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Boosting in the presence of outliers:
adaptive classification with non-convex loss functions

Alexander Hanbo Li† and Jelena Bradic†

Department of Mathematics
University of California at San Diego†

Abstract

This paper examines the role and efficiency of the non-convex loss functions for binary clas-
sification problems. In particular, we investigate how to design a simple and effective boosting
algorithm that is robust to the outliers in the data. The analysis of the role of a particular
non-convex loss for prediction accuracy varies depending on the diminishing tail properties of
the gradient of the loss – the ability of the loss to efficiently adapt to the outlying data, the
local convex properties of the loss and the proportion of the contaminated data. In order to use
these properties efficiently, we propose a new family of non-convex losses named γ-robust losses.
Moreover, we present a new boosting framework, Arch Boost, designed for augmenting the ex-
isting work such that its corresponding classification algorithm is significantly more adaptable
to the unknown data contamination. Along with the Arch Boosting framework, the non-convex
losses lead to the new class of boosting algorithms, named adaptive, robust, boosting (ARB).
Furthermore, we present theoretical examples that demonstrate the robustness properties of
the proposed algorithms. In particular, we develop a new breakdown point analysis and a new
influence function analysis that demonstrate gains in robustness. Moreover, we present new
theoretical results, based only on local curvatures, which may be used to establish statistical
and optimization properties of the proposed Arch boosting algorithms with highly non-convex
loss functions. Extensive numerical calculations are used to illustrate these theoretical proper-
ties and reveal advantages over the existing boosting methods when data exhibits a number of
outliers.

1 Introduction

Recent advances in technologies for cheaper and faster data acquisition and storage have led to
an explosive growth of data complexity in a variety of research areas such as high-throughput
genomics, biomedical imaging, high-energy physics, astronomy and economics. As a result, noise
accumulation, experimental variation and data inhomogeneity have become substantial. Therefore,
developing classification methods that are highly efficient and accurate in such settings, is a problem
that is of great practical importance. However, classification in such settings is known to poses many
statistical challenges and calls for new methods and theories. For binary classification problems,
we assume the presence of separable, noiseless data that belong to two classes and in which an
adversary has corrupted a number of observations from both classes independently. There are a
number of setups that belong to this general framework. A random flipped label design, in which
the labels of the class membership were randomly flipped, is one example that can occur very
frequently, as labeling is prone to a number of errors, human or otherwise. Another example is
the presence of outliers in the observations, in which a small number of observations from both
classes have a variance that is larger than the noise of the rest of the observations. Such situations
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may naturally occur with the new era of big and heterogeneous data, in which data are corrupted
(arbitrarily or maliciously) and subgroups may behave differently; a subgroup might only be one or
a few individuals in small studies that would appear to be outliers within class data.

Considerable effort has therefore been focused on finding methods that adapt to the relative error
in the data. Although this has resulted in algorithms, e.g. Grünwald and Dawid (2004), that achieve
provable guarantees (Natarajan et al., 2013; Kanamori et.al, 2007) when contamination model
(Scott et al., 2013) is known or when multiple noisy copies of the data are available (Cesa-Bianchi
et al., 2011), good generalization errors in the test set are by no means guaranteed. This problem
is compounded when the contamination model is unknown, where outliers need to be detected
automatically. Despite progress on outlier-removing algorithms, significant practical challenges
(due to exceedingly restrictive conditions imposed therein) remain. In this paper, we concentrate
on the ensemble algorithms. Among these, AdaBoost (Freund and Schapire, 1997) has proven to
be simple and effective in solving classification problems of many different kinds. The aesthetics
and simplicity of AdaBoost and other forward greedy algorithms, such as LogitBoost (Friedman,
et al., 2000), also facilitated a tacit defense from overfitting, especially when combined with early
termination of the algorithm (Zhang and Yu, 2005). Friedman, et al. (2000) developed a powerful
statistical perspective, which views AdaBoost as a gradient-based incremental search for a good
additive model using the exponential loss. The gradient boosting (Friedman, 2001) and AnyBoost
(Mason et al., 1999) have used this approach to generalize the boosting idea to wider families of
problems and loss functions. This criterion was motivated by the fact that the exponential loss is
a convex surrogate of the hinge or 0 − 1 loss. Nevertheless, in the presence of label noise and/or
outliers, the performance of all of them deteriorates rapidly (Dietterich, 2000). Although algorithms
like LogitBoost, MadaBoost (Domingo and Watanabe, 2000), Log-lossBoost (Collins, et al., 2002)
are able to better tolerate noise than AdaBoost, they are still not insensitive to outliers. Hence,
they are efficient when the data is observed with little or no noise. However, Long and Servedio
(2010) pointed out that any boosting algorithm with convex loss functions is highly susceptible to a
random label noise model. They constructed a simple example, from hereon denoted Long/Servedio
problem, that cannot be “learned” by the boosting algorithms above.

Center to our analysis is the work by Freund (2009). He proposed a robust boosting algorithm
based on the Boost by majority (BBM) (Freund, 1995) and BrownBoost (Freund, 2001) algorithm,
which uses a non-convex loss function. Instead of maximizing the margin, the algorithms achieve
robustness by allowing a preassigned θ error of margin maximization (Servedio, 2003). Moreover,
in each step, the algorithms update and solve a differential equation and update the preassigned
remaining time c or the target error ε. As the loss function changes with each iteration of the
algorithm, they do not agree with the general boosting interpretation through additive models.
Furthermore, with at least two preassigned parameters, each of them is difficult to implement and
is highly inconsistent with respect to minor changes in the settings. Surprisingly, statistical and
convergence properties of these two algorithms are still unknown. This leads to a natural question:
how do we develop a simple but effective boosting algorithm that has a non-convex loss function,
that preserves boosting interpretation and that is robust to the noise in the data? In this paper,
we address this question and propose a fully automatic estimator, with no tuning parameters to be
chosen, that has provable guarantees.

To design the new framework we will explore and amend the drawbacks of the AdaBoost algo-
rithm in the contaminated data setting. We successfully identify that the AdaBoost’s sensitivity to
outliers comes from the unbounded weight assignment of the misclassified observations. As outliers
are more likely to be misclassified, they are very likely to be assigned large weights and will be
repeatedly refitted in the following iterations. This refitting will deteriorate seriously the gener-
alization performance of the algorithm, as the algorithm “learns” incorrect data distribution. To
achieve robustness, the algorithm should be able to abandon observations that are on the extreme,
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incorrect side of the boundary. Here, we theoretically and computationally investigate the appli-
cability of non-convex loss functions for this purpose. We illustrate that the best weight updating
rule is to assign a weight of −φ′(yiF (xi)) to each data point (xi, yi), in which φ is the appropriate
non-convex loss function. We use a tilting argument, with non-convex losses. It is shown that, if
we use a non-convex loss, sufficiently tilted, i.e. such that −φ′(v) is small for all v � 0, then the
outliers are eliminated successively. Hence, constant tilting or “trimming” is not sufficient for outlier
removal. In tilting the loss function, we are effectively preserving as much fidelity to the data as
possible, while redistirbuting emphasis to different observations. We propose a new Arch Boosting
framework that implements the above tilting method and adjusts for optimality by a new search of
the optimal weak hypothesis. Moreover, we show that the new framework avoids overfitting much
similar to the AdaBoost. We propose a sufficient set of conditions needed for a loss function to
allow for good properties of the ArchBoost. We show that not every non-convex function satisfies
such conditions; an example is the sigmoid loss. However, we propose a family of loss functions that
balances both the benefits of non-convexity and the empirical risk interpretation of boosting.

Properties of the boosting algorithms based on convex loss functions have been extensively
studied (e.g. Koltchinskii and Panchenko (2002); Zhang and Yu (2005)). Comparatively little
is known for the non-convex losses, as the existing techniques do not apply. We show that local
convexity properties are sufficient for statistical consistency. Furthermore, even though the proposed
loss function is shown to enjoy the aforementioned local convexity, it is largely unknown whether
numerical algorithms can identify this local minimizer. Moreover, as our algorithm is not defined
as a gradient descent algorithm, we require a new approach for the proof of numerical convergence.
We develop a new sufficient optimality condition based on the “hardness condition” in the technical
proofs. By hardness property, we mean the orthogonality of the new reweighted classifier and the
class membership vector. Furthermore, we address the robustness and efficiency of the proposed
method, with respect to the outliers. Although it is straightforward to provide such analysis for
parametric linear models, computations for classification with the nonparametric boundaries are far
more challenging. We provide a novel analysis, for which we propose a new finite sample breakdown
point theory (Hampel, 1968) and show that the influence function (Hampel, 1974) is bounded for
appropriate class of classification problems. To the best of our knowledge, this is the first result
regarding the robustness properties of the boosting algorithms, with respect to the presence of
outliers. Our analysis allows for both convex and non-convex loss function. We finalize the analysis
with a proof of statistical consistency of the proposed method that includs many non-convex losses;
we do so by exploring local curvatures of the loss.

In essence, this paper investigates the effects of non-convex losses on a variety of boosting al-
gorithms in the presence of unknown contamination of the data. In particular, we focus on how
to design a new boosting framework in order to improve the prediction accuracy of classification
methods for the data with outliers. The rest of the paper is organized as follows. We present a new
Arch boosting framework in Section 2; it is designed for augmenting the boosting framework such
that its corresponding classification algorithm is significantly more adaptable to outliers. Section 3
outlines a new family of loss functions that explores non-convexity and present sufficient conditions
for non-convex loss to be robust. We present theoretical analysis in Section 4: the numerical and
statistical convergence of the proposed algorithms are discussed in 4.1 and 4.3, respectively. More-
over, we show theoretical robust properties in the Section 4.2 with the breakdown point discussed
in Section 4.2.2 and influence function in Section 4.2.3. Section 5 contains numerical experiments
on a number of examples of the loss functions belonging to the introduced family: γ-robust loss,
least squares, logistic, exponential and truncated exponential loss. We demonstrate both how to
use these methods in practice and compare them to the alternative of applying the non-augmented
AdaBoost algorithm to the noisy data. The subsection 5.1 varies the γ parameter and considers
examples of a contaminated Gaussian distribution. All examples clearly illustrate that the methods
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outlined in Section 3 are far more successful than the existing boosting methods. Section 5.2 deals
with the more complex situation of Long/Servedio data for which we show that our Arch Boost
method outperforms the robust boosting method of Freund (2009). We also discuss outlier detection
examples in Section 5.3, and apply our methods to three real datasets in Section 5.4.

2 Arch Boost

We consider a binary classification problem, with X denoting the domain of the d-dimensional
variable X, and Y denoting the class label set that equals Y ∈ {−1, 1}. We aim to estimate a
function F (X) : Rp → R and assume that the training data {(Xi, Yi), i = 1, . . . , n} are i.i.d. copies
of (X,Y ) ∈ X ×Y with unknown distribution. The data consists of samples from the contaminated
distribution that is composed of the true (uncontaminated) data and a fixed and unknown number
of outliers in each of the classes.

From now on, we let φ denote any differentiable loss function. Note that φ does not need to be
convex necessarily. For such φ, we define the φ−risk Rφ and the empirical φ−risk R̂φ,n as

Rφ(F ) = E(X,Y )∼P[φ(Y F (X))], R̂φ,n(F ) =
1

n

n∑
i=1

φ(YiF (Xi)), (1)

where n is the sample size, Sn = {(Xi, Yi)}ni=1 are i.i.d observations, and P is the true probability
distribution on X × Y. For simplicity of notation, we write Rφ(F ) = E[φ(Y F (X))]. Note that the
observed samples (Xi, Yi) can come from a contaminated distribution, i.e., they are i.i.d. samples
from δP + (1− δ)∆ for small, but positive contamination δ > 0.

We view boosting as a method that iteratively builds an additive model,

FT (x) =

T∑
t=1

αthjt(x)

where hjt belongs to a large (but we will assume finite VC-dimension) space of weak hypotheses,
denoted with H. The use of our framework in the presence of countably infinite features, also known
as the task of feature induction, can easily be established. Next, we introduce the new framework
of the boosting in the presence of the noise, which we call an Arch Boosting framework.

We design the Arch Boosting framework as a stage-wise, iterative, minimization of the φ-risk (1).
However, when φ is non-convex this cannot be done by simply applying the well known Friedman’s
Gradient Boosting (Friedman, 2001). The explicit updates are usually unavailable and standard
numerical methods like Newton-Raphson, which are suitable only for convex functions, are used.
Instead, we constrain the stage-wise minimization of the φ-risk to keep one additional important
property of the boosting algorithms, namely the hardness condition of Freund and Schapire (1997).
It is shown that hardness condition can easily distinguish between the outliers and the center of the
data, when non-convex loss is used. Moreover, it allows for a fine tuning of the appropriate optimal
hypothesis assignments such that the minimization of the φ-risk is approximately kept. Therefore,
hardness condition allows us to simultaneously escape the non-convexity in the minimization and to
use non-convexity to separate the outliers from the inliers. This property, from iteration t to t+ 1,
is defined as

Ewt+1 [Y ht(X)|X = x] = 0, (2)

where Ew is defined as a weighted conditional expectation

Ew[g(X,Y )|X = x] =
E[w(X,Y )g(X,Y )|X = x]

E[w(X,Y )|X = x]
. (3)
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Table 1: The list of commonly used loss functions and its corresponding F ∗

Classification Method Population parameters

Loss
function
φ(v)

Optimal
Minimizer
F ∗(x)

Logistic log(1 + e−v) (log P(y = 1|x)− log P(y = −1|x))
Exponential e−v 1

2
(log P(y = 1|x)− log P(y = −1|x))

Least Squares (v − 1)2 P(y = 1|x)− P(y = −1|x)
Modified Least Squares [(1− v)+]2 P(y = 1|x)− P(y = −1|x)

The equation (2) can be explained as progressing from step t to t + 1; the weights are updated
from wt to wt+1, such that ht(X) is orthogonal to Y with respect to the inner product defined on
the reweighed data wt+1. In a certain sense, the weights wt+1 are chosen as the most difficult for
the weak hypothesis ht. For the weight vector wt+1 the hypothesis ht is not better than a random
guess.

Recall that our goal is to find the optimal F ∗ ∈ F , which minimizes the φ-risk Rφ(F ) for
a suitable class of measurable functions F . In the binary case, each instance Xi is associated
with a label Yi ∈ {−1, 1} and the goal of learning is then to find a classifier FT , such that the
sign of FT (Xi) is equal to Yi. In order to minimize Rφ(F ) = E[φ(Y F (X))], we minimize it at
every point x ∈ X – that is, given any x ∈ X , considering F (x) as a parameter and denoting
Φ(F (x)) = E[φ(Y F (X))|X = x] = EY [φ(Y F (x))], the problem is to find

F ∗(x) = argmin
F∈F

Φ(F (x)). (4)

Table 1 contains a list of commonly used loss functions φ and the corresponding optimal classifiers
F ∗ when F =M, which is the family of all measurable functions.

Provided that F =M and for any x ∈ X , Φ(F (x)) has only one critical point at F ∗(x) that is
the global minimum, we can find F ∗(x) by the first order optimality condition

d

dF (x)
Φ|F=F ∗(F (x)) = 0. (5)

Expanding on the above first order optimality conditions, we obtain

E[Y φ
′
(Y F ∗(X))|X = x] = 0,

where φ′ is defined as the first order derivative d
dvφ(v). In classification problems, the input v of

loss function φ is v = Y F (X) – that is, the margin of a classifier F applied to a data point (X,Y ).
Rewriting the expectation in terms of the class probabilities, we obtain the following representation
of the first order optimality conditions

φ
′
(−F ∗(x))

φ′(F ∗(x))
=

P(Y = 1|X = x)

P(Y = −1|X = x)
. (6)

From now on, without confusion, we write P(Y = 1|x) instead of P(Y = 1|X = x). We aim to
mimic equation ebove in each of the iteration steps of the proposed framework. In more details, at
iteration t, with the current estimate Ft−1(x) = h1(x)+ · · ·+ht−1(x) at hand, we wish to find a new
weak hypothesis ht ∈ H, such that Ft(x) = Ft−1(x) + ht(x) with ht(x) that solving the following
equation

φ
′
(−Ft−1(x)− ht(x))

φ′(Ft−1(x) + ht(x))
=

P(Y = 1|x)

P(Y = −1|x)
. (7)
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If we can always accurately find such a weak hypothesis (i.e. H is rich enough and we know the
true distribution), then this process will terminate in just one step. However, complications arise
from two aspects. First, we only have a restricted family H of weak hypotheses. Therefore, at each
iteration, an approximated weak hypothesis, which is the closest approximation in H, will be found.
Secondly, the equation (7) alone cannot be efficiently utilized since P(Y = 1|x), which is the ultimate
goal of classification problems, is unknown to us. However, we propose to solve approximated
equation, where we replace P(Y = 1|x) with the weighted conditional probability Pwt(Y = 1|x) at
each iteration t of the proposed algorithm. Hence, Pwt(Y = 1|x) = Ewt [1[Y=1]|X = x] with the
weighted conditional expectation defined in (3).

In more details, at each iteration t, for a given Pwt(Y = 1|x), we find ht(x) such that it solves
the estimating equation

φ
′
(−Ft−1(x)− ht(x))

φ′(Ft−1(x) + ht(x))
= Ct−1(x)

Pwt(Y = 1|x)

Pwt(Y = −1|x)
, (8)

for a suitable function Ct−1(x) to be specified later. In order to do this, we will first discuss how to
define the weights wt at each iteration t and postpone the method of finding ht for later.

Since ht is only an approximation to the optimal increment at step t, instead of adding itself
to Ft−1 we multiply it by a constant αt and search for the best constant αt. The best αt should
be such that the updating classifier αtht(x) approaches the optimal one, defined in equation (6).
Hence, we define the optimal αt as the solution to the following optimization problem

αt = argmin
α∈R

E [φ(Y (Ft−1(X) + αht(X)))] . (9)

Similarly to the AdaBoost, at each iteration t, the data will be reweighed according to the weights
wt. We explore relation (9) further to find the optimal weights wt. For that purpose, we observe
that for a given Ft−1 (from a previous iteration) and ht (solving (8)) the optimal αt then satisfies

E
[
−φ′(Y Ft−1(X) + Y αtht(X)) · αtY ht(X)

]
= 0. (10)

Then, we recall the hardness condition of the AdaBoost algorithm: the weights wt should be updated
such that the weighted misclassification error of the most recent weak hypothesis is about 50%.
According to (2), this can be achieved by defining the weights wt+1(X,Y ) such that

E [wt+1(X,Y ) · Y αtht(X)] = 0. (11)

Now, in the Arch Boost framework the most recent weak hypothesis is αtht. Hence, by contrasting
the last two equations, (10) and (11), we define the weights to be

wt+1(X,Y ) = −φ′(Y Ft−1(X) + Y αtht(X)) = −φ′(Y Ft(X))

such that both the hardness condition and the optimality of the updating hypothesis are satisfied.
Having defined the weight updating rule, we go back to equation (7) to define the optimal weak

hypothesis ht(x). We do so by finding a relationship between Pwt(Y = −1|x) and P(Y = −1|x) and

defining the function Ct−1 of (8). We multiply (7) with φ
′
(Ft−1(x))

φ′ (−Ft−1(x))
on both sides to obtain

φ
′
(Ft−1(x))φ

′
(−Ft−1(x)− ht(x))

φ′(−Ft−1(x))φ′(Ft−1(x) + ht(x))
=

φ
′
(Ft−1(x))P(Y = 1|x)

φ′(−Ft−1(x))P(Y = −1|x)
. (12)

6



Then, it is easy to observe that

φ
′
(Ft−1(x))P(Y = 1|x) = E[1[Y=1]φ

′
(Y Ft−1(X))|X = x]

= −E[1[Y=1]wt(X,Y )|X = x] = −Ewt [1[Y=1]|X = x]

= −Pwt(Y = 1|x).

Hence, we have

φ
′
(Ft−1(x))φ

′
(−Ft−1(x)− ht(x))

φ′(−Ft−1(x))φ′(Ft−1(x) + ht(x))
=

Pwt(Y = 1|x)

Pwt(Y = −1|x)
, (13)

that is, equation (8) is true for

Ct−1(x) = φ
′
(−Ft−1(x))/φ

′
(Ft−1(x)).

Observe that the right hand side of (13) can be estimated by a weak learner at each iteration t. For
reference, we list the weak hypothesis h(x) for several commonly used loss functions in the Table 2.

Table 2: The list of commonly used loss functions and their weak hypotheses h

Classification Method Population parameters

Loss
function
φ(v)

Optimal weak
hypotheses h(x)

Logistic log(1 + e−v) log Pw(Y = 1|x)− log Pw(Y = −1|x)
Exponential e−v 1

2
(log Pw(Y = 1|x)− log Pw(Y = −1|x))

Least Squares (v − 1)2 C(1− F (x))(1 + F (x))/(CF (x) + 1)
Modified Least Squares [(1− v)+]2 C(1− F (x))(1 + F (x))/(CF (x) + 1)

* C = Pw(Y = 1|x)− Pw(Y = −1|x)

Note that the weak hypotheses of the least squares loss and modified least squares loss depend on
the current estimate F (x) and the weighted conditional probability Pwt(Y = 1|x), which is different
from that of Gradient boosting (Friedman, 2001). Lastly, we summarize the above procedure in
the following Algorithm 1, which we call Arch Boost. The assumption that Φ(F (x)) has only one
critical point does not require the loss function φ to be convex and hence the Arch Boost algorithm
can be applied to many non-convex loss functions. We illustrate this in Section 3 by proposing a
family of robust boosting algorithms based on the Arch Boosting framework.

In the step (b) of the Algorithm 1, any classifier can be used; one example is a decision tree
for which case Pwt(Y = 1|x) is the proportion of the training samples with label 1 in the terminal
node, where x ends up. For instance, in terminal region R, let I+ stands for the index set of data
points with positive label, then Pwt(Y = 1|x) =

∑
i∈I+ wt(xi, yi)/

∑
j∈R wt(xj , yj).

Note that in the step (c), whenever Pwt(Y = 1|x)Pwt(Y = −1|x) = 0, then ht(x) can be
∞ or −∞. In order to deal with this problem, one method is to only update the points with
−∞ < Ft(x) < ∞. If Ft(x) becomes infinity after some step t, then we keep it to be infinity and
do not update further. Finally, we just set sign(∞) = 1 and sign(−∞) = −1. Another method is
simply applying a map v 7→ av+ 1−a

2 to the class probability estimations where a < 1 is a constant
very close to 1 (e.g. a = 0.9999).

3 Robust boosting algorithms

In this section, we propose a new class of boosting algorithms especially designed to be resilient to
the presence of extraneous noise in the data. Whether this noise comes in the forms of mislabeled

7



Algorithm 1 Arch Boost (φ)

procedure Arch Boost(φ)
Given: (x1, y1), . . . , (xn, yn)

3: Initialize the vector of weights w0, e.g. w0(xi, yi) = 1/n
for t = 1, . . . , T do

(a) Normalize the weight by assigning wt ← wt/
∑

iwt(xi, yi)
6: (b) Fit the classifier to obtain a class probability estimate Pwt(Y = 1|x) ∈ [0, 1]

using current weights wt on the training data.
(c) Set ht(x) to be the solution of (13).

9: (d) Find αt by solving (9).
(e) Set Ft(x) = Ft−1(x) + αtht(x)
(f) Update the weights wt ← −φ

′
(yFt(x))

12: end for
Output the classifier:

sign (FT (x))

end procedure

data points, additional variance within class data, or malicious data, the proposed algorithm adapts
to it with great success. We begin the section by proposing a new loss function, which we have
named two-robust loss function. Furthermore, we characterize regularity conditions that a loss
function needs to satisfy, in order to be appropriate for Arch Boosting framework. Finally, we
provide a family of loss functions that is not convex and that satisfies the newly defined regularity
conditions and the corresponding family of robust boosting algorithms called ARB-γ.

3.1 A non-convex loss

An approach of non-convex functions has been recognized as successful in the existing literature.
Both Freund (2001) and Freund (2009) have utilized it to propose boosting methods that are resilient
to the presence of outliers in the data. However, both loss functions require a number of tuning
parameters. The behavior of the algorithm is hindered by the optimal choice of such parameters.
Moreover, such optimal choices are data dependent and not isolated as universal by either approach.

Driven by the need to propose an alternative loss function that can be easily used in many
situations, we propose the following non-convex loss function:

φ(v) = 4(1 + ev)−2. (14)

The proposed loss function (14) has optimal F ∗, the weak hypothesis, and the weight updating rule
as presented in Table 3. We call the function (14) two-robust loss and it belongs to a family of
loss functions that will be discussed in Section 3.3. By adopting the Arch Boosting framework of
Algorithm 1 we illustrate the nice downweighting property of the new weight updating rule with
this new loss function. In Figure 1, we plot the two-robust loss (14), together with exponential and
logistic regression losses and the corresponding weight updating rules.

We observe that the two-robust loss is non-convex and bounded from above when v → −∞.
Therefore, the outliers, even if large in size, will only have bounded influence on the classification.
Moreover, by investigating the weight updating rule, we observe that the more misclassified the data
point is, the smaller the weight updating function will be. The algorithm, in fact, abandons the data
points that are repeatedly misclassified and are far from the Bayes boundary. This phenomenon
disappears when one uses exponential loss or logistic loss and, in fact, any commonly used convex
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Table 3: Properties of the two-robust loss

Arch 2-boosting Optimal parameters

Loss
function
φ(v)

Optimal
minimizer
F ∗(x)

Weak
hypothesis
h(x)

Weight
vector
w(x, y)

Arch 4(1 + ev)−2 log P(Y=1|x)
P(Y=−1|x) log

Pwt (Y=1|x)
Pwt (Y=−1|x)

eyFt(x)

(1+eyFt(x))3

loss function. To the best of our knowledge, no existing loss function satisfies this nice property
without requiring a-priori fixed tuning parameters. By plugging the two-robust loss into Arch Boost,
we obtain new boosting algorithm that we named Adaptive Robust Boost-2, denoted with ARB-2
from hereon.

Figure 1: Comparison of the two-robust loss, the exponential loss and the logistic loss functions
(left-top) together with the corresponding weight updating functions.

Next, we consider a simple two dimensional binary classification example consisting of two
mislabeled points near the classification boundary. The example is artificially created to illustrate
the point of an adaptive classifier, when there are outliers in the data. We evenly put 121 points
in the region [0, 3] × [0, 3], that is, X = {xi,j : i = 0, · · · , 10, j = 0, · · · , 10} ⊂ R2, where xi,j =
(0.3i, 0.3j). For each xi,j , the corresponding yi,j = 1 if i + j ≤ 60 and yi,j = −1 otherwise. Then
we flip the labels of (x2,4, y2,4) and (x3,4, y3,4). The step sizes, αt, for both algorithms are set to be
constant 0.5, and the number of iterations is set as 400. We show the difference between the Real
AdaBoost and the ARB-2 in Figure 2. It can be seen that the decision boundary of AdaBoost are
influenced by the two blue “abnormal” data points. But for ARB-2, the decision boundary stays
the same as if there were no such abnormal points, hence it adapts to the outliers.

3.2 Loss functions for Arch Boost

In the previous section, we have seen an example of a robust boosting algorithm. Nevertheless,
there are plenty of other non-convex functions which leads to the question: can we use any of them
as a loss function for the Arch Boost? The answer is no, if we do not impose auxiliary conditions. In
this section, we discuss what kinds of conditions need to be imposed so that a non-convex function
becomes a suitable loss function for the Arch Boost framework 1.
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Figure 2: The classification boundary of the Real AdaBoost (left) and of the ARB-2 (right).

Recall that in a binary classification problem, we want to minimize Φ(F (x)), to find

min
v∈R

[
P(Y = 1|x)φ(v) + P(Y = −1|x)φ(−v)

]
. (15)

Since P(Y = 1|x)+P(Y = −1|x) = 1, the equation above becomes a convex combination of φ(v)
and φ(−v). Therefore, one necessary condition on loss functions is that (15) has a unique optimal
solution in R. Observe that if F is a class of all measurable functions, then F (x) can take any real
value for every x ∈ X . This condition is not equivalent to the convexity of the loss function but
rather to the local convexity around the true parameter of interest, F ∗(x). In the next section we
present a family of non-convex loss functions that possess this property. Hence, we present the set
of regularity conditions in the Definition below.

Definition 1. A function φ is an Arch boosting loss function if it is differentiable and

(i) φ(v) ≥ 0 for all v ∈ R and infv∈R φ(v) = 0;

(ii) for any 0 < α < 1, αφ(v) + (1 − α)φ(−v) has only one critical point v∗ which is the global
minimum;

(iii) for any 0 ≤ α ≤ 1 and α 6= 1
2 , inf{αφ(v) + (1− α)φ(−v) : v(2α− 1) ≤ 0} > inf{αφ(v) + (1−

α)φ(−v) : v ∈ R}.

Conditions (i) and (iii) together imply that φ is an upper bound of the 0-1 loss up to a constant
scaling. Condition (iii) is a “classification calibration” (Bartlett et al., 2006) and is considered the
weakest possible condition imposed on φ for which a measurable function F (x) which minimizes
the φ−risk Rφ(F ) will also have the risk close to the minimal one; in other words, close to that
of the optimal F ∗(c) that creates a Bayes boundary. If the function φ is convex, then condition
(iii) is satisfied as long as φ is differentiable and φ′(0) < 0. However, when considering non-convex
losses, the set of regularity conditions doesn’t exists in the current literature. The above framework
includes non-convex loss functions φ and differs from the existing literature on convex losses in that
it includes an additional condition (ii) (see Section 4).

Lemma 1. A positive function φ that is continuously differentiable, convex and such that φ′ is not
equal to a constant satisfies Condition (ii).

By Lemma 1, we know that the logistic, the exponential, the least square and the modified least
square loss are all Arch boosting loss functions. Differentiability of the loss function is a technical
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condition and is not crucial for the proposed framework. The hinge loss φhinge(v) = (1 − v)+ is
not differentiable but can be shown to satisfy Conditions (i)-(iii). However, if we plug in the hinge
loss to the equation (6), we cannot easily find the optimal solution F ∗(x). However, not every
differentiable and non-convex loss function satisfies regularity conditions above.

Remark 1. The sigmoid loss φsig(v) = (1 + ev)−1 is differentiable and satisfies Condition (iii), but
it does not satisfy Condition (ii) and hence is not an Arch Boosting loss function.

Finally, we provide a more general characterization for the loss functions, including not neces-
sarily convex loss functions, which satisfy Condition (ii).

Lemma 2. Let φ be a positive, continuously differentiable loss function such that φ′(v) 6= 0 for all

v ∈ R. Let g : (0,∞)→ (0, 1), be defined as g(v) := φ
′
(v)

φ′ (−v)
. Then φ satisfies Condition (ii) as long

as function g is a decreasing, bijection.

3.3 A family of non-convex functions and ARB-γ algorithms

Recall that the optimal classifier F ∗(x) satisfies equation (6). We observe that the right hand side
of this equation does not depend on the loss function φ and can take values in the positive real line,
R+. Hence, we can parameterize it with any real-valued function whose range is R+, as follows

φ
′
(−v)

φ′(v)
= g(v) (16)

for any surjective, decreasing function g : R→ R+. The classical motivation for reparametrization
(McCullagh and Nelder, 1989) – often called link functions – is that often one uses a parametric
representation that has a natural scale matching the desired one. We choose to use the function
g(v) = e(γ−1)v for any constant γ > 1, which is a surjection. This parametrization is not unique
but it admits a solution to the following differential equation

φ
′
(−v)

φ′(v)
= e(γ−1)v. (17)

Solving it for φ (exact steps are presented in the Appendix A), we obtain a family of non-convex
functions

φa,γ(v) =
2γ

(1 + eav)γ
, a > 0. (18)

Observe that parameters a and γ are not tuning parameters, but rather an index set of a family
of non-convex losses much like Huber and Tukey’s biweight losses are. Note that when γ > 1, the
right hand side of (17) can take all the real values and is monotonically increasing and consequently
the corresponding loss φ will always give a unique solution to (6). We name each element in the
family (18) as γ-robust loss function. Later, we will show that the positive parameter a is irrelevant
in our algorithms, so we can fix it to be 1. Note that for a = 1 and γ = 2, we obtain the non-
convex loss function (14). Moreover, each loss function φa,γ is a bounded function with upper bound
equal to 2γ . Therefore, the effects of the outlier will be necessarily bounded. Moreover, the weight
updating rule will also downweight the largely misclassified data points. We plot φ1,γ with different
γ values and the corresponding normalized weight updating rules in the Figure 3. From Figure 3,
we can see that for different γ, the peak point of each of the weight updating rules shifts to the
left when γ increases. When γ = 1, the weight updating curve is symmetric about yF (x) = 0 and
in fact, this is equivalent to the Sigmoid loss function φ(v) = 1 − tanh(λv) when λ = 1

2 (Mason
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Figure 3: Comparison of φ1,γ with different γ values and the corresponding normalized weight
updating rules.

et al., 1999). Moreover, for a = 2 and γ = 2 the loss φa,γ is equivalent to the Savage loss function
φ(v) = (1 + e2v)−2 of Mesnadi-Shirazi and Vasconcelos (2009), in which they used the probability
elicitation technique from Savage (1971) to design new loss functions.

Lemma 3. For all a > 0, γ > 1, φa,γ is an Arch Boosting loss function.

Lemma 3 allows us to plug φa,γ with a > 0, γ > 1 into the Arch Boost framework and obtain
a family of robust boosting algorithms which we name Adaptive Robust Boost-γ (ARB-γ). The
details are presented in the Algorithm 2 with computations relegated to the Appendix A. Note that

Algorithm 2 ARB-γ (γ ≥ 1)
procedure ARB-γ

Given: (x1, y1), . . . , (xn, yn)
3: Initialize the weight vector w0, e.g. w0(xi, yi) = 1/n

for t = 1, . . . , T do
(a) Normalize the weight vector wt ← wt/

∑
iwt(xi, yi)

6: (b) Compute the classifier to obtain a class probability estimate Pwt(Y = 1|x) ∈ [0, 1],
using weights wt on the training data.
(c) Set ht(x)← log

Pwt (Y=1|x)
Pwt (Y=−1|x) ∈ R̄.

9: (d) Find αt by solving (9).
(e) Set Ft(x)← Ft−1(x) + αtht(x)
(f) Set wt+1 ← eyFt(x)(1 + eyFt(x))−γ−1

12: end for
Output the classifier:

sign (FT (x)) (19)

end procedure

the form of the weak hypothesis in Algorithm 2 is ht(x) = log
Pwt (Y=1|x)
Pwt (Y=−1|x) instead of the solution

1
γ−1 log

Pwt (Y=1|x)
Pwt (Y=−1|x) to equation (8), because we absorb the constant 1

γ−1 into the step size αt at
each iteration t.
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4 Theoretical Considerations

Despite the substantial body of existing work on Gradient Boosting classifiers and AdaBoost in
particular (e.g. Bartlett et al. (2006); Bartlett and Traskin (2007); Freund (1995); Friedman, et al.
(2000); Schapire (1999); Schapire et al. (1998); Zhang and Yu (2005); Breiman (2004); Koltchinskii
and Panchenko (2002)), research on robust boosting classifiers has mostly been limited to method-
ological proposals with little supporting theory (e.g., Gentile and Littlestone (1999); Kearns and
Li (1993); Littlestone (1991)). However, whereas the loss functions studied in those papers are
finite-sample versions of globally convex functions, many important robust classifiers, such as those
arising in Freund (2009) and the proposed ARB-γ, only possess convex curvature over local regions
even at the population level. In this paper, we present new theoretical results, based only on local
curvatures, which may be used to establish statistical and optimization properties of the proposed
Arch boosting algorithms, with highly non-convex loss functions.

4.1 Numerical convergence of Arch Boost algorithm

We show that the empirical risk will always decrease and that the Arch Boost can be viewed as
the step-wise iterative minimization of the empirical risk R̂φ,n. Similar results can be found in
Koltchinskii and Panchenko (2002) and Zhang and Yu (2005). The main difference is that the
authors use the gradient descent rule in the first or an approximate minimization in the second
paper, while here we use the hardness condition to select the optimal weak hypothesis h. We use
{w(Xi, Yi)}ni=1 to denote the weights on the data such that

∑n
i=1w(Xi, Yi) = 1. Recall that for any

classifier h and any data point (X,Y ), the term Y h(X) always stands for the margin. For any weak
hypothesis ht, we denote the expected margin as µ(h,w) = Ew [Y h(X)] , and the empirical margin
as µ̂(h,w) =

∑n
i=1w(Xi, Yi)Yih(Xi). To introduce the notation used in the theorem, for any family

of weak classifiers H, we denote

FT =

{
F : F =

T∑
t=1

αtht, αt ∈ R, ht ∈ H

}
, (20)

a set of T -combinations (T ∈ N) of functions inH. Let {f̄t} be a sequence of functions with empirical
risk converging to R∗φ,n, defined as R∗φ,n = infF∈∪∞T=1FT R̂φ,n(F ). Then, f̄t ∈ Hf ⊂ ∪∞T=1FT can be
represented as

∑
h∈Hf α

hh. In this respect, we define its l1 norm as |Hf |−1
∑

h∈Hf |α
(h)|.

Theorem 1. Assume φ is an Arch boosting loss function. Furthermore, assume that the weak
learner is able to provide disjoint regions on the domain X at each iteration t (e.g. decision tree).
We apply the Arch Boost (φ) algorithm to a sample Sn = {(X1, Y1), · · · , (Xn, Yn)} for T iterations.

(i) If at each iteration t the weak hypotheses ht ∈ H satisfies µ̂(ht, wt) > 0, then R̂φ,n(FT ) will
converge in R as T →∞.

(ii) At each iteration t, let {Rjt}Jj=1 be the set of disjoint regions on X returned by the weak
hypothesis ht, and p

j
t := Pwt(Y = 1|x ∈ Rjt ) be the class probability estimation in that region.

If there exists a strictly increasing function θ : [0, 1]→ R with θ(1
2) = 0, and a positive constant

K > 0 such that ht satisfies the representation

ht(x) = Kθ(pjt )

for all x ∈ Rjt , then µ̂(ht, wt) > 0.

(iii) Using any Arch boosting loss function φ for the Arch Boost Algorithm 1, at any iteration t,
there exists such a function θ that satisfies (ii).
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(iv) Let {f̄t} be a sequence of functions with empirical risk converging to R∗φ,n and such that

||f̄t − Ft||1 = o(log t), ||f̄t − Ft||22 ≤
||f̄t − Ft||21

tct

where ct ∈ (0, 1) and ct → 0 as t → ∞. Furthermore, assume φ is Lipschitz differentiable, θ
is bounded and µ̂(ht, wt)→ 0 as t→∞. Then, if a sequence of step sizes αt is such that

∞∑
t=1

αt =∞,
∞∑
t=1

α2
t <∞,

∞∑
t=1

αt+1ξt log t

tct
<∞,

for a sequence of positive numbers ξt = o(1), we have R̂φ,n(FT )→ R∗φ,n as T →∞.

Theorem 1 suggests that for any ARB-γ algorithm, the weak hypothesis ht at each iteration t
has a corresponding function θ that satisfies (ii). Therefore, ht satisfies µ̂(ht, wt) > 0 and with it, by
(i), the ARB-γ algorithm converges when the number of iterations increases. The conditions in part
(iv) are somewhat different compared to the equivalent one obtained for the gradient boosting with
convex losses (Zhang and Yu, 2005). The reference sequence f̄t needs to be in a local neighboorhood
of FT in the sence that f̄t−Ft cannot blow up too rapidly. Moreover, the size of H ⊃ Ht 3 f̄t cannot
be smaller than tct implying that the size of H needs to converge to∞ faster than a polynomial of T .
Additionally, the choice of αt depends on ct and ξt. The classical conditions that are guarding against
infinitely small step sizes are now supplemented with an additional constraint

∑∞
t=1

αt+1ξt log t
tct <∞.

For example, if ξt = O(1
t ), then we can choose αt = O( 1

tc ) where c ∈ (1
2 , 1) and ct can converge

to 0 at any speed. However, if ξt = O( 1
log t), then we need ct → 0 slowly (e.g. O( 1

log log t)) and
αt can be chosen as O(1

t ). The additional constraint in the step size choice acts as a penalty on
allowing non-convex loss functions. However, unlike existing results Theorem 1 does not require any
additional algorithmic tuning parameters (see Theorem 3.1 of Zhang and Yu (2005) and choices of
εt, Λt). Results in Bartlett and Traskin (2007) (e.g., Theorem 6) provide similar bounds under an
assumption of an unbounded step size of the boosting algorithm and assume a positive lower bound
on the hessian of the empirical risk (a condition strictly violated for non-convex losses).

We provide examples of the function θ in the Table 4. Note that this distribution P may poten-
tially be a contaminated distribution – the proof is not affected by the contamination. Furthermore,

Table 4: θ functions for several loss functions

Classification Method Population parameters

Loss
function
φ(v)

θ functions

Logistic log(1 + e−v) log(t)− log(1− t)
Exponential e−v log(t)− log(1− t)
Least Squares (v − 1)2 (2t−1)(1−F2)

(2t−1)F+1
, F ∈ [−1, 1]

Modified Least Squares [(1− v)+]2 (2t−1)(1−F2)
(2t−1)F+1

, F ∈ [−1, 1]
γ-robust (γ > 1) 2γ/(1 + ev)γ log(t)− log(1− t)

we remark that the result of Theorem 1 (i) to (iii) requires very weak conditions. Namely, the ap-
proximate minimization step (9) can be inexact (by contrast, see Theorem 6 of Bartlett and Traskin
(2007)). The weak hypothesis ht at each iteration is obtained by preserving the “hardness” property
of the AdaBoost, and this method is applicable to non-convex functions. For a certain loss function
φ, ht may not apriori point to the gradient descend direction of the empirical φ−risk. Hence, we
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cannot use numerical methods like Newton’s method as needed in the gradient descent, but provide
a novel way to find a weak hypothesis that is also suitable for non-convex loss functions. Then,
we show that the direction of such weak hypothesis will indeed be a descending direction for the
non-convex loss, that is, we guarantee that R̂φ,n(F + αh) ≤ R̂φ,n(F ) with appropriate step size α,
where F is the current estimate.

4.2 Robustness

In Section 2, we gave an informal explanation why non-convex losses lead to a more robust algorithm.
The weight updating rule or the first derivative of the loss functions plays an important role in
their robustness. Unlike convex functions, many non-convex functions can have a diminishing first
derivative φ′(v) when v tends to both infinity and negative infinity. In this section, we quantify
the robustness and justify the robustness of Arch Boosting Algorithms 2 through the point of view
of the finite sample Breakdown point, as well as that of the Influence Functions, the population
measure of robustness.

4.2.1 An invex function view of robustness

In this section, we will use invex function properties to show why our non-convex functions leads to
more robust algorithms. We first recall some definitions (Ben-Israel and Mond, 1986).

Definition 2 (Invex function). Assume X ⊂ Rn is an open set. The differentiable function f :
X → R is invex if there exists a vector function η : X ×X → Rn such that

f(x)− f(y) ≥ η(x, y)T∇f(y), ∀x, y ∈ X. (21)

It is well known that if g : Rn → R is differentiable and convex and A : Rr → Rn (r ≥ n) is
differentiable with ∇A of rank n, then f = g ◦A is invex (Mishra et al., 2008). Craven and Glover
(1985) proved that a function f is invex if and only if every stationary point is a global minimizer.
So the second condition (ii) in Definition 1 is equivalent to say that αφ(v) + (1 − α)φ(−v) is an
invex function with exactly one critical point for all α ∈ (0, 1). We can then show that with φ being
our two-robust loss function, for any sample S, the empirical risk R̂φ,n is an invex function on the
set Fn := {(F (x1), · · · , F (xn)) : F ∈ F} ⊂ Rn. Now the problem is whether we can decompose this
empirical risk as a composition of a convex function and a differentiable function, that is, whether
we can write R̂φ,n = g ◦ A where g : Rn → R is a differentiable convex function and A : Rn → Rn

is a differentiable vector function with ∇A of rank n. We let g be the empirical risk R̂exp,n with
exponential loss function. Then we want to find a function A(~x) = (A1(~x), · · · , An(~x)) such that

R̂φ,n(F) =
1

n

n∑
i=1

1

1 + eyiF (xi)
=

1

n

n∑
i=1

e−yiAi(F) = R̂exp,n(A(F)), (22)

where F := (F (x1), · · · , F (xn)) and we ignore the constant 4 in the two-robust loss. Comparing
each term in (22), we get 1

1+eyiF (xi)
= e−yiAi(F), that is,

yi log(1 + eyiF (xi)) = Ai(F). (23)

The equation (22) also means that minimizing empirical risk R̂φ,n on the set Fn is equivalent to
minimizing the empirical risk R̂exp,n on the transformed set A(Fn), where A is defined in (23). On
each data point, we have Fexp(xi) = Ai(F) = yi log(1 + eyiF (xi)). We plot the function l(v) :=
log(1 + ev) together with the identity function in Figure 4. If we compare two empirical risk
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minimization (ERM) problems (1) minF∈Fn R̂exp,n(F) and (2) minF∈Fn R̂exp,n(A(F)), then A can be
viewed as an "influence trimming" function. For any current estimate F, we observe that whenever
yiF (xi)� 0, then Fexp(xi) ≈ F (xi); otherwise if yiF (xi)� 0, then Fexp(xi) ≈ 0, that is, instead of
saying F made a severe mistake at (xi, yi), after the A-transformation, we just say Fexp is uncertain
about this point.

Figure 4: Comparison of function l and the identity function.

4.2.2 Breakdown point

Empirical robustness properties defined as breakdown point in Donoho and Huber (1983) has proved
most successful in the context of location, scale and regression problems (e.g. Rousseeuw (1984);
Stromberg and Ruppert (1992); Tyler (1994), etc.). This success has sparked many attempts to
extend the concept to other situations (e.g. Ruckstuhl and Welsh (2001); Genton and Lucas (2003);
Davies and Gather (2005),etc.). However, very little work has been done in the classification context.

The breakdown point, as defined in Hampel (1968), is roughly the smallest amount of contam-
ination that may cause an estimator to take on arbitrarily large aberrant values. The breakdown
points of 1/n for the mean and 1/2 for the median do reflect their finite-sample behavior. However,
an alternative view is desired in the classification context as the magnitude of an estimator may not
relate to necessarily bad classification – that is, the size of the weak hypothesis is only marginally
related to the classification boundary. Henning (2004) exploits cluster stability for the breakdown
point analysis of estimators in the mixture models. However, in the context of boosting it is not
clear if the same concept can differentiate between AdaBoost and LogisticBoost algorithms; the
first is known not to be robust and the second is known to have better finite sample analysis. We
argue that the case when the gradient of the classification loss takes on alternating directions is in a
certain sense similar to diverging estimator values in regression setting. In this sense, the proposed
breakdown study resembles Hampel’s original definition. Hence, we look for the largest number
of perturbed data points that keep the gradient of the risk minimization in the correct direction.
Moreover, we relate this concept to the weight updating rule of Arch Boost algorithms.

Let Sn = {(X1, Y1), · · · , (Xm, Ym)}∪{(Xm+1, Ym+1), · · · , (Xn, Yn)} be a set of observed, contam-
inated samples among whichOn = {(Xm+1, Ym+1), · · · , (Xn, Yn)} is a set of outliers. On the original
dataset S, let ht be the weak hypothesis at iteration t, and denote ht = (ht(X1), · · · , ht(Xn)). We
also denote −gt = (−gt(X1), · · · ,−gt(Xn)) = (Y1wt(X1, Y1), · · · , Ynwt(Xn, Yn)) as the negative gra-
dient of the empirical risk R̂φ,n on the sample S. Similarly, −go = (−gt(X1), · · · ,−gt(Xm), 0, · · · , 0)
= (Y1wt(X1, Y1), · · · , Ymwt(Xm, Ym), 0, · · · , 0) is obtained by embedding the negative gradient of
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the empirical risk R̂φ,m on the sample S\O without outliers, into Rn. We consider the inner product
of the weak hypothesis ht and the modified negative gradient −go. We have the following theorem.

Theorem 2. Using the same notations as above, let ηj = min−1(pj , 1− pj)|pj − 1
2 |, for every region

Rj, where pj ∈ (0, 1) and pj 6= 1
2 . Then, if any Arch Boost algorithm, at iteration t, conditional on

the realizations {(Xi, Yi) = (xi, yi)}ni=1, satisfies for all Rj∑
i:xi∈On∩Rj

wt(xi, yi) ≤ ηj
∑

i:xi∈Rj\On

wt(xi, yi),

then the gradient descent direction is preserved, that is, −〈go,ht〉 ≥ 0.

Theorem 2 suggests that any Arch Boosting algorithm that satisfies conditions above, preserves
the direction of the descent of the non-contaminated empirical φ-risk, hence disregarding the outliers.
It is a sense it is an oracle property as it minimizes the risk on the “clean” data. A few remarks
are imminent. Conditions of the above theorem are very mild. When pj = 1

2 – that is, the total
weight on positive labels is the same as that of the negative ones in region Rj – the elements
of h corresponding to the points in Rj are 0 and consequently have no influence on the sign of
−〈go,h〉. Moreover, the case of pj = 0 or 1 is not of the main interest as in this case when all the
data in that region have the same labels and hence it is reasonable to say there are no outliers.
For all other cases, when pj ∈ (0, 1) \ {1

2}, Theorem 2 establishes that whenever the summation
of weights on the outliers is no larger than a constant ηj times the summation of weights on
the data points that are not outliers, then h will also be the direction along which the empirical
risk of the non-contaminated data will decrease. Figure 3 shows the weight updating rule of the
ArchBoost algorithm for various γ and clearly illustrates that the condition above is more likely to
be satisfied than the AdaBoost or LogitBoost algorithm. For example, in the case of the ArchBoost,
if yi = −1 and P(Y = −1|X = xi) = 0.001, then for Real AdaBoost, w(xi,yi)

wb
' 32, and for ARB-2,

w(xi,yi)
wb

' 0.008 where wb is the weight for the outlying data point (xb, yb) on the boundary, that is,
the data such that F ∗(xb) = 0. Hence, it can be seen that AdaBoost puts 4000 times larger weight
on this data compared to the ARB-2.

4.2.3 Influence function

The richest quantitative robustness measure is provided by the influence function u→ IF (u;T,G)
of T at G proposed by Hampel (1974) and Hampel et al. (1986). It is defined as the first Gâteaux
derivative of T at G, where the point u plays the role of the coordinate in the infinite-dimensional
space of probability distributions. In more details, the influence function of any statistical functional
T at a distribution P is the special Gâteaux derivative (if it exists)

IF (z;T,P) = lim
ε→0+

T ((1− ε)P + ε∆z)− T (P)

ε
,

where ∆z is the Dirac distribution at the point z such that ∆z({z}) = 1. It describes the effect
of an infinitesimal contamination at the point u on the estimate, standardized by the mass of
the contamination. Additionally, it gives the effect that an outlying observation may have on an
estimator. If it is bounded, then the effect of an outlier is infinitesimal. It is straightforward to
obtain the influence functions associated with the parametric estimators in linear regression models.
However, the nonparametric regression models are far more complicated.

To simplify the analysis, we consider a subclass of binary classification models, in which the true
boundary F ∗ is assumed to belong to a class of functions H. Here, H is defined as a Reproducing
Kernel Hilbert Space (denoted with RKHS from now on) with a bounded kernel k and the induced
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norm || · ||H . Observe that ArchBoost, much like AdaBoost and LogitBoost, belongs to a broad
class of empirical risk minimization methods (see Theorem 1) and converges only if it is properly
regularized (stopped after a certain number of steps; see Theorem 4). Hence, to study its robustness
properties we consider

fP,λ = argmin
f∈H

{
EP [φ(Y, f(X))] + λ||f ||2H

}
,

which can be viewed as the population quantity of interest. Here, the loss φ is a function of tuple
(Y, f(X)) for convenience. The solution fP,λ is viewed as a map that for every fixed value of the
regularization parameter, λ, assigns an element of the RKHS H to every distribution P on a given
set Z ⊂ X × Y . Observe that P is not contaminated as the analysis herein is completed at the
population level. In the risk minimization context, T (P) = fP,λ, and for each P, the influence
function IF (z;T,P) ∈ H. We also denote the map Ψ : X → H, defined as Ψ(x) = k(x, ·). The
influence function of fP,λ then takes the form

IF (z;T,P) = −S−1 ◦ J, (24)

where ◦ is defined to mean S−1 acting on J and operators S : H → H and J ∈ H are defined as

S = EP

[
φ
′′
(Y, fP,λ(X))〈Ψ(X), ·〉Ψ(X)

]
+ 2λidH ,

J = φ
′
(zy, fP,λ(zx))Ψ(zx)− EP[φ

′
(Y, fP,λ(X))Ψ(X)],

where idH : H → H is the identity mapping and z = (zx, zy) ∈ X × Y is the contamination point.
In the above display, the derivative is defined as φ′(u, v) := ∂

∂vφ(u, v). For the proof of this result,
we refer to the proof of Theorem 4 in Christmann and Steinwart (2004) and of Theorem 15 in
Christmann and Steinwart (2007). In the above the convexity of the loss function with respect
to the second argument is required for S to be invertible for all λ > 0. For a non-convex loss
function φ, φ′′ is not guaranteed to be nonnegative. However, we observe that it is sufficient to
have the non-negativity of the expectation rather than of the second derivative itself. Moreover the
non-negativity is only required in a local neighborhood of the true parameter of interest, F ∗. In the
following lemma, we show the properties of EP [φ′′(Y, ·)].

Lemma 4. For a binary classification problem, given any distribution P, whenever φ is a twice con-
tinuous differentiable Arch boosting loss function and F ∗ is obtained by (6), then EP

[
φ
′′
(Y, F ∗(X))q2(X)

]
≥

0 for any measurable function q : X → R.
Furthermore, if P and X are such that P(Y = 1|X = x) ∈ [δ, 1− δ] for some 0 < δ < 1

2 , and if
pφ
′′
(1, v∗p) + (1− p)φ′′(−1, v∗p) > 0 at the global minimum v∗p for all p ∈ [δ, 1− δ], then there exists

r > 0 such that EP

[
φ
′′
(Y,G(X))q2(X)

]
≥ 0 for all measurable function G with ||G− F ∗||∞ < r.

A few comments are necessary. Conditions of the above lemma are satisfied for the case of the
γ-robust loss function. For example, for the case of the two-robust loss function, one can show
that for any x, EY [φ

′′
(Y, F ∗(X))q2(X)|X = x] = 2p2

x(1 − px)2q2(x) ≥ 0 where px = P(Y = 1|X =
x). Thus, EPφ

′′
(Y, F ∗(X))q2(X) ≥ 0. Furthermore, if px ∈ [δ, 1 − δ] for some δ ∈ (0, 1

2), then
pxφ

′′
(1, F ∗(x)) + (1 − px)φ

′′
(−1, F ∗(x)) = 2p2

x(1 − px)2 ≥ 2δ2(1 − δ)2 > 0 for all px ∈ [δ, 1 − δ].
Observe that the condition of px ∈ [δ, 1 − δ] for some δ ∈ (0, 1

2) restricts our setting to the “low-
noise” setting where the true probability of the class membership is bounded away from 0 or 1. An
example of a model where such condition holds is P(Y = 1|X = x) = (1 + e−γf(x))−1 with X being
a compact space.
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Recall that F ∗ is the solution to the risk minimization problem defined over all measurable
functions. If we restrict the search to the RKHS, H, with bounded kernel, then F ∗ 6= fP,λ in
general. However, as long as H is rich enough such that fP,λ is close to F ∗ in the sense that
||fP,λ − F ∗||∞ is small, we have the following Theorem. This Theorem should be treated as a clue
of the robustness of non-convex loss functions as it shows that the influence function is bounded in
H and decreases when the contamination point z is more of an outlier. Furthermore, this theorem
again emphasizes that the robustness mainly comes from the fact that |φ′ | → 0, when the magnitude
of the “margin” is large.

Theorem 3. For a binary classification problem, let φ : R→ [0,∞) be a twice continuously differ-
entiable Arch boosting loss function and let H be a RKHS with bounded kernel k. Assume P is a
distribution on X × Y such that P(Y = 1|X = x) ∈ [δ, 1− δ] for all x ∈ X and for some 0 < δ < 1

2

and pφ′′(1, v∗p) + (1 − p)φ′′(−1, v∗p) > 0 at the global minimum v∗p for all p ∈ [δ, 1 − δ]. Then there
exists r > 0 such that for all ||fP,λ − F ∗||∞ < r

||IF (z; fP,λ,P)||H ≤
√
Cφ
λ

+
Mk|φ

′
(zy, fP,λ(zx))|

2λ
, (25)

where Mk is the upper bound of the kernel k and Cφ = φ(0, 0).

For any non-convex Arch boosting loss function, due to Assumption 2, we have |φ′(zy, fP,λ(zx))| →
0 when zyf(zx) → −∞ or zyf(zx) → ∞. Result of Theorem 3 implies that for all smooth enough
classification boundaries F ∗, the Arch Boosting algorithm has a bounded influence function when-
ever λ > 0. If we plot ‖IF (z; fP,λ,P)‖H versus zyfP,λ(zx), then it will decrease towards a constant far
from the origin, just like the loss function of a redescending M-estimator (Huber, 1981). Moreover,
we observe that ‖IF (z; fP,λ,P)‖H is unbounded for the exponential loss (AdaBoost) and bounded
but not diminishing for the logistic loss (Logit Boost).

4.3 Statistical Consistency of Arch Boost

Per Theorem 1, we observe that the Arch Boost Algorithm 1, can be formulated as an empirical
risk minimization procedure, for which the consistency has been established in the case of con-
vex loss functions (Bartlett et al., 2006; Bartlett and Traskin, 2007; Jiang, 2004; Zhang and Yu,
2005). However, we extend this framework to include non-convex losses by exploring local cur-
vatures. Given any training sample Sn = {(Xi, Yi)}ni=1, we compute a classifier fn on Sn, and
denote the misclassification error to be L(fn) = P(fn(X) 6= Y |Sn). Moreover, the Bayes risk is
L∗ = inff∈M L(f) = EX [min(η(X), 1 − η(X))], where η(X) = P(Y = 1|X). Let M be the family
of measurable functions. The three key steps for proving consistency (?) include: (I) utilizing the
property of the loss that whenever the φ−risk Rφ(fn) converges to the minimal risk

R∗φ = inf
f∈M

Rφ(f),

the misclassification error converges to the Bayes risk; (II) there exists a deterministic sequence f̃n
for which the φ−risk approaches the minimal risk R∗φ as n → ∞ ; (III) φ−risk of the estimated
fn can be approximated by the φ-risk of the deterministic, reference sequence f̃n. Observe that fn
is sample dependent, that is, fn is a function of Sn, and hence L(fn) is again a random variable.
Hence, in step (II), we choose a deterministic reference sequence such that Fn is only a function
of the sample size n. The first condition (I) is automatically satisfied if we use Arch boosting loss
function because of the classification calibration condition. Note that the above inequalities are
true for any sample Sn and sample size n. From now on, we will have several assumptions. The
first one is about the class H and the distribution P.
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Assumption 1. Let the class of the weak hypothesis H and the probability distributions P be such
that limT→∞ inff∈FT Rφ(f) = R∗φ and dV C{H} <∞.

For certain rich enough class H, Assumption 1 is true for any distribution P (Bartlett and
Traskin, 2007). One example is the class T of binary trees with the number of terminal nodes larger
or equal to d + 1, where d is the dimension of X (Breiman, 2004). The next assumption is about
the loss function φ.

Assumption 2. Let the loss function φ be a bounded, decreasing, Lipschitz function that belongs to
the class of Arch Boosting loss functions.

If φ satisfies Assumption 2, then we know both limv→∞ φ(v) and limv→−∞ φ(v) exist in R. A
class of loss functions that satisfy Assumption 2 incorporates a class of loss functions for which the
first derivative converges to zero away from the origin; an example is a redescending Hampel’s three
part loss function. This lessens the effect of gross outliers and in turn leads to many good robust
properties of the resulting estimator. All the γ-robust loss functions (γ ≥ 1) satisfy this condition.
Commonly used loss functions like least squares, exponential loss and logistic loss do not satisfy
this condition because they are not bounded.

Next we state two results important for proving the consistency of the Arch Boosting estimator.
Much like the consistency of AdaBoost, the proof hinders upon the optimal choice of stopping times.
However, the statement is not dependent on an additional truncation level of the functions f (like
Lemma 4 in Bartlett and Traskin (2007)) because of the boundedness of our loss function φ. The
nice decaying property of the derivative of the proposed Arch Boosting loss enables us to avoid
additional parameters. The proof is given in the Appendix A.

Theorem 4. Assume H and distribution P satisfy Assumption 1. Let φ be an Arch boosting loss
function satisfying Assumption 2. Then for any sample Sn and for a non-negative sequence of
stopping times Tn = n1−ε with ε ∈ (0, 1), we have for f∗n = argminf∈FTn R̂φ,n(f) as n→∞,

(a) supf∈FTn |R̂φ,n(f)−Rφ(f)| → 0 a.s. and (b) Rφ(f∗n)→ R∗φ a.s.

Theorem 4 illustrates the uniform deviation between the φ-risk and the empirical φ-risk. Note
that we want Tn → ∞ as n → ∞ but not too fast (slower than O(n)) in order to make sure that
the uniform deviation converges to zero when n → ∞. Moreover, from part (b) of Theorem 4, we
know there exists a sequence of samples {S∗n}∞n=1 such that Rφ(f̃n)→ R∗φ as n→∞ where f̃n is the
optimal classifier obtained by minimizing the empirical risk on S∗n. In another word, from ω ∈ Ω
such that Rφ(f∗n(ω)) → R∗φ as n → ∞, we pick a ω0 and set f̃n = f∗n(ω0). We let {f̃n} be our
reference sequence, and note that f̃n only depends on sample size n, that is, {f̃n} is a deterministic
sequence. This is necessary to decouple the dependence of the estimator and the sample. Next we
state the intermediary lemma that connects the reference sequence, f̃n, to the Arch Boost estimator,
FTn .

Lemma 5. For the above reference sequence {f̃n}∞n=1 and a non-negative sequences Tn = n1−ε, ε ∈
(0, 1), we have as n→∞, (a)

(
R̂φ,n(f̃n)−Rφ(f̃n)

)
+
→ 0 a.s. and (b)

(
R̂φ,n(FTn)− R̂φ,n(f̃n)

)
+
→

0 a.s.

Lemma 5 is proved easily with the help of Theorems 1 and 4. Together with the result of
Theorem 4 we can finally state the consistency result.

Corollary 1. Assume the class H and distribution P satisfy Assumption 1 and that the Arch boosting
loss function φ satisfies Assumption 2. Then, as n→∞, the sequence of classifiers FTn returned by
the Arch Boost algorithm stopped at the step Tn, chosen in Theorem 4, satisfies L(sign(FTn))→ L∗

a.s.
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5 Numerical Experiments

In this section, we will test the Arch Boost (φ) algorithm under different loss functions φ on binary
classification problems.

5.1 Simulated Examples

We will generate datasets using ’make-hastie-10-2’ and ’make-gaussian-quantiles’ (Pedregosa et al.,
2011). For ’make-hastie-10-2’, the data have 10 features that are standard independent Gaussian
and the target yi = 1 if

∑10
i=1 x

2
i > χ2

10,1/2 (Friedman, et al., 2001). For ’make-gaussian-quantiles’, in
our case, the dataset is constructed by taking a 20-dimensional normal distribution N (0, 2I20) and
defining two classes as y = 1 if

∑20
i=1 x

2
i > 4χ2

20,1/2. In both datasets, the classes are separated by a
concentric multi-dimensional spheres with origin at 0 such that roughly equal numbers of samples
are in each class.

We test the robustness of ARB-γ algorithms by adding noise to different percentages of the
training samples. In the following two examples, we add independent t-distribution (df = 4) noise
to the features of a % of selected training samples. The results are summarized in Figure 5. For
each dataset, we generate 14000 samples using the corresponding methods. Among the 14000 data,
we use 2000 for training, 2000 for cross validation, and the rest 10000 for testing. The number
of weak classifiers is 1000, and by cross validation, we set the step sizes, αt, to be 0.78 for ARB-
1.5, 0.45 for ARB-2, 0.28 for ARB-3, 0.20 for ARB-4, 0.14 for ARB-5, 0.10 for ARB-6, and 0.80
for Real AdaBoost. For RobustBoost, we tune the target parameter for each percentage of errors
using bisection search. In each figure, we plot the average test errors and the corresponding 95%
confidence intervals.

(a) make-hastie-2 dataset. (b) Gaussian quantiles dataset.

Figure 5: Comparison of average test errors of ARB-γ, AdaBoost, Arch Boost with truncated
exponential loss (truncated at t = −2) and RobustBoost.

From Figure 5, we have several observations. First, the test errors of the ARB-γ algorithms
are all less than that of the Real AdaBoost. Moreover, they are smaller than that of the truncated
exponential loss, indicating that the introduced non-convex family of losses substantially outper-
forms traditional truncation losses. Second, when the percentage of outliers is less than a certain
level (around 23% in Figure 5a and Figure 5b), the performances of ARB-2 is the best. When the
noise level is higher, ARB-1.5 behaves the best. Moreover, RobustBoost has higher test error when
the noise level is low. We run the RobustBoost algorithm for 1000 iterations and obtain an error
that is larger than zero. However, if we run RobustBoost for long enough when error rate is 0,
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its performance should converge to that of Real AdaBoost. RobustBoost and ARB-1.5 have very
similar performance. ARB-2 is worse than RobustBoost when the noise level is very high. However,
note that we tune a number of tuning parameters of the RobustBoost at each noise level. If we were
to also "tune" γ for ARB-γ algorithms, for example, choose ARB-2 when noise level is less than
25% and ARB-1.5 otherwise in Figure 5a, then we could observe that ARB-γ is uniformly better
than the RobustBoost.

To illustrate the importance of the loss function choice and the Arch Boosting method, we
implement a Gradient Descend Boosting algorithm with a “trimmed” version of the exponential
loss, i.e., the truncated exponential loss function. We observe that the improvement over AdaBoost
is extremely minor and it disappears when the dimensionality of the problem grows. For ’make-
hastie-10-2’ dataset truncated exponential loss is better than γ-robust losses for γ ≥ 4 and ε < 15%
after which point it is very much indistinguishable from the AdaBoost. Situation is even better
for ’make-gaussian-quantiles’ dataset as truncated exponential is almost identical as the AdaBoost
as soon as ε > 7%. This suggests that the Arch Boosting framework is essential for robust and
generalizable performance.

5.2 Long/Servedio problem

Long and Servedio (2010) constructed a challenging classification setting described as follows. The
input X ∈ R21 with binary features Xi ∈ {−1,+1} and label yi ∈ {−1,+1}. First, the label y is
chosen to be −1 or +1 with equal probability. Then for any given y, the features Xi are generated
according to the following mixture distribution:

• Large margin: With probability 1
4 , set Xi = y for all 1 ≤ i ≤ 21.

• Pullers: With probability 1
4 , set Xi = y for 1 ≤ i ≤ 11 and Xi = −y for 12 ≤ i ≤ 21.

• Penalizers: With probability 1
2 , randomly choose 5 coordinates from the first 11 features

and 6 from the last 10 to be equal to y. The remaining features are set to −y.

The data from this distribution can be perfectly classified by sign(
∑

iXi). We generate 800
samples from this distribution and flip each label with probability ε ∈ [0, 0.5). Then we train the
classifier on the noisy data and test the performance on the original clean data. We first generate
20 datasets according to the distribution, and on each of them, we randomly flip ε = 10% of the
labels. The result is in Table 5, where we record the average test error and also report the sample
deviations in the brackets. We can see that the ARB-2 outperforms Real AdaBoost and LogitBoost
(Friedman, et al., 2000), and is even better than RobustBoost (target parameter θ = 0.15) (Freund,
2001).

data type Real AdaBoost LogitBoost RobustBoost
(θ = 0.15)

ARB-2

noise(ε = 0.1) 28.24%(1.53%) 26.61%(1.51%) 11.04%(0.67%) 9.82%(0.43%)

clean 25.07%(1.92%) 22.59%(1.74%) 0.21%(0.35%) 0.02%(0.04%)

Table 5: Long/Servedio problem

We also compare the performance of different ARB-γ and plot the average test errors and 95%
confidence intervals in Figure 6. We can see from Figure 6 that ARB-1.5 behaves the best on this
dataset among all these algorithms. When γ increases, the performance of ARB-γ is approaches
that of the Real AdaBoost. The breakdown point will get higher when γ → 1+, implying that the
smaller γ lead to the better robustness properties. When γ = 2, then breakdown point is about
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15%, and when γ = 1.5 and 1.3, the breakdown point is about 20%. But for ARB-1.3, the test error
when labels are not flipped is not zero.

Figure 6: Comparison of ARB-γ on Long/Servedio problem with different ε (the probability of
flipping the labels).

5.3 Outlier detection

We have shown in previous sections that ARB-γ algorithms are more robust to the noise. Therefore,
because of the robustness, ARB-γ should be able to detect the outliers. Intuitively, if a point is an
outlier, then it should be misclassified by most of the weak hypotheses of ARB-2. In this experiment,
we generate 2000 data points using ’make-hastie-10-2’ and randomly shuffle them. Then we add a
noise drawn from a t-distribution (df = 4) to each of the 10 features of the first ε percentage data
points. After running the algorithms for 800 iterations, we record the times that each data point is
misclassified, and count the number of points that are misclassified more than 600 times (denoted
as T ), and count how many of them (denoted as To) actually belong to the noisy set that we add
noise to. Finally we calculate the ratio To

T . This ratio describes the chance that a data point is an
outlier. By cross-validation, we set the step size α = 0.5 for the ARB-2 and α = 0.8 for the Real
AdaBoost. The results are shown in Table 6. The x-axis stands for the index of the training points
ranging from 1 to 2000, and the y-axis stands for the times a point is misclassified, ranging from 0
to 800. We can see that when the percentage of outliers is less than 15%, for the ARB-2, more than
99% of the points that have been misclassified for 600 times or above, are indeed the outliers, but
for the Real AdaBoost, this number is only around 31%. Informally, for ARB-2, when ε ≤ 15%, we
have more than 99% “confidence” to conclude that a data point, that is misclassified for more than
600 times, is an outlier.
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ε ARB-2 Real AdaBoost

5%

To/T 100% 30.49%

10%

To/T 100% 32.22%

15%

To/T 99.04% 37.38%

20%

To/T 85.48% 44.40%

Table 6: Outliers detection. The x-axis stands for the index of the training points ranging from 1
to 2000, and the y-axis stands for the times a point is misclassified, ranging from 0 to 800.
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5.4 Real data application

5.4.1 Wisconsin (diagnostic) breast cancer data set

We test our ARB-γ algorithms on the Wisconsin (diagnositc) breast cancer data set of Street et al.
(1993), which is available on the machine learning repository website at the University of California,
Irvine: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic).
The data set was created by taking measurements from a digitized image of a fine needle aspirate of
a breast mass for each of 569 individuals, with 357 benign and 212 malignant instances. Ten real-
valued features are computed for each cell nucleus: radius, texture, perimeter, area, smoothness,
compactness, concavity, concave points, symmetry, fractal dimension.

Table 7: Comparison of the average test errors and sample deviation of four algorithms on the
Wisconsin breast cancer dataset.

Percentage of flipped labels Methods

ARB-2 ARB-1.5 Robust Boost Ada Boost

0% 3.35%(1.29%) 3.49%(1.23%) 4.52%(1.61%) 4.06%(1.48%)
5% 4.71%(1.76%) 4.43%(1.63%) 4.78%(1.66%) 5.38%(1.92%)
10% 5.71%(1.71%) 5.03%(1.60%) 5.35%(1.77%) 6.24%(1.97%)
15% 6.92%(2.06%) 5.84%(2.04%) 6.47%(2.14%) 7.01%(2.28%)

We randomly split the data into an equally balanced training set with 150 benign samples and
150 malignant samples, and the rest samples were used for testing. The maximum iterations is set
to to be 200, and a five-fold cross-validation is implemented on the training set to select the step size
and stopping time (≤ 200) for each algorithm. This procedure was repeated for 100 times and an
average of the test error is reported in Table 7. Boxplots of the test error are presented in Figure 7.
We observe that ARB-2 behaves the best on the original data set, and ARB-1.5 outperforms others

(a) 0%. (b) 5%.

(c) 10%. (d) 15%.

Figure 7: Comparison of ARB-2, ARB-1.5, RobustBoost and Real AdaBoost on the UCI Wisconsin
breast cancer dataset. In each subfigure, from left to right are the box plots for the test errors of
ARB-2, ARB-1.5, RobustBoost and Real AdaBoost.
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when there is noise. Compared to Stefanski et al. (2014) who obtain the best test error rate of about
4%, all of our methods uniformly achieve smaller test error rate, on the clean and comparable test
error rates on the perturbed datasets.

5.4.2 Sensorless drive diagnosis data set

We compare ARB-2, ARB-1.5, RobustBoost and Real AdaBoost on the dataset sensorless drive
diagnosis, which is also available on the UCI machine learning repository: https://archive.ics.
uci.edu/ml/datasets/Dataset+for+Sensorless+Drive+Diagnosis.

Table 8: Comparison of the average test errors and sample deviation of four algorithms on the
Sensorless drive diagnosis dataset.

Percentage of flipped labels Methods

ARB-2 ARB-1.5 Robust Boost Ada Boost

0% 5.84%(0.43%) 6.52%(0.43%) 7.37%(0.36%) 7.04%(0.44%)
5% 9.68%(0.58%) 8.79%(0.57%) 8.96%(0.51%) 11.52%(0.78%)
10% 12.35%(1.03%) 10.88%(0.94%) 10.81%(0.74%) 14.63%(0.98%)
15% 14.16%(0.85%) 12.50%(0.76%) 11.95%(0.99%) 17.88%(0.81%)

This dataset contains 58509 instances and each of them has 49 features all extracted from the
electric current drive signals. A range of typical defects in drive train applications are considered
with 11 different classes present. We combine the data points with label ≤ 6 into one class and
the rest into the other class. Then at each time, we randomly choose 14000 points and use 2000
for training, 2000 for cross validation and 10000 for testing. We use the cross validation set to
choose the stopping time (≤ 1000 iterations) and step sizes. According to the noise levels, a certain
proportion of the labels of the training data points will be randomly flipped. We summarized the
test errors using box plots in Figure 8 and calculated the mean and sample deviation in Table 8.

(a) 0%. (b) 5%.

(c) 10%. (d) 15%.

Figure 8: Comparison of ARB-2, ARB-1.5, RobustBoost and Real AdaBoost on the UCI sensorless
drive diagnosis dataset. In each subfigure, from left to right are the box plots for the test errors of
ARB-2, ARB-1.5, RobustBoost and AdaBoost.
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We observed that ARB-2 performs the best on the original data without adding any extra
noise. RobustBoost again behaves worse than others on the original dataset. One reason is that it
needs more time to terminate when target error is near 0, and the other reason is that it cannot
distinguish outliers and hard inliers (Kobetski et.al, 2013). When we flipped 10% of the labels,
ARB-1.5 outperformed others and when we flipped 10% or 15% of the labels, RobustBoost behaved
the best. But in all of the three cases with noise, the test errors of ARB-1.5 and RobustBoost are
very close. However, ARB-1.5 does not need to fine tune any target parameters at each different
noise levels.

5.4.3 MAQC-II Project: human breast cancer (BR) data set

We next test our Algorithms on a dataset that is part of the ’MicroArray quality control II’ project.
It is available from the gene expression omnibus database with accession number GSE20194: http:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20194.

Table 9: Comparison of the average test errors and sample deviation of four algorithms on the
GSE20194 gene dataset.

Percentage of flipped labels Methods

ARB-2 ARB-1.5 RobustBoost AdaBoost

0% 9.66%(1.90%) 9.45%(1.93%) 10.24%(2.10%) 10.51%(2.20%)
5% 11.35%(2.50%) 11.16%(2.20%) 11.82%(2.95%) 12.40%(2.89%)
10% 12.92%(3.43%) 12.17%(3.50%) 12.22%(3.04%) 14.76%(3.54%)
15% 13.46%(4.91%) 13.33%(5.03%) 13.29%(3.13%) 15.85%(6.85%)

The dataset contains 278 newly diagnosed breast cancer patients, aged from 26 to 79 years
with population spanning all three major races and their mixtures. Patients received 6 months of
preoperative chemotherapy followed by surgical resection of the cancer. Estrogen-receptor status
helps guide treatment for breast cancer patients because breast cancer contains many estrogen
receptors. Of 278 patients, 164 had positive estrogen-receptor status and 114 have negative estrogen-
receptor status. Each sample is described by 22283 biomarker probe-sets.

To alleviate computational burden we choose 3000 probe-sets with the smallest p-values in the
two-sample t-test and standardize each feature. Such simplification is often considered in high
dimensional data (e.g. Zhang et. al (2014)). We randomly choose 50 samples with positive estrogen
receptor status and 50 samples with negative estrogen receptor status for a training set and use
the rest for the testing set. We randomly flip labels of the samples in training set according to
the preassigned noise level and repeat the analysis 100 times. Then a five-fold cross-validation is
implemented on the training set to select the stopping time (≤ 100) and step sizes. We summarize
the results in Table 9 and Figure 9. This dataset was previously analyzed in Deshwar and Morris
(2014) and Zhang et. al (2014) where the best obtained test error was 15% and 9%, respectively.
However, our methods achieve error comparable to those even when the labels were perturbed at
random. This suggests that our method is extremely stable even in high-dimensional models.

5.5 Discussion

We showed that ArchBoost -γ is a robust alternative to the popular Gradient Boost -type algorithms.
The algorithmic part, presented by Theorem1, works for quite a very general class of loss functions
that satisfy the Arch-Boost loss properties, presented in Definition 1. The differentiability condition
is imposed artificially and we believe can be avoided by considering appropriate sub-differential
analysis. However, the Condition (ii) is crucial for the analysis and we believe that it cannot be
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(a) 0%. (b) 5%.

(c) 10%. (d) 15%.

Figure 9: Comparison of ARB-2, ARB-1.5, RobustBoost and Real AdaBoost on the GSE20194 gene
dataset, from left to right are the box plots for the test errors of ARB-2, ARB-1.5, RobustBoost
and AdaBoost.

relaxed. Moreover, the robustness properties depend crucially on this condition too. Additionally,
the robustness part of the analysis, summarized in Theorems 2 and 3, works for quite for an arbitrary
Lipschitz loss function. Hence, it presents novel proof of why is LogitBoost more robust than the
AdaBoost, a folklore observation made by many experts in the field. For example, Theorem 2 is more
likely to hold for LogitBoost than the AdaBoost and similarly more likely to hold for ArchBoost
than the LogitBoost.

Note that Arch Boost framework can be easily explored to define an estimate of the conditional
probability P(Y = 1|x). A special case is to plug in the exponential loss function, in which case
we will get Real AdaBoost algorithm, and it has conditional probability estimation P̂AdaBoost(Y =
1|X = x) = 1/(1 + e−2FT (x)). In contrast, many of the existing boosting methods, based on
the Gradient Boosting ideas, cannot be directly applied for this purpose. In order to propose an
estimator of P(Y = 1|x), we find and explore a recursive relationship between Ft and Ft−1. We
observe that by rewriting equation (13), we have

φ
′
(−Ft(x))

φ′(Ft(x))
=
φ
′
(−Ft−1(x))

φ′(Ft−1(x))

(
Pwt(Y = 1|x)

Pwt(Y = −1|x)

)
.

Suppose F0 ≡ 0. By solving these equations recursively, after T iterations we obtain

φ
′
(−FT (x))

φ′(FT (x))
=

T∏
t=1

Pwt(Y = 1|x)

Pwt(Y = −1|x)
.

Now define P̃(Y = 1|x) as

P̃(Y = 1|x) =

∏T
t=1 Pwt(Y = 1|x)∏T

t=1 Pwt(Y = 1|x) +
∏T
t=1 Pwt(Y = −1|x)

∈ [0, 1]. (26)
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Then, we have the following relation

φ
′
(−FT (x))

φ′(FT (x))
=

P̃(Y = 1|x)

P̃(Y = −1|x)
. (27)

By comparing equation (6) and (27), if FT (x) is close to F ∗(x), then P̃(Y = 1|x) will be a good
approximation of the conditional probability P(Y = 1|x). Observe that due to a nature of weak
classifiers, P̃(Y = 1|x) is guaranteed to be bounded in [0, 1] for any differentiable loss function
φ. Moreover, non-convex loss functions φ seems to be better candidates for the class membership
probability estimation as well as for the classifier estimation.

The statistical consistency proof is centered around “tilted” loss functions that are non-convex
in particular. We believe that non-convex losses have great and unexplored potential for robust
high dimensional statistics. The framework of “tilted” loss functions is very general and can very
well be explored for robust variable selection and estimation, through an appropriate penalization
scheme. Moreover, it is very well known that the impact of outliers is multiplied in case of inferential
problems, such are confidence intervals and testing. By screening out many large outliers, “tilted”
losses may significantly improve upon asymptotic efficiency of existing procedures.

Appendix A Proofs

A.1 Derivation of ARB-γ algorithms

Note that φ′a,γ(v) = −aγ2γeav

(1+eav)γ+1 , and
φ
′
a,γ(−v)

φ′a,γ(v)
= ea(γ−1)v, and when γ > 1,

(i) for any data (x, y), the optimal F ∗(x) satisfies

φ
′
a,γ(−F ∗(x))

φ′a,γ(F ∗(x))
= ea(γ−1)F ∗(x) =

P(Y = 1|x)

P(Y = −1|x)
,

that is,

F ∗(x) =
1

a(γ − 1)
log

P(Y = 1|x)

P(Y = −1|x)
, γ > 1.

(ii) After iteration t, we will update the weights to be

wt+1(x, y) = −φ′a,γ(yF (x) + yht(x)) =
aγ2γea(yF (x)+yht(x))

(1 + ea(yF (x)+yht(x)))γ+1
.

Since the constant aγ2γ will not influence the normalized weights, we can just update the
weights to be

wt+1(x, y) =
ea(yF (x)+yht(x))

(1 + ea(yF (x)+yht(x)))γ+1
. (28)

(iii) At iteration t, we will update the hypothesis Ft−1(x) to be Ft−1(x) + ht(x) such that

φ
′
a,γ(Ft−1(x))φ

′
a,γ(−Ft−1(x)− ht(x))

φ′a,γ(−Ft−1(x))φ′a,γ(Ft−1(x) + ht(x))
= ea(γ−1)ht(x) =

Pw(Y = 1|x)

Pw(Y = −1|x)
,

that is,

ht(x) =
1

a(γ − 1)
log

Pw(Y = 1|x)

Pw(Y = −1|x)
, γ > 1.
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The algorithms for different γ (set a = 1) is given in Algorithm 2. Since 1
γ−1 is just a constant,

we can simply absorb it into αt and leave ht = log P(Y=1|x)
P(Y=−1|x) . So intuitively, the larger γ is, the

smaller the step size αt will be. If we use constant step size, then a rule of thumb is to set αt = α
γ−1

for ARB-γ where α is a tuning parameter for the step size of ARB-2.

A.2 Proof of Lemma 1

For any α ∈ (0, 1), let D(v) = d
dv [αφ(v)+(1−α)φ(−v)] = αφ

′
(v)−(1−α)φ

′
(−v). Since φ is convex,

φ
′
(v) is monotone increasing, and φ′(−v) is monotone decreasing. So D(·) is monotone increasing.
Then note that there exists v∗ such that φ′(v∗) 6= φ

′
(−v∗). Otherwise, φ′ will be both increasing

and decreasing, that is, a constant. Contradiction to our assumption. Therefore, D(v∗)D(−v∗) < 0,
and combined with the monotonicity and continuity of D(·), we know D(v) = 0 has one and only
one solution, and it is a global minimum of φ.

A.3 Proof of Remark 2

Note that φa,1(v) = 1 − tanh(1
2v) is a sigmoid function. Let Cη(v) = ηφ(v) + (1 − η)φ(−v) =

1 + (1− 2η) tanh(1
2v), then infv∈RCη(v) = 2 min(η, 1− η) < 1 = infv:v(2η−1)≤0Cη(v) for all η 6= 1

2 .
So condition (iii) is satisfied.

But since Cη(v) = 1 + (1 − 2η) tanh(v), we know if η > 1
2 , then Cη(v) is monotone decreas-

ing. And when η < 1
2 , Cη(v) is monotone increasing. When η = 1

2 , C 1
2
(v) ≡ 1. Hence, for every

η ∈ [0, 1], there is no unique global minimum in R.

A.4 Proof of Lemma 2

Define f(v) = aφ(v) + (1− a)φ(−v), then f ′(v) = aφ
′
(v)− (1− a)φ

′
(v) and f ′′(v) = aφ

′′
(v) + (1−

a)φ
′′
(−v). For any a ∈ (1

2 , 1), f ′(v) = 0 if and only if g(v) = 1−a
a ∈ (0, 1). Since g : (0,∞)→ (0, 1)

is a bijection, there exists one and only one v∗ ∈ R∗ such that v∗ = g−1(1−a
a ). Note that if v > v∗,

then g(v) < g(v∗), that is f ′(v) > f
′
(v∗); if v < v∗, then similarly we have f ′(v) < f

′
(v∗). So v∗ is

a minimum for φ.
For a ∈ (0, 1

2), since g(−v) = 1
g(v) , we only need to solve g(v) = a

1−a for v∗, then −v∗ will be
solution for f ′(v) = 0 for this a. And the minimum claim follows similarly as above.

A.5 Solution of (17)

Here, we show the derivation of one possible family of solutions. We do so by employing integrating
factor method and adapting it to the nonlinear ordinary differential equation (17). Since we have
φ
′
(−v)

φ′ (v)
= e(γ−1)v, we made a reasonable guess that φ(v) = f(ev). After plugging this into (17) and

let x = ev, we have

f
′
(1/x)

f ′(x)
= xγ+1. (29)

Furthermore, for a non-convex function φ satisfying Assumption 2, we know φ
′
(v)→ 0 as v → ±∞,

thereafter xf ′(x)→ 0 as x→∞, that is, f ′(x) = o( 1
x). By rewriting equation (29), we have(

1

x

) γ+1
2

f
′
(
1

x
) = x

γ+1
2 f

′
(x). (30)
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Let G(x) := x
γ+1
2 f

′
(x), from (30), we have G( 1

x) = G(x) and limx→∞G(x) = limx→∞G( 1
x) =

limx→∞
(

1
x

) γ+1
2 f

′
( 1
x) = 0 provided f ′(0) <∞ and f ′(x) is continuous at 0. One such choice is

G(x) =
x

(1 + x)2
.

Then by integrating f ′(x) and substitution of parameter, we get one solution to (17) is

φ(v) =
c

(1 + ev)γ
,

for any positive constant c. The numerator 2γ in (18) is just introduced to make the function φ an
upper bound of the 0− 1 loss and φ(0) = 1.

A.6 Proof of Lemma 3

(i) and (ii) are easy to verify.
For (iii), given any α ∈ (0, 1), let D(v) = α2γ

(1+eav)γ + (1−α)2γ

(1+e−av)γ
. Let D′(v) = 0, we have the

only solution v∗ = 1
a(γ−1) log α

1−α . Note that D′(v) = (−γa)
(

α2γ

(1+eav)γ
1

1+e−av + (1−α)2γ

(1+e−av)γ
−1

1+eav

)
=

(−γa)
(
αφa,γ(v) 1

1+e−av + (1− α)φa,γ(−v) −1
1+eav

)
. Since φa,γ is decreasing, when v > v∗, we have(

αφa,γ(v) 1
1+e−av + (1− α)φa,γ(−v) −1

1+eav

)
< 0, and hence D′(v) > 0. Similarly, when v < v∗,

D
′
(v) < 0. Therefore, v∗ is indeed a global minimum point.
For (iv), let Cη(α) = 2γ

(
η 1

(1+eα)γ + (1− η) 1
(1+e−α)γ

)
. Then by setting C ′η(α) = 0, we get the

minimum point α∗ = 1
γ−1 log η

1−η , and Cη(α
∗) = η

(
2

(1+( η
1−η )γ

)γ
+ (1 − η)

(
2

(1+( 1−η
η

)γ

)γ
which

can be shown to attain the global maximum when γ = 1
2 , and C1/2(α∗) = 1. We also have

infα:α(2η−1)≤0Cη(α) = Cη(0) = 1 > Cη(α
∗) when η 6= 1

2 . By Bartlett et al. (2006), we have (iv)
holds.

A.7 Proof of Theorem 1

The proof is completed by showing that at each iteration t, as long as the empirical margin µ̂(wt, ht)
is positive, the empirical risk decreases by adding the weak hypotheses ht to the current estimate.
Then, we show that the weak hypothesis returned by our Arch Boost algorithm, always has a
positive empirical margin before convergence.

(i) On the sample Sn = {(X1, Y1), · · · , (Xn, Yn)}, at each iteration t, denote

Ft−1 = (Ft−1(x1), · · · , Ft−1(xn)) .

Recall that the empirical risk R̂φ,n(F ) = 1
n

∑n
i=1 φ(YiF (Xi)) and it can be viewed as a mul-

tivariate function of F = (F (X1), · · · , F (Xn)). Denote the partial derivative w.r.t. F (Xi) at
iteration t as

gt(Xi) =

[
∂R̂φ,n(F)

∂F (Xi)

]
F (Xi)=Ft−1(Xi)

=
1

n
Yiφ

′
(YiFt−1(Xi)).

Then the gradient of R̂φ,n at Ft−1 is

∇R̂φ,n(Ft−1) =
1

n

gt(X1)
...

gt(Xn)

 .
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At iteration t, the weight on (Xi, Yi) is updated to be

wt(Xi, Yi) = −φ′(YiFt−1(Xi)), i = 1, · · · , n.

Suppose we choose a weak hypothesis ht with positive empirical margin w.r.t. weights wt,
that is, µ̂(ht, wt) > 0, and denote ht = (ht(X1), · · · , ht(Xn)). Note that

〈−∇R̂φ,n(Ft−1),ht〉 =
1

n

n∑
i=1

Yiht(Xi)(−φ
′
(YiFt−1(Xi)))

=
1

n

n∑
i=1

Yiht(Xi)wt(Xi, Yi)

= µ̂(ht, wt) > 0,

where 〈·, ·〉 is the standard inner product in Rn. Therefore, we know

〈−∇R̂φ,n(Ft−1),ht〉 > 0⇐⇒ µ̂(wt, ht) > 0.

But if 〈−∇R̂φ,n(Ft−1),ht〉 > 0, then

ht(X1)
...

ht(Xn)

 is a descending direction of R̂φ,n(F) at Ft−1,

therefore

R̂φ,n


Ft(X1)

...
Ft(Xn)


 = R̂φ,n


Ft−1(X1)

...
Ft−1(Xn)

+ αt

ht(X1)
...

ht(Xn)


 < R̂φ,n


Ft−1(X1)

...
Ft−1(Xn)




with an appropriate step size αt which can be found by line search

αt = argmin
α

R̂φ,n


Ft−1(X1)

...
Ft−1(Xn)

+ α

ht(X1)
...

ht(Xn)


 .

In summary, we have

R̂φ,n(Ft) < R̂φ,n(Ft−1) (31)

if at step t, we choose a base learner ht such that µ̂(wt, ht) > 0 and choose a suitable step size
αt either by line search or set to be appropriately small. Therefore, R̂φ,n will converge in R.
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(ii) In any region Rjt , we know ht ≡ γjt . Then

−gt(X1)
...

−gt(XN )


ht(X1)

...
ht(XN )

 is equal to

Jt∑
j=1

∑
i∈Rjt

Yiwt(Xi, Yi)γ
j
t

=

Jt∑
j=1

γjt

(
Pwt(Y = 1|X ∈ Rjt )− Pwt(Y = −1|X ∈ Rjt )

) ∑
i∈Rjt

wt(Xi, Yi)

=

Jt∑
j=1

θ(Pwt(Y = 1|X ∈ Rjt ))
(

2Pwt(Y = 1|X ∈ Rjt )− 1
) ∑
i∈Rjt

wt(Xi, Yi)

(i)

≥ 0.

The last inequality (i) is because θ(Pwt(Y = 1|X ∈ Rjt )) is strictly increasing and has the only
root at 1

2 , and hence always has the same sign as 2Pwt(Y = 1|X ∈ Rjt ) − 1, and “=” holds if
and only if Pwt(Y = 1|X ∈ Rjt ) = 1

2 for all j = 1, · · · , Jt.

(iii) From (13), we have

φ
′
(−Ft(x))

φ′(Ft(x))
=

Pwt(Y = 1|x)

Pwt(Y = −1|x)

φ
′
(−Ft−1(x))

φ′(Ft−1(x))
.

If Pwt(Y = 1|x) > Pwt(Y = −1|x), then φ
′
(−Ft(x))

φ′ (Ft(x))
> φ

′
(−Ft−1(x))

φ′ (Ft−1(x))
. By Lemma 2, Ft(x) >

Ft−1(x), that is, ht(x) > 0.

(iv) Here, we develop ideas much similar to the proof of Lemma 4.1 and Lemma 4.2 in Zhang
and Yu (2005). There are two differences here in comparison to Zhang and Yu (2005). First,
the loss is non-convex function and second, the optimal hypothesis is chosen differently. For
f1, f2 ∈ ∪∞T=1FT , let Hf ⊂ H be the set that contains all weak hypotheses in f1 and f2. For
example, f1 =

∑
h∈Hf α

h
1h and f2 =

∑
h∈Hf α

h
2h. Then denote

||f1 − f2||22 :=
∑
h∈Hf

(α
(h)
1 − α(h)

2 )2 ≤ 1

|Hf |

∑
h∈Hf

|α(h)
1 − α(h)

2 |

2

=:
1

|Hf |
||f1 − f2||21.

Now let f̄t be any reference function in ∪∞T=1FT satisfying

R̂φ,n(f̄t) < inf
f∈∪∞T=1FT

R̂φ,n(f) +
1

t

and Ft be the classifier returned by Arch Boost at step t. Moreover, denote

f̄t =
∑
h∈Ht

ωht h, Ft =
∑
h∈Ht

αht h.

For notation simplicity, we denote R = R̂φ,n since we have fixed a loss function φ and sample
size n. Let sh = sign(ωht − αht ). By Taylor expansion, we have

R(Ft + αt+1s
hh) ≤ R(Ft) + αt+1s

h〈∇R(Ft), h〉+
α2
t+1

2
sup
ξ∈[0,1]

R
′′
Ft,h(ξαt+1s

h),
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where RFt,h(α) := R(Ft +αh). Since θ is bounded, from part (ii) we know there exists M > 0
s.t. supξ∈[0,1]R

′′
Ft,h

(ξαt+1s
h) < M if we choose h by (13). Therefore,

R(Ft + αt+1s
hh) ≤ R(Ft) + αt+1s

h〈∇R(Ft), h〉+
α2
t+1

2
M.

By Algorithm 1 we know that R(Ft+1) = R(Ft +αt+1ht+1). Moreover, by (13), ht+1 is chosen
as the arg minh∈Ht Ew [R(Ft + αt+1h)]. Hence, for any h ∈ Ht, Ew [R(Ft + αt+1ht+1)] ≤
Ew [R(Ft + αt+1h)]. Moreover, for any bounded random variable Z, |Ew[Z]− E[Z]| ≤ K for a
positive constant K. Combining the above, we have

R(Ft+1) ≤ R(Ft + αt+1s
hh) + 2εt + 2K,

for
εt = sup

h∈Ht

∣∣∣∣R(Ft + αt+1s
hh)− E

[
R(Ft + αt+1s

hh)
] ∣∣∣∣.

By the arguments very much similar to Lemmas 6 and 7, it easy to obtain εt = oP (1).

Since ||f̄t−Ft||1 = o(log t), and ||f̄t−FT ||22 ≤
||f̄t−Ft||21

tct where ct ∈ (0, 1) and ct → 0 as t→∞,

we have ||f̄t−Ft||
2
1

tct = o( log t
tct ||f̄t − Ft||1). Hence,

||f̄t − Ft||22(R(Ft+1)− 2εt − 2K)

= o

 log t

tct

∑
h∈Ht

|αht − ωht |R(Ft + αt+1s
hh)


= o

 log t

tct

∑
h∈Ht

|αht − ωht |
(
R(Ft) + αt+1s

h〈∇R(Ft), h〉+
α2
t+1

2
M

)
= o

[
log t

tct
||f̄t − Ft||1R(Ft) +

αt+1 log t

tct
〈∇R(Ft), f̄t − Ft〉+

Mα2
t+1 log t

2tct
||f̄t − Ft||1

]
(32)

Now we look at the situation when µ̂(hk, wk) = 0. From part (ii), we know this happens if
and only if Pwk(Y = 1|X ∈ Rjk) = 1

2 in every region j. In another word, ∇R(Fk) ⊥ H. Now
since µ̂(ht, wt) → 0, ∇R(Ft) is more and more perpendicular to H and hence perpendicular
to ∪∞T=1FT , and 〈∇R(Ft)−∇R(f̄t), f̄t − Ft〉 → 0 since f̄t − Ft ∈ ∪∞T=1FT .
Since φ is Lipschitz differentiable, we know there exists L > 0 (L is the Lipschitz constant s.t.
||∇R(f1)−∇R(f2)||2 ≤ L||f1 − f2||2 for all f1 and f2) s.t.

R(Ft)−R(f̄t) ≤ 〈∇R(f̄t), Ft − f̄t〉+
L

2
||f̄t − Ft||22.

Then 〈∇R(f̄t), f̄t−Ft〉 ≤ R(f̄t)−R(Ft)+ L
2 ||f̄t−Ft||

2
2. When t is large enough, we know there

exists sequence ε̃t → 0 s.t.

〈∇R(Ft), f̄t − Ft〉 ≤ R(f̄t)−R(Ft) +
L

2
||f̄t − Ft||22 + ε̃t.
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Then by (32),

||f̄t − Ft||22(R(Ft+1)− 2εt − 2K)

= o

[
log t

tct
||f̄t − Ft||1R(Ft) +

αt+1 log t

tct
〈∇R(Ft), f̄t − Ft〉+

α2
t+1 log t

2tct
||f̄t − Ft||1M

]
= o

[
log t

tct
||f̄t − Ft||1R(Ft) +

αt+1 log t

tct

(
R(f̄t)−R(Ft) +

L

2
||f̄t − Ft||22 + ε̃t

)
+
α2
t+1 log t

2tct
||f̄t − Ft||1M

]
= o

[
log t

tct
||f̄t − Ft||1R(Ft) +

αt+1 log t

tct

(
R(f̄t)−R(Ft)

)
+ ηt

]
, (33)

where ηt := αt+1 log t
tct

(
L
2 ||f̄t − Ft||

2
2 + ε̃t

)
+

α2
t+1 log t

2tct ||f̄t − Ft||1M .

Then by dividing ||f̄t − Ft||22 on both sides of (33), we get

R(Ft+1) = o

[
log t

tct
||f̄t − Ft||1
||f̄t − Ft||22

R(Ft) +
αt+1 log t

tct ||f̄t − Ft||22

(
R(f̄t)−R(Ft)

)
+ η̄t + 2εt + 2K

]
= o

[
log t

tct/2||f̄t − Ft||2
R(Ft) +

αt+1 log t

tct ||f̄t − Ft||22

(
R(f̄t)−R(Ft)

)
+ η̄t + 2εt + 2K

]
,

where η̄t := αt+1 log t

tct

(
L
2 + ε̃t

||f̄t−Ft||22

)
+

α2
t+1 log t

2tct/2||f̄t−Ft||2
M .

Therefore,

R(Ft+1)−R(f̄t) = o

[
log t

tct ||f̄t − Ft||2
R(Ft) +

αt+1 log t

tct ||f̄t − Ft||22

(
R(f̄t)−R(Ft)

)
+ η̄t + 2εt + 2K

]
≤ ξt log t

tct ||f̄t − Ft||2
R(Ft) +

αt+1ξt log t

tct ||f̄t − Ft||22

(
R(f̄t)−R(Ft)

)
+ ξtη̄t + 2ξtεt + 2Kξt,

for some sequence ξt → 0 as t→∞. Now if we assume ct → 0 slowly enough, then by choosing
αt s.t.

∑∞
t=1 αt = ∞,

∑∞
t=1 α

2
t < ∞ and

∑∞
t=1

αt+1ξt log t
tct < ∞, and by Lemma 4.2 in Zhang

and Yu (2005), we have R(Ft+1)−R(f̄t)→ 0 as t→∞, and hence R(Ft)→ R∗φ,n as t→∞.

A.8 Proof of Theorem 2

The proof of Theorem consists of a careful decomposition of the inner product between the gradient
vector and the weak hypothesis obtained on the complete data. The decomposition is done in such a
manner that one of the factors is the inner product between the gradient computed on the noise-free
data and the weak hypothesis. Then, the proof is completed by showing that the signs of the two
inner products above match.

On the original dataset S, suppose after some iteration we obtain a weak hypothesis h such that
h(x) = θ(Pw(Y = 1|x)) where θ is defined in Theorem 1. In the rest of the proof we will exploit the
decomposition proved in Theorem 1,

−〈go,h〉 =

J∑
j=1

θ(Pw(Y = 1|X ∈ Rj))
(
2Pw(Y = 1|X ∈ Rj)− 1

) ∑
i∈Rj

w(xi, yi)

=
J∑
j=1

θ(pj) (2pj − 1)
∑
i∈Rj

w(xi, yi)

where Rj , j = 1, · · · , J are the regions corresponding to terminal nodes, and as long as pj = Pw(Y =
1|X ∈ Rj) is not 1

2 in some region, −〈g,h〉 > 0, that is, h points to the descending direction of the
empirical risk.
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For go, we get −〈go,h〉 =
∑J

j=1 θ(pj) (2p̃j − 1)
∑

i∈Rj\O w(xi, yi) with a different conditional
probability estimation p̃j . Recall that

2pj − 1 = Pw(Y = 1|X ∈ Rj)− Pw(Y = −1|X ∈ Rj) =

∑
i∈Rj yiw(xi, yi)∑
i∈Rj w(xi, yi)

,

2p̃j − 1 =

∑
i∈Rj\O yiw(xi, yi)∑
i∈Rj\O w(xi, yi)

.

Then we have that (2p̃j − 1)
∑

i∈Rj\O w(xi, yi) =
∑

i∈Rj\O yiw(xi, yi) = (2pj − 1)
∑

i∈Rj w(xi, yi)−∑
i∈O∩Rj yiw(xi, yi). Therefore,

−〈go,h〉 = −〈g,h〉 −
J∑
j=1

θ(pj)
∑

i∈O∩Rj
yiw(xi, yi)

=

J∑
j=1

θ(pj)

(2pj − 1)
∑
i∈Rj

w(xi, yi)−
∑

i∈O∩Rj
yiw(xi, yi)

 .
From previous equation, a sufficient condition for −〈go,h〉 ≥ 0 is that each summand reminds
non-negative. Since θ(pj) ≥ 0 if and only if pj ≥ 1

2 , the sufficient condition becomes equivalent to

(pj −
1

2
)

(2pj − 1)
∑
i∈Rj

w(xi, yi)−
∑

i∈O∩Rj
yiw(xi, yi)

 ≥ 0.

Furthermore, this inequality can be reformulated as

2(pj −
1

2
)2

∑
i∈Rj\O

w(xi, yi) ≥ (pj −
1

2
)
∑

i∈O∩Rj
(1 + yi − 2pj)w(xi, yi).

When pj 6= 1
2 , a sufficient condition for the inequality above is

2|pj −
1

2
|
∑

i∈Rj\O

w(xi, yi) ≥
∑

i∈O∩Rj
max
yi=±1

[
sign(pj −

1

2
)(1 + yi − 2pj)

]
w(xi, yi)

=
∑

i∈O∩Rj
2 min(pj , 1− pj)w(xi, yi).

A.9 Proof of Lemma 4

Since φ is an Arch boosting loss function, we know for any p ∈ (0, 1), pφ(v) + (1− p)φ(−v) has only
one critical point v∗ that is the global minimum. Hence, pxφ

′′
(F ∗(x)) + (1 − px)φ

′′
(−F ∗(x)) ≥ 0

where px = P(Y = 1|X = x). Note that here we treat Y f(X) as the input of φ, and by the chain
rule, we know pxφ

′′
(1, F ∗(X)) + (1− px)φ

′′
(−1, F ∗(X)) ≥ 0, where the derivative now is w.r.t. the

second argument. Then EP

[
φ
′′
(Y, F ∗(X))q2(X)|X = x

]
= q2(x)[P(Y = 1|X = x)φ

′′
(1, F ∗(x)) +

P(Y = −1|X = x)φ
′′
(−1, F ∗(x))] ≥ 0 since P(Y = 1|X = x)φ

′′
(1, F ∗(x)) + P(Y = −1|X =

x)φ
′′
(−1, F ∗(x)) ≥ 0 for all P(Y = 1|X = x) ∈ (0, 1) and is also nonnegative at the end points

{0, 1} because of the continuity of φ′′ .
Now if P and X satisfy that P(Y = 1|X = x) = px ∈ [δ, 1− δ] for all x ∈ X for some δ ∈ (0, 1

2),
and for all p ∈ [δ,1− δ], pφ′′(v∗) + (1− p)φ′′(−v∗) > 0 , that is, it is locally convex near v∗, then by
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the continuity of φ′′ , for each p ∈ [δ, 1− δ], there exists rp > 0 such that pφ′′(v) + (1−p)φ′′(−v) ≥ 0
for all v ∈ R such that |v − v∗| < rp. But since [δ, 1 − δ] is compact, there exists r > 0 such that
pφ
′′
(v) + (1− p)φ′′(−v) ≥ 0 for all |v − v∗| < r and for all p ∈ [δ, 1− δ].
Now for any x ∈ X , we know the corresponding px ∈ [δ, 1 − δ], and for this px, we have

pxφ
′′
(G(x))+(1−px)φ

′′
(−G(x)) ≥ 0 for all measurable function G with |G(x)−F ∗(x)| < r. There-

fore, if we take measurable function G s.t. ||G−F ∗||∞ < r, then pxφ
′′
(G(x))+(1−px)φ

′′
(−G(x)) ≥ 0

for all x ∈ X , that is, EP

[
φ
′′
(Y,G(X))q2(X)|X = x

]
≥ 0 for all x ∈ X . Taking expectation w.r.t.

X, we get EP

[
φ
′′
(Y,G(X))q2(X)

]
≥ 0.

A.10 Proof of Theorem 3

By Lemma 4, there exists r > 0 such that if ||fP,λ − F ∗|| < r, then EPφ
′′
(Y, fP,λ(X))q2(X) ≥ 0

for any measurable function q. Therefore one can show that the influence function still exists in
form of (24) by the Theorem 4 in Christmann and Steinwart (2004) since in that Theorem, the
only place one needs convexity is to show EPφ

′′
(Y, fP,λ(X))q2(X) ≥ 0. Rewriting (24), and let

IF (z;T,P) = gz ∈ H, we have

2λgz + EPφ
′′
(Y, fP,λ(X))gz(X)Ψ(X) = EPφ

′
(Y, fP,λ(X))Ψ(X)− φ′(zy, fP,λ(zx))Ψ(zx).

By taking inner product 〈·, ·〉H with gz itself, we have

2λ||gz||2H + EPφ
′′
(Y, fP,λ(X))g2

z(X) = EPφ
′
(Y, fP,λ(X))gz(X)− φ′(zy, fP,λ(zx))gz(zx). (34)

Assume λ||f ||2H + Rφ(f) has only one global minimum fP,λ in H, then at the minimum, we know
the Frechet derivative at fP,λ is a zero mapping, that is,

2λ〈fP,λ, ·〉H + EPφ
′
(Y, fP,λ(X))Ψ(X) = 0

¯
,

where 0
¯

: H → R is the zero functional. And hence

2λ〈fP,λ, gz〉H + EPφ
′
(Y, fP,λ(X))gz(X) = 0. (35)

We also note that since fP,λ is the global minimum, then λ||fP,λ||2H+Rφ(fP,λ) ≤ λ||0H ||2H+Rφ(0H) =
Cφ where Cφ = Rφ(0H) = φ(0, 0) is a constant, that is,

λ||fP,λ||2H ≤ λ||fP,λ||2H + EPφ(Y, fP,λ(X)) ≤ Cφ. (36)

Finally, we have

2λ||gz||2H ≤ 2λ||gz||2H + EPφ
′′
(Y, fP,λ(X))g2

z(X)

(i)
= EPφ

′
(Y, fP,λ(X))gz(X)− φ′(zy, fP,λ(zx))gz(zx)

(ii)
= −2λ〈fP,λ, gz〉H − φ

′
(zy, fP,λ(zx))gz(zx)

(iii)

≤ 2λ‖fP,λ‖H‖gz‖H − φ
′
(zy, fP,λ(zx)))gz(zx)

(iv)

≤ 2
√
λCφ‖gz‖H + |φ′(zy, fP,λ(zx))||gz(zx)|

= 2
√
λCφ‖gz‖H + |φ′(zy, fP,λ(zx))|〈gz, k(zx, ·)〉H

(v)

≤ 2
√
λCφ‖gz‖H + |φ′(zy, fP,λ(zx))|

√
〈gz, gz〉H

√
〈k(zx, ·), k(zx, ·)〉H

= 2
√
λCφ‖gz‖H + |φ′(zy, fP,λ(zx))|||gz||H |k(zx, zx)|.
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where (i) is due to (34); (ii) due to (35); (iii) is due to the Cauchy-Schwartz inequality; (iv) is due
to (36); (v) is again due to the Cauchy-Schwartz inequality.

Since k is a bounded kernel, there exists a Mk > 0 such that |k(x1, x2)| ≤Mk for all x1, x2 ∈ X .
Hence, |φ′(zy, fP,λ(zx))|||gz||H |k(zx, zx)| ≤Mk|φ

′
(zy, fP,λ(zx))|||gz||H , which in turn leads to

2λ||gz||2H ≤ 2
√
λCφ‖gz‖H +Mk|φ

′
(zy, fP,λ)(zx)|‖gz‖H

and hence

||gz||H ≤
√
Cφ
λ

+
Mk|φ

′
(zy, fP,λ)(zx)|

2λ

Hence , for small λ, we obtain ‖gz‖H = O(λ−1/2), whereas for large lambda it is ‖gz‖H = O(λ−1).

A.11 Proof of Theorem 4

First, we prove Theorem 4 (a). The result follows from the following Lemma 6, which builds on the
Lemma 4 in Bartlett and Traskin (2007) supplemented by the uniform convergence of the truncated
loss to φ-loss presented in Lemma 7.

Lemma 6. For an Arch boosting loss function φ satisfying Assumption 2, let Lφ be the Lipschitz
constant of φ, that is Lφ = inf{L > 0 : |φ(x)−φ(y)| ≤ L|x− y|, x, y ∈ R}, and Mφ be the maximum
value of φ, i.e. Mφ = supx∈R φ(x). Then for V = dV C(H), c = 24

∫ 1
0

√
log 8e

µ2
dµ and sequences

Tn →∞ and ζn →∞ as n→∞, and δn → 0 as n→∞, with probability at least 1− δn,

sup
f∈πζn◦FTn

|R̂φ,n(f)−Rφ(f)| ≤ cζnLφ

√
(V + 1)(Tn + 1) log2(2(Tn+1)

log 2 )

n
+Mφ

√
log 1

δn

2n
, (37)

where the truncation function πl(·) is defined as πl(x) = l1{x > l} + x1{|x| ≤ l} − l1{x < −l}.
Furthermore, if we choose δn, Tn and ζn such that

∑∞
n=1 δn < ∞, and right hand side of (37)

converges to zero as n→∞, then supf∈πζn◦FTn |R̂φ,n(f)−Rφ(f)| → 0 a.s. as n→∞.

Proof of Lemma 6. The result mainly follows from Lemma 3 and 4 in Bartlett and Traskin (2007).
Since φ satisfies Assumption 2, we know Lφ andMφ both exist and are finite, and maxv∈[−ζn,ζn] |φ(v)| =
Mφ for all n. The almost surely convergence follows from Borel-Cantelli Lemma.

In order to make the RHS of (37) converging to zero, we can choose δn = 1
n2 , ζn = κ log n and

Tn = n1−ε with κ > 0, ε ∈ (0, 1) and κ < 1
2ε. Then by Borel-Cantelli lemma, since

∑∞
n=1 δn =∑∞

n=1
1
n2 < ∞, we obtain supf∈πζn◦FTn |R̂φ,n(f) − Rφ(f)| → 0 .a.s. as n → ∞. In order to get rid

of the truncation πζn , we will need the next Lemma 7.

Lemma 7. Let φ be an Arch boosting loss function satisfying Assumption 2. Then for any increasing
positive sequence ζn →∞, we have

sup
f∈FTn

∣∣|R̂φ,n(f)−Rφ(f)| − |R̂φ,n(πζn ◦ f)−Rφ(πζn ◦ f)|
∣∣→ 0 a.s.

when n→∞.

Proof of Lemma 7. First note that∣∣|R̂φ,n(f)−Rφ(f)| − |R̂φ,n(πζn ◦ f)−Rφ(πζn ◦ f)|
∣∣

≤
∣∣R̂φ,n(f)−Rφ(f)− (R̂φ,n(πζn ◦ f)−Rφ(πζn ◦ f))

∣∣
≤
∣∣Rφ(f)−Rφ(πζn ◦ f)

∣∣+
∣∣R̂φ,n(f)− R̂φ,n(πζn ◦ f)

∣∣. (38)
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And for any Arch boosting loss function φ satisfying Assumption 2, since limv→∞ φ(v) and
limv→−∞ φ(v) both exist in R, given any ε > 0, we know there existsM > 0 such that |φ(u)− φ(w)| <
ε/2 for all |u|, |w| > M and uw > 0 by the definition of convergence.

Now for any (X,Y ) ∈ X × Y and any f ∈ FTn , if we choose ζ > M , then when |f(X)| < ζ,
|Y πζ ◦ f(X)| = |Y f(X)| and hence |φ(Y f(X))− φ(Y πζ ◦ f(X))| = 0 < ε/2. When |f(X)| ≥ ζ,
we have |Y πζ ◦ f(X)| = |Y ζ| = ζ > M , |Y f(X)| = |f(X)| ≥ ζ > M , and Y f(X)Y πζ ◦ f(X) =
f(X)πζ ◦ f(X) > 0, so again |φ(Y f(X))− φ(Y πζ ◦ f(X))| < ε/2 by the discussion in previous
paragraph. In summary, we have

|φ(Y f(X))− φ(Y πζ ◦ f(X))| < ε/2 (39)

for all ζ > M , (X,Y ) ∈ X × Y and f ∈ FTn . Now in (38),∣∣Rφ(f)−Rφ(πζn ◦ f)
∣∣ ≤ EX,Y

∣∣φ(Y f(X))− φ(Y πζn ◦ f(X))
∣∣.

Since ζn is increasing and ζn → ∞ as n → ∞, there exists N ∈ N such that for all n > N , we
have ζn > M , and hence EX,Y

∣∣φ(Y f(X))− φ(Y πζn ◦ f(X))
∣∣ < ε/2 for all n > N by (39). For the

empirical risk part, we have

∣∣R̂φ,n(f)− R̂φ,n(πζn ◦ f)
∣∣ ≤ n∑

i=1

1

n

∣∣φ(Yif(Xi))− φ(Yiπζn ◦ f(Xi))
∣∣.

But for each i = 1, · · · , n, we know (Xi, Yi) ∈ X×Y, and hence by (39), |φ(Yif(Xi))− φ(Yiπζ ◦ f(Xi))| <
ε/2 for all n > N and for all i. Therefore, the right hand side of the above equation is smaller than∑n

i=1
1
n
ε
2 = ε/2 for all n > N , and this is true for any i.i.d. observations (X1, Y1), · · · , (Xn, Yn) from

X × Y and any f ∈ FTn . Therefore, we have for all n > N , f ∈ FTn and any i.i.d. observations
(X1, Y1), · · · , (Xn, Yn),∣∣Rφ(f)−Rφ(πζn ◦ f)

∣∣+
∣∣R̂φ,n(f)− R̂φ,n(πζn ◦ f)

∣∣ < ε,

that is, supf∈FTn
∣∣Rφ(f) − Rφ(πζn ◦ f)

∣∣ +
∣∣R̂φ,n(f) − R̂φ,n(πζn ◦ f)

∣∣ ≤ ε for all n > N and
(X1, Y1), · · · , (Xn, Yn) ∈ X ×Y. Since ε is arbitrarily chosen, we know supf∈FTn

∣∣Rφ(f)−Rφ(πζn ◦
f)
∣∣+ ∣∣R̂φ,n(f)− R̂φ,n(πζn ◦ f)

∣∣→ 0 as n→∞, and hence supf∈FTn
∣∣|R̂φ,n(f)−Rφ(f)| − |R̂φ,n(πζn ◦

f)−Rφ(πζn ◦ f)|
∣∣→ 0.

By Lemma 7,

0 ≤

∣∣∣∣∣ sup
f∈FTn

|R̂φ,n(f)−Rφ(f)| − sup
f∈FTn

|R̂φ,n(πζn ◦ f)−Rφ(πζn ◦ f)|

∣∣∣∣∣
≤ sup

f∈FTn

∣∣∣|R̂φ,n(f)−Rφ(f)| − |R̂φ,n(πζn ◦ f)−Rφ(πζn ◦ f)|
∣∣∣→ 0 a.s. as n→∞.

Therefore, if supf∈πζn◦FTn |R̂φ,n(f)−Rφ(f)| → 0 .a.s., that is, supf∈FTn |R̂φ,n(πζn ◦f)−Rφ(πζn ◦
f)| → 0 a.s., then supf∈FTn |R̂φ,n(f)−Rφ(f)| → 0 a.s. as n→∞. Theorem 4 (a) is proved.

Here we want to emphasize on the boundedness of loss function φ as a key prerequisite for
Theorem 4 (a). For an unbounded function (e.g. exponential loss), without truncating on the
classifier f , we may not have the above conclusion about the uniform deviation between R̂φ,n(f)
and Rφ(f) in FTn even when Tn →∞ slow enough.

Before proving Theorem 4 (b), we need the following inequality.
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Lemma 8. For any family of functions F and loss function φ, and for any sample Sn, let f∗n =
argminf∈F R̂φ,n(f), we have

0 ≤ Rφ(f∗n)− inf
f∈F

Rφ(f) ≤ 2 sup
f∈F
|R̂φ,n(f)−Rφ(f)|.

Proof of Lemma 8. By the choice of f∗n, we know |R̂φ,n(f∗n)−Rφ(f∗n)| ≤ supf∈F |R̂φ,n(f)−Rφ(f)|.
Then

Rφ(f∗n)− inf
f∈F

Rφ(f) ≤ Rφ(f∗n)− R̂φ,n(f∗n) + R̂φ,n(f∗n)− inf
f∈F

Rφ(f)

≤ sup
f∈F
|R̂φ,n(f)−Rφ(f)|+ sup

f∈F

(
R̂φ,n(f∗n)−Rφ(f)

)
≤ 2 sup

f∈F
|R̂φ,n(f)−Rφ(f)|.

Let F = FTn in the above lemma, then f∗n = argminf∈FTn R̂φ,n(f), and hence we can bound
Rφ(f∗n)− inff∈FTn Rφ(f) by

0 ≤ Rφ(f∗n)− inf
f∈FTn

Rφ(f) ≤ 2 sup
f∈FTn

|R̂φ,n(f)−Rφ(f)|. (40)

Therefore, if we can show that

sup
f∈FTn

|R̂φ,n(f)−Rφ(f)| → 0 a.s. (41)

as n→∞, then Rφ(f∗n)→ R∗φ a.s. by inequality (40) and Assumption 1. But (41) is just Theorem
4 (a).

A.12 Proof of Lemma 5

For part (a), we will use Hoeffding’s inequality for bounded random variables to obtain

P(R̂φ,n(f̃n)−Rφ(f̃n) ≥ tn) ≤ exp

(
−2nt2n
M2
φ

)
= δn,

where Mφ = supx∈R φ(x). Since f̃n only depends on n, we know {φ(Yif̃n(Xi))}ni=1 are independent.
We require tn → 0 as n → ∞ and

∑∞
n=1 δn < ∞. For example, we take tn = 1

n1/4 . Then by
Borel-Contelli Lemma, we have Lemma 5 (a).

For part (b), by the numerical convergence Theorem 1, we know R̂φ,n(FT ) → R∗φ,n a.s. as
T → ∞, and the convergence rate only depends on T . Now let {Tn}∞n=1 be a sequence with
Tn → ∞, we then have R̂φ,n(FTn) − R∗φ,n → 0 as n → ∞. But R̂φ,n(f̃n) ≥ R∗φ,n, therefore,(
R̂φ,n(FTn)− R̂φ,n(f̃n)

)
+
→ 0 a.s. when n→∞.

A.13 Proof of Corollary 1

We will now adapt the method of Bartlett and Traskin (2007) (see Theorem 1 therein) to incorporate
non-convex losses. For almost every w ∈ (w,S,P), we can have sequences ε1n(w) → 0, ε2n(w) → 0
and ε3n(w)→ 0 such that

Rφ(FTn) ≤ Rφ,n(FTn) + ε1n(w) (42)

≤ Rφ,n(f̃n) + ε1n(w) + ε2n(w) (43)

≤ Rφ(f̃n) + ε1n(w) + ε2n(w) + ε3n(w). (44)
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(42) follows from Theorem 4 (a), (43) follows from Theorem 5 (b), and (44) follows from Theorem
5 (a).

Finally by Theorem 4 (b) and how we chosen the reference sequence {f̃n}, we have Rφ(f̃n)→ R∗φ
as n → ∞. It follows from (44) that Rφ(FTn) → R∗φ a.s. as n → ∞. Since φ is an Arch boosting
function, we know φ is classification-calibrated, and hence by Theorem 3 in Bartlett et al. (2006),

L(sign(FTn))→ L∗ a.s.

as n→∞.

References

P. Bartlett, M. Jordan, and J. McAuliffe. Convexity, classification, and risk bounds. Journal of the
American Statistical Association, 101(473):138-156, 2006.

P. Bartlett and M. Traskin. Adaboost is consistent. Journal of Machine Learning Research, 8:
2347-2368, 2007.

A. Ben-Israel and B. Mond. What is invexity? The Journal of the Australian Mathematical Society.
Series B. Applied Mathematics, 28(01), 1-9, 1986.

S. Boucheron, G. Lugosi, and O. Bousquet. Concentration inequalities. Advanced Lectures on
Machine Learning. Springer Berlin Heidelberg, 208-240, 2004.

L. Breiman. Population theory for boosting ensembles. Annals of Statistics, 32 (??), 1–11, 2004.
N. Cesa-Bianchi, S. Shalev-Shwartz, and O. Shamir. Online Learning of Noisy Data. Information
Theory, IEEE Transactions on, 57(12):7907-7931, 2011.

A. Christmann and I. Steinwart. On robustness properties of convex risk minimization methods for
pattern recognition. The Journal of Machine Learning Research, 5:1007-1034, 2004.

A. Christmann and I. Steinwart. Consistency and robustness of kernel-based regression in convex
risk minimization. Bernoulli, 13(3):799-819, 2007.

M. Collins, RE. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman distances.
Machine Learning, 48(1-3):253-285, 2002.

B. Craven and B. Glover. Invex functions and duality. J. Austral. Math. Soc. Ser. A, 39, 1-20, 1985.
P. L. Davies and U. Gather, Breakdown and groups Annals of Statistics, 38,3, 977-988, 2005.
A.G. Deshwar and Q. Morris. PLIDA: cross-platform gene expression normalization using perturbed

topic models. Bioinformatics, 30:(7):956-961, 2014.
T.G. Dietterich. An experimental comparison of three methods for constructing ensembles of deci-

sion trees: bagging, boosting, and randomization. Machine Learning, 40(2):, 139–158, 2000.
C. Domingo and O. Watanabe. Madaboost: a modified version of adaboost. In Proceedings of the
Thirteenth Annual Conference on Computational Learning Theory, 180–189, 2000.

D. L. Donoho and P. J. Huber. The notion of breakdown point. In A Festschrift for Erich L.
Lehmann (P. J. Bickel, K. Doksum and J. L. Hodges, Jr., eds.), p 157–184, 1983.

B. Efron and C. Stein. The jackknife estimate of variance. The Annals of Statistics, 586-596, 1981.
Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121

(2):256-285, 1995.
Y. Freund. An adaptive version of the boost-by-majority algorithm. Machine learning, 43(3):

293-318, 2001.
Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application

to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.
Y. Freund and R. Schapire. Large margin classification using the perceptron algorithm. In Pro-
ceedings of the Eleventh Annual Conference on Computational Learning Theory, pages 209–217.,
1998.

41



Y. Freund. A more robust boosting algorithm. arXiv preprint arXiv:0905.2138, 2009
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting.
Annals of statistics, 28(2):337-407, 2000.

J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics,
1189-1232, 2001.

J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning. Vol. 1. Springer,
Berlin: Springer series in statistics, 2001.

C. Gentile and N. Littlestone. The robustness of the p-norm algorithms. In Proceedings of the 12th
Annual Conference on Computational Learning Theory, pages 1–11, 1999.

M. G. Genton, and A. Lucas. Comprehensive definitions of breakdown points for independent and
dependent observations. J. R. Stat. Soc. Ser. B Stat. Methodol., 65, 81–94, 2003.

P.D. Grünwald and A. P. Dawid Game theory, maximum entropy, minimum discrepancy and robust
Bayesian decision theory. Annals of Statistics 32 (4), 1367–1433, 2004

F. R. Hampel, F. R. Contributions to the theory of robust estimation. Ph.D. dissertation, Univ.
California, Berkeley, 1968.

F. Hampel. The influence curve and its role in robust estimation. Journal of the American Statistical
Association, 69:383-393, 1974.

F. Hampel, E. Ronchetti, P. Rousseeuw, and W. Stahel. Robust Statistics. The approach based on
influence functions. Wiley, New York, 1986.

C. Hennig. Breakdown points for maximum likelihood estimators of location?scale mixtures. Annals
of Statistics 32„ no. 4, 1313–1340, 2004.

P. Huber. Robust Statistics. Wiley Series in Probability and Mathematical Statistics. John Wiley
& Sons, Inc., New York, pp. 308 pp, 1981.

W. Jiang. Process consistency for AdaBoost. The Annnals of Statistics 32 (1), 13–29. 2004.
T. Kanamori, T. Takenouchi, S. Eguchi and N. Murata, Robust loss functions for boosting,
Neural Computation 19, 2183?2244, 2007.

M. Kearns and M. Li. Learning in the presence of malicious errors. SIAM Journal on Computing,
22(4):807–837, 1993.

Kobetski, Miroslav, and J. Sullivan. Improved Boosting Performance by Exclusion of Ambiguous
Positive Examples. In ICPRAM, 11-21, 2013.

V. Koltchinskii and D. Panchenko. Empirical Margin Distributions and Bounding the Generaliza-
tion Error of Combined Classifiers. The Annnals of Statistics 30 (1), 1–50. 2002.

N. Littlestone. Redundant noisy attributes, attribute errors, and linear-threshold learning using
winnow. In Proceedings of the Fourth Annual Workshop on Computational Learning Theory,
pages 147–156, 1991.

P. M. Long and R.A. Servedio Random Classification Noise Defeats All Convex Potential Boosters.
Machine Learning, 78(3): 287–304, 2010.

G. Lugosi and N. Vayatis. On the Bayes-risk consistency of regularized boosting methods. The
Annual of Statistics, 32(1): 30–55, 2004.

L. Mason, J. Baxter, P. Bartlett and M.Frean. Functional gradient techniques for combining hy-
potheses. Advances in Neural Information Processing Systems, pages 221-246, 1999.

P. McCullagh and J.A. Nelder. Generalized Linear Models. Chapman & Hall/CRC, 1989.
H. Masnadi-Shirazi and N. Vasconcelos. On the design of loss functions for classification: theory,

robustness to outliers, and savageboost. Advances in Neural Information Processing Systems 21,
pp. 1049–1056, 2009.

Mishra, S. Kant, and G. Giorgi. Invex Functions (The Smooth Case). Invexity and Optimization,
11-38, 2008.

C. H. Müller and S. Uhlig. Estimation of variance components with high breakdown point and high
efficiency. Biometrika, 88, 353–366, 2001.

42



N. Natarajan, J. Dhillon, P. Ravikumar and A. Tewari. Learning with Noisy Labels. In Advances
in Neural Information Processing Systems 26, pages 1196–1204, 2013.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, pages
2825-2830, 2011.

A.F. Ruckstuhl, and A.H, Welsh. Robust fitting of the binomial model. Annals of Statistics, 29,
1117–1136, 2001.

P. J. Rousseeuw. Least median of squares regression. J. Amer. Statist. Assoc. , 79, 871–880, 1984.
L. Savage. The elicitation of personal probabilities and expectations. Journal of the American
Statistical Association, 66(336):783-801, 1971.

R. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin: a new explanation for the
effectiveness of voting methods. Annals of Statistics, 26(5):1651–1686, 1998.

R. Schapire. Theoretical views of boosting and applications. In Proceedings of the Tenth Interna-
tional Conference on Algorithmic Learning Theory, pages 12–24, 1999.

C. Scott, G. Blanchard, G. Handy, S. Pozzi, and M. Flaska Classification with Asymmetric Label
Noise: Consistency and Maximal Denoising ArXiv e-prints 1303.1208, 2013.

R. Servedio. Smooth Boosting and Learning with Malicious Noise. Journal of Machine Learning
Research, 4, pages 633-648, 2003.

L.A. Stefanski,Y. Wu and K. White. Variable Selection in Nonparametric Classification via Mea-
surement Error Model Selection Likelihoods Journal of American Statistical Association, 109:
(506):574Ð589, 2014.

W. Street, W. Wolberg, and O. Mangasarian. Nuclear feature extraction for breast tumor diag-nosis.
In Proc. Int. Symp. Electronic Imaging: Science and Technology, San Jose, 861-870.

A. J. Stromberg and D. Ruppert. Breakdown in nonlinear regression. J. Amer. Statist. Assoc. 87,
991–997, 1992.

D.E. Tyler. Finite sample breakdown points of projection based multivariate location and scatter
statistics. Annals of Statistics, 22, 1024–1044, 1994.

X. Zhang, Y. Wu, L. Wang, and R. Li. Variable selection for support vector machines in moderately
high dimensions. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
2014.

T. Zhang and B. Yu, Boosting with early stopping: Convergence and consistency. Annals of
Statistics 33 (4) 1538–1579, (2005).

43


	1 Introduction
	2 Arch Boost
	3 Robust boosting algorithms
	3.1 A non-convex loss
	3.2 Loss functions for Arch Boost
	3.3 A family of non-convex functions and ARB- algorithms

	4 Theoretical Considerations
	4.1 Numerical convergence of Arch Boost algorithm 
	4.2 Robustness
	4.2.1 An invex function view of robustness
	4.2.2 Breakdown point
	4.2.3 Influence function

	4.3 Statistical Consistency of Arch Boost

	5 Numerical Experiments
	5.1 Simulated Examples
	5.2 Long/Servedio problem
	5.3 Outlier detection
	5.4 Real data application
	5.4.1 Wisconsin (diagnostic) breast cancer data set
	5.4.2 Sensorless drive diagnosis data set
	5.4.3 MAQC-II Project: human breast cancer (BR) data set

	5.5 Discussion

	Appendix A Proofs
	A.1 Derivation of ARB- algorithms
	A.2 Proof of Lemma 1
	A.3 Proof of Remark 2
	A.4 Proof of Lemma 2
	A.5 Solution of (17)
	A.6 Proof of Lemma 3
	A.7 Proof of Theorem 1
	A.8 Proof of Theorem 2
	A.9 Proof of Lemma 4
	A.10 Proof of Theorem 3
	A.11 Proof of Theorem 4
	A.12 Proof of Lemma 5
	A.13 Proof of Corollary 1




