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Freeman's mass action

Walter J. Freeman, University of California, Berkeley, California
Robert Kozma, Computational NeuroDynamics Lab, University of Memphis, TN

Freeman's Mass Action (FMA) refers to the collective synaptic actions that neurons in the cortex exert on each other in
vast numbers by synchronizing their firing of action potentials. In the aggregate, FMA is a powerful force that creates
bursts of cortical neural activity that resemble the vortices of tornadoes and hurricanes. The bursts rapidly and repeatedly
retrieve memories and bind them with sensory information into percepts. In this way, FMA expresses and transmits the
meaning of sensory information in spatial patterns of cortical activity that resemble frames in a movie.

Introduction: The percept in FMA: five phenomenological features

Everyone has experienced the hunger triggered by the odor of a favorite food, the cascade of associations on glimpsing a
familiar face, the surge of dread or delight on recognizing a familiar voice, and so on. That is perception: 'the meaningful
impression of any object obtained by use of the senses.' We ask the question: How do brains perceive the meanings of
stimuli in flashes of recognition?

To get the data needed to answer this question, we surgically place electrodes directly on cortical surfaces of experimental
animals and record their brain waves [Freeman, 2001]. These electrical waves are signs of the activity of neural
populations. The signs don’t do any work. They are like the sounds from an engine — a comforting reassurance when it
works well, a diagnostic tool when it doesn't. The signs include electroencephalograms (EEG) recorded from the scalp
and electrocorticograms (ECoG) recorded directly from the cortical surfaces. EEG/ECoG waves are supported by and
correlated with myriad action potentials (spikes, units), together comprising FMA, but they differ crucially in that the
spikes are points and the waves are fields (see Box). Furthermore, the critical understanding that should emerge from
reading this article is that the field of FMA is a vector field that creates and destroys information, whereas the electric field
of the EEG/ECoG merely reflects and carries information.

In order to have our subjects perform, we train them to perceive conditioned stimuli (CS). We search their ECoG for
patterns that we call percepts, which are correlated with perception. We know that during perception many neurons fire
synchronously, though we cannot say precisely how many neurons or with how much synchrony. We know that the mean
firing rates are correlated with the wave amplitudes. We know that the action potentials relayed from sensory receptors to
sensory cortex excite the excitatory neurons; that they excite each other; and that they also excite the inhibitory neurons.
And we know that the negative feedback between excitatory and inhibitory neurons causes ECoG oscillations at
frequencies of 12 to 80 Hz called beta and gamma waves. From all these premises we infer that the impact of a CSon a
sensory cortex causes FMA to construct a percept, which we recognize by the sign of a pattern in the ECoG.

We found such patterns in the olfactory system [Freeman, 1991] and now find them in all sensory cortices. We have
identified five characteristic features in them that are needed to describe the percepts and deduce how the cortices make
them. We focus our essay on these features, because in order to understand brain theory we have to know the patterns of
brain waves that the theory predicts, and on which further theory is to be based. We describe our theory elsewhere (see
Recommended Reading). Here we begin with illustrations from the olfactory ECoG (Figs. 2, 3), because olfaction is the
simplest sensory system. Then we proceed to the visual, auditory and somatic ECoG (Figs. 4, 5). Although their
microscopic functions are far more complex than those in olfaction, the basic mesoscopic operations are quite similar, not
surprisingly, seeing that they evolved from the olfactory pioneer.

The beta-gamma wave packet, resembling a tone burst
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We did our first study of perception by asking a hungry cat to perceive an odor of food (a CS), while we observed its
olfactory brain in action. We made the cat wait for a couple of hours with nothing to do. It sat patiently. Then a mere whiff

of fish that signaled a favored food galvanized the cat into meowing and searching. The CS caused the olfactory cortex to

issue dramatic gamma bursts that we call wave packets [Freeman, 1975]. But an hour later after feeding to satiety the cat

ignored the stimulus, and no bursts were seen.

The olfactory ECoG (Fig. 2) illustrates three important properties of cortical dynamics. First, the normal cortex at rest
always has spontaneous activity that is almost completely devoid of patterns. This noise is sustained by excitatory
cortical neurons that excite each other. The noise is self-regulated (we say stabilized) by the refractory periods [Freeman
and Erwin, Scholarpedia; Freeman and Zhai, 2009]; after each firing every neuron has to rest. This basic property of
neurons stabilizes every local cortical population at all times without need for global regulatory mechanisms. (For deeper
investigation of this steady state we describe it with the theories of self-organized criticality [Kozma, 2007],
metastability [Bressler and Kelso, 2007], and chaotic itinerancy [Tsuda, 2001]).

Second, the signal that receptors send to the cortex when a CS stimulates them is far weaker than the cortical response.
The cortex doesn’t simply amplify the CS. It increases its background activity in proportion to the degree of arousal (Fig.
2), and it reorganizes the background activity into the patterns that we see as gamma wave packets.

Third, when the cat sniffs repeatedly, a wave packet appears with each sniff, but the time difference between the start of

the sniff and the start of the wave packet varies with each sniff. That variation in the latencies implies that the onset of a

percept depends not just on the start of the CS. Onset also requires a spontaneous break, a discontinuity in the

background activity that unpredictably
varies the precise time of gamma onset
[Tallon-Baudry et al., 1998]. In Section 4
we claim that the random event that
initiates percept formation is a null spike.

The spatial AM pattern,
resembling a
cinematographic frame

Just as in a movie frame, a wave packet has
a spatial pattern. To see the pattern we use
an 8x8 electrode array fixed on the cortical
surface to sample the ECoG at 64 points.
The waveform of the gamma oscillation is
similar at all 64 points but the 64

amplitudes differ across the surface (Fig. 3).

We call these differences spatial amplitude
modulation (AM) of a carrier wave. We
display the AM pattern with the 64
amplitudes of the carrier wave as a contour
plot. The patterns seem to vary as
unpredictably as ocean waves, but that is

Box 1.1 Mesoscopic vs. Microscopic Neurodynamics: A paradigm shift

The concepts prevailing in neurodynamics until now are based on
neural networks. Neural networks are Newtonian models, because they
treat microscopic neural pulses as point processes at trigger zones and
synapses. Shermngton [1951] speculatively  desenibed the  action
potentials as "myriads of trains of moving lighis” in an "enchanted
loom™ (pp. 177-178). In a tour de force of computational neuroscience
Izhikevich and Edelman [2008] modeled his vision in a magnificent
display of points of light.

FMA theory is Maxwellian, because it treats mesoscopic neural activity
as a continuous distribution. Just as the Maxwellian paradigm
subsumes the Mewtonian laws of Coulomb and Oersted, the
neurodynamics of FMA [Freeman, 2000] includes the microscopic
neural operations that bring sensory information to sensory cortices,
and that carry the early percepis from sensory cortex to other parts of
the brain. Newtonian dynamics can model cortical input and output
functions but not the formation of percepts.

FMA requires a paradigm shift, because the theory is based on new
technigues, new exemplary experiments, and new rules of evidence. A
comparable shift oceurred in the 1%th century, when eleetricity and
magnetism were widely conceived in Newtonian terms as forces
exerted by point charges acting at a distance instantly on other point
charges, Michael Faraday reconceived the forces as fields, and James
Clark Maxwell devised new vectorial mathematics that led to discovery
of the electromagnetic spectrum [Arianrhod, 2005].

not so. We find that the AM pattern for each
subject is like a signature; easily recognized
though never twice identical. When a

Figure 1: Box: A Paradigm Shift

subject has learned to perceive and respond selectively to a CS, a spatial AM pattern unique to that CS appears whenever
the subject responds to the CS. We conclude that the wave packet carries the percept, and that the spatial pattern of
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amplitude modulation (AM) of the carrier wave expresses the content (that which is perceived) [Freeman, 2005].

We infer that the early change in AM pattern (e.g., from “Air” to “Amyl” in Trial Set 1, Fig. 3) is due to the strengthening of
synapses between only those pairs of pyramidal cells

that are simultaneously excited by the CS in Y

reinforcement learning, meaning that the stimulus is - 1mm

accompanied by a reward or penalty that makes the @ . ;

CS important to the subject. This inference is based |

on Hebb’s Rule: “Neurons that fire together wire *MW-MWMW
together.” Such a neural assembly of mutually

excitatory neurons ignites entirely when a CS excites Prepyriform EEG, hungry cat smelling fish. & l

any part. Evidence for such assemblies is provided by ‘

the relative ease with which cortical neurons are WWW
found that fire vigorously in conjunction with a CS kit Lirod | W YPTRRNRNRUTVE (AP WP [P
that is perceived by an alert subject [e.g., Singer and l '

Gray, 1991; Gross, 2002; Quiroga and Panzeri, o A g A st A Ay W 1 e, s i
20009]. An hour later, fed to satiety. Freeman, 1958
The assembly sensitizes the cortex to the CS and Figure 2: The ECoG from the olfactory cortex illustrates (i) the ever-

present background spontaneous activity of cortex; (ii) the increase in
power with arousal following a sniff of fish (arrows); and (iii) the
intermittency of wave packets. We propose that the wave packets
the cortex to generalize the CS inductively to a provide what we conceive as cinematographic frames. Each frame has

category, no matter which among equivalent a shared waveform, its carrier wave. Reprinted from Fig. 7.1, p. 404
in Freeman [1975].

amplifies the impact. Most importantly, it averages
over variations in CS from trial to trial, so it enables

receptors receive the stimulus. We infer that a new
assembly forms when a subject learns a new CS,
which explains the initial formation of a new AM pattern. The olfactory system can form a new assembly in 3 to 5 trials
with multiple sniffs of a new CS on each trial, and it has an assembly for every class of stimulus that it can discriminate.
We speak of a landscape of chaotic attractors, each of which is accessed by a neural assembly [p. 80 in Freeman, 2001;
Kozma and Freeman, 2001; Ohl et al., 2001; Principe et al., 2001].

The AM pattern is not a transcription or representation of a stimulus, because it changes overnight and for days afterward
during consolidation. That is the permanent change in the brain when the cortex forms a new associative memory. The
same stimulus results in a different AM pattern when it is given a different context. For example, when the reward is
switched from one stimulus to another, the subject stops responding to the first and starts responding to the second. Both
AM patterns change, and so also does the control pattern, because the AM pattern signals the contextual meaning and
significance of a CS.

The memory is stored in very widespread synaptic changes. We know this because all pre-existing AM patterns change,
whenever the cortex creates a new one. That is how associations form; each memory that supports an AM pattern is
connected to every other memory with its AM pattern. Every memory is a configuration of long-lasting synaptic changes,
which are structural. Every act of remembering is dynamic; the AM pattern is never twice identical. It combines a retrieved
memory with the information in the current CS and the current context. These properties (widespread connections,
modifiability with learning, long-term storage, rapid access, and flexibility in the incorporation of changing contexts) are
all prerequisites for a percept.

The null spike, resembling a tornado

Perception advances in a sequence of frames, so the question arises, how can the cortex switch from each frame to the
next without freezing? Remember that FMA creates order, because all the neurons constrain each other into patterns. The
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amplitude of the ECoG reveals the degree to
which they bind each other into low-grade

synchrony. We say that the ECoG serves as a - S Tealol  Ale Teialastd Al
measure of the degree of order and call it an ST, EEG o ' e f ST p :{
order parameter. When the amplitude is high, e i s o s i il [N . 1 e ;*
an AM pattern may appear. When it goes to e, B s s i s i | ' (R
zero, the order disappears, and the neurons e o ol o o wroit G : \L

lose themselves in disorder. When we look . o, i O O N i e | 7 = i I
very closely at the ECoG, we see that several R ol e Ao AR e N

times each second atrates in the theta range s el e _f:’:'i"'.‘f'_Ei

(3 to 7 Hz, technically an instance of theta- e s | : (-, ':"II: i -

gamma linkage [Buzsaki, 2006]), the S :_';;:l:; T m—— g ' |

amplitude does indeed abruptly go to zero. At ' [N ;
those instants the frequency suddenly jumps to == 21 [f f” :~_ '
a new value, and a new AM pattern emerges. ./ DA /A=)
We call this change a phase transition of

cortex from a receiving phase to a transmitting Figure 3: Left: The 8x8 signals are from a 3.5x3.5 mm square grid of
phase [Freeman, 2008; cf. Freyer et al., electrodes (spacing 0.5 mm) on the olfactory bulb. Right: The amplitudes of

the mean AM patterns are displayed in contour plots. The pattern difference
in Trial Set 1 (above to below) reflects the formation of a neural assembly
during training. The pattern differences from Set 1 to Set 3 with the same

2009], because the old order evaporates into
noise, and the new order condenses from the

noise. control and CS inputs reflect permanent changes in memory with
consolidation. The lack of AM pattern invariance with invariant stimuli shows

The changes in carrier frequency and AM that AM patterns are retrieved from memory and modified by input. They are

pattern from frame to frame are obvious, but not representations of sensory stimuli; they are memories that are created by

the actual phase transition is difficult to see. the sensory cortex. Reprinted from Fig. 12, p. 73 in Freeman [2001].

We start by searching the power spectrum for a

peak that shows the frequency of the carrier wave. However, each frame has a different carrier frequency, and frames last
only about 0.1 s. The spectrum of a long time segment (1 to 6 s or more) has high frequency resolution, but it resembles
that of noise, because the frequency jumps randomly from frame to frame. The spectrum of a short segment (0.1 s, Fig. 4,
A) has poor resolution of frequencies, but still we can identify the narrow pass band (optimally 5 Hz centered in the theta
range, 3-7 Hz [Freeman, 2009]) that includes a carrier frequency, so the trade of losing frequency resolution to gain
temporal resolution is worth while. Typically there are multiple coexisting frequencies, each of which in turn we may
select for close examination.

When we filter the ECoG in the selected pass band, we see the amplitude wax and wane in beats (Fig. 4, B). Thatis
because the mixture of distributed frequencies of oscillation generated by the neural interactions in each pass band
alternatively adds and cancels. To quantify the beats we calculate the instantaneous power (the square of the
instantaneous amplitude [Freeman, 2004a]) and the instantaneous frequency (the rate of change in power) by using the
Hilbert transform [Freeman, 2004b, 2009]. We use the log10 of the instantaneous power of each signal (Fig. 4, C),
because the decrease in amplitude during a beat can be very deep (Fig. 5) and very brief. The instantaneous carrier
frequency holds steady only during the high amplitudes of wave packets (Fig. 4, D). During the beats it is undefined and
shows only noise [Freeman, 2009] from which AM patterns emerge.

The spatial pattern of wave modulation, resembling a hurricane

Recall that in sensation the CS brings to the cortex information that selects and activates a Hebbian assembly, which
guides FMA to an attractor that forces the neurons into an AM pattern. By amplifying the input as it generalizes, the
assembly also provides the tinder needed to ignite the entire cortex into the AM pattern. We propose that the null spike
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provides the necessary spark. This
seemingly trivial event carries the cortex
across a threshold that otherwise prevents
random phase transitions. The spike not
only looks like a tornado; it acts like one in
the sense that it destroys lingering AM
patterns. It clears the way for FMA to
construct a new AM pattern.

The pattern spreads over the entire sensory
cortex, but it takes time to do so. That is
typical of a phase transition in a distributed
medium. For example, the condensation of
a raindrop begins at a site of nucleation,
such as a grain of dust, and it grows
radially as the drop gets bigger. We find
evidence for similar time lags in cortex
[Freeman, 2004a,b]. The evidence for the
spread is given by a spatial pattern of the
latency of the wave that carries the AM
pattern (Fig. 5, D). We express the latency
at each point as a phase of the wave and
locate the highest or lowest point. The
phase decreases or increases with distance
from that point in all directions, as if we
were descending from the top of a hill or
climbing out of a crater. We measure the

Freeman's mass action - Scholarpedia
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Figure 4: Extraction of the dynamic patterns of FMA from ECoG requires high
resolution in spectrum, time, and space. A. The search begins with calculating
the spectrum in a short time window (0.1 s) stepped along the 64 ECoG signals.
The peaks in the power spectrum reveal possible carrier waves. One peak is
selected for filtering in a narrow band (optimally 5 Hz, which is the modal
frequency of the null spikes, estimated from the mean width of the wave packet
pass bands [Freeman, 2009]). B. The 64 filtered signs of ECoG (superimposed
colors) reveal bursts of oscillation with 64 amplitudes and 64 frequencies that
are distributed around the peak frequency (22 Hz). The 64 signs preserve their
amplitudes relative to each other in a pattern as they wax and wane together in
beats. C. Null spikes in log10 power in one or more ECoG signals delimit the
start and end of a wave packet. The stable distribution of instantaneous power
on the surface suggests an AM pattern. D. The 64 carrier frequencies show small

spatial and temporal variations in the burst when power is high and wide

location and steepness of the phase pattern variations between bursts. From [Freeman, 2009].

by fitting to it a conic surface. We call the
spatial pattern a phase cone [Freeman,
2004a,b].

The steepness of the phase gradient is a measure of the velocity of the traveling wave. We find that the mean conduction
velocity of axons running parallel to the cortical surface determines the phase gradient. Our analysis of the literature on
anatomical connections in cortex [Freeman et al., 2009] shows that the power-law distribution of connection distances
between neurons is exactly that which is optimal to support rapid phase transitions of neural populations, irrespective of
how large they are [Kozma, 2007]. We say that the connectivity and the dynamics are scale-free [Freeman and
Breakspear, 2007; Freeman et al., 2009], which states that the dynamics of cortex is independent of size, so the brains of
mice, men, elephants and whales work the same way. Once the cortex has been tipped over its threshold, a large area of
cortex is engulfed inexorably in new AM and phase patterns, even though the size is truly immense in comparison to the
sizes of the neurons.

The size limit is the distance at which the cumulative phase difference between neurons approaches +/- 45 degrees. That
is the phase difference at which the shared power decreases below 50%. The phase difference imposes what is called a
soft boundary condition on the wave packet. There is no mean diameter; the distribution is power-law, with occasional
wave packets that appear to encompass the entire hemisphere.

Cinematographic displays [1] (http://soma.berkeley.edu/videos/?video=2) of the spatial patterns of the recorded
amplitude of the band-pass filtered ECoG (not the instantaneous amplitude) show repeated outward or inward thrusts
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with each half cycle. Some displays also show rotation, either clockwise or counter-clockwise [Freeman and Kozma,
2008; Freeman and Vitiello, 2009]. The patterns resemble the appearance of a hurricane viewed from a satellite, hence
the analogy to a hurricane.

Conclusions and future directions

FMA theory has been a rich source of new features in the ECoG. Those summarized here — the gamma wave packet; the
AM pattern; the null spike; the phase cone; and the ECoG vortex — are the best documented. The wave packet is a
perceptual carrier. We access the percept that it carries by calculating its AM feature vector. The loss of FMA during the
null spike releases the neurons from self-imposed order. They are susceptible to capture by the next memory that is elicited
by the CS. The phase cone shows that the AM pattern is self-organized, that it spreads over the cortex with the velocities of
action potentials, and that it broadcasts the percept throughout the forebrain as required for multisensory integration. The

vortex may stabilize the AM pattern in the turbulence of the cortical dynamics. It shows that every point in an FMA field

has an amplitude and directions of change in space and time, so it is a Maxwellian vector field [Freeman and Vitiello,
2009], not a Newtonian scalar field such as the EEG and ECoG (See Box, Fig.1). The distinction can be seen on
comparing a sensory cortex with a holograph; both systems process information in two-dimensional arrays; both have

many highly interconnected nodes. A holograph stores all the information in a stimulus and retrieves it by an inverse

operation; it is non-categorizing and non-decisional. Cortex irreversibly deletes extraneous information from a CS and

replaces it with a categorical meaning.

We propose the null spike as the ultimate
marker for the onset of each new percept. It
shows the beat of the perceptual clock that
enables each sensory cortex to follow rapid
changes in the world and the brain. In
theory the locations of the null spike, the
conic apex, and the center of the vortex
should coincide. In practice they seldom do.
We think that there are at least three
reasons.

First, the spatiotemporal resolution of our
measurements is marginal. For future
recording the digitizing step should be
decreased from 2 ms to 0.2 ms in order to
sample the high frequency gamma
oscillations. The interelectrode distance
should be decreased below 0.8 mm with
increased number of electrodes in order to
improve the movies in scope and resolution.

Second, the signal processing methods
must be improved. The decomposition of
ECoG by Fourier, Hilbert and wavelet
transforms fails to take advantage of our
new knowledge about the intrinsic features
of percepts by using them as basis
functions. Every segment in the ECoG
shows multiple overlapping and possibly
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Figure 5: The fine structure of the instantaneous amplitude and phase can only
be seen with closely spaced electrodes (here 0.79 mm in an 8x8 electrode grid on
rabbit visual cortex). A. The color-coded contour plot shows the instantaneous
power (the amplitude squared). B. A perspective view of a null spike shows its
funnel-like appearance. C. Simulation of the surface potential amplitude from
two point dipoles 17 mm apart and located at the depth of the ECoG generating
layer shows the spatial resolution that can be achieved with array recording.
[Adapted from Fig. 2, A, p. 575, Freeman, 2006]. D. A perspective view of a
phase pattern (12 ms after the null spike) shows its maximum near the site of
the null spike and its downward slope with distance from the peak (negative
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interacting carrier waves, each with its own phase gradient). This shape can be fitted with a conic surface, which evaluates a
phase cone [Freeman, 2004b]. The spatial display of the null spikes shows that
they are extremely localized (Fig. 5, A), which suggests that they reveal a
singularity in cortical dynamics [Fig. 6.30, p.388 in Freeman, 1975, 20009;

AM and patterns. Until we can separate
them, we cannot tell whether they coexist

like solitons or interact in making higher- Freeman and Vitiello, 2009]. The spike location differs from each AM pattern to

order patterns. the next without relation to the CS. The shape of the funnel of log10 power (Fig.
5, B) has the narrow width that is consistent with a point in an extremely small

Third, present FMA theory is largely area of the cortex, in which the power in the ECoG has momentarily vanished.

We show this by calculating the surface field of a current dipole at the depth of

borrowed from phySICS [Freeman and the ECoG generator (Fig. 5, C). From [Freeman, 2006].

Vitiello, 2006] and mathematics [Kozma,

Scholarpedia] and does not yet stand on its

own. Brain science is still in adolescence. The next decade will surely bring explosive growth with stronger union of brain
theory and experimental bioscience through neurocomputation, but with the proviso that brains don’t compute; humans
use computers to emulate with binary digits what brains do using vector fields of axonal and dendritic activities.
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