Decreased mass specific respiration under experimental warming is robust to the microbial biomass method employed

Mark A. Bradford,1* Matthew D. Wallenstein,2 Steven D. Allison,3 Kathleen K. Treseder,3 Serita D. Frey,4 Brian W. Watts,5 Christian A. Davies,5 Thomas R. Maddox,5 Jerry M. Melillo,6 Jacqueline E. Mohan5 and James F. Reynolds7

Abstract

Hartley et al. question whether reduction in R_{mass}, under experimental warming, arises because of the biomass method. We show the method they treat as independent yields the same result. We describe why the substrate-depletion hypothesis may not solely explain observed responses, and urge caution in interpretation of the seasonal data.

Keywords

Acclimation, adaptation, carbon cycling, climate change, climate warming, CO2, microbial biomass, soil respiration, temperature, thermal biology.

Hartley et al. (2009) make two comments on our work (Bradford et al. 2008) and re-analyse our seasonal data. We respond to each comment and then discuss the re-analysis.

The first comment is that we calculated R_{mass} as a ratio between two respiration-based measures. The positive relationship between these two variables, and importantly the negative intercept, means that as substrate-induced respiration (SIR) biomass increases R_{mass} follows a positive hyperbolic function. Specifically, across higher biomass values (in the organic horizon) there is little change in R_{mass} but at lower biomass values (in the mineral horizon) R_{mass} co-varies markedly. Had the intercept between sucrose respiration and SIR biomass been zero then R_{mass} would have been constant; if positive then R_{mass} would have decreased as biomass increased. Hartley et al. (2009) consider chloroform fumigation-extraction (CFE) microbial biomass an independent measure (and, indeed, use it in their seasonal re-analysis: see below). If we calculate R_{mass} using CFE then we observe that under experimental warming R_{mass} is reduced (Fig. 1). That is, our observation that prolonged experimental warming decreases R_{mass} is robust to the microbial biomass method employed.

The second comment is that if our method to calculate R_{mass} is appropriate, the lower R_{mass} is more likely due to depletion of labile carbon, rather than thermal adaptation (sensu Bradford et al. 2008). From this, Hartley et al. conclude that the substrate-depletion hypothesis likely explains the ephemeral augmentation of respiration in warming experiments. We agree that substrate-depletion likely contributes to this augmentation and present the first field evidence that labile carbon pools decline in response to experimental warming (see Bradford et al. 2008). However, the substrate-depletion hypothesis does not make explicit predictions about microbial biomass or R_{mass} (Kirschbaum 2004; Eliasson et al. 2005; Knorr et al. 2005); no change in carbon supply or adaptation of microbial metabolism is invoked to explain respiration dynamics (see Kirschbaum 2004). This makes inferences from the hypothesis about microbial biomass and activity responses speculative.

1School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA
2Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
3Ecology & Evolutionary Biology, University of California, Irvine, CA 92697, USA
4Department of Natural Resources, University of New Hampshire, Durham, NH 03824, USA
5Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
6The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
7Nicholas School of the Environment and Earth Sciences, and Department of Biology, Duke University, Durham, NC 27708, USA
*Correspondence: E-mail: mark.bradford@yale.edu

although we recognize that the hypothesis does imply an initial increase in carbon use per microbial biomass with elevated temperature. At equilibrium, however, the depletion of labile carbon pools may not imply that microbial biomass should decline due to carbon limitation, because the substrate-depletion hypothesis assumes equal carbon supply in control and heated soils. This led us (Bradford et al. 2008) to speculate that decreased root-carbon supply could explain the microbial biomass decreases we observed under experimental warming. Decreases could also arise through reduced carbon-use efficiencies (Steinweg et al. 2008), altered growth rates (Bárncas-Moreno et al. 2009), and/or shifts in microbial community composition (Frey et al. 2008). Whether depletion of labile carbon pools could drive any such changes is unclear. Specifically, the substrate-depletion hypothesis may not solely explain observed responses of soil microbes and their respiration to warming; nor was it presented as a panacea (see Kirschbaum 2004). The soil and global change communities need to focus more attention on microbial and plant responses when explaining soil respiration responses to warming.

In their re-analysis of our seasonal data, Hartley et al. (2009) suggest there is evidence for thermal adaptation enhancing the response of soil microbial respiration to warming. We suggest that

![Figure 1](image)

Figure 1 Rates of soil microbial respiration of sucrose, expressed per unit CFE microbial biomass, in control and heated soils at three measurement temperatures. These plots are equivalent to Fig. S4e–h in Bradford et al. (2008) excepting that in the original figure rates of sucrose respiration are expressed per unit SIR microbial biomass. Field soils were sampled from control (open circles) and heated (closed circles) plots \((n = 6)\) and then assayed to assess sucrose mineralization rates across a temperature range from 10 to 20 °C, and biomass using the CFE method (for details see Bradford et al. 2008). Details shown are the data from assays performed for the upper mineral soil horizon across early spring (April) to late fall (November). The observed pattern is that \(R_{\text{mass}}\) is generally lower, at a specific measurement temperature and with non-limiting substrate, following long-term, experimental warming. Note that \(R_{\text{mass}}\) does generally increase with assay temperature and this is to be expected. That is, carbon use per microbial biomass is expected to increase in response to initial temperature increase and, indeed, this expectation seems an implicit prediction of the substrate-depletion hypothesis \(\text{(sensu Kirschbaum 2004)}\). What the hypothesis questions is whether carbon use per unit microbial biomass adapts to temperature increase \(\text{(Kirschbaum 2004; Eliasson et al. 2005; Knorr et al. 2005)}\), which is resolved here as a difference in \(R_{\text{mass}}\) at a single temperature and with non-limiting substrate. The relative roles of thermal adaptation and substrate-depletion in determining the longer-term responses of soil respiration to sustained temperature change remain unresolved. Values are mean ± 1 SEM, \(n = 6\). Given that \(R_{\text{mass}}\) is essentially a ratio, note that standard errors were propagated from the errors in the microbial biomass and sucrose respiration data. This same pattern was observed with the SIR biomass corrected data (see Bradford et al. 2008). Note that \(R_{\text{mass}}\) in the organic soils, whether determined using SIR or CFE biomass, showed no consistent, significant differences between control and heated plots (data not shown).
that perhaps we and Hartley et al. overstepped what could be concluded about \(R_{\text{mass}} \) responses to seasonal temperature change using the SIR and CFE methods, respectively. Although CFE and SIR share a common origin (Anderson & Domsch 1978; Vance et al. 1987; Jenkinson et al. 2004), and yield biomass estimates that are correlated (Wardle & Parkinson 1991; Anderson & Joergensen 1997), they both have limitations. First, they provide ‘estimates’ of biomass. We relied on SIR because it is more effective at resolving active biomass differences at plot-scales (Wardle & Ghani 1995); CFE is often poor for detecting fine-scale variation. After finding approximately equivalent experimental-warming responses using both methods (Fig. 1 and Bradford et al. 2008), we proceeded to the seasonal analysis using only SIR. Yet, Hartley et al.’s re-analysis highlights how this affects our interpretation of the seasonal data (Fig. 2). There is clearly a need for development of methodology to provide robust, fine-scale, independent measures of microbial biomass. In the absence of these, we emphasize the seasonal patterns that are independent of the biomass method, and even biomass correction. Particularly pronounced is the seasonal shift in the shape of the temperature response, suggesting the optimum is shifted to the right in the warm season (Fig. 2a–c). In addition, sucrose respiration rates for each season diverge markedly

Figure 2 Respiration rates of soils sampled in the cool and warm seasons at three measurement temperatures, following the approach of Hartley et al. (2009). Note that this approach pools across the experimental treatments and soil horizons. Therefore, the patterns observed in Fig. 1 do not relate to what is shown in this figure. In their re-analysis of our seasonal data using CFE microbial biomass, Hartley et al. (2009) conclude that the large increase in \(R_{\text{mass}} \) rates at measurement temperatures of 20 °C, for soils sampled in the warm season (a), implies that thermal adaptation will enhance the response of soil microbial respiration to persistent warming. A different interpretation is obtained if one uses SIR estimates of biomass to calculate \(R_{\text{mass}} \) rates (b). There are potentially issues with both of these approaches. Indeed, mean daily temperature across the preceding 9 or 11 weeks explained 64 and 75% of the seasonal variation in \(R_{\text{mass}} \) (based on SIR) for the organic and mineral horizons, respectively (see Bradford et al. 2008). However, the same analysis using CFE biomass to calculate \(R_{\text{mass}} \) explained no significant variation (\(r^2 \) values < 0.01; showing less than 1% of variance explained). This may be because CFE biomass values are highly variable at fine-spatial scales compared to SIR biomass estimates (see text for additional discussion). However, the apparent seasonal shift in the thermal optimum for \(R_{\text{mass}} \) appears independent of the biomass method employed (a, b), and is also observed if sucrose respiration data are not corrected for biomass (c). That is, that rates in cool season soils increase markedly between measurement temperatures of 10 and 15 °C, and little between 15 and 20 °C, whereas the opposite pattern is observed for warm season soils (a–c). That thermal optima for \(R_{\text{mass}} \) rates track seasonal temperature corresponds with similar tracking of other microbial activities involving carbon degradation (Fenner et al. 2005) and is a consistent pattern in our seasonal dataset. Notably, the pattern is not observed for soil respiration, expressed where substrate-limitation has not been alleviated, and without correction for biomass (d and see text).

© 2009 Blackwell Publishing Ltd/CNRS
across the temperature range (Fig. 2c), highlighting the importance of considering biomass changes. These patterns are obscured for soil respiration (Fig. 2). This may mean that soil respiration responses to warming can mask marked shifts in microbial biomass and temperature response of microbial respiration. We conclude that the relative roles and interactions of substrate-depletion and microbial responses need to be resolved in warming soils.

ACKNOWLEDGEMENTS

This research was supported by the Office of Science (BER), U.S. Department of Energy, the Andrew W. Mellon Foundation and U.S. National Science Foundation grants to the Coweeta LTER program. The authors thank four anonymous referees, the editors and Iain Hartley and Phil Wookey for constructive comments.

REFERENCES

