
UC Irvine
UC Irvine Previously Published Works

Title
What You Trace is What You Get: Dynamic Stack-Layout Recovery for Binary
Recompilation

Permalink
https://escholarship.org/uc/item/8d3363v4

Authors
Parzefall, Fabian
Deshpande, Chinmay
Hetzelt, Felicitas
et al.

Publication Date
2024-04-27

DOI
10.1145/3620665.3640371

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8d3363v4
https://escholarship.org/uc/item/8d3363v4#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

What You Trace is What You Get: Dynamic
Stack-Layout Recovery for Binary Recompilation

Fabian Parzefall
University of California, Irvine

Irvine, California, USA
fparzefa@uci.edu

Chinmay Deshpande
University of California, Irvine

Irvine, California, USA
cddespha@uci.edu

Felicitas Hetzelt
University of California, Irvine

Irvine, California, USA
fhetzelt@uci.edu

Michael Franz
University of California, Irvine

Irvine, California, USA
franz@uci.edu

Abstract
Users of proprietary and/or legacy programs without ven-
dor support are denied the significant advances in compiler
technologies of the past decades. Adapting these technolo-
gies to operate directly on binaries without source code is
often infeasible. Binary recompilers attempt to bridge this
gap by “lifting” binary executables to compiler-level interme-
diate representations (IR) and “lowering” them back down
to executable form, enabling application of the full range of
analyses and transformations available in modern compiler
infrastructures. Past approaches could not recover local vari-
ables in lifted programs with sufficient precision, which is
a necessary prerequisite for many compiler-related applica-
tions, including performance optimization. They have relied
on heuristics failing on certain input programs, or on con-
servative over-approximations yielding imprecise results.
In this paper, we present a novel approach, WYTIWYG,

to recover function-local variables within lifted binaries.
Our approach is fully automated and preserves function-
ality for user-provided inputs. This is accomplished by de-
composing the recovery of local variables into a series of
instrumentation-based dynamic binary analyses. We con-
duct an extensive set of careful evaluations on the SPECint
2006 benchmark suite, including direct comparisons with
two previously published state-of-the-art binary recompil-
ers. Our approach recompiles fully optimized commercial
off-the-shelf binaries compiled with the latest compilers. Us-
ing performance of recompiled binaries as an indicator of
IR-quality, our approach significantly outperforms similar
recompilers by 1.18𝑥 on average. Furthermore, WYTIWYG

This work is licensed under a Creative Commons Attribution International
4.0 License.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0385-0/24/04
https://doi.org/10.1145/3620665.3640371

accelerates legacy binaries optimized by older compilers by
an astounding 1.22𝑥 .

CCS Concepts: • Software and its engineering→ Soft-
ware reverse engineering; Dynamic analysis.

Keywords: binary analysis, binary lifting, binary rewriting,
recompilation, stack analysis, variable recovery

ACM Reference Format:
Fabian Parzefall, ChinmayDeshpande, Felicitas Hetzelt, andMichael
Franz. 2024. What You Trace is What You Get: Dynamic Stack-
Layout Recovery for Binary Recompilation. In 29th ACM Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2 (ASPLOS ’24), April 27-May
1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3620665.3640371

1 Introduction
Over the past decades, open compiler infrastructures have
seen enormous investments by both academic researchers
and industry users to advance the analysis, optimization and
safety of software. Unfortunately, these advances are often
denied to users of legacy binaries. Binaries of programs that
can no longer be recompiled from their source code are ef-
fectively “stuck in time”. This happens when a vendor ceases
support of the software, toolchains are unavailable, or the
program’s source code has been lost. Naturally, not being
able to recompile software makes maintenance of legacy
binaries very challenging. For instance, users of legacy bi-
naries cannot reoptimize them to utilize features of recent
CPUs, easily fix known bugs and vulnerabilities, or deploy
sanitizers and mitigations that are readily available in exist-
ing compilers. At the same time, replacing legacy software
can be very expensive and is often infeasible.
This issue is addressed by a wide body of research in

end-to-end static binary rewriting [22]. Many of the exist-
ing approaches are quite effective and capable of applying
all kinds of program transformations to commercial off-the-
shelf (COTS) binaries. However, most binary rewriting frame-
works have a narrow scope and support only a small subset

1250

https://orcid.org/0009-0008-5324-5403
https://orcid.org/0000-0003-3035-9869
https://doi.org/10.1145/3620665.3640371
https://doi.org/10.1145/3620665.3640371
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620665.3640371&domain=pdf&date_stamp=2024-04-27

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Fabian Parzefall, Chinmay Deshpande, Felicitas Hetzelt, and Michael Franz

of program transformations compared to compilers. State-
of-the-art rewriters, such as Egalito [23], support alteration
of the program’s control-flow graph (CFG) and modification
of linear instruction sequences, but provide no help in ma-
nipulating accesses to variables and their layout in memory.
Binary recompilers attempt to bridge the gap between

rewriters and compilers by “lifting” binaries to compiler-
level intermediate representations (IRs). Unlikemost IRs used
by rewriters, compiler-level IRs like LLVM IR [13] encode
source-level program structures, such as local and global vari-
ables, and types of variables and functions. However, like
rewriters, state-of-the-art recompilers usually omit the recov-
ery of these structures. This is unsurprising, since recovery
of variables from binaries is inherently undecidable [10] and
a problem of ongoing research [14, 15, 21, 25]. Hence, the
programs lifted by recompilers like McSema [7], Rev.ng [6]
and BinRec [1] are oblivious to global and local variables,
function arguments, saved registers, and spills. Without this
information, the efficacy ofmany program analysis and trans-
formation techniques is severely diminished. Any transfor-
mations that affect the program’s memory-layout (e.g., Ad-
dressSanitizer [19]) cannot be applied to local or global vari-
ables. Additionally, program analysis techniques that operate
around mappings of variables to sets of their possible values
cannot scale without this information.
To overcome these shortcomings, binary lifters augment

direct references to stack memory and global data with sym-
bols that denote distinct variables. This process is also called
symbolization and is supported to some extent by several bi-
nary lifters via static program analysis. However, RetDec [12]
and mctoll [24] cannot successfully recompile any of the
SPECint 2006 benchmarks [16]. The authors of McSema [7]
have conveyed to us that recompilation itself is not reliable
and requires a skilled operator to fix issues manually. Sec-
ondWrite [2] implements a more comprehensive analysis
compared to the other tools and offers better compatibility.
Nevertheless, we found that, because of the conservative
nature of their analysis, SecondWrite associates all local vari-
ables of functions beyond a certain complexity with a single
symbol rather than recovering individual variables.

Lifters using static analysis for variable recovery are forced
to choose between preserving program functionality and
achieving fine-grained variable recovery. The former pre-
vents lifting of the binary to an IR that details precise data-
dependencies, inhibiting further processing of the program.
The latter is prone to alter program semantics in unpre-
dictable ways, which introduces subtle bugs that are ampli-
fied by subsequent optimizations. Because of these limita-
tions, recompilers fall short on the promise of delivering
the advances of compilers and their ecosystem to binaries.
This has been confirmed in a study by Liu et al. [16], in
which they investigated how programs lifted by various
binary-to-LLVM lifters and recompilers perform in various
downstream applications.

In this paper, we propose a dynamic approach,WYTIWYG,
to identify and symbolize local variables in functions within
lifted COTS-binaries. To facilitate this, WYTIWYG employs
an instrumentation-based approach that tracks pointers to
stack variables throughout the program and observes how
the program derives new pointers from existing ones. Un-
like static approaches, relying on dynamic observation of
real executions allows us to symbolize functions with high
precision while preserving all semantics that are exhibited
by the traced inputs.
Our prototype is implemented on top of BinRec [1], a bi-

nary recompiler using execution traces to lift programs to
LLVM IR. We chose BinRec because it is the only lifter that
can reliably recompile SPECint 2006 programs. We leverage
the existing lifting capability to instrument and rewrite the
lifted programs in an iterative process we call refinement
lifting. Through a series of refinement iterations, WYTIWYG
identifies the stack-layout of lifted functions and symbolizes
all references to local variables. To our knowledge, WYTI-
WYG is the first system using dynamic analysis to symbolize
lifted programs.

We evaluate our implementation in three ways. First, we
verify the ability of WYTIWYG to symbolize programs from
the SPECint 2006 benchmark suite while retaining their func-
tionality. Each target benchmark is compiled in multiple con-
figurations with different compilers and optimization levels
to ensure a broad range of inputs. Second, we estimate the
“quality” of the generated IR. Since there is no agreed-upon
benchmark to measure IR-quality, we rely on performance
measurements of the recompiled binaries as a proxy indica-
tor for IR-quality. Language frontends strive to produce IR
that is best understood by passes that are part of LLVM, and
developers within the LLVM ecosystem optimize their down-
stream applications to process IR emitted by those frontends.
Since LLVM’s primary purpose is program optimization and
efficient code generation, we argue that a decrease in runtime
overhead indicates that the refined programs better match
the expectations of LLVM and LLVM-based tools. Last, we
conduct a comparative analysis of the inferred stack layouts
against the ground-truth data provided by LLVM to ascertain
the accuracy of our approach.

To summarize, we make the following key contributions:

• We present the first binary recompiler capable of sym-
bolizing local variables in lifted COTS-binaries pre-
cisely while preserving the semantics of the input pro-
gram.

• We utilize a novel technique, refinement lifting, that
employs a series of dynamic analysis passes and suc-
cessive transformations to canonicalize and symbolize
binaries iteratively.

• We evaluate our implementation on a set of real-world
benchmarks and compare it to existing state-of-the-art
approaches. We demonstrate that our approach han-

1251

What You Trace is What You Get: Dynamic Stack-Layout Recovery for Binary Recompilation ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

dles real-world programs reliably while significantly
improving IR-quality. Our fine-grained stack partition-
ing allows LLVM to generate recompiled programs
whose performance competes with the fully optimized
input binaries (on average 1.06𝑥 to 1.10𝑥 runtime for
Clang 16 and GCC 12.2 binaries, respectively) and sig-
nificantly outperform binaries generated by any other
binary recompiler. Further, legacy programs generated
by older compilers (GCC 4.4) can be effectively reopti-
mized, speeding them up by 1.22𝑥 on average. Finally,
we show that our technique identifies stack variables
with a precision of 94.4% and a recall of 87.6%.

2 Background
2.1 Binary Recompilation
State-of-the-art binary recompilers usually operate in three
phases. First, the target program is analyzed for its control-
flow graph (CFG). Recovery of the CFG can be performed
both statically [6, 7] and dynamically [1]. Then, the CFG is
used to lift the program to a compiler-level IR (all state-of-
the-art recompilers target LLVM IR). The operator of the
recompiler can now apply the desired transformations and
optimizations to the lifted program. And finally, the program
is recompiled into a new binary.
One key challenge of lifting binaries is the translation of

machine instructions to semantically equivalent instructions
expressed in the compiler-level IR. Most machine instruc-
tions cannot be directly mapped to IR instructions. Modern
CPUs comprise numerous instructions that modify multi-
ple registers all at once, operate on processor-internal state,
and/or are implicitly affected by status or control registers
(e.g., the x87 floating point stack). Compared to that, com-
piler IRs usually comprise very few instructions that have
no side effects and declare all their dependencies explicitly.

Recompilers solve this by generating a new program that
effectively emulates the semantics of the input binary. The
lifter translates each machine instruction into a sequence
of IR-instructions that replicate its effects on a virtual CPU
embedded in the lifted program. For instance, a 32-bit x86
push instruction is lifted to an instruction-sequence, that

Process Image

Sp
ill

s,
Ca

ll
St

ac
k

Ru
nt

im
e

A
llo

ca
tio

ns

Lifted Instructions

Global Variables
Emulated Stack

Original Globals

Native Stack

Original
Locals

Original
Globals

Original Heap Allocations

CPU State

U
pd

at
es

Heap

Figure 1. Process image of a recompiled binary.

(1) subtracts 4 from the emulated esp register, (2) loads the
pushed operand, (3) stores the operand to the address in
esp, and (4) sets the emulated program counter to the next
instruction’s address. Although this technique initially in-
creases the size of the program significantly, most generated
instructions are redundant and can be eliminated. For ex-
ample, the virtual program counter is updated within every
translated instruction-sequence, but is only used to compute
addresses of global variables or determining the targets of
indirect control flows.
In order for this approach to work, the lifted program

needs two stacks: a “native stack” that is used by the “emu-
lator” and holds the call stack of the lifted program, and a
pre-allocated byte-array, that is used as “emulated stack” and
holds the original program’s call stack and local variables
(see Figure 1). In this model, the lifted code emulates calls,
function prologues and epilogues, spills, and local variables
of the original program through the virtual stack pointer.

Maintaining two stacks naturally has some overhead, such
as increased register pressure of tracking two stacks and set-
ting up two frames for every function call. More importantly,
lifting the stack as an opaque byte array severely limits the
recompiler’s ability to reason about the program. Consider
the assignment and use of ptr in lines 4 and 7 of Figure 2.
Since out-of-bound accesses are undefined behaviour, the
source-compiler can assume that the access to b in line 5
cannot alias the value of ptr. This information is lost during
compilation. Now, in order to infer that the loaded value of
ptr in line 7 is identical to the spilled value in line 5, the
recompiler has to prove that ebp-44+f3(24)*8 cannot alias
with ebp-12. Depending on the complexity of the operations
involved in the address computation, this analysis quickly
becomes challenging.
Crucially, this prevents generation of precise use-define

chains between reloaded values and the sites at which they
are spilled. Although the write through ptr->y can be linked
with the value returned by f2, the compiler also has to con-
sider indirect writes as potential definitions. Because of this,
an alias analysis for example cannot narrow down that access
to variables a and b, which diminishes any ability to reason
about the program even further. This analysis hazard affects
not only pointers, but any complex expression spanning mul-
tiple instructions involving values loaded from the stack. We
found this to be an issue in all binary recompilers and identi-
fied it as the primary cause limiting the efficacy of program
analyses and transformations. Liu et al. have confirmed this
finding in their study of binary recompilers [16].

2.2 Stack Symbolization
Stack symbolization is the process of labeling direct refer-
ences to the stack with symbols that denote distinct local
variables. Direct references to local variables are only found
within the program text of the function owning the frame.
They are indirectly encoded as a series of constant offsets rel-

1252

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Fabian Parzefall, Chinmay Deshpande, Felicitas Hetzelt, and Michael Franz

(b) Compiled x86

f1:
push %ebp # sav ebp
mov %esp, %ebp
sub $64, %esp
mov $3, -20(%ebp)
mov $4, -16(%ebp)
lea -44(%ebp), %eax
push %eax # arg2
lea -20(%ebp), %eax
push %eax # arg1
call f2 # retaddr2
mov %eax, -12(%ebp)

mov $24, (%esp) # arg1
call f3 # retaddr2
mov -20(%ebp), %ecx
mov %ecx, -44(%ebp,%eax,8)
mov -16(%ebp), %ecx
mov %ecx, -40(%ebp,%eax,8)
mov -36(%ebp), %ecx
mov -12(%ebp), %eax
mov %ecx, 4(%eax)
add $16, %esp
leave # sav ebp
ret # retaddr2

1

2
3
4
5
6
7
8

(a) Input C Code
typedef struct
 {int x;int y;} p;
size_t f3(size_t);
p* f2(p*, p*);
void f1() {
 p *ptr, a, b[3];
 a.x = 3;
 a.y = 4;
 ptr = f2(&a, b);
 b[f3(sizeof(b))]
 = a;
 ptr->y = b[1].x;
}

ptr
a.y
a.x

b[2].y
b[2].x
b[1].y

b[0].y
b[0].x
arg2
arg1

retaddr2

sav ebp

b[1].x

ebp-0

ebp-12

ebp-20

ebp-44
ebp-68
ebp-72
ebp-76

retaddr1

ptr->y

(c) Stack
Layout

b[?].x

sp0

b[1].x

Figure 2. An example function and its stack frame. f2 re-
turns one of its arguments. f3 returns a value less than its
first argument. Bold values in (a) and (b) refer to the stack.
For (c), assume f2 returned &a, and f3 returned 2.

ative to the initial value of the stack pointer sp0 at the start
of a function. For example, consider the array-access b[1]
in line 7 in Figure 2. The function computes the address to
this element using the value of ebp as base. The ebp register
itself holds the value sp0-4. Hence, the pointer computed by
this instruction can be expressed as sp0-4-36. To symbolize
this access, the stack frame has to be partitioned into individ-
ual variables. Ideally, an analysis would determine that the
frame contains an array b̂ at an offset of sp0-4-44 with a
size of 24 bytes. Using this information, the aforementioned
reference ebp-36 can be labelled with an expression relative
to the recovered variable b̂+8.
Despite the apparent low complexity of this function, it

is remarkably difficult to identify distinct local variables.
Accesses to members of composite types, such as in lines
2 and 3, are folded into direct offsets to the frame pointer
in optimized binaries and do not reveal their underlying
structure. For example, in order to determine the bounds of
variable a, an analysis has to establish that the access through
ptr to ebp-20 in line 7 can refer to the 8 byte memory area
allocated to a. If this condition is met, the offset of 4 and the
followingwrite reveal a’s total size of 8. At the same time, the
indirect access to b in line 5might access a or any other object
in the frame, unless an analysis can provide explicit bounds
for the return value of f3. As mentioned in Section 2.1, this
is often not possible. If the bounds of the access cannot be

int arr[4][4] = ...;
for(int i = 0; i < 4; ++i)
{
 arr[i][0] = ...;
 arr[i][1] = ...;
 arr[i][2] = ...;
 arr[i][3] = ...;
}

Base Pointer

End Pointer

ptr += 16

arr[0][0:4]

ptr += 16

ptr += 16

ptr += 16

Figure 3. Optimizations can transform the loop from incre-
menting an index to incrementing the base pointer, such
that the end pointer is located past the array. The individual
elements are accessed with a negative displacement.

determined, conservative static approaches are forced to
label all references to local variables of a function with a
single symbol.
Even if the stack frame has been perfectly partitioned

into its individual variables, labeling all references in the
function with the correct symbol is another challenge. In
C and C++, any expression that results in a pointer that is
out-of-bounds relative to its underlying array is undefined
behavior, even if the pointer is not dereferenced [11]. How-
ever, that does not prohibit compilers from generating code
that computes pointers lying outside the objects they refer
to. For instance, compilers can turn certain index-based iter-
ations over arrays into pointer-based iterations. Combined
with other optimizations, the “end”-pointer that is used in
the termination condition of such loops points, in rare cases,
outside its corresponding array. Figure 3 illustrates what the
access pattern of such a case looks like. Consequently, direct
references to the stack cannot be automatically associated
with variables that are allocated at the same position.

3 Overview
Figure 4 illustrates WYTIWYG’s binary recompilation pro-
cess in two phases. First, we rely on BinRec [1] to recover
the target binary’s CFG. BinRec uses a binary tracer (S2E [5])
that records all control transfers of the program with a user-
provided set of inputs. Based on the CFG, a machine code
to LLVM translator lifts the binary to LLVM IR using the
instruction emulation approach outlined in Section 2.1. This
program can already be recompiled, but it lacks variable
information.

Our main contribution comprises the symbolization phase,
which is outlined in gray in Figure 4. We split the symbol-
ization process into multiple steps with dedicated dynamic
analyses and IR-level transformations. This is similar to how
certain passes are used to simplify and canonicalize the IR
in regular compiler pipelines. Because this process refines
the lifted program’s IR and improves its quality in every
iteration, we call this approach Refinement Lifting.

1253

What You Trace is What You Get: Dynamic Stack-Layout Recovery for Binary Recompilation ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

BinRec

Input
Binary

LLVM
Translator

Compiler
+ Linker

Instrumentation
Runtime

Recovered
Binary

Refinement
Passes

Instrumentation
Passes

Optimization
Passes

WYTIWYG

ExecuteExecuteExecute

Binary
Tracer

Binary
Tracer

Binary
Tracer

Merge
CFGsInputInputInputs

Merge
Trace
Data

Lifted
IR

Figure 4. Overview of WYTIWYG. The upper section corre-
sponds to the original BinRec recompiler. The lower section
outlines our contribution. The red highlighted transitions
correspond to the Refinement Lifting process.

In this phase, WYTIWYG iteratively symbolizes local vari-
ables in each function using dynamic analyses. Because the
lifted program can be modified like any other LLVM pro-
gram, we can easily instrument the lifted IR and implement
all our dynamic analyses in an external library (similar to
sanitizer implementations in LLVM). At the end of each iter-
ation, the program is transformed according to the analysis
results, such that they are immediately available in the next
iteration.

4 Dynamic Stack Symbolization
To symbolize local variables, WYTIWYG employs two re-
finements. The first identifies all direct stack references and
rewrites them into expressions relative to sp0. The second
then determines the maximal offsets of pointers derived from
each direct stack reference, uses this information to compute
a stack layout for each function, and labels all direct refer-
ences with symbols referring to variables within the stack
layout.

4.1 Stack Reference Identification
To symbolize local variables comprehensively, we first need
to identify all values throughout the program that consti-
tute a direct reference to the program’s stack memory. As
explained in Section 2.2, direct stack references are pointers

within a function that are computed as a sequence of con-
stant displacements to sp0. By folding all uses of sp0, we
can identify all direct stack references, and simplify them
by replacing them with expressions of the form sp0+offset.
Consider the push instruction corresponding to arg1 of the
call in line 4 in Figure 2. It is initially lifted to this pseudo-IR:

@vcpu.esp = @vcpu.esp - 4;

*@vcpu.esp = @vcpu.ebp - 20;

After identifying all displacements, these instructions are
replaced with the following expression:

 *(%sp0 - 4 - 64 - 4 - 4) = %sp0 - 28;

push %ebp push %eax # arg2

push %eax # arg1sub $64, %esp

However, not all uses of sp0 can be trivially simplified,
since registers holding intermediate stack references are
frequently spilled onto the stack in function prologues and
epilogues. In our example, f1 saves and restores the ebp
register during the first push and the leave instructions.
From the recompiler’s perspective, it is not apparent that
the value of ebp is preserved across the invocation of f1.
Instead ebp appears to be assigned an opaque value loaded
from memory before returning from the call. If ebp holds an
intermediary stack reference (e.g., the frame pointer of the
calling function) before the call, none of the pointers derived
from it after the call can be folded into an offset of sp0.
To address this, we determine for each register used in

a function, whether it is merely saved on the stack for the
duration of the call, or whether it is part of the function’s
signature. Unfortunately, indirect accesses, as for example
the write to b in line 5, could modify any value stored on the
stack and therefore complicate determining whether ebp is
a saved register (refer to Section 2.2).

Saved registers are often identified through heuristics, that
rely on platform ABI conventions to codify, which registers
are to be saved to the stack before they can be used in a func-
tion, and which registers are used to transfer arguments and
return between the caller and the callee (such as the System
V ABI [17]). However, compilers (and sometimes developers)
can disregard these conventions for functions that are not
exported to other translation-units and define their own con-
ventions on a per-function basis. Additionally, if function
recovery cannot be performed with perfect accuracy, reg-
isters might not be saved and restored at the start and end
of the function, and they can be saved multiple times. This
can happen when tail-called functions are merged into their
caller (refer to Section 5.1). For these reasons, identifying
stack references based on heuristics is not reliable.

To avoid these issues, we use a dynamic analysis instead.
Upon function entry, we assign each register a symbolic
value and track how this value is used throughout the func-
tion. We consider a register saved, if the following conditions
are met:

1254

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Fabian Parzefall, Chinmay Deshpande, Felicitas Hetzelt, and Michael Franz

• Its symbolic value is only used in load- and store-
operations from and to the current function’s stack
frame. If the symbol is written to any other location
or used in any operation, we treat the register as an
argument to the function.

• When the function returns, the virtual register con-
tains its initially assigned symbol.

Sometimes, a register used to pass an argument is not
explicitly used throughout the called function’s entire body,
but is “forwarded” to another function. For example, in Fig-
ure 2b, the register edx is not used once. Without knowledge
of function signatures, f2 could either save edx to the stack,
or use it as an argument. If edx is used as an argument within
f2, we also need to make it an argument to f1. In a situation
like this, we examine a register’s usage within the function it
is forwarded to in order to determine whether it is saved. We
consider each forwarded register as saved, unless we classify
it as an argument in any of the functions it is passed to.
Since registers can be forwarded through multiple func-

tions until they are used, we defer evaluating the state of
forwarded registers until tracing is complete. During tracing,
we only record whenever a register symbol is forwarded
to another function. Afterwards, we use this information
to generate constraints for each forwarded register. In our
example, we would produce the constraint “if edx is used
as an argument in f2, then it is also an argument to f1”. If
that constraint is fulfilled, edx will be explicitly marked as
an argument to f1.
Having identified saved registers for all functions in the

binary, we preemptively save and restore these registers at
all call sites:

%tmp_ebp = @vcpu.ebp

call f1 # saves ebp

@vcpu.ebp = %tmp_ebp

This transforms the indirect dependency on the value of ebp
saved to and restored from the stack within f1 into a direct
dependency on the register’s value %tmp_ebp from before
the call. This IR refinement therefore substantially simplifies
the identification of stack references through register spills.
After folding all constant offset to sp0, all direct references
to objects on the emulated stack are expressed in terms of
sp0. These rewritten references serve as “base pointers” to
local variables in the next refinement.

4.2 Object Bounds Recovery
Having identified all direct stack references, this refinement’s
purpose is to determine the layout of each stack frame and
assign stack references to the identified variables. WYTI-
WYG uses a bottom-up approach to divide a stack-frame
into distinct variables. At this point, it is unknown which ref-
erences refer to the same object. Hence, we initially consider
each stack reference provided by the previous refinement

as a base pointer to a distinct local variable. Then, we use a
dynamic analysis to record the relative minimum and maxi-
mum offsets of pointers derived from each base pointer. This
yields an interval for each base pointer that indicates the
underlying object’s size. Expressing these intervals as ranges
in terms of sp0 yields continuous sections within each stack
frame that belong to the same variable.

To generate the stack layout, we merge all ranges that are
overlapping with each other and assign their associated base
pointers the same symbol. For example, consider the refer-
ences %ebp-44 and %ebp-36 to variable b in lines 6 and 7 of
Figure 2. Initially, we assume that these two pointers belong
to different objects. Once the dynamic analysis observes an
access to the third element of the array, the former pointer’s
interval will be recorded as [0;20] (offset of 16 and access
size of 4). Since this subsumes the latter pointer’s interval
[0;4], they belong to the same object.
This also means that if f3 returns 0 in every invocation

across all traces, the array will be split into two distinct sym-
bols. Since the generated layouts are the product of actual
executions, this approach ensures, for the provided set of
inputs, that all base pointers are associated with the correct
symbol and that the symbolized variables are sufficiently
large without causing unpredictable out-of-bounds accesses
(see also Section 7.2).

4.2.1 Tracing Runtime Overview. To track direct and
indirect stack references, we employ a runtime, which is
illustrated in Figure 5. We associate every previously identi-
fied base pointer with a unique id. For every id, we allocate
a StackVar within our runtime, which records the bounds
of the corresponding base pointer. We do not track the ad-
dress of the associated base pointer in its StackVar, because
one StackVar can be associated with the same variable in
multiple stack-frames of the same function in recursive call-
chains. As the program executes and derives new pointers
from existing ones, the instrumented binary informs the
runtime to update the bounds of individual StackVars.
To track whether an LLVM-value refers to a StackVar

during execution, we associate each LLVM-instruction with
a PointerInfo. Apart from a pointer to the currently refer-
enced StackVar, this metadata also records the offset from
the variable’s base pointer. We allocate these PointerInfo
objects for each function on the native stack, because a single
logical LLVM-value can point to multiple different objects
in recursive calls to the same function. Since x86 does not
distinguish between pointers and integers, it is not always
possible to determine statically whether a value loaded from
memory is a pointer. Hence, we track this metadata for every
pointer-sized integer. Additionally, wemaintain amapping of
memory-addresses to PointerInfo which is updated when-
ever a pointer to a stack variable is written to or read from
memory.

1255

What You Trace is What You Get: Dynamic Stack-Layout Recovery for Binary Recompilation ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

%b = add i32 %a, i32 8

Functions

Runtime LLVM Module

Linked Sets

var*

var*
....

....

var*

var*

FrameDescriptor
function*

frame_addr
in_regs

out_regs
callsite_info

Address Map

address

address

PointerInfo
...

PointerInfo
.......

.... optor
tion*
_addr
_regs
_regs
_info

Fu
nc

ti
on

StackVar
id=10
low=0
high=8
align=-1

StackVar
id=11
low=0
high=4
align=-1
....

16B

StackVar
id=12
low=0
high=8
align=-1

Call Stack

PointerInfo
base_offset = 0
var*

PointerInfo
base_offset = 8
var*

Emulated StackNative Stack

Figure 5. Overview of our tracing runtime.

4.2.2 Core Tracing Operations. In the following, we ex-
plain the central runtime operations that we instrument
lifted programs with. The arguments to all operations re-
fer to tracked LLVM instructions, which are pairs of their
concrete values (i.e., the result of the instruction) and their
associated PointerInfo metadata. The operations we im-
plement to track pointers are:

• derive(derived, base) indicates that derived is a
value derived from base.

• derive2(derived, lhs, rhs) is similar to derive,
but is used when derived refers to a binary operator
for which both operands could be pointers to stack
variables.

• link(a, b) marks that the operands a and b belong
to the same stack variable.

• store(value, pointer) records that any stack vari-
able reference contained by value is written to the
address specified by pointer.

• load(value, pointer) indicates that value contains
any stack variable reference previously written to the
address specified by pointer.

• copy(dst, src) assigns dst the pointer info of src.

We use derive to instrument pointer-sized add, sub and
and instructions that have one constant operand. If base is
associated with a StackVar, we initialize the metadata of
derived accordingly. Additionally, for and instructions, we
capture the alignment factor in the associated StackVar.
If an add or sub instruction does not have a constant

operand, we instrument it with derive2. If exactly one of its
operands points to a stack variable at runtime, we forward
the arguments to derivewith the known pointer operand as
base. If both operands of a sub instruction are pointers, the
result is the difference between the two pointers. Here, we
call link instead to record that both pointers belong to the

same variable. The same applies to cmp instructions. Linked
variables are stored by the runtime as pairs in a hash set.

The load and store operations are inserted for the LLVM-
instructions of the same name. They record any pointers to
stack variables that are written to memory by updating the
Address Map. Additionally, if we load or store from or to a
stack variable, we update the upper bound of the StackVar
associated with the pointer by the size of the memory access
(e.g., a store of a 32-bit integer to a pointer will update its
upper bound to 4).
To simplify the program, we turn virtual CPU registers

into SSA-values before instrumentation. Hence, we need one
last core operation copy to support PHI-nodes. This opera-
tion is used to copy the PointerInfo of incoming values to
the PHI-node’s associated PointerInfo. We insert these at
the predecessor-blocks for each phi instruction.

4.2.3 False Derives. Deriving a value from a pointer does
not always yield a new pointer. Writing to 16-bit or 8-bit
x86 sub-registers does not zero out their upper 16 or 24 bits,
respectively. This is prevalent in C++ code using booleans.
Because there can be arbitrarily complex code between writ-
ing to and reading from such a register (including crossing
function boundaries), it might not be possible to determine
that the upper bytes of a register are stale. This creates a
false dependency on the value previously stored in the reg-
ister. This is problematic if the previous value is a tracked
pointer, because the result of a subregister store appears to
be a pointer, but might be an entirely unrelated value. The
only way to confirm the value’s validity as a pointer is to
wait until it is dereferenced. For this reason, we do not up-
date the bounds of stack variables in the derive operation,
but only within the load and store operations.

4.2.4 Out-of-Bound Pointers. Deferring updates to the
bounds of stack variables until a pointer is dereferenced ad-

1256

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Fabian Parzefall, Chinmay Deshpande, Felicitas Hetzelt, and Michael Franz

dresses out-of-bound pointers only partially. It correctly han-
dles the case exemplified in Figure 3. However, sometimes,
the base pointer itself can be out-of-bounds of the variable
it refers to. In that case, we need to defer intialization of
the bounds until the first access, instead of automatically
assuming that the base pointer is part of the object. Hence,
we update bounds according to the following conditions:

• The bounds of StackVars are initially undefined.
• The first time any pointer associated with a StackVar
is dereferenced, the lower and upper bounds are ini-
tialized with that pointer’s offset.

• When linking two StackVars, their ranges are only
merged if both have defined bounds.

4.2.5 Function Calls. Arguments to functions are usually
pushed to the stack by the caller. Hence, we not only observe
direct accesses to the stack frame of the current function, but
also to the frame of the function invoking it. Because func-
tions can have a variable number of arguments, we record
such accesses per call-site.

To facilitate this, the runtime keeps track of the call stack
and records, for each stack frame, its base pointer (i.e., sp0)
and the call site through which the function was entered. A
call site descriptor comprises, similar to a function, a list of
stack variables, a PointerInfo referring to the stack variable
containing the argument list in the original frame, and an id
that lets us map it to its corresponding LLVM call-instruction.
The derive operation treats all base pointers with an offset
greater or equal to the current frame’s sp0 as arguments.
These accesses are recorded in the call site descriptor of the
currently active frame.

To keep track of the current call-stack in our runtime, we
instrument every LLVM call instruction with the following
operations:

• fnenter(function*, callsite, regs) creates a
new frame descriptor for function called at callsite.

• fnexit(regs) pops the current stack frame from the
runtime call stack.

Both operations additionally have a list of registers as argu-
ments to marshal metadata associated with virtual registers
between calls.

4.2.6 Replacing Base Pointers. Tracing yields bounds
and alignments for base pointers, argument lists for call sites,
and a list of linked base pointers. After coalescing overlap-
ping and linked base pointers, we generate function signa-
tures. First, we merge all call site signatures for a function
into a super signature. We propagate the super signature back
to all call sites to fill in gaps in argument lists. For example,
consider a call site to a function with four arguments. Sup-
pose we only traced accesses to the first and third argument.
In this case, we would fill in the second argument. We omit
the fourth argument, because it could be a directly accessed
variable argument. However, if the function’s variable argu-

ments are accessed indirectly, the variable arguments will
be passed as a pointer to an array allocated in the caller’s
stack frame.

Once the signatures of all call sites have been determined,
we add function arguments that were passed on the stack
to the lifted function’s signatures. Then, for each coalesced
base-pointer set, we allocate variables with the deduced sizes
and alignments. Finally, we replace all base pointers with
pointers to the newly allocated variables. We ensure we
preserve the alignment of these new pointers, if they refer
to objects for which we observed they are used in alignment
operations. At this point, we can remove the emulated stack
from the lifted binary, since all dependencies on the emulated
stack were replaced with native stack allocations.

5 Implementation
We implemented WYTIWYG as an extension to BinRec, be-
cause it is, to our knowledge, the only dynamic binary to
LLVM IR lifter and recompiler capable of translating COTS
binaries reliably. We upgraded the LLVM version used by
BinRec from 3.8 to 14 and rebased the S2E plugins used for
exporting traces onto upstream S2E [5]. Rather than trans-
lating the machine code to LLVM IR while the program is
running, we use a modified version of RevGen [4] to lift
the program offline after completion of the initial tracing.
We found this to accelerate the initial tracing drastically
and eliminate complexity originating from merging LLVM
modules containing the unprocessed traces. Finally, we in-
corporated a driver that executes tracing, translation and
application of refinements automatically.

At the time of development, BinRec did not support lifting
of x86 64-bit binaries. Therefore, our prototype targets only
x86 32-bit binaries. This does not affect the generality of our
approach, because there are no fundamental differences be-
tween these two architectures in terms of how the generated
code interacts with stack memory.

5.1 Function Recovery
The original version of BinRec did not recover functions and
merged all basic blocks into one large function. Naturally,
this is an unsuitable representation to lift variables that are
local to their function. Hence, we implemented a function
recovery similar to the approach detailed in Nucleus [3].

Initially, we create an inter-procedural control-flow graph
of the entire binary based on the control transfers that were
logged during tracing. Then, we mark any block that is
the target of either a direct or indirect call instruction as
a function entry. Before function bodies can be computed
accurately, all tail-calls have to be identified. Tail-calls are
jump-instructions inserted by compilers in place of regular
call-instructions. This can happen if a function f1 calls an-
other function f2 with the same signature and the call to
f2 would be the very last instruction of f1 before it would

1257

What You Trace is What You Get: Dynamic Stack-Layout Recovery for Binary Recompilation ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

return. Like regular calls, tail-calls can be indirect and/or
have a variable number of arguments. The majority of tail-
calls can be identified by checking for each direct or indirect
jump, whether any of its targets match the entry address of
an already identified function.

Sometimes a function has no regular callers and is only en-
countered as a target of tail calls. Nucleus would merge such
functions with their callers and classify the result as a func-
tion with multiple entries. Because LLVM IR lacks a natural
representation for functions with multiple entries, our im-
plementation splits functions such that there are no overlaps
and have only one entry. Our algorithm for this simple: we
compute for each function entry the set of blocks reachable
through jumps. Then we count in how many functions each
block is contained. If a block is contained in more functions
than any of its predecessors, it is marked to be a function
entry. We found this approach to work reliably across all our
inputs, including ones that contain nested and/or indirect
tail calls. Functions that are exclusively reachable through a
single tail-call and have no regular call sites throughout the
entire program are merged with their caller, however. We
verified our results by cross-referencing all detected func-
tions with the binary’s symbol table (if available) and did
not encounter any false positives.

5.2 Variable Argument Library Calls
Since arguments of calls to external functions are passed
on the stack, recovering the operands of these calls is a pre-
requisite to full stack symbolization. If their prototypes are
known, BinRec lifts such calls by loading the corresponding
arguments from the emulated stack and specifying them as
operands to an LLVM call instruction. Fortunately, identify-
ing the arguments of external functions is trivial for most
system library functions, because their signatures are known.
However, functions that have prototypes with a variable
number of arguments, such as open or the printf-family of
functions, require special handling.
To lift calls to these functions, BinRec uses a mechanism

called stack switching. Because the lifted program pushes all
arguments on the emulated stack as required by the exter-
nal function, the lifted program instructs the native stack
pointer to point to the emulated stack for the duration of
the external call. However, this approach is not compatible
with stack symbolization. During symbolization, WYTIWYG
eliminates the emulated stack, so it is no longer possible to
perform stack switching. Hence, arguments to these calls
have to be recovered, before WYTIWYG can proceed with
symbolization.
There is no uniform way to determine the number of ar-

guments at call sites for variable argument functions. The
full prototypes for individual call sites to such functions can
usually be determined by inspecting the values of the func-
tions’ named arguments at runtime. Therefore, WYTIWYG
uses an additional refinement before stack symbolization to

fully lift calls to these functions. For example, this refinement
inspects the format string passed to printf-style functions
at runtime to determine an exact signature for each call site.

5.3 External Functions
WYTIWYG has to account for any effects on pointers passed
to external functions. Because dynamically linked functions
are not lifted, we can only instrument calls to them. In our
implementation, we maintain a database of known exter-
nal library functions together with their signatures. The
majority of effects necessary for tracking pointers can be
expressed through a small set of constraints on the functions’
arguments and return values:

• ObjectSize(ptr, size, count): The object speci-
fied by ptr is at least as large as the product of size
and count (e.g., fread).

• ZeroTerminated(ptr): The data that ptr points to is
zero-terminated (such as C strings).

• Derive(derived, base): The pointer derived refers
to the same object as the pointer base (e.g., strtok).

• Clear(ptr, [size]): The external function will clear
out any references to stack variables stored in the ob-
ject that ptr refers to (such as structure initialization
or memset).

• Copy(dst, src, [size]): The external function will
copy any references to stack variables stored in the
object src to the object dst (such as structure initial-
ization or memset).

• FormatStr(str, valist): The argument str is a
C-style format string that describes the arguments
contained in a standard C va_list (e.g., vprintf).

During instrumentation, we translate these constraints into
the tracing operations documented in Section 4.2.

6 Evaluation
To evaluate our prototype, we first examine whether our
approach retains the functionality of the original binary. We
then measure the performance of symbolized binaries to
assess whether our approach improves LLVM’s ability to
reoptimize lifted binaries. Finally, we compare the recovered
stack-layouts with the ground-truth provided by the com-
piler to quantify the accuracy that can be achieved using our
approach.
We target the SPECint 2006 benchmark suite, which has

been widely used in previous binary lifting and recompila-
tion literature [1, 2, 9, 16]. This benchmark-suite comprises
real-world programs, which makes them an ideal target to
evaluate the impact binary recompilers have on performance
and correctness. We exclude the omnetpp and perlbench,
because our prototype does not handle setjmp/longjmp and
exceptions. We do not evaluate on the SPECfp 2006 set of pro-
grams, because x87 instructions are translated using QEMU’s
software float emulation, and our current implementation

1258

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Fabian Parzefall, Chinmay Deshpande, Felicitas Hetzelt, and Michael Franz

does not convert these to LLVM floating-point instructions.
Liu et al. identified BinRec [1], McSema [7], RetDec [12]

and mctoll [24] as the best available binary lifters targeting a
compiler-level IR [16]. According to their paper, McSema is
the only static lifter able to recompile a subset of the SPECint
2006 benchmarks. Although McSema can symbolize stack
variables using IDA Pro’s stack analyses, the authors admit
this process is not automatic because of the heuristic nature
of IDA Pro’s analyses [8]. For these reasons, we compare
WYTIWYG with SecondWrite, which was provided to us by
its authors. To our knowledge, it is the only binary to LLVM
IR lifter that claims to be capable of recompiling most of the
SPECint 2006 benchmarks and supports symbolization of
stack variables.

6.1 Functionality
The primary goal of our approach is to recover high-level
semantics in binaries without relying on heuristics tailored
to the program, compiler or optimization level. To assess
whether we achieve this, we compiled each benchmark in
multiple configurations. We use the latest GCC 12.2 and
Clang 16 compilers at their highest optimization level -O3.
Additionally, we compiled one set of unoptimized bench-
marks with GCC 12.2. SecondWrite could disassemble none
of the benchmarks because certain SIMD instructions are
not handled by their translator. Hence, we also compiled all
benchmarks using GCC 4.4.3 with optimizations enabled on
Ubuntu 10.04. This is very close to the GCC version used in
the original evaluation of SecondWrite (GCC 4.4.1). We note
that, while we did not pass any flags to GCC 12.2 or Clang
16 to emit architecture-specific instructions, older versions
of GCC do not emit SSE instructions by default. Since Bin-
Rec implements SIMD instructions in software using helper
functions provided by QEMU, instruction compatibility is
not a concern for WYTIWYG.
We used the ref datasets as inputs to trace and validate

the recompiled binaries. WYTIWYG successfully lifts and
recompiles all binaries and inputs with no manual interven-
tion. Because the gcc and xalancbmk benchmarks make use
of hash maps using pointers as keys, different executions
would explore different paths in the lifted binary. We used
BinRec’s incremental lifting to generate sufficient coverage
for these binaries [1]. For the same two benchmarks, we
increased the maximal allowed stack-sizes (using ulimit
-s) due to deeply nested recursive call-chains. WYTIWYG
turns tail-calls into regular calls, and the LLVM-signatures
of the caller and caller do not always exactly match up in the
recovered binary. This prevents LLVM from lowering these
calls back to tail-calls.
We recompiled binaries with SecondWrite using default

optimizations and disabling speculative disassembly. With-
out stack splitting, all binaries could be recompiled, except
xalancbmk and gobmk. xalancbmk could not be linked and
gobmk could not be processed by SecondWrite’s disassembler.

Table 1. Normalized runtime of recompiled binaries relative
to the runtime of their respective input binary for each con-
figuration (SW = SecondWrite).

BinRec / WYTIWYG SW
no symbolize GCC 12.2 Clang 16 GCC 4.4 GCC 4.4
symbolize ✓ -O3 -O0 -O3 -O3 -O3
bzip2 1.15 0.74 1.21 1.06 0.94

✓ 1.03 0.51 1.13 0.85 0.91
gcc 1.39 0.82 1.58 1.18 —

✓ 1.22 0.49 1.25 0.89 —
mcf 0.99 0.75 1.09 0.97 0.98

✓ 0.92 0.65 1.07 0.88 1.08
gobmk 1.25 0.99 1.20 1.20 —

✓ 0.99 0.79 0.97 0.91 —
hmmer 2.38 0.67 1.59 0.72 0.99

✓ 3.04 0.48 1.30 0.60 0.98
sjeng 1.06 0.79 1.13 1.09 1.16

✓ 0.85 0.62 0.87 0.82 1.11
libquantum 1.15 0.92 1.57 1.16 1.26

✓ 1.21 0.70 1.14 0.89 —
h264ref 1.35 0.83 1.60 1.05 1.75

✓ 1.01 0.48 1.23 0.84 1.73
astar 0.95 0.69 1.04 0.96 1.08

✓ 0.79 0.47 0.91 0.80 1.08
xalancbmk 1.13 0.55 1.23 1.17 —

✓ 0.90 0.10 0.87 0.77 —
Geomean 1.24 0.76 1.31 1.05 1.14

✓ 1.10 0.48 1.06 0.82 1.12

gcc crashed on every single ref input, even after disabling
all of SecondWrite’s heuristic optimizations and enabling
speculative disassembly. libquantum crashed during execu-
tion if we enabled stack splitting.

We also noticed that SecondWrite cannot lift binaries that
have been compiled with position independent code (PIC).
It does not handle some types of relocations, that GCC 4.4
emits for position independent code. This is only a minor
engineering defect, and we were able to produce a working
binary for mcf by manually patching these relocations. A
more significant issue that we encountered was limited sup-
port for jump tables. For example, the jump table in the PIC
version of the function BZ2_decompress from the binary
bzip2was entirely missing. Even when enabling speculative
disassembly, the jump-targets were not present in the lifted
LLVM IR. We assume that SecondWrite cannot identify spec-
ulative control transfer targets if the references to them are
not encoded as absolute addresses in the binary’s data.

6.2 Performance
Our performance experiments were conducted on a system
running Ubuntu 22.04 with an AMD Ryzen 9 3900X running
at a base clock of 3.8GHz. We disabled frequency boosting,
clock-frequency scaling and simultaneous multi-threading
to produce consistent results. We instructed LLVM to target
the pentium4 architecture, to avoid measuring the impact of
newer CPU features that are available on our target machine.

1259

What You Trace is What You Get: Dynamic Stack-Layout Recovery for Binary Recompilation ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

GCC 12.2 -O3 ∗

GCC 12.2 -O3 †

GCC 12.2 -O0 ∗

GCC 12.2 -O0 †

Clang 16 -O3 ∗

Clang 16 -O3 †

GCC 4.4 -O3 ∗

GCC 4.4 -O3 †

GCC 4.4 -O3 -fno-pic ∗

GCC 4.4 -O3 -fno-pic ‡
0.0

2.5
bzip2
gcc
mcf
gobmk
hmmer
sjeng

libquantum
h264ref
astar
Xalan
GEOMEAN

Figure 6. Normalized runtime of input (∗) binaries, binaries recompiled and symbolized with WYTIWYG (†), and binaries
recompiled and symbolized with SecondWrite (‡) relative to the runtime of the respective binaries compiled and optimized
with GCC 12.2.

Table 1 contains the relative performance impact of re-
compilation and stack symbolization on each of our input
binaries. Across almost all benchmarks, our stack symboliza-
tion approach significantly improves the runtime overhead
of recompiled binaries, with the worst case average runtime
for heavily optimized binaries at 1.10𝑥 . However, binaries
that were not compiled with the latest state-of-the-art com-
pilers can experience a significant uplift in performance: pro-
grams compiled with GCC 4.4 see a 1.22𝑥 speedup, despite
being compiled at the highest optimization level. Unopti-
mized binaries are more than twice as fast, with an average
speedup of 2.10𝑥 . Compared to the non-symbolized versions
of those binaries, these performance improvements confirm
our hypothesis that recovery of fine-grained stack symbols
is central to enhancing the IR-quality of lifted programs and
consequently, allows for full-scale program reoptimization.
We also improved the non-symbolized baseline for un-

optimized binaries compared to the original version of Bin-
Rec from 0.98𝑥 [1] to 0.76𝑥 . This is partly due to upgrading
BinRec from LLVM 3.8 to LLVM 14, but we found that per-
forming function recovery enhances the results even further.
Without function identification, calls were translated into
jumps to the function’s entry basic block and return instruc-
tions were turned into LLVM switch-instructions that de-
termine the return target based on the return-address stored
on the stack. In the resulting control-flow graphs, frequently
called functions act as “chokepoints”, because calls appear to
return to entirely different call-sites. This optimization haz-
ard is particularly prevalent in unoptimized binaries, where
small functions with many call sites are not inlined.
To understand the relationship between recompiled and

native binaries, we compared all runtimes in Figure 6 with
the baseline of native binaries generated by GCC 12.2. The
performance of the recompiled binaries across all -O3 con-
figurations approaches the GCC 12.2 baseline, although -O0
is slightly behind. This disparity can be attributed to WYTI-
WYG not yet recovering global or heap variables, because
accesses to these variables are not optimized when compil-
ing a program with -O0. Since we do not symbolize these,
LLVM’s ability to reoptimize these accesses in the lifted pro-
gram is limited.

Despite symbolization enhancing performance in most
cases, there are some outliers: hmmer and libquantum, when
compiled with GCC 12.2 and optimization level -O3, expe-
rience a degradation in performance. This indicates that
LLVM’s optimization heuristics are not optimal when ap-
plied to the lifted programs. Especially the 2.28𝑥 (3.04𝑥 if
symbolized) slowdowns of hmmer contradict existing binary
recompilation literature, where recompiling this benchmark
often exhibits one of the greatest performance improvements
across SPECint 2006 [1, 2]. However, Figure 6 reveals, that
more recent compilers are able to drastically reduce the run-
time of this benchmark, to where a 3.04𝑥 slowdown relative
to the GCC 12.2 binary is still faster than the binary produced
by GCC 4.4.

We found that vector instructions in the original binaries
can cause non-optimal code after lifting. Although LLVM
often synthesizes the software-emulated SIMD instructions
into LLVM intrinsic vector instructions, the generated se-
quences are usually more verbose and less efficient. Further,
if a function accesses a vector register only partially, it cre-
ates a false dependency on the value of that register before
the entry of this function. If a program uses SIMD instruc-
tions only sparsely (such as gcc), these false dependencies
can cause vector register values to be copied across multiple
function boundaries. Hence, we believe that there is room for
improvement by lifting vector instructions more effectively.
Our measurements for SecondWrite diverge with the re-

ported results [2].Without stack splitting, in the original eval-
uation, they measured speedups for libquantum, h264ref
and astar rather than slowdowns. Similarly, we did not
observe a 1.38𝑥 speedup for hmmer. We verified that Second-
Write is compiling the lifted IR with optimizations enabled
and could not identify a reason for this disparity. After en-
abling function splitting, we measured an improvement of 2
percentage points, which appears consistent with the results
reported in their paper. We note that SecondWrite does not
lift using a separate, emulated stack, and always inlines stack
frames as allocations into the lifted LLVM functions. This
explains to some extent the smaller improvement compared
to the binaries recompiled without stack splitting.

1260

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Fabian Parzefall, Chinmay Deshpande, Felicitas Hetzelt, and Michael Franz

6.3 Splitting Accuracy
To evaluate the accuracy of our approach, we compare the
dynamically recovered stack-allocations with the ground-
truth generated by LLVM 16’s Stack Frame Layout analysis.
This analysis outputs the stack layout used by code gener-
ation for each function when compiling from source. We
only consider functions that were executed in our traces,
since untraced functions are not contained within the lifted
binary. The results are displayed in Figure 7. We assign each
ground-truth allocation one of four categories depending on
whether it overlaps with an object in the recovered layout:
matched on perfect match, oversized, undersized and missed
on full, partial or no overlap, respectively. Matched and over-
sized allocations are sufficiently large to prevent overflows,
although oversized allocations potentially prevent optimiza-
tions. Undersized and missed allocations indicate that there
might exist valid inputs to the original program that will
cause out-of-bounds accesses in the recompiled program.We
note that spilled floating-point and XMM-values can decay
into multiple smaller objects due their emulation in software.
Although those objects are safely symbolized, our evaluation
classifies them as undersized. However, we believe they are
only a small fraction of undersized objects. Regardless, our
approach achieves a precision of 94.4% and a recall of 87.6%
without providing additional inputs.

7 Discussion and Limitations
7.1 Binary Compatibility
Naturally, WYTIWYG can only recover local variables if
we can identify functions that have regular stack-frames.
Our implementation requires functions to have exactly one
entry point, and control transfers between functions to be
implemented using call- and ret-instructions (except for
tail calls). The programs are also required to use the stack
pointer register and have it point to the bottom of the stack.
Since our approach relies on observing how pointers are

used throughout the program, pointer-values need to be
“trackable”. This means that any operations to derive new
pointers from existing ones can be simplified into terms com-
prising addition and subtraction only. We cannot correctly
analyze binaries employing code obfuscation techniques,
such as mixed boolean-arithmetic [26], to hide data-flow of
pointers.

7.2 Coverage
A primary concern of dynamically driven analyses is attain-
ing comprehensive coverage across the whole program. For
WYTIWYG, achieving full coverage encompasses identifica-
tion of all stack objects and their sizes correctly, and asso-
ciation of all code references with those objects. Albeit our
approach yields functional binaries, our evaluation reveals
that insufficient coverage leads to function layouts that miss
some objects, split them, or assign insufficient space to them.

bzip2 gcc mcf
gobmk

hmmer
sjeng

libquantum
h264ref

astar
xalancbmk

0.0

0.5

1.0

Ra
tio

 o
f S

ta
ck

 O
bj

ec
ts

matched
oversized
undersized
missed

Figure 7. Accuracy of WYTIWYG.

At runtime, this can cause out-of-bound accesses with inputs
that were not traced. This affects especially variable-sized
stack objects (variable-length arrays and C-style alloca) as
these are converted into allocations of constant size by our
implementation. Although this can be partially remedied
by augmenting the binaries with AddressSanitizer [19],
this incurs a significant performance penalty. For practical
purposes, such errors are to be treated as incorrect recompi-
lations.
However, previous work suggests that static approaches

are plagued by similar problems. As mentioned in Section 2.2,
these approaches operate either conservatively (i.e. splitting
only if boundaries are provable) or heuristically (i.e. split-
ting based on assumption made by developers). Particularly
complex functions that would benefit the most from local
variable symbolization are also the most difficult to process
for these tools. Conservative symbolizers are usually inca-
pable of symbolizing such functions, whereas heuristics will
fail eventually and lead to a broken binary with no recourse
for fixing except manual intervention.

WYTIWYG provides a path forward in lifting complex pro-
grams that exceed the capabilities of static approaches. Using
dynamic analysis, complex functions can be symbolized, and
we can guarantee that the recompiled program retains the
correct functionality for traced inputs. If a new input exhibits
invalid behaviours in the recompiled binary, the program
can be easily fixed by incrementally reanalyzing it. Further,
in the scope of this work, we consider WYTIWYG purely in
a vacuum. In practice, our approach could be combined with
a robust, heuristics-based static analysis. Such an integration
would not only provide the same functional guarantees, but
would also minimize issues caused by insufficient coverage.

7.3 Multi-Threading
Because of the inherent difficulties of sound binary recom-
pilation, state-of-the-art binary recompilers have been pri-
marily targeting single-threaded programs. Preserving the
memory-orderings between accesses to variables shared
across threads poses an additional challenge when lifting
multi-threaded binaries.
Usually, synchronization points in programs (e.g., acqui-

sition of a spin-lock) can be identified by seeking special

1261

What You Trace is What You Get: Dynamic Stack-Layout Recovery for Binary Recompilation ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

atomic instructions. Since the x86-architecture implements
total-store-ordering (TSO), not all synchronizing instructions
are marked as atomic, however. TSO provides guarantees
about the order in which the effects of non-atomic instruc-
tions become visible to other concurrently executing threads.
In practice, certain writes to concurrently accessed variables
can be implemented with a simple non-atomic store on x86
(e.g., release of a spin-lock). After lifting to IR, LLVM opti-
mizations may reorder non-atomic loads and stores within
functions without considering their effect on other threads
— possibly breaking original program semantics.

Rocha et al. [18] have shown that by inserting fences
strategically around certain memory accesses, the memory-
ordering of multi-threaded code can be preserved in lifted
programs. Since overuse of fences incurs a significant perfor-
mance penalty, they employ a heuristic that removes fences
around direct memory accesses to the emulated stack frame
of the current function. We believe that through local vari-
ables symbolization, we can achieve similar results while
verifying that variables are used only within a single thread.
Since local variable symbolization enhances data-flow anal-
ysis results, we might determine that certain stack and heap
allocations are never accessed concurrently and safely re-
move even more fences.

Our analysis itself can be easily adapted to support multi-
threading. We would have to extend our runtime to support
multiple stacks and make sure that we correctly synchronize
concurrent accesses to the data-structures we rely on for
stack tracing. However, we cannot easily guarantee that we
retain the program’s functionality. The non-deterministic na-
ture of multi-threaded programs causes different executions
with identical inputs to expose varying behaviours. Explor-
ing all interleavings of threads across these executions is
infeasible. Even fixing the scheduling of threads at runtime
does not suffice, because simultaneously scheduled threads
access shared memory in a non-deterministic order. Since
the majority of modern workloads are multi-threaded, we
plan to investigate reliable symbolization of such programs
in future research.

8 Related Work
Stack Layout Analysis. Most of the work on stack layout

analysis focuses on identification of stack variables and their
types for decompilation [14, 15, 20, 21, 25]. These approaches
aim to aid binary analysis and reverse engineering efforts,
and are therefore more tolerant of errors in the recovered
information. WYTIWYG instead aims for sound recompi-
lation of lifted binaries. For this use case, probabilistic cor-
rectness guarantees are insufficient, as miss-predictions in
stack layouts can break semantics of the recompiled binary.
A notable exception is SecondWrite [2] which targets re-
compilation. However, as we demonstrate in our evaluation,
SecondWrite’s reliance on heuristics limits its applicability

to a large set of binaries. WYTIWYG therefore operates only
on concrete information collected from execution traces,
which allows us to ensure sound stack symbolization and
enables our approach to generalize across different binaries,
compilers and optimization levels.

Recompilation. WYTIWYG lifts binary code to LLVM-IR
in order to enable high-level complex optimization of the
lifted IR before lowering the IR back into a semantically cor-
rect binary. This use case is also targeted by existing tools like
McSema [7], Rev.ng [6], BinRec [1] and SecondWrite [2]. In
contrast to WYTIWYG, none of the existing tools (except for
SecondWrite) tackle the problem of recovering function stack
layouts, which severely limits the compiler’s ability to reop-
timize the binary. In addition, many approaches [2, 6, 7] rely
on unsound heuristics for control-flow recovery. WYTIWYG
instead obtains sound control-flow information through dy-
namic tracing in order to support further IR analysis and
transformations. Dynamic approaches, like BinRec [1], try
to lift each execution trace within a single step. WYTIWYG
instead splits IR generation into multiple phases, where each
step refines the IR to make it more suitable for subsequent
analysis. Gradually restoring the program’s semantics allows
us to employ more advanced analyses with reduced com-
plexity, because later analyses can exploit results from the
previous steps.

9 Conclusion
This paper proposes WYTIWYG, the first binary recompiler
capable of transforming COTS-binaries to a compiler-level
IR while recovering stack symbols accurately. By leveraging
dynamic analyses to recover source-level structures and iter-
atively refine lifted binaries, we surpass the limitations of ex-
isting recompilers that depend on manually tuned heuristics.
Our evaluation demonstrates that the fine-grained partition-
ing of stack variables allows compilers to reoptimize binaries
effectively and achieve considerable speedups compared to
previous state-of-the-art solutions. These results highlight
the importance of precise stack variable recovery to lifting
binaries to an IR that is useful for downstream applications,
and that WYTIWYG is highly effective in this regard.

Acknowledgments
We express our gratitude to our reviewers and David Grove,
our shepherd, who greatly improved the paper with their
valuable remarks.

This material is based upon work partially supported by
the Office of Naval Research (ONR) under contracts N00014-
22-1-2232 and N00014-21-1-2409, and the Defense Advanced
Research Projects Agency (DARPA) under contractsW31P4Q-
20-C-0052, N66001-20-C-4027 and 140D04-23-C-0070. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of ONR or DARPA.

1262

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Fabian Parzefall, Chinmay Deshpande, Felicitas Hetzelt, and Michael Franz

References
[1] Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin

Zhou, Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, Cris-
tiano Giuffrida, Herbert Bos, and Michael Franz. 2020. BinRec: Dy-
namic Binary Lifting and Recompilation. In Proceedings of the Fifteenth
European Conference on Computer Systems (Heraklion, Greece) (Eu-
roSys ’20). Association for Computing Machinery, New York, NY, USA,
Article 36, 16 pages. https://doi.org/10.1145/3342195.3387550

[2] Kapil Anand, Matthew Smithson, Khaled Elwazeer, Aparna Kotha,
Jim Gruen, Nathan Giles, and Rajeev Barua. 2013. A Compiler-Level
Intermediate Representation Based Binary Analysis and Rewriting
System. In Proceedings of the 8th ACM European Conference on Com-
puter Systems (Prague, Czech Republic) (EuroSys ’13). Association
for Computing Machinery, New York, NY, USA, 295–308. https:
//doi.org/10.1145/2465351.2465380

[3] Dennis Andriesse, Asia Slowinska, and Herbert Bos. 2017. Compiler-
Agnostic Function Detection in Binaries. In 2017 IEEE European Sym-
posium on Security and Privacy (EuroS&P). IEEE, New York, NY, USA,
177–189. https://doi.org/10.1109/EuroSP.2017.11

[4] Vitaly Chipounov and George Candea. 2011. Enabling sophisticated
analyses of x86 binaries with RevGen. In 2011 IEEE/IFIP 41st Inter-
national Conference on Dependable Systems and Networks Workshops
(DSN-W). IEEE, New York, NY, USA, 211–216. https://doi.org/10.1109/
DSNW.2011.5958815

[5] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011.
S2E: A Platform for in-Vivo Multi-Path Analysis of Software Systems.
In Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (Newport
Beach, CA, USA) (ASPLOS XVI). Association for ComputingMachinery,
New York, NY, USA, 265–278. https://doi.org/10.1145/1950365.1950396

[6] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. 2017.
Rev.Ng: A Unified Binary Analysis Framework to Recover CFGs and
Function Boundaries. In Proceedings of the 26th International Conference
on Compiler Construction (Austin, TX, USA) (CC 2017). Association for
Computing Machinery, New York, NY, USA, 131–141. https://doi.org/
10.1145/3033019.3033028

[7] Artem Dinaburg and Andrew Ruef. 2014. McSema: Static Translation
of X86 Instructions to LLVM. Presented at REcon 2014 (Montreal,
Canada).

[8] Peter Goodman and Akshay Kumar. 2018. Lifting program binaries
with McSema. Presented at 9th International Summer School on Infor-
mation Security and Protection (Canberra, AU) (ISSIP ’18).

[9] Andrea Gussoni, Alessandro Federico, Pietro Fezzardi, and Giovanni
Agosta. 2019. Performance, Correctness, Exceptions: Pick Three. In
Binary Analysis Research Workshop 2019 (San Diego, CA, USA) (BAR
2019). The Internet Society, Reston, VA, USA, 7 pages. https://doi.org/
10.14722/bar.2019.23093

[10] R. Nigel Horspool and Nenad Marovac. 1980. An Approach to the
Problem of Detranslation of Computer Programs. Comput. J. 23, 3
(Aug. 1980), 223–229. https://doi.org/10.1093/comjnl/23.3.223

[11] ISO/IEC. 2020. ISO/IEC 14882:2020, Programming languages — C++.
International Organization for Standardization, Geneva, Switzerland.

[12] Jakub Křoustek, Peter Matula, and Petr Zemek. 2017. RetDec: An
Open-Source Machine-Code Decompiler. Presented at Botconf 2017
(Montpellier, France).

[13] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong ProgramAnalysis & Transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO 2004. IEEE,
New York, NY, USA, 75–86. https://doi.org/10.1109/CGO.2004.1281665

[14] JonHyup Lee, Thanassis Avgerinos, and David Brumley. 2011. TIE:
Principled Reverse Engineering of Types in Binary Programs. In Net-
work and Distributed System Security Symposium 2011 (San Diego, CA,
USA) (NDSS 2011). The Internet Society, Reston, VA, USA, 18 pages.

[15] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Automatic

Reverse Engineering of Data Structures from Binary Execution. In Net-
work and Distributed System Security Symposium 2010 (San Diego, CA,
USA) (NDSS 2010). The Internet Society, Reston, VA, USA, 17 pages.

[16] Zhibo Liu, Yuanyuan Yuan, Shuai Wang, and Yuyan Bao. 2022. SoK:
Demystifying Binary Lifters Through the Lens of Downstream Appli-
cations. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE,
New York, NY, USA, 1100–1119. https://doi.org/10.1109/SP46214.2022.
9833799

[17] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. 2013.
System V Application Binary Interface — AMD64 Architecture Processor
Supplement (Draft Version 0.99.6).

[18] Rodrigo C. O. Rocha, Dennis Sprokholt, Martin Fink, Redha Gouicem,
Tom Spink, Soham Chakraborty, and Pramod Bhatotia. 2022. Lasagne:
A Static Binary Translator for Weak Memory Model Architectures.
In Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (San Diego, CA,
USA) (PLDI 2022). Association for Computing Machinery, New York,
NY, USA, 888–902. https://doi.org/10.1145/3519939.3523719

[19] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker.
In Proceedings of the 2012 USENIX Conference on Annual Technical
Conference (Boston, MA, USA) (USENIX ATC’12). USENIX Association,
Berkeley, CA, USA, 9 pages.

[20] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. 2016. SOK: (State
of) The Art of War: Offensive Techniques in Binary Analysis. In 2016
IEEE Symposium on Security and Privacy (SP). IEEE, New York, NY,
USA, 138–157. https://doi.org/10.1109/SP.2016.17

[21] Asia Slowinska, Traian Stancescu, and Herbert Bos. 2011. Howard: A
Dynamic Excavator for Reverse Engineering Data Structures. In Net-
work and Distributed System Security Symposium 2011 (San Diego, CA,
USA) (NDSS 2011). The Internet Society, Reston, VA, USA, 18 pages.

[22] Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar
Weippl. 2019. From Hack to Elaborate Technique–A Survey on Binary
Rewriting. ACM Comput. Surv. 52, 3, Article 49 (June 2019), 37 pages.
https://doi.org/10.1145/3316415

[23] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Gra-
ham Patterson, Frank Spano, Yu JianWu, Junfeng Yang, and Vasileios P.
Kemerlis. 2020. Egalito: Layout-Agnostic Binary Recompilation. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (Lausanne,
Switzerland) (ASPLOS ’20). Association for Computing Machinery,
New York, NY, USA, 133–147. https://doi.org/10.1145/3373376.3378470

[24] S. Bharadwaj Yadavalli and Aaron Smith. 2019. Raising Binaries to
LLVM IR with MCTOLL (WIP Paper). In Proceedings of the 20th ACM
SIGPLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems (Phoenix, AZ, USA) (LCTES 2019).
Association for Computing Machinery, New York, NY, USA, 213–218.
https://doi.org/10.1145/3316482.3326354

[25] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-chuan Lee,
Yonghwi Kwon, Yousra Aafer, and Xiangyu Zhang. 2021. OSPREY:
Recovery of Variable and Data Structure via Probabilistic Analysis for
Stripped Binary. In 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, New York, NY, USA, 813–832. https://doi.org/10.1109/SP40001.
2021.00051

[26] Yongxin Zhou, Alec Main, Yuan X. Gu, and Harold Johnson. 2007. In-
formation Hiding in Software with Mixed Boolean-Arithmetic Trans-
forms. In Information Security Applications, Sehun Kim, Moti Yung, and
Hyung-Woo Lee (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
61–75. https://doi.org/10.1007/978-3-540-77535-5_5

1263

https://doi.org/10.1145/3342195.3387550
https://doi.org/10.1145/2465351.2465380
https://doi.org/10.1145/2465351.2465380
https://doi.org/10.1109/EuroSP.2017.11
https://doi.org/10.1109/DSNW.2011.5958815
https://doi.org/10.1109/DSNW.2011.5958815
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1145/3033019.3033028
https://doi.org/10.1145/3033019.3033028
https://doi.org/10.14722/bar.2019.23093
https://doi.org/10.14722/bar.2019.23093
https://doi.org/10.1093/comjnl/23.3.223
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/SP46214.2022.9833799
https://doi.org/10.1109/SP46214.2022.9833799
https://doi.org/10.1145/3519939.3523719
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1145/3316415
https://doi.org/10.1145/3373376.3378470
https://doi.org/10.1145/3316482.3326354
https://doi.org/10.1109/SP40001.2021.00051
https://doi.org/10.1109/SP40001.2021.00051
https://doi.org/10.1007/978-3-540-77535-5_5

