UC Merced

UC Merced Previously Published Works

Title

How lawsuits could ignite an energy market: The case of anaerobic digestion

Permalink

https://escholarship.org/uc/item/8d39n8c0

Author

Keske, Catherine

Publication Date

2023-12-13

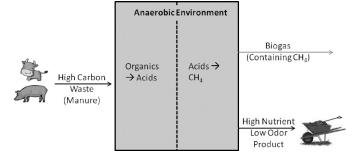
Peer reviewed

How Lawsuits Could Ignite an Energy Market: The Case of Anaerobic Digestion

by Catherine M.H. Keske

Catherine M.H. Keske, Ph.D., is an assistant professor of agricultural and resource economics at Colorado State University's Department of Soil and Crop Sciences and an adjunct professor at the Denver University Sturm College of Law.

The tort system is commonly used in environmental policy to drive costs to the point where a party is forced to forego—or adopt—practices desired by the opposing party.


This Article demonstrates that it is possible for lawsuits to ignite a market for an innovative energy technology that otherwise would be too costly to implement. For example, early adopters of a technology might be able to create conditions that make that technology feasible because they are motivated to settle a nuisance lawsuit. Lessons learned from the implementation of such technology can yield engineering improvements that would decrease the capital or operating costs of the technology. In other words, a nuisance lawsuit can serve as the mechanism to make a technology economically feasible and commercially available.

This Article focuses on anaerobic digestion (AD): a technology that converts biomass into methane that can be captured and used as biogas, or that can be converted into electricity through a generator. The biogas and electricity can be used at the facility where the biomass is collected, or the electricity could be sold to the grid if net metering policies are available. In addition to energy generation and greenhouse gas reduction, AD also reduces odoran important consideration for agricultural operations, including swine and dairy facilities. This Article presents the author's original research illustrating that mitigating imminent nuisance lawsuits potentially can make AD technology economically feasible in the western part of the United States.² Implementation of AD technology for purposes of lawsuit mitigation has already led to improvements in engineering innovation that might make the technology more widely available in the western United States. In

I. AD Energy Technology³

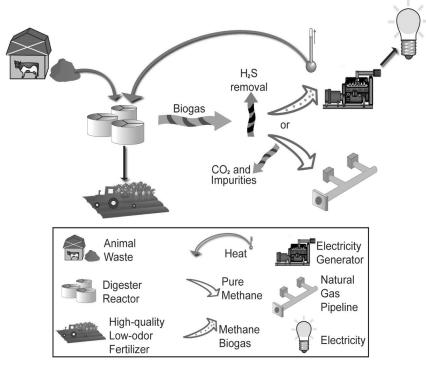
AD is a biological process by which microorganisms convert organic material into biogas, containing methane and carbon dioxide. Biogas produced by this process can be utilized to generate electricity or can be cleaned up and supplied to natural gas lines. A presentation of this biochemical process is shown in Figure 1. This figure illustrates that in the digester, organics are removed as they are converted to methane while nutrients (nitrogen and phosphorus) are conserved. The end product is a low-odor, high-nutrient, stabilized waste suitable for land application as fertilizer.

Figure 1: Anaerobic Digestion Process

Source: Sybil Sharvelle & Luke Loetscher, Final Report: Bench Scale Demonstration and Pilot Plant Design of a Multiple Stage Anaerobic Digestion System, Report to Colorado Governor's Energy Office (Aug. 17, 2009).

Anaerobic digesters are typically large reactors constructed of either concrete or steel. The volume of the reactor depends on the volume of wastes to be processed in the system. With most conventional digesters, a holding

other words, mitigating nuisance lawsuits could ignite the market for AD technology.


Some utilities have "net metering" policies, where small energy generators (like those with an AD), can offset their energy consumption by producing their own electricity. The value of the energy offset varies by utility.

Much of the original research in this Article is based upon original findings
presented in a report to the Colorado Governor's Energy Office. See Catherine M.H. Keske, Economic Feasibility Study of Colorado AnaeroBic Digestion Projects (2009), available at http://soilcrop.colostate.edu/
keske/index.html.

Technical material presented in Section I was first published in *Technical and Economic Feasibility of Anaerobic Digestion* (Sybil Sharvelle & Catherine Keske eds., 2011), E3Ainfo.com (final website address pending).

time of 20-30 days is required to convert manure solids into methane. Methane gas can be utilized onsite, serve as fuel for an electricity generator, or be purified and supplied to natural gas lines (Figure 2). Recently, there is a growing interest in purification of biogas for resupply to natural gas lines due to high maintenance requirements for electricity generators. This requires that all gas components aside from methane be removed.

Figure 2: AD System Configuration

Prepared by Sarah G. Lupis, Institute for Livestock and the Environment (www.ile.colostate.edu), Colorado State University.

Symbols courtesy of the Integration and Application Network (ian.umces.edu/symbols/), University of Maryland Center for Environmental Science.

Dilution of waste with water is most practical when there is an available source of wastewater; therefore, it is not uncommon for AD technology to be implemented at wastewater treatment plants.⁴ The improvements to air (including odor reduction) have led several agricultural operations to implement AD in different areas of the country, but with mixed success. As reported by the U.S. Environmental Protection Agency (EPA) AgStar Program, 18% of the AD units built for agricultural farms have been shut down for technical and economic reasons.⁵ The majority of

the anaerobic digesters still in operation are in the eastern United States, where water is more abundant. In arid climates, animal wastes as collected can have very high solids content, because waste management methods applied at dairies located in the arid West differ from other parts of the United States. For example, water is not usually utilized to flush dairy barns in Colorado, as is done in areas where water is plentiful. Instead, manure is often scraped from

concrete floors or dry lots. While dairy waste has a solids content of 10-14% as excreted, solids content has been measured as high as 90% on dry lots in Colorado. For wastes containing more than 20% solids, substantial quantities of water may be required for AD. This can add to the cost of operating the digester. Removal of rocks, soil, and sand typically involves addition of water to the waste and subsequent settling of the particles, thus adding complexity, capital cost, and additional maintenance for an AD system in the western United States.

II. Economic Feasibility of AD Technology

This section presents an enterprise budget of the cost of installing and operating a large anaerobic digester in Colorado. The budget illustrates that AD technology is only possible in the western United States under the very best conditions, which are unlikely to reflect present market conditions.

While there is potential for a positive rate of return on co-digestion projects in the state of Colorado, values used in the enterprise budget reflect only a 3.66% annual return on investment, which is a rather low return, given the high amount of risk that the operator must incur in capital costs. In order to achieve a positive return on investment, several key assumptions must be met, including carbon credits being sold at \$5.50/ tonne, with reasonable control of production costs. It is

U.S. Department of Energy, Federal Energy Management Program, Biomass and Alternative Methane Fuels (BAMF) Super ESPC Program, ORNL 2004-02594/abh (July 2004), available at http://www1.eere.energy.gov/femp/pdfs/bamf_wastewater.pdf.

U.S. EPA AgStar Program, Project Report (July 2011), http://www.epa.gov/ agstar/projects/index.html (last visited Oct. 8, 2011). Statistics do not include those reported under construction.

Duane Griffith, Get a Financial Health Check-Up, in Applied Risk Man-AGEMENT IN AGRICULTURE 51-90 (Dana Hoag ed., 2009).

^{7.} The Chicago Climate Exchange traded carbon dioxide between \$0.10-\$0.25 per metric tonne for two years, before it closed at the end of 2010. See Matthew DeBord, The Fall and Rise of the Carbon Coalition, HuffingtonPost. com, July 27, 2011, http://www.huffingtonpost.com/matthew-debord/the-fall-and-rise-of-the-carbon-coalition_b_910442.html (last visited Oct. 28, 2011). These prices are far lower than the price required for revenues from carbon markets, which are necessary for this budget. However, it can

also assumed that revenues could be generated from selling electricity to the grid for a price of \$0.07 per kilowatt hour (kWh).⁸ At present, economic conditions required for a positive AD project return are not favorable, which would cause the digester to operate at a substantial loss. Furthermore, due to the very small number of AD projects in the region, variations in the data may be observed when more AD units have been installed.

Figure 3: AD Enterprise Budget

	Units	Amount	Expected Economic		
			Conditions		
Revenue					
Sale of Electrical Power					
Energy and VOM Payment	kVA	68,657,404	\$4,394,074		
Capacity Payment	kW	94,069	\$893,656		
Sale or Use of Carbon Credits	CO ₂	22,197	\$2,563,754		
Total			\$7,851,483		
Production Costs					
Utilities			\$78,971		
Feedstock Procurement			\$1,039,030		
Bio-Mass Waste Licensing	\$150,000				
Waste Disposition Opera	\$122,000				
Water Utilization	\$461,727				
Compensation & Benefits	\$342,000				
Feedstock Management			\$165,000		
Operational Mgmt. & Supi	\$250,000				
Maintenance and Upgrade	\$400,000				
General and Administrative					
Lease Agreement for Land	1		\$100,000		
Insurance (General Liabilit	\$50,000				
Legal and Accounting	\$20,000				
Total	\$3,178,728				
Earnings Before Interest Taxes & Amortization			\$4,672,755		
Interest			\$1,037,350		
Amortization			\$263,368		
Depreciation			\$2,671,832		
Taxable Income			\$700,205		
Income Tax (40%)			-\$280,082		
Producers Tax Credit (\$0.01	\$280,082				
Net Income			\$700,205		

be argued that the social cost of carbon should be much higher and that \$5.50 per metric tonne is the low point when all social costs are calculated. See Catherine M.H. Keske et al., Designing a Technology-Neutral, Benefit-Pricing Policy for the Colorado Electricity Sector (2010), available at http://soilcrop.colostate.edu/keske/index.html.

As previously stated, the net income for the expected economic condition is positive (\$700,205), but the return is low. A review of published reports and interviews with agricultural producers and technology providers implied downward variability in production revenues, e.g., tipping fees, energy production, energy prices per kWh, and costs, e.g., maintenance fees, and unexpected downtime.⁹

Low electricity prices, such as typical net metering prices at \$0.02/kWh, make it more difficult to justify a digester investment. Return on investment takes longer when electricity costs are low and the value of selling excess electricity produced or offsetting consumption is also lower. In the intermountain West, electricity costs are generally lower than the eastern United States. This is primarily due to relatively inexpensive coal and hydroelectric resources that are available for electricity generation. While the environmental damages resulting from burning coal could be factored into future energy policy, the current price per kWh of electricity is low compared to other regions of the country. Appendix A further elaborates on the revenue assumptions built into the enterprise budget model.

Interviews with technology providers and agricultural operation managers (as well as preliminary data analysis of the Aurora Organic Dairy)¹³ indicate AD systems for a Colorado single-farm project are not economically viable at this time, unless there is a key cost savings from lawsuit mitigation.¹⁴

III. Nuisance Lawsuits as a Means for Making AD Economically Feasible

Both technology providers and agricultural operators affirm that AD units effectively reduce agricultural odors that often prompt nuisance lawsuits.¹⁵ Anaerobic digestion units can provide a measurable reduction in odor, in addition to playing a role in the management of air emissions, water quality, and waste management.¹⁶ Proper management of all of these environmental quality aspects can help to improve neighbor relations and mitigate nuisance lawsuits on agricultural operations. However, when faced with high AD capital investment costs, it can be difficult to

^{8.} Price per kWh in Colorado for energy buyback is approximately \$0.02. Sharvelle & Keske, *supra* note 3.

^{9.} Keske, *supra* note 2, at 26-43.

Keske, supra note 2, at 46-50. See also Eliabeth R. Leuer et al., Investing in Methane Digesters on Pennsylvania Dairy Farms: Implications of Scale Economies and Environmental Programs, 37 AGRIC. & RESOURCE ECON. Rev. 188-203 (2008).

^{11.} Keske, *supra* note 2.

^{12.} Revenues and costs are summarized in Keske *supra* note 2 at 44-50.

Sybil Sharvelle, Final Report on Results From Waste Characterization and Biochemical Methane Potential Tests Conducted on Wastes From Aurora Organic Dairy, presented to ActNeutral, Inc. (Oct. 2008).

^{14.} Keske, *supra* note 2, at 9-36.

^{15.} Sharvelle, supra note 13.

^{16.} John H. Martin, An Assessment of the Performance of the Colorado Pork, LLC, Anaerobic Digestion and Biogas Utilization System, EPA Contract #68-W7-0068 (Mar. 18, 2003). Dr. John Martin's technical report also included an economic analysis, which noted an annual loss in farm income at \$931/year or \$0.19 per unit of sow capacity per year. The rate of return with internal financing, which was the method of financing the Colorado Pork system, was slightly less than 7%. The startup project capital expenses were heavily subsidized by federal funding.

Figure 4: Summary of Financial Awards From Agricultural Nuisance Suits Involving Odor

Damage Claims Awarded in Nuisance Suits					
Year	State	Damages Awarded	Plaintiff/Case	Operation	
1991	NE	\$375,600	Kopecky v. National Farms, Inc., JVR No. 71409, 1991 WL 448316 (D. Neb. Apr. 1, 1991).	Swine	
1998	KS	\$65,000	Twietmeyer v. Blocker.	Beef Feedlot	
1999	MO	\$5,200,000	Hanes v. Cont'l Grain Co., 1999 WL 33564561 (Cir. Ct. Mo. Apr. 26, 1999), aff'd, 58 S.W.3d I (Mo. Ct. App. 2001).	Swine	
2001	ОН	\$19,182,483	Seelke v. Buckeye Egg Farm, LLC, No. 17345, 2001 WL 1817792 (Ct. Com. Pl. Ohio Sept. 9, 2001).	Egg/Poultry	
2002	IA	\$33,065,000	Blass v. Iowa Select Farms, Inc., No. LACV-018147, 2002 WL 32154669 (Iowa Dist. Ct. Oct. 9, 2002).	Swine	
2004	ОН	\$50,000,000	Bear v. Buckeye Egg Farm, No. 211414WL, 2004 WL 1087124 (Ct. Com. Pl. Ohio Feb. I, 2004).	Egg/Poultry	
2006	AL	\$100,000	Sierra Club et al. v. Whitaker and Sons LLC.	Swine	
2006	MO	\$4,500,000	Turner v. Premium Standard Farms Inc., JVR No. 485410, 2006 WL 5709774 (Mo. St. Ct. Sept. 2006).	Swine	
2007	IL	\$27,000	State of Illinois (Plaintiff). Respondent undisclosed.	Swine	
2010	МО	\$11,000,000	Undisclosed Plaintiffs v. Pre- mium Standard Farms Inc.; Contigroup Co., Inc.	Swine	

determine whether the large investment justifies potential future legal expenses.

While legal costs are frequently calculated in the cost of doing business, the risk associated with an odor-related nuisance lawsuit can be difficult to estimate. The majority of cases are settled outside of court, and insurance companies typically subsidize the settlements. Furthermore, when nuisance verdicts are handed down by courts, documentation of the damage awards (which include punitive damages) can be challenging to find. Not all verdicts and settlements are reported. Also, opinions from appellate judges do not routinely mention awards.

A summary of recent nuisance lawsuit awards and settlements can be found in Figure 4. The cases are ordered by year. Also listed are the states where the lawsuit was filed, case or plaintiff as available, and type of operation. The settlement and damage values (which include punitive damages) have not been corrected for inflation. The type of agricultural operation is listed on the right-hand column.

The awards listed in Figure 4 ranged from \$65,000-50,000,000. Seven of the 10 reported cases involved swine operations. Two cases involving large awards were against the same owner of two Ohio egg production facilities. There was one example of a settlement to a Kansas cattle feedlot. Six of the documented cases occurred west of the Mississippi.

Blass et al. v. Iowa Select Farms presents the most unusual case, because a high punitive damage award (\$32,065,000) was distributed to only four neighboring farm couples. Most large awards of that magnitude involve class action lawsuits. In this case, couples reported having been subject to noxious gases, offensive odors, and excessive amounts of flies. The couples sued Iowa Select Farms complaining that improperly disposed-of swine carcasses and unsanitary conditions created health risks. The couples also alleged that Iowa Select willfully and recklessly located the 30,000-hog facility on the 640-acre farm without regard to its impact on neighbors. An expert at trial testified that the farm produced as much excrement as 90,000 to 150,000 people.¹⁷

In addition to information gathered from legal databases, personal interviews with western agricultural producers yielded similar results. Doug Derouchey of Wyoming Premium Farms in Wheatland, Wyoming, reported that his operation spent approximately \$200,000 in legal fees fighting two lawsuits, in which plaintiffs were seeking approximately \$2,000,000 in punitive damages.¹⁸

Evidence of large legal awards provides context for the enterprise budget shown in Figure 3. An imminent lawsuit that could result in more than \$5.9 million in damages (including

punitive damages) or fines in one year would overcome a 20% decrease in revenues and an increase in costs from the expected conditions presented in the enterprise budget. In other words, preventing legal conflict can justify the net losses from an AD project.

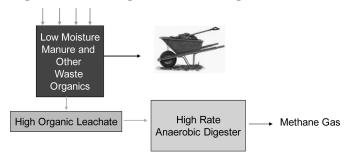
Many of the nuisance claims on record involve swine operations, attributed to the intensity, pervasiveness, and far-reaching distance of odor. Improper swine-manure management can negatively affect nearby water quality and pests (like flies). Cases with high punitive damage awards also involve swine operations.

Jean Hays, Jury Punishes Feedlot Owner for Making Neighbors' Lives Miserable, Wichita Eagle, May 27, 1998. See also Mark Harrison, Hog Farmers Settle Lawsuit, FORT PAYNE, ALABAMA TIMES-J., June 23, 2006.

^{18.} In personal communication with Doug Derouchey, he reports that the farm's single most important consideration for purchasing an AD unit was mitigation of nuisance lawsuits. He estimates that earlier this decade, Wyoming Premium Farms paid roughly \$200,000 in legal costs to fight two nuisance lawsuits, where the plaintiffs were seeking a total of approximately \$2 million in punitive damages. The digesters were built as part of this negotiated settlement agreement. Personal interview and site visit, July 22, 2009.

Not all of the nuisance suits have occurred in regions with high-population pressures, including the Wyoming Premium Farms operation in Wheatland, Wyoming. The Wyoming Premium Farms case illustrates two interesting rural western issues. One is that agricultural operations are susceptible to legal action, even in areas that are not experiencing rapid population growth, like Wheatland, Wyoming. Second, the topography of high-elevation land results in cross-winds, and odor problems may be more difficult to predict than the mere presence of a "downwind" housing development. Therefore, the trend of nuisance suits could persuade agricultural operations to consider adoption of AD units as a management practice, even when the operation is not located in an urban-rural interface.

IV. The Potential for Nuisance Suits to Ignite a New Energy Market


At this writing, AD technology does not typically pay for itself in the western United States without the presence of a nuisance lawsuit. However, the use of AD technology at these few sites, including the site at Wheatland, Wyoming, has led to innovative technological research that might reduce AD operating costs. Reduced operating costs in a few parameters, such as water costs, could be enough to make AD economically feasible, which would open the door to a market.

For example, high solids content waste is a major barrier that has been identified as unique to the arid western United States. Technology providers have consistently noted that research dollars spent to study methods for overcoming high solids content waste may provide considerable payback for future implementation of AD technology in these arid regions of the country. At the moment, private funding for high solids content research may not yield economic returns for industry, but research conducted at sites that have already implemented AD to prevent lawsuits appear to be sparking engineering innovations that could reduce costs.

One example of this advance is a two-stage digester, presented in Figure 5. Here, hydrolysis takes place in one reactor, and methane generation takes place in a second reactor. A small amount of water is percolated over a bed containing low-moisture manure and other waste organics. Organics present in the waste leach into the liquid phase and are hydrolyzed by microbial activity. The hydrolyzed organic liquid waste can then be processed through a high-rate anaerobic digester, such as a fixed-film digester, to generate methane. Preliminary work conducted by university engineering researchers has shown promise for this technology. Researchers have demonstrated that this process can yield up to 125% and 293% methane compared to that of a conventional process. Water can be recirculated through

the hydrolysis reactor until maximum possible organic content is leached into the liquid. Onsite wastewaters would be a sufficient water supply. One problem encountered with the leachate bed is porosity of the waste material and inefficient water flow and distribution throughout the system. However, in this recent research, researchers have been able to improve process efficiency by the addition of pistachio hulls, hay, corn stalks, and straw.

Figure 5:Two-Stage Anaerobic Digestion Process

Source: Sybil Sharvelle & Luke Loetscher, Final Report: Bench Scale Demonstration and Pilot Plant Design of a Multiple Stage Anaerobic Digestion System, Report to Colorado Governor's Energy Office (Aug. 17, 2009).

Using only a small amount of water will likely reduce digester malfunction, because microbial activity will be better balanced,²¹ and operational costs will be reduced due to the lower water requirements.²²

Likewise, increases in methane potential by two-stage dry AD—and therefore increased energy-production potential—could yield enough energy production to make electricity generation more financially rewarding.

In summary, while conducting engineering research might impose large costs upon private firms, it might very well be cost-effective to conduct this technical research at locations that have already implemented AD to mitigate lawsuits. Under such conditions, nuisance lawsuits in the agricultural sector might have ignited a market for energy produced by AD.

Appendix A

Gross Revenue. Gross revenue can be further explained as follows:

Gross Revenue = Energy and VOM Payment + Capacity Repayment + Carbon Credit

- (1) Energy + VOM Payment = Energy Produced * .064 (expected price per kWh)
- (2) Capacity Repayment = Capacity Rate (assumed at 9.55) * Billing Capacity Billing Capacity = Energy Produced/Hours of operation per month (average of 744)

^{19.} Keske, supra note 2.

Sybil Sharvelle & Luke Loetscher, Final Report: Bench Scale Demonstration and Pilot Plant Design of a Multiple Stage Anaerobic Digestion System, Report to Colorado Governor's Energy Office (Aug. 17, 2009).

^{21.} *Id*.

^{22.} Keske, *supra* note 2, at 48-50.

12-2011 NEWS & ANALYSIS 41 ELR 11099

(3) Carbon Credit = Methane produced *5.5 (carbon price per ton) *21 (gas conversion rate)

Methane produced = [Energy produced per month/
Sum of energy produced] * [Annual methane produced in metric tonnes]

Feedstock conversion to energy. Feedstock is converted to "energy produced." This is determined as follows:

- (1) Volume of slurry (lbs./day) converts to lbs. of solids: % solids in feedstock = 8%.
- (2) Conversion to methane produced: 5.6 ft.3/lbs. of solids. This is the estimated conversion rate of feedstock from lbs. of solids to gas
- (3) *Biogas produced* = methane produced/molecular ratio (.7) of methane to biogas
- (4) Energy produced in BTUs = biogas produced *Heat content (65) Btu/ft.³ Models are based upon technical assumptions for co-digestion, as a consistent level of diverse feedstock is required to ensure engine efficiency.

Appendix B

Case Example of Wyoming Premium Farms, LLC

Wyoming Premium Farms is a 6,000-acre swine operation located in Wheatland, Wyoming. The operation is primarily owned by Japanese investors. Doug Derouchey, the operations manager, is the minority business owner. There are approximately 5,000 sows and 18,000 other swine in various stages of development, ranging from nursery to finishing. The operation owns two complete-mix AD units that service four separately located barns. Each day, approximately 20,000 gallons of waste are generated from the four collective barns. The AD units run 24 hours per day, seven days per week. AD #1, installed in 2003 at the sow barn for \$1 million, presents 80kW capacity. AD#2, with 160kW capacity, was installed in 2004 to accommodate the other swine. The operation has a methane gas line tap, but the infrastructure is not able to support a gas line. Unused gas is flared.

In contrast to most projects, the Wyoming Premium Farms digesters were purchased in cash and received no government financial support. This is an important principle for Derouchey, who suggested the installation of the digesters to the majority owners. Derouchey believes that: "These are probably the only two digesters in the nation that were built with not one government dollar." Derouchey is forthright that the main purpose for the installation of the AD units was to mitigate costs stemming from nuisance lawsuits, and that the projects would otherwise not be economically viable. He attributes the poor economic returns to periods of long shutdown, high maintenance costs due to the corrosiveness of the biogas, and low supply prices for selling electricity to the grid.

Derouchey was interviewed during two telephone calls and a July 22, 2009, site visit. He is accustomed to providing tours to visitors who have an interest in learning more about the digesters. Derouchey allowed photos to be taken of one of the digester units, and he was willing to share some financial information, which has been integrated into the sensitivity analysis.

Cost Information

- A. Peak demand charges: Derouchey reports that at least one time per month, the generator is forced to shut down during peak demand. Even when it is down for as short as 15 minutes during peak demand, Derouchey estimates that the operation is forced to pay \$1,500-\$3,000 in monthly charges to Wheatland Rural Electric.
- *B. Annual maintenance costs:* Derouchey estimates that he pays approximately \$20,000 per year for maintenance. Included in these estimates are:
 - Replacement generator parts from RCM International.
 - Routine oil maintenance (which takes places approximately once every 10 days).
 - Engine maintenance and repair specialists, e.g., \$60/hr. for a specialized engine operator trained in tractor maintenance and repair from Caterpillar. At one time, Wyoming Premium Farms needed to contract with AD repair specialists from Missouri for digester maintenance and repair, but this need has been reduced since local labor has accumulated more experience in this specialized work.
- C. Major engine repairs: In addition to annual maintenance fees, Derouchey states that he has "overhauled" and conducted major repairs to both engines on two separate occasions during the past five years. This involved replacement of valves, pistons, etc. Direct costs were estimated at approximately \$20,000 (approximately \$5,000 per incident, with two incidents observed for each digester). In addition to this expense, the operation was forced to purchase electricity during the times of generator shutdown.
- D. On-farm labor for routine maintenance: Derouchey currently employs the equivalency of one full-time laborer to maintain the AD units. Although AD review is required seven days per week, the estimated time of dedicated labor necessary to run the digesters is approximately 40 hours per week. The farm pays workers \$8.76/hr. as part of a government-sponsored agricultural work program. Housing, included in the worker's compensation, is not calculated in this expense. Thus, costs for routine labor are \$350 each week and \$18,221 every year.

Revenue and Cost Offsets for Wyoming Premium Farms

- A. Lawsuit mitigation: Summarized in Article.
- B. Cost offset of irrigation system: The company is able to offset electricity and water costs by using electricity and effluent water to power a 125-horsepower motor irrigation system. The irrigation system pumps 200/gallons per minute of effluent water onto irrigated silage corn (used to feed the swine and beef cattle). Additional irrigation water is also used and pumped at a rate of 600 gallons per minute from a well. Based upon operational costs from four irrigation units, Derouchey estimates that he saves roughly \$4,500/month for the four months of irrigation season (\$18,000 annually). The other four irrigators are not located close enough to the generator infrastructure to utilize the energy.
- C. Cost offset for lighting/fans: Derouchey reports saving approximately \$2,000-\$3,000 each year from using on-farm electricity for lighting and fans.

- D. Net metered electricity: Derouchey supplies excess electricity to Tri-State at a rate of \$0.02/kWh. He is unsure of the average volume that he sells to Tri-State each month.
- E. Fertilizer: The solids separators enable Derouchey to use the remaining solids as fertilizer for silage corn, which is used to offset feeding costs for the 900 head cow-calf operation. Corn is also occasionally fed to the swine during the finishing process. Derouchey estimates that the operation produces 750 acres of corn each year and that he saves \$150/acre in fertilizer costs for an annual savings of \$112,500.
- F. Carbon credits: Derouchey reports that he has sold carbon credits through 2007, although has not reported the volume sold or the revenues collected. He believes that the operation was able to sell the credits at a price of roughly \$5/tonne, close to the market peak of \$7/tonne.