝑖, 𝑑′)\𝑑′}. This set includes a list of drivers on the 

optimal path to node 𝑛𝑖, excluding the driver on the last link. Drivers in this set are excluded 

from set 𝐷𝑖
𝑖𝑛 in (1) to ensure the feasibility of the solution. Although very unlikely, it could 

happen that a route includes links that cannot co-exist. If a driver covers multiple links on a 

rider’s route plan, and those links belong to different feasible paths of the driver, then the 

resulting route plan is not feasible. To clarify, an example is shown in Figure 7. In this example, 

driver 𝑑 has two potential paths to make his/her trip, while driver 𝑑′ has only one. There is only 

one route plan for the rider, marked by dashed red arrows. This route plan consists of three links. 

The first link is covered by driver 𝑑 via driver 𝑑’s first potential path, the second link is covered 

by 𝑑′, and the third link is covered by 𝑑 via driver 𝑑’s second potential path. Clearly the 

resulting route plan is not feasible, since 𝑑 cannot carry the rider on both links. Excluding drivers 

in set 𝐸𝐷 from the list of potential drivers in (1) ensures that such a route plan is never 

generated. In the example in Figure 7, the rider cannot be served. 

 
Figure 7. Example of an infeasible solution 

Using the proposed dynamic algorithm, not only the optimal route plan, but all the 

feasible route plans for a rider are readily available. Therefore, if the solution that is deemed 

optimal based on the objectives of the system (i.e. number of transfers, and traveling and waiting 

times) did not satisfy other personal requirements of participants, we can easily access and 

examine the next best solutions. 

Once a rider’s route plans is fixed, it is easy to find the optimal route plans for drivers. If 

a driver is part of the rider’s route plan, then a portion of his/her path is fixed. Given the fixed 

portions, it is easy to find the shortest travel time path for the driver from the driver’s origin 

station to the fixed portion, between the fixed portions, and from the last fixed portion to the 

driver’s destination station. Notice that because the fixed portions of a drivers’ path have time 

components, it is easy to order them. After these ordering is done, Dijkstra’s algorithm can be 

used to find the shortest path between the fixed stations in the driver’s reduced graph. 

7 NUMERICAL EXPERIMENTS 

In this section we generate multiple random instances of the ridesharing problem in a 

network with 49 stations. All problem instances contain 1000 participants. We vary the ratio of 
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drivers and riders in each problem instance, and assess the performance of the proposed 

ridesharing algorithm as the ratio of rider in the problem changes. 

The participants’ earliest arrival time is generated uniformly within a one hour time 

period. We discuss the selection of participants’ origin and destination stations later on, in each 

section. 

All drivers are assumed to have four empty seats, and riders are assumed to accept up to 3 

transfers. We use 1 min time intervals, and consider a randomly generated travel time budget 

within the interval [𝑇𝑝
𝑆𝑇  1.1𝑇𝑝

𝑆𝑇] for participant 𝑝 ∈ 𝑃, where 𝑇𝑝
𝑆𝑇 is the shortest path travel time 

between the participant’s origin and destination stations. In the interest of simplicity, we assume 

that participants have no personal requirements on the people with whom they travel. 

In the next two sections, we use the proposed algorithm to find the optimal solutions for 

the randomly generated problems. In section 7.1, the origin and destination locations of 

participants will be selected based on a uniform random distribution. In section 7.2, we study a 

more practical case, where trip ends are determined randomly, but based on a clustering of the 

network. 

7.1 Uniform Random Selection of Trip End Locations 

For the problem instances generated in this section, the origin and destination stations of 

participants are selected from the 49 stations, based on a uniform random distribution.  

The results we report in this section are averaged over 10 randomly generated instances, 

for each problem. Figure 8(a) and (b) display the solution time, and the percentage and number 

of served riders respectively. As mentioned before, riders are considered in a FIFO basis, and 

once a rider registers in the system, a ride-matching problem for that rider is solved. The solution 

time reported for each problem instance in figures 8(a) and 8(b) is the highest solution time 

among all riders in the problem (averaged over 10 randomly generated instances).  

Figure 8(a) shows that the percentage of served riders decreases with the ratio of riders in 

the problem. Note that since the number of participants is held constant, number of drivers 

decreases, as the number of riders increases. Figure 8(b) suggests that number of served riders is 

maximized when number of riders in the system is slightly lower than number of drivers, i.e. the 

ratio of drivers to riders is slightly higher than 1. At his best case scenario (highest number of 

riders served), about 30% of the demand for rides is satisfied. 

If the interest of the system is to maximize the percentage of served riders, about 50% of 

riders can be served in the best case scenario. Notice that this higher performance is obtained 

when the number of riders in the system is only 50, and there are 950 drivers in the system.  

Figure 8(c) shows the number of matched participants in the system. This figure suggests 

that number of matched participants is maximized in the same range where the number of served 

riders is maximized. In fact, when riders constitute about 45% of the total number of participants, 

the number of matched riders and drivers are both maximized. Notice that this is not an obvious 

conclusion, since each driver can carry multiple riders, and each rider can transfer between 

multiple drivers. Furthermore, notice that these results are only valid for the case where origin 

and destination locations are randomly selected. We show in the next section that in more 

practical settings where business districts and residential areas are separated (and therefore trip 

ends have higher spatial proximity), number of matched participants can increase drastically.   

Finally, figure 8(d) shows the distribution of number of transfers for each problem 

instance. This figure suggests that the majority of satisfied riders do not have to make any 

transfers. This figure also suggests that the number of additional riders that can be served due to 

the integration of transfers into the system is not trivial. 
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8(a) Change in solution time and percentage of served 

riders with ratio of riders  

8(b) Change in solution time and the number of served 

riders with ratio of riders 

  

8(c) Distribution of number of participants matched in 

each problem 

8(d) Distribution of number of transfers in the optimal 

solutions 

Figure 8. Algorithm performance for each randomly generated problem instance 

7.2 Uniform Random Selection of Trip Ends in Clusters 

In the previous section, we made an impractical assumption that the origin and 

destination locations of trips are completely random. In reality, residential areas are usually close 

together, and separate from commercial and business districts. In this section, we identify two 

geographically distinct regions on the network to represent residential and business districts. 

Similar to the previous section, we generate different problem instances, varying the percentage 

of riders in the problems. For each ratio of riders, we generate and run 10 different problem 

instances, and report the average results.  

Figure 9(a) shows the clustering of a sample network. The area on the top is considered 

the business district, and the area on the bottom the residential district. Each problem instance 

represents the simulation of a morning peak period, in which participants travel from a randomly 

selected station in the residential area, to one in the business district.  
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Figure 9(b) shows that number of served riders has the same trend compared to the 

scenario where origin and destination locations were completely random, but in this case the 

number of served riders has more than doubled. Figure 8(c) suggests that in this more practical 

setting, when the system has the optimum ratio of drivers and riders, more than 60% of the 

participants will actually participate in the system. 

 

 
9(a) A sample clustering of the network 

  
9(b) Comparison of number of served riders between 

the completely random scenario and the clustering 

scenario 

9(b) Distribution of matched participants in the 

clustering scenario 

Figure 9. System performance for the scenario with distinct business and residential areas 

8 The critical mass 

For a ridesharing system to be able to work independently, a critical mass of participants 

is required. In the previous sections, we demonstrated the performance of a ridesharing system 

with 1000 participants. We showed that in the more practical scenario of having distinct business 

and residential areas, more than 60%, and in the completely random case, about 35% of 

participants can be successfully matched. It is intuitive to expect the average number of 

successful matches to increase with the number of participants. However, for a system to 

survive, a minimum number of participants should be able to use the system successfully. This 
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success will encourage users to consider participating in the system again, and promote the 

system to their friends and families. 

In this section, we do a sensitivity analysis on the number of participants in the system. 

This analysis can shed light on the relationship between system performance, and the number 

and ratio of participants.  

Figure 10 shows the percentage of matched participants as the total number of 

participants changes from 200 to 1000 individuals. Similar to the previous sections, for a given 

number of participants, we generate multiple random problem instances by changing the ratio of 

riders. The travel ends of participants were selected at random with uniform probabilities, similar 

to section 7.1. Figure 10 suggests that the increase in the number of participants leads to higher 

system performance, in terms of the percentage of matched participants. The peak performance 

of the system in all cases, however, occurs in the same range. 

 

 
Figure 10. Sensitivity analysis over the number of participants in the system 

9 P2P Exchange 

Ridesharing systems are in general spatiotemporally sparse. The temporal sparsity stems 

from the rather tight time windows and limited travel time budgets of participants, and the spatial 

sparsity is due to the participants’ fixed origin and destination locations.  This spatiotemporal 

sparsity limits the number of satisfied requests. In fact, one of the contributors to the initial 

failure of P2P ridesharing systems in the US in the 1990s was the very small number of served 

rider requests. Today, advancements in the communication technology and prevalence of 

smartphones, along with the young generation’s fascination with use of technology has led to a 

larger pool of riders and drivers for ridesharing systems. However, as discussed in the previous 

sections, a critical mass of participants is still an important requirement for ridesharing systems, 

to ensure that they can operate independently, without having to outsource drivers. Therefore, a 

ridesharing system has to try and make the best use of its limited available resources, the drivers.  

A ridesharing system that takes riders into consideration only one at a time, is in fact 

wasting its very limited and valuable resources by fixing route plans of matched drivers. Figure 

11 shows an example of how fixing drivers’ route plans can deteriorate the performance of the 
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system. This example includes two riders and two drivers. Assume rider 1 has registered in the 

system before rider 2, and hence the system starts by finding a match for rider 1. Vehicles 1 and 

2 are both candidates to be matched with this rider. Eventually the system matches rider 1 with 

driver 2, since driver 1 has to make a larger detour to carry the rider. Driver 2’s route plan, 

marked in solid blue line, is then fixed. The next rider in queue is rider 2. This rider could have 

been matched with driver 2 through the route marked with the blue dashed line, if driver 2’s 

route plan had not been fixed. However, under the current state of the system, rider 2 cannot be 

matched. The ridesharing system, therefore, can only match one rider with one driver. 

 

 
Figure 11. P2P ride exchange 

In the example in figure 11, we could have increased the system performance by solving 

a ride-matching problem that included the two available riders, as opposed to considering them 

one at a time. The solution to such a problem would match rider 1 with driver 1, and rider 2 with 

driver 2, serving both riders, and involving all 4 participants.  

The problem with this approach is that solving such a problems is too time-consuming. 

Even efficient algorithms (such as the one proposed by Masoud and Jayakrishnan, 2015) can 

take minutes to solve, for moderate size instances of the problem. To demonstrate the difference 

in solution time of a many-to-many ride-matching problem (which includes multiple riders and 

multiple drivers) with the one-to-many problem (which includes one rider and multiple drivers) 

proposed in this paper, we solved the problem instances in section 7.1 using both approaches. 

For the many-to-many problem, we use the decomposition algorithm proposed by Masoud and 

Jayakrishnan (2015) on a time-horizon basis, by reoptimizing the system at 2, 5, and 10 min time 

intervals. In this approach, instead of matching one rider at a time, we solve a problem that 

includes all the riders that can start their trips within the mentioned time interval (such riders can 

be determined based on the travel time windows of their trips). Figure 12 depicts the results of 

this comparison. 
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12(a) Change in the solution time 12(b) Change in the number of served riders 

Figure 12. Solution time and number of served riders for each randomly generated problem instance 

Figure 12 suggests that the solution time for a many-to-many ride-matching problem is 

too high for real-time applications. On the other hand, the number of matched riders improves 

when a many-to-many problem is solved. In this section, we propose “P2P ride exchange” as a 

mechanism to improve the solution of a many-to-one ride-matching problem. 

Although we can use the proposed algorithm in this paper to solve a many-to-one ride-

matching problem to optimality, the formulation of the problem itself is not optimal. P2P ride 

exchange can help us move from the sub-optimal solution obtained by matching one rider as a 

time, toward the optimal solution that can be obtained by including all riders in the matching 

problem, without the unattractive side-effect of the increased solution time.  

In this approach, we still solve the matching problem for one rider at a time, and on a 

FIFO basis. However, we do not fix the route plans of matched drivers. If a rider can be served 

only using a driver that has been previously matched (but though a conflicting path, or schedule), 

then the two riders can start negotiating, and possibly making a ride exchange. Note that this is 

easy for the system to propose alternative route plans to riders involved in a negotiation, since all 

the feasible route plans for each rider are generated using the algorithm in section 6.2. 

In the example in figure 11, if we solve the ride-matching problem for rider 2 without 

fixing the route plan of driver 2, the solution will route driver 2 on the dashed path, and match it 

with rider 2. However, driver 2 was previously routed differently, and assigned to rider 1. These 

two riders can now engage in a negotiation. Since rider 1 can also be matched with driver 1, 

there is a good chance that rider 1 will accept the proposed ride exchange by rider 2, in exchange 

for money, or credit toward using the ridesharing system. In case the negotiation is successful, 

the final matching would be equal to the matching obtained by solving a many-to-many ride-

matching problem. 

 In general, if all riders reach to agreements to make the ride exchanges suggested by the 

system, the number of served riders would ultimately equal the number of matches obtained 

from a many-to-many problem. 

In addition to the benefits that P2P exchange can offer to the system, it can also make 

participating in the system more fun. Riders can earn money or credit by selling their route plans, 

and either settling for less efficient paths suggested by the system, or using other modes of 

transport. However, for such a system to work properly, a good mechanism should be designed 

to ensure that individuals cannot take advantage of the system by booking false rides.  
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10 Overlapping sets of drivers and riders 

Initially, we made the assumption that riders and drivers form two mutually exclusive 

sets. In this section, we study the scenario in which participants who register in the system as 

riders might be doing so because they prefer travelling as riders, and not because they don’t own 

or have access to a vehicle. If the system is not able to serve these participants as riders, then 

they will drive their own vehicles, and join the system as drivers. An extreme case would be to 

study the case where all riders have access to vehicles, and are willing to join the system as 

drivers. This case shows the maximum benefits a ridesharing system can offer.  

In this section, we study the impact of this assumption on the problem instances in 

section 7.1. Figure 13 shows the maximum number of served riders under different percentage of 

riders who later join the system as drivers. In the case of 0%, the problem becomes equivalent to 

the problem of a system with mutually exclusive set of riders and drivers. As this percentage 

increases, the shape of the curve starts to change. The best performance of the system can be 

obtained when 100% of riders have access to vehicles, and are willing to join the system as 

drivers, if they cannot be served as riders. It is interesting to see that in this best case scenario, 

the number of served riders has an increasing trend.  

In the basic case of the problem, number of served riders reaches its peak when riders 

constitute around 45% of the participants. As the ratio of riders increases, the number of served 

riders decreases, because there are fewer number of drivers available. If riders who cannot be 

matched join the system as drivers, this practically increases the number of drivers in the ranges 

where previously there was a shortage of drivers, and this leads to higher number of riders being 

served. Figure 13 suggests that encouraging such a strategy in ridesharing systems can drastically 

improve its performance. 

 

 
Figure 13. Number of served riders under different percentage of riders who become drivers 

11 SUMMARY AND CONCLUSIONS 

In this paper, we define a flexible ridesharing system as a multi-hop system with the 

ability to find route plans for riders by means of optimally routing drivers, and provide rides in 

real-time. Real-time ride-matching is a central part of a flexible P2P ridesharing system. It 

ensures that users who look for rides not long before their departure times have a chance to be 
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served in the system. We propose a real-time ride-matching algorithm that maximizes the 

number of served riders in the system, while making the trips as comfortable as possible by 

taking into consideration users’ preferences on whom to ride with, and minimizing the number of 

transfers and waiting times for riders. 

We introduce the concept of P2P ride exchange to increase the number of successful 

matches in the system. In this framework, previously matched riders receive offers from other 

riders to give up their route plans in exchange for money, credit, or simply receiving another 

route plan. The numerical studies suggest that P2P ride exchange can potentially increase the 

number of served riders. 

Finally, we study the scenario where users who initially join the system as riders, but are 

unsuccessful in finding a ride, drive their private vehicles, and join the system as drivers. Results 

suggest that encouraging such a behavior could substantially improve the performance of the 

ridesharing system. 
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