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ABSTRACT OF THE DISSERTATION

Tuning magnetism and band topology in intrinsic magnetic topological insulators

MnBi2nTe3n+1

by

Chaowei Hu

Doctor of Philosophy in Physics

University of California, Los Angeles, 2022

Professor Ni Ni, Chair

Topological materials are materials whose electronic band structures are described by

certain non-trivial topological invariants. Forty years ago the importance of band topology

in condensed matter physics was first recognized when the quantum Hall effect (QHE) was

found to be related with the integer Chern number in two-dimensional (2D) electron gas.

Since 2008, the discovery of three-dimensional (3D) topological insulators (TI) with a non-

trivial topological invariant and gapless surface state has taken the field into a new era.

Various new topological phases were proposed and band topology has become a new way to

classify the state of matter.

The design, synthesis and characterization of new topological materials pave essential

basis to uncovering novel physics arising from non-trivial band topology and its interplay with

various degrees of freedom such as spin, orbital and charge. Today, with more sought-after

novel topological phases, emergent phenomena such as surface Fermi arcs, chiral anomaly,

quantum anomalous Hall effect were discovered and enable future technological advances

including topological quantum computation. A new topological phase can be created when

additional symmetry breaking is introduced into an existing topological phase. For example,

by breaking the time reversal symmetry of a 3D TI through ferromagnetism (FM), one can
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get a Chern insulator in its 2D limit, where QHE can be realized without external magnetic

field and gives topologically-protected dissipationless chiral edge states. This phenomenon,

the so-called quantum anomalous Hall effect (QAHE), has been long sought since its early

proposal in the yet-to-be-realized Haldane model for graphene lattice with opposite magnetic

field at neighboring atoms in 1988. Therefore, the realization of QAHE in magnetically-doped

TI Cr0.15(Bi0.1Sb0.9)1.85Te3 thin films in 2013 was revolutionary. However, the unavoidable

sample inhomogeneity in doped materials restrains the investigation of associated emergent

phenomena in mK-regime. Ideally, magnetism from intrinsic magnetic atoms in a crystal

can provide more homogeneous electronic and magnetic properties than the magnetism from

dopants. To realize QAHE at higher temperatures, the intrinsic magnetic TIs with only

clean topological bands but no other bands at the Fermi level are strongly desired. In 2018,

MnBi2Te4 was discovered to be the first of such kinds, as an antiferromagnetic (AFM) TI

with intrinsic magnetic Mn site. It is a layered van der Waals (vdW) material. When the

magnetism orders below 24 K, the spins are FM aligned in the ab plane but AFM coupled

along the c axis. In 2D limit, MnBi2Te4 films can have a net magnetization either in odd-

layer devices, or when the even-layer devices are in the spin-flop state above ∼ 3.5 T and the

forced FM state above ∼ 8 T. These time-reversal-symmetry breaking states are ideal for

realizing the Chern insulator state. Indeed, QAHE was experimentally observed at 0 T and

1.6 K in a 5-layer device and quantized Hall conductance was realized when the even-layer

devices enter the forced FM state above the saturation field of 8 T.

Following this line, for QAHE to be realized at zero field and higher temperature, it is

strongly desirable if the FM alignment of Mn spins can be accessed at a lower or even zero

field. To do so, one must weaken the interlayer AFM interactions between [MnBi2Te4] layers.

We thus propose to introduce n−1 nonmagnetic TI [Bi2Te3] layers between [MnBi2Te4] layers

to get natural heterostructures of MnBi2nTe3n+1. By this rational design, we can increase

the distance between the neighboring [MnBi2Te4] layers and thus reduce the interlayer AFM

interaction. Under such a design principle we successfully grew single crystals of MnBi4Te7

(n = 2), MnBi6Te10 (n = 3) and MnBi8Te13 (n = 4). Then with the physical property
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characterization, first-principles calculations and angle-resolved photoemission spectroscopy

measurements, for the first time, we demonstrated that MnBi4Te7 is an intrinsic AFM TI

with saturation field 40 times smaller than that of MnBi2Te4, and that MnBi8Te13 is the

first realization of an intrinsic FM axion insulator, proving the success of our material design

principle.

The manipulation of magnetism is crucial to access different magnetic topological phase

and novel physics. In MnBi2nTe3n+1, the control of the magnetism from AFM to FM by n is

only discrete. To achieve a fine and continuous control of the magnetic transition, we doped

Sb to MnBi4Te7 where the interlayer AFM coupling is weak and more tunable. Through

single crystal growth, transport, thermodynamic, neutron diffraction measurements, we show

that under Sb doping, MnBi4Te7 evolves from AFM to FM and then ferrimagnetic. We

attribute this to the formation of Mn(Bi,Sb) antisites upon doping, which results in additional

Mn sublattices that modify the delicate interlayer magnetic interactions and changes the

overall magnetism. We further investigate the effect of antisites on the band topology using

the first-principles calculations. Without considering antisites, the series evolves from AFM

topological insulator (x = 0) to FM axion insulators. In the exaggerated case of 16.7% of

periodic antisites, the band topology is modified and type-I magnetic Weyl semimetal phase

can be realized at intermediate doping. Therefore, this doping series provides a fruitful

platform with rich and continuously tunable magnetism and topology.

After we achieve FM in MnBi2nTe3n+1, for practical applications especially in the pursuit

of high temperature QAHE when fluctuations become important, the study on magnetic

dynamics is indispensable too. We investigated the magnetic dynamics in FM MnBi8Te13

and Sb doped MnBi4Te7 and MnBi6Te10 using AC susceptibility and magneto-optical imag-

ing. Slow relaxation behavior is observed in all three compounds, suggesting its universality

among FM MnBi2nTe3n+1. The origin of the relaxation behavior is attributed to the irre-

versible domain movements since they only appear below the saturation fields when FM

domains form and evolve. These FM domains are very soft, as revealed by the low-field

fine-structured domains and high-field sea-urchin-shaped remnant-state domains imaged via
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the magneto-optical measurements. Finally, we attribute the rare “double-peak” behavior

observed in the AC susceptibility under small DC bias fields to the very soft FM domain for-

mations. This study provides a thorough understanding of the soft FM in highly anisotropic

magnets.

As the first intrinsic antiferromagnetic topological insulator, MnBi2Te4 is still the major

material platform to search for QAHE, so its material optimization is very urged. We develop

the chemical-vapor-transport (CVT) growth for of MnBi2Te4, which has a higher success rate

in observation of the field-induced quantized Hall conductance in 6-layer devices. Through

comparative studies between our CVT-grown and flux-grown MnBi2Te4, we find that CVT-

grown MnBi2Te4 is marked with higher Mn occupancy on the Mn site, slightly higher MnBi

antisites and smaller carrier concentration. On the device end, thin film from CVT-grown

sample shows by far the highest mobility of 2500 cm2·V·s in MnBi2Te4 devices with the

quantized Hall conductance appearing at 1.8 K and 8 T. This study provides a route to

obtain high-quality single crystals of MnBi2Te4 that are promising to make superior devices

and realize emergent phenomena.

In summary, we have discovered and established MnBi4Te7 and MnBi8Te13 as new in-

trinsic magnetic topological insulators. In particular, we provide deep understanding of the

importance of material design, synthesis and chemical doping to the magnetism and topology

in the series. The growths of high-quality single crystals and the study of magnetic dynamics

provide essential basis for the search of QAHE in MnBi2nTe3n+1. Our works will shed light

on future endeavors in finding novel magnetic topological materials as well as searching for

QAHE and the associated emergent phenomena in the condensed matter field.
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CHAPTER 1

Introduction to Magnetic topological insulator

Following the discovery of three-dimensional (3D) topological insulator (TI), the past

decade has seen a booming growth of the studies of band topology in condensed matter

physics. Band topology has since emerged as an organizing principle of the states of mat-

ter [1]. Fast forward to today, many topological phases, such as quantum spin Hall (QSH)

insulators, quantum anomalous Hall (QAH) insulators, Dirac semimetals, and Weyl semimet-

als, have now been discovered [2, 3]. These topological phases are associated with particu-

lar nontrivial topological invariants which arise from the global property of the electronic

structure, and are robust against perturbations. Inside these topological phases, emergent

phenomena were theoretically proposed based on the interplay of nontrivial band topology

and the charge, spin, orbital degrees of freedom. The material realization of different 3D

topological phases has turned out to be the driving force of the field. It has enabled physi-

cists to explore and discover many proposed phenomena, including the dissipationless edge

transport, chiral anomaly effect, etc, making the past decade a new era of condensed matter

physics.

Among these topological phases, the magnetic TI (MTI) phase has been the frontier of

research. When ferromagnetism couples with the Dirac surface states in TI, it breaks the

time-reversal symmetry, lifts the topological protection on the surface states, opens a surface

gap and gives rise to new topological phases such as Axion insulators and QAH insulators. As

a result, seeking MTI where emergent physics awaits exploration has been strongly desired.

However, the search of MTI is challenging. Although first-principle calculations have been

quite successful in predicting non-magnetic topological materials, they often run into inherent

difficulties in successfully producing band structures due to the nature of strong electron-
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electron correlations in these magnetic materials. Without much theoretical input, it remains

a big challenge of the material search and realization of magnetic topological materials. To

address this problem, my Ph. D work focuses on the search, design and studies of intrinsic

magnetic topological insulators based on [MnBi2Te4] layered structure.

1.1 The structure of the thesis

My thesis is structured as the following. In Chapter 1, I will give an overview of two pillars

of our studies on MTI - topology and magnetism. In Chapter 2, I will go over experimen-

tal techniques that allow us to grow single crystals and perform property characterizations.

Chapters 3 and 4 discuss our discovery of the intrinsic antiferromagnetic TI MnBi4Te7 and

the ferromagnetic axion insulator MnBi8Te13 that greatly extends the MnBi2nTe3n+1 (MBT)

family. Chapters 5 discusses the effect of Sb doping in MnBi4Te7, which allows us to tune the

magnetism and topology in a continuous and controllable way. The work emphasizes how an-

tisite defects can modify the magnetism and topology in the MnBi2nTe3n+1 family. Chapter 6

focuses on the magnetic dynamics in the ferromagnetic members of the MnBi2nTe3n+1 family,

including MnBi8Te13 and Sb-doped MnBi2nTe3n+1(n = 2, 3), pointing to the important role

of their very-soft ferromagnetism nature on the spin dynamics. In Chapter 7, I present our

development of a new growth method of MnBi2Te4 via the chemical vapor transport. The

comparison of the crystals grown by the flux method and chemical vapor transport method

suggests the detrimental role of antisites in device applications of the material. Chapter 8

concludes the thesis and outlooks the ongoing research of MnBi2nTe3n+1 family and MTI in

general.

1.2 Background on Hall effect and band topology

For the rest of this chapter, I will first review the history and previous development that

have lead to the recent discovery of magnetic TIs and provided motivations to our studies.

The notion of topology was first introduced in the condensed matter field to describe the
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Figure 1.1: History of the discoveries of different types of Hall effects. Classic Hall effect,

AHE, QHE, QSHE, 3D TI and QAHE in the chronological orders. Numbers in parentheses

indicate the years of each discovery. H is the external magnetic field. M is the intrinsic

spontaneous magnetization. S denotes spin. Adapted from [4,5]

quantum Hall state, and later found to be closely linked to all types of Hall effects. Therefore,

we will cover mostly the phenomenological aspects of various Hall effects, with the emphasis

on the role of topology. We will then go over the theoretical formulations to provide the

basis of the topology and magnetism. Finally we will summarize and outline a road map for

the overall studies of topological materials.

Hall effect refers to the production of voltage difference transverse to the current direction.

Today, physicists have discovered different types of Hall effects. Among them, there are three

classical ones, including the ordinary Hall effect, spin Hall effect, anomalous Hall effect. Then

there are three corresponding quantum versions, quantum Hall effect (QHE), quantum spin

Hall effect (QSHE) and quantum anomalous Hall effect (QAHE). In Fig. 1.1 we show

the timeline for the theoretical proposals and experimental realization of each type. The

earliest discovery of the series dates back to 19th century while the last member QAHE was

discovered less than 10 years ago.
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1.2.1 Classical Hall effect

The classical Hall effect was first discovered in 1879 by Edwin Hall, whom the phe-

nomenon is later named after. The Hall effect happens as a result of the classical electrody-

namics in which the charge carriers are driven by the Lorentz force under magnetic field to

accumulate at the edge of the sample and generate a voltage difference across the sample.

The associated electric field is perpendicular to the current direction as well as the external

magnetic field. Eventually the system enters an equilibrium, where the effect of magnetic

field is eventually balanced by the induced electric field.

F = q(E + v×B) = 0 (1.1)

In this equilibrium, the sign and magnitude of Hall voltage is dependent on the charge carrier,

so Hall effect is commonly used to determine the charge carrier type, as well as the carrier

density using

VH =
IB

nte
(1.2)

In case of single carrier type, VH is always proportional to B. If the sample is p-type, i.e.

holes are the major carriers, VH(B) will have a positive slope. If it is n-type, i.e. electrons

are the main carrier, VH(B) will have a negative slope. If we let the Hall resistivity be

ρxy = V
It

then, the Hall coefficient can be defined as slope of ρxy(B).

RH =
dρxy
dB

= 1/ne (1.3)

Therefore, from the Hall coefficient, one can obtain the sign and value of n, and thus get

the average carrier density and dominant carrier type. This method is commonly used in

the transport studies of various materials.

1.2.2 Anomalous Hall effect

Following the discovery of Hall effect, it was found in ferromagnetic (FM) materials that

ρxy is not just linear with the external field. In particular, there is a spontaneous jump of

the Hall signal that matches the trend of the magnetization around zero field, which leads to
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Figure 1.2: Comparison of ordinary Hall effect (a), and AHE (b). In (b), a linear inter-

polation of ρxy at high field yield a finite anomalous Hall resistivity proportional to the

magnetization at 0 T.

a nonzero intercept at RA
xy. Therefore, this type of Hall effect is named the anomalous Hall

effect (AHE). Because the relative size of RA
xy is generally proportional to the magnetization

loop with RA
xy = RSM for some constant RS, as shown in Fig. 1.2, naively, it may seem

that internal magnetic field provides the Lorentz force and results in AHE, just like what the

external magnetic field does for non-magnetic materials. However, its microscopic mechanism

turns out to be much more complicated than that. Today, it is believed that AHE is caused

by a combination of extrinsic factors like asymmetric magnetic scattering and side jumps,

as well as intrinsic factor from Berry curvature in the momentum space [6]. The intrinsic

scenario is more of a topological origin, where the role of internal magnetism is to break

the time reversal (TR) symmetry, and allows a nonzero integrated Berry curvature over the

entire Brillouin zone in the reciprocal space. Moreover, in special cases where the magnetic

moments are not coplanar, a moving charge carrier experiences similar interaction with the

spin curvature in the real space, and gives rise to “topological Hall effect”. The detailed role

of symmetry to Berry curvature for a general magnetic material is discussed in Section 1.3.3

of this chapter.
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1.2.3 Spin Hall effect

Spin Hall effect (SHE) was first proposed in 1970s [7] but only recent predictions in doped

semiconductors like GaAs in this century [8,9] have lead to experimental observation [10]. In

contrast to a typical Hall effect where there is a transverse charge current, in SHE, there is

transverse spin current under a electric field. In a spin current, opposite spin carries opposite

momentum.

Note that a charge current is odd but a spin current Js is even under TR symmetry.

This makes the SHE very different from the “charge” Hall effect. No external field is needed

because SHE is TR-preserving. Here, the role of the external field is taken by the spin-

orbit coupling in the system, which does not break TR symmetry but acts oppositely on

opposite spins, and drives them to the opposite directions. Although SHE is not named

“quantum”, its intrinsic origin in spin-orbit coupling is very much quantum mechanical like

AHE. It is similar to that of the later discovered quantum spin Hall effect, except here it is

not quantized.

1.2.4 Quantum Hall effect

In 1970s, a quantized version of Hall effect was proposed in two-dimensioanl (2D) elec-

tron gas [13], and later observed in silicon-based MOSFET samples [14] which provided an

interface environment for the electron to behave like a nearly ideal 2D gas. In this quantum

Hall system, the Hall conductance becomes quantized with units of e2/h under high field.

Its Hall resistance forms several platforms at Rxy = 1
n

h
e2

(n = 1, 2...) where the longitudinal

resistance Rxx becomes vanishing as shown in Figure 1.3. Physically, one can understand

the phenomena by constructing the Hamiltonian for the systems under field. We start with

non-interacting degenerate free electron gas constrained within the x−y plane. If a magnetic

field is applied along the z direction, then using Landau gauge potential A = Byx̂, one can

write down the Hamiltonian as

H =
1

2m
(px +

eBy

c
)2 +

1

2m
p2y (1.4)
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Figure 1.3: Quantum Hall effect: (a) Evolution of Landau levels under magnetic field. (b)

Localized cycling electrons and the formation of chiral edge states between the topologically

trivial and nontrivial states. (c) Transport behavior showing the quantized Hall resistance

Rxy and vanishing longitudinal resistance Rxx at high field. Figures are adapted from Ref.

[11,12].
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This can be solved by separating the variable x and y so

ψ(x, y) =
1

2π
eikxϕ(y) (1.5)

Then we can write the Schrodinger equation for ϕ(y)

[− ℏ2

2m
∂2y +

1

2
mω2

c (y − y0)2]ϕ(y) = Eϕ(y) (1.6)

Here ωc = eB
mc

and y0 = k
√

ℏ
mωc

. One can note that the form is exactly that of the quantum

harmonic oscillator. Therefore, the time-dependent solutions to the Schrodinger equation

will take the form

ψ(x, y, t) =
1

2π
ei(kx−ωct)Φn(y − y0) (1.7)

with the energies

En = (n+
1

2
)ℏωc (1.8)

This means by applying the magnetic field, we go from free electron obeying Dirac-Fermi

statistics to quantized energy state with the energy gap of ℏωc that is proportional to B.

Therefore, with increasing B, landau levels will pass across the chemical potential. When

the chemical potential lies in between two Landau Levels, the 2D electron gas becomes semi-

conducting or insulating in bulk. When the nth Landau level crosses the chemical potential

at a certain field, the sample can become conducting in bulk. This leads to a resistance

behavior that is periodic with the inverse of the magnetic field B−1. In a generic bulk metal

or semimetal, this gives rise to quantum oscillation of magnetization or conductance with a

periodicity in the inverse field.

For quantum Hall system, the bulk-insulating state also comes with a dissipationless

conduction channel on the edge and the Hall conductance will be an integer multiple of

e2/h.

σxy = ne2/hc (1.9)

Semi-classically, we can understand the picture as electrons in the bulk entering localized

cyclotron orbit due to strong external field as shown in Fig 1.3(b). The direction of the

circulation, i.e. the chirality, depends on the sign of the charge and the magnetic field. For
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2D free electron, when the chemical potential is in the gap of two neighboring landau levels,

the bulk is insulating and thus electrons will be circulating locally. The only exception

happens at the edge of the system, where the orbiting electron hits the boundary, bounces

and continues to propagate along the 1D edge via skipping cyclotron orbits. Because the

chirality of the edge conduction is fixed, the transport direction along a certain edge cannot

be flipped. Therefore the edge transport is robust against any backscattering and becomes

dissipationless. Note the protection from backscattering is inseparable from the insulating

bulk because otherwise, the backscattered electron can travel across the bulk to be move

backward.

One unique feature of QHE state is that it is no different from a typical band insulator in

terms of symmetry. The transition from trivial state at a low field to a quantum Hall state

at a high field, or from one Hall plateau to another, cannot be characterized by any broken

symmetry. To fully describe the physics, one must now introduce the notion of topology.

Here, each quantized plateau in Hall data is associated with a unique topological invariant

called Chern number, which equals the value n in the Hall conductance σxy = ne2/h. The

skipping orbits, or, chiral edge states occur as the Chern number is nonzero. We shall discuss

about the significance of the topological numbers and how to obtain them in Section 1.3.

1.2.5 Quantum Spin Hall effect

Following the QHE and classical SHE, the Quantum spin Hall effect (QSHE) was first

proposed in 2005 [16, 17]. It can be thought as superposing a pair of dissipationless edge

states, i.e., the chiral edge states with opposite spin, opposite propagation direction, opposite

Chern number and opposite chirality, as shown in Fig. 1.4. This separation of the spin-up

and spin-down charge edge states can be realized in materials with inverted band structure

that is driven by strong spin-orbit coupling (SOC). The pair can be related by time reversal

operation. Each state is similar to that of the quantum Hall state but with opposite Chern

number. Then overall the time reversal symmetry is still preserved and the Chern number

is 0. Since its Chern number is zero, additional topological number Z2 is necessary to define

9



Figure 1.4: Comparison of electronic states with different topology. In trivial insulators

(top), all electrons are localized. A gap is present at all values of momentum. In the QHE

(middle), an external magnetic field pins the electrons and opens a bulk gap. Within the

gap are the edge states which carry dissipationless current. In the QSHE (bottom), a bulk

gap is always present. The helical edge states consists of two chiral states that cross the

gap and carry counter-propagating currents of spin-up and spin-down electrons. Taken from

Ref [15].
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the QSHE state. The definition and mathematical formulations of Z2 will be talked about

in Section 1.3.5 of the chapter.

Like in QHE, the bulk of QSHE is insulating and the edge conduction is also dissipation-

less. Although electrons are allowed to travel on both edges, electrons with each spin state

can only travel in one direction due to the strong SOC in the system. To reverse the propa-

gating direction of one electron, it must flip its spin, which is forbidden under TR symmetry.

The opposite-chirality edge states are the Kramer’s degenerate for each other. Kramer’s

degeneracy theorem states that for every energy eigenstate of a TR symmetric system with

half-integer total spin, there is at least one more degenerate eigenstate. T is an anti-unitary

operator. For integer angular momentum, T 2 = 1. However, for half-odd-integer angular

momentum, it satisfies T 2 = −1, which implies the presence of degenerate state. In partic-

ular, the matrix elements of a TR-invariant perturbation between two Kramer’s degenerate

vanish identically, so any backscattering or hybridization between the spin-up and spin-down

states are forbidden. Therefore, the dissipationless edge conduction in QSHE is protected

by TR symmetry. From the energy band point of view, Kramer’s theorem also requires the

crossing of the edge state to occur at high-symmetry point in the Brillouin zone, so as shown

in Fig. 1.4 (f), two 1D Dirac bands that corresponds to the helical edge stats cross each

other at k = 0.

Since SOC-driven band inversion is important to realize QSHE, QSHE was found in

materials made of heavy elements where SOC are stronger due to large effective nuclear

number. The nuclei of heavier elements carry a larger charge and effectively induces a larger

magnetic field that caused a splitting of the opposite spin states of the electrons. One

necessary condition for QSHE is that SOC needs to be large enough to invert the usual

ordering of valence and conduction band. [18] Experimentally, QSHE was first observed in

CdTe-HgTe-CdTe 2D quantum well, where the SOC in the HgTe layer is thickness dependent.

Below a critical thickness of 6.5nm, SOC was relative weak so no band inversion in this

quantum well. When HgTe becomes thicker than 6.5nm, a band inversion occurs between Hg-

6s and Te-5p orbitals, allowing QSHE to occur. Indeed, a quantized longitudinal conduction

11



of 2h/e2 from the helical edge states was observed in the absence of external magnetic field

when the chemical potential is tuned to the band gap [19].

1.2.6 Topological Insulator

Following QSH state, which now we know is the 2D version of topological insulator, the

notion of 2D insulating bulk with dissipationless 1D conducting edge can be generalized into

higher dimensions, e.g. 3D bulk with 2D surface. One simple thought-experiment is to realize

this is to stack N numbers of QSH insulators on top of each other. Then certain side surfaces

will host N pairs of conducting edge state. Now the side surface will be conductive, while the

bulk of the sample remains insulating. In 2007, this generalization to 3D is mathematically

formulated to a general 3D bulk material, called topological insulator.

The 3D topological insulator are described by four Z2 invariant (ν0; ν1, ν2, ν3), where ν0

is the strong topological invariant, and ν1, ν2 and ν3 are the weak topological invariants. If

ν0 = 0, but ν1 + ν2 + ν3 ̸= 0, then the system is called weak topological insulator. The fore-

mentioned model of stacked 2D QSH insulator is an example of weak TIs, where protected

surface states only exist on certain surface terminations. If ν0 = 1, the system is called

strong topological insulator where all surface states are topologically protected. Otherwise,

if all νi = 0, then the system is topologically trivial like a regular band insulator.

Band-structure-wise, from 2D to 3D, the two 1D Dirac bands for the helical edge states

evolve into a continuous Dirac cones for the surface states. Such Dirac cones can be described

mathematically by the Hamiltonian as

H = vF (−kyσx + kxσy) (1.10)

Here, vF is the Fermi velocity of the linear dispersion and σi is the Pauli matrices for spin.

The Hamiltonian suggests the spin-momentum locking of the massless Dirac electrons, which

means, electrons carrying opposite spins travel in opposite directions like in 2D QSHE. The

surface states in TIs are not spin degenerate except at the Dirac point. Because the states at

momenta k and −k have opposite spins, the spin must rotate with k around the Dirac cone.
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Figure 1.5: The electronic structure of a 3D TI and of a MTI at its 2D limit, taken from

Ref [3]. (a) The massless Dirac-like dispersion of the surface state with spin–momentum

locking in a TI. The spin-locking surface state band connects the bulk valence and the bulk

conduction bands. (b) Real-space picture of the surface state in a TI. Electrons with opposite

spins move in opposite directions. (c) The Dirac-like dispersion of the edge state in a 2D

MTI that connects the surface states gapped due to the magnetism. (d) The chiral edge

mode that becomes apparent in a 2D MTI device when the Fermi level is located in the

surface gap. The electrons conduct electricity without dissipation in one direction along the

edge.
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If the Fermi energy lies between the bulk gap, it leads to a nontrivial Berry phase acquired

by an electron going around the Fermi surface like in Fig. 1.5 (a). TR symmetry requires

that this phase be 0 or π. When an electron circles a Dirac point, its spin rotates by 2π,

which leads to a π Berry phase. The Berry phase as well as the linear band dispersion (in

comparison to generally parabolic ones) can be detected by quantum oscillations in transport

studies.

In TI, the Dirac surface states are too protected by the TR symmetry. The bulk con-

duction and valence bands needs to be inverted and gapped by SOC. The most direct ex-

perimental evidence of TI is the band structure measured through ARPES and confirmed

by DFT calculations. In Fig. 1.6, we show the band structure in TI Bi2Te3 and related

compounds [20]. Among the four sister compounds, Sb2Se3 has the lightest atoms, so the

SOC is too weak to drive the band inversion. With a stronger SOC in Bi2Te3, the bulk

bands of Te 5p and Bi 6p are inverted around Γ point, likewise in Sb2Te3 and Bi2Se3. In

between the gapped bulk band, one can clearly see the surface states with the Dirac cones

for the Sb2Te3, Bi2Se3 and Bi2Te3.

It is important to note that a generic 3D TI itself does not show any quantized transport

behavior. Intuitively, one can think of the Dirac cones as infinitely many degenerate Dirac

bands in QSHE. They altogether give the conducting surfaces. The surface conduction is

therefore a combined effects of all of the helical edge states which will not be quantized.

Conversely, one can theoretically reduce the TI dimension to 2D, back to 2D QSHE, to

access the quantized transport behavior.

1.2.7 Quantum anomalous Hall effect

Quantum anomalous Hall effect is the last of the quantum Hall family to be discovered.

However, its earliest proposal dates back to 1988. In his work [21], Haldane predicts that the

QHE can be realized in a graphene lattice with alternating magnetic field in the neighboring

atom. Because the TRS is broken by the spatially varying magnetic field, quantized Hall

resistance with Chern number 1 can be realized without the formation of landau levels. In
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Figure 1.6: Band structures of Sb2Se3 (a), Sb2Te3 (b), Bi2Se3 (c) and Bi2Te3 (d) on the [111]

surface. Here, the warmer colours represent higher local density of states. The red regions

indicate bulk energy bands and the blue regions indicate bulk energy gaps. The surface

states can be clearly seen around the Γ point as red lines dispersing in the bulk gap for

Sb2Te3, Bi2Se3 and Bi2Te3. No surface state exists for Sb2Se3. Taken from Ref [20].
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practice, however, such a system is experimentally difficult to achieve.

It was not until the discovery of 3D TI that QAHE was re-proposed to exist in magnetic

topological insulators (MTI). Without magnetism, TI has a bulk gap induced by SOC and

gapless Dirac surface states which is protected by the TRS (Figure. 1.5). When we make

a TI into 2D limit, and introduce magnetism, because the TR symmetry is broken, the

topological surface state is no longer protected. Electrons on the surface states will couple

with the spontaneous magnetization. Assuming the magnetization is along z, the revised

Hamiltonian for the Dirac surface states based on Eqn. 1.10 can be written as

H = vF (−kyσx + kxσy) +mσz (1.11)

Such interaction causes the opening of a mass gap m at the Dirac point, so the Dirac surface

state is no longer massless. Nevertheless, within the gap, there is a chiral edge state similar to

that in the QHE. For nonmagnetic TIs, the sample is insulating in the bulk and conducting in

the surface if the Fermi level is in within the bulk gap. The topological state is characterized

by the Z2 coefficients. Now for MTI, if the Fermi level is tuned within the surface gap, then

both the bulk and the surface will be insulating, but there is a dissipationless conduction

along the sample edge. The topological state is characterized by the Chern number of ±1, so

there will be quantized Hall conductance like in QHE. The directions of the edge conduction

in real space and the band in the reciprocal state depend on the magnetic interaction.

Experimentally, this could be done by introducing magnetic atoms into existing topo-

logical insulator such as Bi2Te3. This was first realized through Cr-doped (Bi/Sb)2Te3 thin

films grown by molecular beam epitaxy (MBE) on SrIrO3 [22] in Figure 1.7. When the

gating voltage is tuned at the charge neutrality at -1.5 V, at dilution fridge temperature of

30 mK, the Hall resistance Rxy reaches a quantized value of h/e2 with a considerable drop

in Rxx signaling the dissipationless edge transport. When gating voltage moves the Fermi

level away from the gap, the behavior vanishes.
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Figure 1.7: The first observation of QAHE in Cr0.15(Bi0.1Sb0.9)1.85Te3 thin film. (A) Magnetic

field dependence of ρyx at different gating voltage Vg. (B) Dependence of ρyx and ρxx on Vg at

zero field and 30 mK. (C) Magnetic field dependence of ρxx at different Vg. (D) Dependence

of σxy and σxx on Vg at zero field and 30 mK. [22]
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1.2.8 Beyond the quantum Hall family & TI

Many technological advances have been proposed based on these systems since the pre-

diction and the discovery of the quantum Hall family. In addition to the novel quantized or

dissipationless transport, the quantum Hall family has many practical applications in other

aspects like optics. For example, one can realize some exotic electromagnetic response re-

sulting from the unique boundary condition these topological systems. Specifically, just like

a point charge above a metal surface can cause an image charge within the metal, a point

charge above a 3D TI coated by a thin FM layer leads to an image magnetic monopole within

the TI. Such electron-monopole composites, called dyons, follows fractional statistics [23,24].

When coupled with superconductors, topological insulators can also host another type of

quasi-particle called anyons that follow non-Abelian statistics, i.e.

|ψ1, ψ2 >= eiθ|ψ2, ψ1 > (1.12)

Generally, θ would be 0 for bosons and π for fermions. Yet for anyons it can be neither, so the

exchanging two anyons could lead to additional states useful for fault-tolerant computational

purpose. As such, braiding, creation, annihilation of anyon pairs form basic component for

topological quantum computing. Majorana zero mode (MZM) is one candidate of anyons.

These quasiparticles are their own antiparticles. They can be realized as the superconducting

vortices on the surface of a 3D TI coated with a thin s-wave superconductor. [25,26] Likewise,

QAH or QH system in proximity with s-wave superconductor was proposed to host MZM on

the edge, in which the Majorana particles are localized at the two ends of the 1D conducting

edge. Such a MZM on edge allows interferometer measurement to have a smoking-gun

evidence of nonabelian statistics [27–29]. Finally, the induced SC at QAH edge by nature

is chiral topological superconductivity, where many interesting physics await exploration

[30, 31]. Since QAHE requires no external field, the experimental search of all above are

mostly based on QAHE instead of QHE. To that end, the realization of material platforms

which can host high temperature QAHE state is strongly urged and incessantly being pursued

in many works in the field including this thesis.
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Axion insulator is the last topological state relevant to this thesis. Axion is a particle

proposed in quantum chromodynamcis to solve the charge-parity problem of the strong

nuclear force [32, 33]. It is today also one of the candidates of dark matter in the universe.

Axions couple to electromagnetism by adding an additional term Lθ ∝ E·B to the Lagrangian

of electrodynamics. As a result of such a coupling, in the presence of a magnetic field B,

the axion creates an electric field E in the same direction and vice versa, in which case

axion-photon conversion may be observed in principle.

In condensed matter, axions can be found as quasiparticles in magnetic topological in-

sulator. The host system is named axion insulator for being able to host topological mag-

netoelectric effect (TME), where an electric field induces a magnetization along the same

direction with a universal constant α. In particular, α is quantized in odd multiples of the

fine-structure constant, i.e.

α =
∂M

∂E
=
∂P

∂B
=
e2

h

θ

2π
(1.13)

θ takes the value of π for axion insulator and 0 for trivial cases [24,34,35]. For example, the

net magnetization would be

Mt = −1

2

e2

hc
E (1.14)

Since θ = π, the experimental signature for an axion insulator is that the top/bottom surface

each shows a half-Chern number i.e. a half quantized Hall resistance, if they are fully gapped,

jH =
1

2

e2

h
n̂×E (1.15)

In terms of band structure, a 3D axion insulator has insulating 3D bulk and 2D surface

states. The half-Chern number at the top and bottom surface are carried by the 1D hinge

states along the hinges. Therefore, 3D axion insulator can be regarded as a higher order

topological state. [36–38](In comparison, a C = 1 QAHE is defined for 2D system which has

conducting edge states and insulating surface.) The signature of θ = π in axion insulator

can actually be captured by another topological invariant Z4 = 2, which will be discussed in

section 1.3.6.
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1.3 Theoretical Formulations for topology

1.3.1 Topology in Condensed Matter system

Throughout the proposal and the discovery of QHE, QSHE, TI and QAHE, one impor-

tant insight is the notion of topology. Generally, the state of matter is classified according to

the symmetries breaking/forming. For example, a solid-to-fluid transition is one that breaks

translation symmetry by removing the periodic lattice order. However, no such symmetry

breaking can be associated with the onset of QHE state and other quantum-type Hall states.

As we have seen, each type of quantum-type Hall effect is characterized by some topolog-

ical numbers. In fact, since the discovery of QHE, today topology has become a new and

important standard to classify matter.

Why topology? Mathematically, topology refers to the robust properties of a geometric

object that are preserved under continuous deformations. For example, this robust property

can be the number of holes inside. Then the local perturbations to the object such as

stretching, twisting does not affect the topological properties, as long as it does not involve

creating/closing holes, tearing apart, etc. For example, the letter ‘D’ on a plane can be

continuously deformed into ‘P’, but not ‘B’ nor ‘M’. A donut in 3D space has a closed

surface, which can be continuously deformed into a mug without enclosing the hole, but

not into a sphere or a pretzel. In geometry, the number of holes for a closed surface is

directly related to a topological invariant called Euler characteristic χ. It can be calculated

by integrating the Gaussian curvature everywhere at the surface K,

1

2π

‹
KdS = χ (1.16)

For any shape of 3D object with a closed surface, χ = 1 − n, where n is just the number

of hole. Since both n and χ have to be an integer, they cannot change continuously. Only

under a large deformation that creates or remove the holes, will the topological number χ

change. In this case, we call the change of matter/geometric state a topological transition.

The n or χ then allows one to classify different objects geometrically. Objects with the same

topological invariant χ, like a donut and a mug, are called topologically equivalent. Today in
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Figure 1.8: Two states of matter characterized by Chern number. Top-left panel: (a) A

trivial insulating state with localized electrons and n = 0 in real space. (b) Characteristic

band structure of (a) in reciprocal space. (c) Orange is the geometric analog of (a) since

there is no hole in the orange and thus n = 0. Bottom-left panel: (d) The quantum Hall

state with n ̸= 0 and localized cyclotron orbit in the bulk in real space. (e) Characteristic

band structure of (d). (f) Donut is the geometric analog of (d) since there is a hole in

the donut and thus n ̸= 0. (g)-(h): Bulk-boundary correspondence in QHE. (g) Real space

picture. The chiral edge mode lies at the interface between a quantum Hall state and a trivial

insulator. It appears as the skipping cyclotron orbits in the real space. (h) Reciprocal space

picture. A single edge state connecting the valence band to the conduction band. Adapted

from Ref [1]
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physics, topology is of central importance in many fields. Before it gained popularity in the

condensed matter field, the notion was first applied to particle physics, e.g. for the theoretical

proposal of magnetic monopole, and quantum field theory, in order to study systems with

singularities (vortices) where the vector fields like electromagnetic fields become undefined.

The discovery of QHE and the topological invariant Chern number marks its entry to the

field in modern condensed matter. In Figure 1.8, a parallel is drawn between topological

systems in condensed matter and in real life. The different Chern number in the trivial

insulator and QHE system means the two systems are topologically distinct, just like the

donut and the orange. For our studies, we are mainly looking at three types of topological

invariants. They are Chern number C for QHE and QAHE, Z2 coefficient(s) ν for QSHE or

(ν0; ν1, ν2, ν3) for 3D TI, and finally Z4 coefficient describing the TR-breaking higher-order

topological systems.

One common and remarkable feature of the topological state is the bulk-boundary corre-

spondence. The bulk and boundary for 2D systems are the surface and the edge, respectively.

For 3D TI, they refer to the bulk and the surface of the sample, re. In general, it is the

n-dimensional bulk and n − 1-dimensional boundary. The bulk-boundary correspondence

requires the presence of gapless edge state in all the topological phases we have discussed.

This happens because of the discontinuity of the topological number across the boundary

between the topologically trivial and nontrivial phases. For this reason, these surface/edge

states on the boundary are called topologically protected. In 3D nonmagnetic topological in-

sulators, the bulk-boundary correspondence leads to the well-known topologically protected

gapless surface state; In 2D electron gas, the bulk gaps that are opened either by broken TR

symmetry for QHE and QAHE or by strong SOC for QSHE, have to close at the boundary,

leading to chiral or helical edge state, as shown in Figure 1.8 (g-h).

In general, the number of edge states at the boundary is a reflection of difference in

topological invariant between the phases. At the interface between two phases with different

Chern numbers NL and NR respectively, for example QAH insulator (C=1) and vacuum
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(C=0), the number of chiral edge states can be described as

n = NR −NL (1.17)

and each edge state will correspond to one quantized Hall conductance.

For QSHE in 2D systems with the topological invariant Z2, one can also get a similar

relationship to get the number of helical edge state pairs. Again, the formalism suggests

there can be only one pair of such helical states, and it only occur between a topologically

trivial phase (Z2 = 0) and a nontrivial phase (Z2 = 1).

n = (νR − νL) mod 2 (1.18)

1.3.2 Berry Phase and Berry Curvature

One characteristics that connects between band structure and topology is the notion of

Berry curvature. It derives from the Berry phase and serves as an essential building block

to understanding topological phenomena and relevant ones such as anomalous Hall effect.

The concept of the Berry phase is defined in the adiabatic evolution of a non-degenerate

eigenstate when the system evolves in the parameter space but returns to itself, effectively

making a loop in the space. The eigenstate |n(R(0) > will stay the same but up to a

different phase, which is the time integral of the energy over ℏ plus the Berry phase.

|ψn(t) >= eiγn(t) exp

[
− i
ℏ

ˆ t

0

dt′ϵn(R(t′))

]
|n(R(t)) > (1.19)

The first exponent in the above equation is the Berry phase or geometric phase, whereas the

second exponent in the bracket is known as the dynamic phase factor. In particular, Berry

shows that along the closed loop the Berry phase can be nonzero, and is independent of the

variation of the path R(t) in time but dependent on the overall geometric aspect of the path.

It can be extracted by taking the equation 1.19 into time-dependent Schrodinger equation

and left multiply by < n(R(t))|. Then one would get

γn =

ˆ
C

dR · An(R) (1.20)
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, where

An(R) = i < n(R)| ∂
∂R
|n(R) > (1.21)

is called the Berry connection, or Berry vector potential. As an analogy to the magnetic

vector potential in the electrodynamics, one can define a gauge-field tensor from the Berry

vector potential. In 3D, this can be written as the same vector form as the magnetic field in

electrodynamics. The term is the Berry curvature.

Ωn(R) = ∇R × An(R) (1.22)

Similarly, the Berry phase can adopt a similar formalism as the magnetic monopole,

whose existence itself is yet to be found.

γn =

ˆ
S

dS · Ωn(R) (1.23)

In general, Berry curvature integrated over a closed manifold S is quantized to the units,

and the quantization depends on the number of monopoles inside.

For systems mostly studied in condensed matter, i.e. crystals with periodic boundary

conditions, the parameter in which the eigenstate evolves is the momentum space or the

Brillouin zone. The eigenstates can be written according to Bloch’s theorem as

ψ(r) = eik·ruk(r) (1.24)

Here k is the crystal momentum. u(r) = u(r + a) for some Bravais lattice vector of the

crystal a. Then for a closed path C in the Brillouin zone, one can define the Berry phase

for some Bloch state to be

γn =

˛
C

dq· < un(q)|i∇q|un(q) > (1.25)

Likewise, the Berry curvature at each point of the band is defined as

Ωn(q) = ∇q× < un(q)|i∇q|un(q) > (1.26)

Note, the Berry curvature Ωn(q) is an intrinsic property of the band structure that depends

only on the wavefunction |un(q) >. The notion of a closed loop is not needed for Berry
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curvature since it is only a local gauge-invariant quantity. For this reason, it can be reflected

in the transporting electrons. For example, for a moving electron driven by a perturbative

external electric field, the velocity can gain an additional anomalous term so it becomes

vn(q) =
∂ϵn(q)

ℏ∂q
− e

ℏ
E ×Ωn(q) (1.27)

The second velocity term is perpendicular to the electric field. Hence phenomenologically,

the effect of nonzero Berry curvature resembles that of an additional magnetic field in crystal

systems. Using Eqn. 1.27, one can obtain the Hall conductivity of the system as integration

of some components of Berry curvature in the Brillouin zone. For electron in 3D system,

σxy =
e2

ℏ

ˆ
BZ

d2k

(2π)2
Ωkxky (1.28)

1.3.3 Role of Symmetries

The effect of Berry curvature on physical properties are very much related to the crystal

symmetry and the associated symmetry requirement on the band structure. In fact in most

systems, the overall effect of the Berry curvature is cancelled out or has to be zero due to the

symmetry in the electronic band structure. Under time reversal (TR), vn and q both flip

signs. Therefore, to satisfy the Eqn. 1.27 under TR operations in TR symmetric systems, it

must requires that

Ωn(−k) = −Ωn(k) (1.29)

Under inversion operation, vn, q and E all change their signs. Then in inversion symmetric

system, Eqn. 1.27 requires

Ωn(−k) = Ωn(k) (1.30)

Therefore, the Berry curvature must vanish for system with both TR and inversion symme-

tries. Other symmetries such as mirror and rotation can also impose a restriction on all or

some vector components of Berry curvature. A more extensive list of symmetry and Berry

curvature can be found in the Table 1.1.

It becomes interesting, then, when one or more of the symmetries become missing to

induce the nonzero Berry curvature. Here is the general rule of thumb. If for some crystal

25



Table 1.1: Common symmetry operations in crystals and their imposed requirements on

Berry curvature.

Symmetry Operation Symbol Transformation on r = (x, y, z) Effect on Ω(k)

Translation td r −→ r + d Ω(k) unaffected

Rotation Cn r −→ Cnr Ω(k) = Ω(Cnk)

Inversion P r −→ −r Ω(k) = Ω(-k)

Mirror in xy plane Mz z −→ −z Ωz(k) = Ωz(-k)

Time Reversal T r unaffected, t −→ −t Ω(k) = -Ω(-k)

symmetry R there is Ω(Rk)=−Ω(k), Berry curvature at Rk and k will be cancelled in

the integration overall Brillouin Zone and gives overall zero AHE. Conversely, in order for

Berry curvature to be not canceled by itself, one must break the symmetry R. For many

systems, R is simply the TR symmetry. It can be broken by magnetic field or ferromagnetic

order. Although AFM breaks TR symmetry as well, but R = Ttd for certain translation d is

invariant in many AFM materials and leads to the vanishing of Berry curvature. However,

if one can break inversion symmetry, e.g. noncentrosymmetric systems with collinear AFM

like RuO2 and CrNb3S6 [39,40] where the net magnetization is close to zero under magnetic

field, the integrated Berry curvature can still be nonzero. In noncollinear magnet such as

Mn3Ir [41], such symmetry is TM , which can be broken by in plane magnetic field and the

spin-orbit coupling, giving rise to a finite anomalous Hall effect.

1.3.4 Chern number

Next, we will go through the mathematical formulations to obtain the topological invari-

ants. From Eqn. 1.28, one can quickly draw a comparison to the Hall conductance of the

QHE σxy = ne2/h. Therefore the Chern number, n, can be directly derived from the Berry

curvature integrated over a closed manifold,

n =

ˆ
BZ

d2k

(2π)2
Ωkxky (1.31)
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The same could also be employed when magnetism is introduced in topological insulator and

gives rise to QAHE. Then for a 2D Dirac band with finite magnetization, we can rewrite the

Hamiltonian n Eqn. 1.11 as H = R · σ for R = (−vFky, vfkx,m). The Chern number in

this case can be calculated by

n =

ˆ
BZ

R̂ · (∂R̂
∂kx
× ∂R̂

∂ky
)
dkxdky

2π
= sgn(m) (1.32)

, where R̂ = R
|R| , and the cross product corresponds to the Berry curvature of the band in

this particular case. The integration overall gives a winding number of C = ±1 and the sign

depends on the sign of the exchange coupling term.

1.3.5 Z2 invariant

There are several formulations for Z2. One intuitive way is to calculate the Chern number

for each spin channel [16,42,43]. If one can calculate nu and nd as the Chern number in up

and down spin channels respectively, which satisfy nu +nd = 0 due to TR symmetry, then it

follows that Z2 = (nu−nd)/2 mod 2. One can also calculate Z2 directly with some Brillouin

zone integral that involves Berry’s potential with a continuous gauge such that electron wave

functions are globally continuous [44], although such gauge may be difficult to define.

Another more common way that was adopted in our studies is to characterize the zeros

of Pfaffian functions [1, 43, 44]. From some Bloch functions um(k), one can define a unitary

matrix

wmn(k) =< um(k)|Θ|un(−k) > (1.33)

, where Θ = exp(iπSy/ℏ)K is the TR operator with Sy and K being the spin operator and

the complex conjugate. Θ is antiunitary so it satisfies Θ2 = −1 for spin half electrons, which

leads to the previously stated Kramer’s theorem. Thus one also should expect

wT (k) = −w(−k) (1.34)

At some high-symmetry points Γa in the Brillouin zone, k and −k coincide, so w(Γa) becomes

antisymmetric. There are 4 of these so called TR invariant momentum (TRIM) points in
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2D Brillouin and 8 in 3D Brillouin zone. Since the determinant of an antisymmetric matrix

is the square of its Pfaffian, one can define

δa = Pf [w(Γa)]/
√
Det[w(Γa)] = ±1 (1.35)

As long as um(k) is chosen to be globally continuous in the Brillouin zone, the branch of the

square root can be specified globally so the Z2 invariant is

(−1)ν =
4 or 8∏
a=1

δa (1.36)

In presence of inversion symmetry, the Bloch states at the TRIM points w(Γa) are also

parity eigenstates with eigenvalues ξm(Γa) = ±1. Therefore, the process above can be

simplified [1, 45]. For each TRIM point one can calculate

δa =
∏
m

ξm(Γa) (1.37)

Here the product is over Kramer’s pairs of occupied bands. Then Eqn. 1.36 becomes.

(−1)ν =
4 or 8∏
a=1

∏
m

ξm(Γa) (1.38)

One may note that 3D topological insulator has in total four Z4 invariant. The formulation

above describes the strong invariant ν0. For three weak topological invariants, they can be

calculated as as Pfaffian over selected four TRIM points

(−1)νi=1,2,3 =
∏

ni=1;nj ̸=i=0,1

δa (1.39)

, where Γa =
∑

i=1,2,3 nibi marks the location of TRIM points in Brillouin zone and bi is the

primitive reciprocal lattice vectors.

1.3.6 Z4 invariant

When TR symmetries are broken, Z2 becomes ill-defined. However, as long as the inver-

sion symmetry is preserved, there exists a parity-based higher-order invariant called Z4. It

28



can calculated similarly with the parity eigenvalues ξm(Γa) mentioned above for each Bloch

states at each TRIM point as follows [46]

Z4 =
8∑

a=1

∑
m

1 + ξm(Γa)

2
mod 4 (1.40)

The summation counts the total number of parity-odd states at all TRIM points. An odd

Z4 = 1, 3 suggests all product of all TRIM parities is -1, which forbids an insulating gap and

corresponds to a Weyl semimetal states. If Z4 = 2, it corresponds to axion insulating state

and it has a quantized magnetoelectric effect with θ = π.

1.4 Overview of Magnetism

1.4.1 Magnetic Orders

Another aspect of study on magnetic topological material is on the magnetism. Mag-

netism arises from unpaired electrons typically from 3d and 4f orbitals. At high temperature,

the spins are uncoupled to each other due to thermal fluctuations. The spin direction can

be in any direction, unless they experience and become aligned to the external field, leading

to paramagnetism (PM). On the opposite, for systems without unpaired electrons are dia-

magnetic materials. At lower temperatures, the spins may spontaneously align themselves

parallel with or opposite with each other and form long range or short range magnetic order.

There are generally three types of magnetic orders- FM structure where all moments

are aligned, AFM structure in which moments are oppositely aligned and compensated,

and ferrimagnetic structure where opposite spins are not fully compensated so the overall

magnetization is nonzero. As these spins now adopt definite orientations depending on

the crystal, the magnetic ordering can break the time reversal symmetry of the overall

systems. Certain ferrimagnetism and AFM can further break translation symmetry and

creates additional magnetic superlattice.

Magnetic property measurements are widely used to investigate the nature of magnetic

ordering whereas neutron scattering experiment serves as the most powerful tool to obtain the

29



Figure 1.9: Curie-Weiss behavior of PM, FM and AFM materials, which has Curie-Weiss

temperature θ to be zero, positive and negative.

magnetic structural information. The Curie-Weiss law describes the temperature dependence

of the magnetic susceptibility χ above the ordering temperature

χ(T ) =
C

T − θ
(1.41)

θ is the Curie-Weiss temperature at which the susceptibility will diverge. At temperature

below θ, the system develops spontaneous magnetization. If one plots the inverse magnetic

susceptibility, χ−1m vs. T , one would find χ−1 is linear with T in the PM phase and θ is

the x-axis intercept. θ is zero for PM, positive for FM, and negative for AFM as shown in

Figure 1.9. The slope of the curve is the inverse of Curie constant C in the Eqn. 1.41 .

C =
µ0µ

2
B

3kB
ng2J(J + 1) (1.42)

where n is the number of atoms per unit volume, g is the Landé g-factor, µB is the Bohr

magneton, J is the angular momentum quantum number, the rests are fundamental con-

stants. If C is in the unit of Oe-mol/emu, one can simply get the effective moment, which

is a temperature-independent term, µeff =
√

8C in the unit of µB per atom. The effective

moment allows us to estimate the spin state of the magnetic ions.

The reason why a material adopts one magnetic structure over another depends on the

combined effect of several energy schemes, including magnetic exchange interactions, mag-

netic anisotropy and the coupling with external magnetic field. We will next overview each

relevant term in the rest of the section.
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1.4.2 Magnetic exchange interactions

The type of magnetism depends on the mechanism of the magnetic interaction. Like

classic dipoles, magnetic moments can couple through dipolar interaction. The dipole-dipole

interaction between two moments m1 and m2 can be described as

E =
mu0
4πr3

[m1 ·m2 −
3

r2
(m1 · r)(m1 · r)] (1.43)

The dipole-dipole interaction prefers a FM configuration. However, for a solid-state system,

this short-range effect is usually very weak. Rather, magnetic exchange interactions from a

quantum mechanical origin, the Pauli’s exclusion principles, tends to dominate.

The exchange interaction describes the process in which two unpaired spins exchange in

position between nearby magnetic atoms. From the exclusion principles, electrons with the

same spins experience a different (usually stronger) repulsion than those with opposite spins.

The process can be captured by Heisenberg Hamiltonian,

H = −
∑
i,j

JSi · Si (1.44)

This type of interaction depends on the sign of J . If J is positive, the interaction favors

a FM picture. If J is negative, AFM ground state is favored instead. This can happen

between two nearest-neighboring magnetic atoms (Direct Exchange) or over a longer range

via intermediate atoms (Superexchange). Its strength depends on the extent of hopping

between the atoms as well as the hopping distance. If the superexchange interaction is via

the intermediate atom at an angle of 90 (180) degrees, the interaction favors a FM (AFM)

configuration. In nature, it was found that the superexchange is usually AFM.

Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction is the exchange that occurs be-

tween localized moments (typically in 4f orbitals) through conducting electrons. The sign

of RKKY interaction is distance-dependent. Dzyaloshinskii-Moriya (DM) interaction is an

antisymmetric, anisotropic exchange coupling in a lattice without inversion symmetry. These

two are common mechanism for many non-collinear or non-coplanar AFM, which may have

unique magnetic and transport response.
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1.4.3 Magnetic Anisotropy

For most magnetic materials, it is energetically preferable for the moments to stay in

certain direction than others. The system is said to have magnetic anisotropy, which adds

another term to the Hamiltonian in addition to the exchange term. The axis or plane in

which the moment can have the lowest anisotropy energy is called easy axis/plane. Ones

with the highest anisotropy energy are called hard axis/plane.

One major source of magnetic anisotropy comes from the crystal structure called mag-

netocrystalline anisotropy. It is a result of the coupling between the electron orbit and the

crystal electric field. The easy axis is typically the principal axis of the crystal lattice. Other

sources of magnetic anisotropy include sample geometry, sample tension, and exchange in-

teraction. They combined lead to the observed overall anisotropy.

The magnetic anisotropy can also be categorized according to the number of easy/hard

axis. For the scope of this thesis on MnBi2nTe3n+1 family, we will consider the simplest

case of all, uniaxial anisotropy, which usually features an easy axis and a perpendicular hard

plane. Within the hard plane it is isotropic. If we let the θ be the angle between the moment

direction and z axis, the anisotropy energy can be expressed as

H = K1S
2
z +HO. (1.45)

If K1 <0, the system prefers a system with easy z axis. On the contrary, K1 >0 suggests

the moments tend to lie in the plane perpendicular to z, which requires a consideration of

higher order term to specify. Sometimes it is necessary to consider the higher order terms

(HO), which may depend on the particular crystal structure and local environment of the

magnetic atoms.

1.4.4 Coupling with magnetic field

Under external magnetic field, the system gains an additional Zeeman energy from the

coupling between the field and the moment. The Zeeman term

HZ = gµBH · S (1.46)
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tries to align the moment with the external field. At a high enough field, HZ dominates in the

Hamiltonian so all moments will become parallel to H. The evolution of a simplest ordered

magnetic state under magnetic field is described by Stoner-Wohlfarth (SW) model. For a

single domain ferromagnet, the Hamiltonian for the exchange coupling is always a constant,

because all moments are parallel so Si · Sj = SiSj for any i and j. Therefore effectively, the

Hamiltonian under external field will contain the Zeeman and anisotropy term. Then the

energy is simply dependent on the field and the moment directions with respect to the z

axis, defined as θ0 and θ1 respectively. Given the field direction along θ0,

E(θ1) = K1S
2 sin2 θ1 + gµBHS cos (θ1 − θ0) (1.47)

Given a field direction at θ0, the moments configuration at each field value will correspond to

the local energy minimum of the θ0 map with ∂E/∂θ1 = 0. The model explains a formation

of magnetic hysteresis at ground state, and proposes an astroid-like angular dependence for

saturation field as shown in Fig 1.10(a) and (b). The saturation field is highest along easy

axis and hard plane due to the need to overcome the entire anisotropy energy for a full flip.

In reality, most ferromagnetic systems are multiple-domained, so the SW model proposed at

ground state (0 K) can only be interpreted qualitatively when compared with real data at

finite temperature.

The SW model can be further extended to simple AFM systems. For example, in a layered

A-type AFM of MnBi2Te4, the magnetism may be simplified as two sub-lattice AFM. Then,

the SW model can describe the system by simply including the interlayer exchange coupling

term JcSi ·Si+1 = JcSiSi+1 where Jc is the interlayer exchange coupling constant. Again, the

ferromagnetic configuration within each sublattice does not contribute. Writing it in terms

of E as a function of angles of both sublattices, we can get the energy

E(θ1, θ2) = JcS
2 cos(θ1 − θ2) +K1S

2(sin2 θ1 + sin2 θ2) + gµBHS(cos (θ1 − θ0) + cos (θ2 − θ0))

(1.48)

Note there is a competing factor between Jc and K terms. The former prefers an opposite

moment configuration. The latter prefers the moment stays along the axis. For the down-

spin to flip up, or vice versa, it has to overcome both terms, which may not occur at the
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Figure 1.10: SW model for evolving magnetization with field in different situations. (a) A

single-domain ferromagnet at different field orientation, adapted from Ref [47]. (b) Astroid-

shaped angular dependence. The axes are the normalized in-plane and out-of plane field

and each point in the curves marks where the saturation occurs in (a). (c)-(d) Modified SW

model for a two-sublattice AFM system when the field is along z axis, with (c) relatively

large exchange coupling Jc compared to anisotropy K and (d) comparable Jc and K. The

former has a spin-flop transition from AFM to canted AFM, and then a saturation to forced

FM phase; the latter features only a spin flip transition from AFM to forced FM phase.
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Figure 1.11: Evolution of energy landscape of the two sublattices AFM SW model at (a)

low, (b) medium and (c) high field. In the left figures, the blue-to-red color scheme shows

the free energy E(θ1, θ2) from low to high. The star marks the configuration with the lowest

energy. The arrow indicates the relative shift of the minimum with the field. The right plots

show the corresponding configuration of the two sublattices at the field. The yellow and

green arrows correspond to the moment along θ1 and θ2 respectively.
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same field. If Jc is stronger than K, the system enters a canted AFM state as shown in

Fig. 1.11(b). Here, the K term is first overcome so moments are partially in plane, but

Jc term still dominates and forces moments to be opposite in plane. Eventually at a large

field, Zeeman term dominates and the system becomes fully polarized, as shown in Fig.

1.11(c). On the other hand, if Jc is relatively small, there is no intermediate steps. Because

the moments always try to align along easy axis, there is only one spin flip transition from

AFM state to FM state without the intermediate step. Simulated magnetization patterns

at ground state in the two contrasting scenarios are shown in Fig. 1.10 (c)-(d).

1.5 Summary: Road map to QAHE

Topology in condensed matter systems has developed rapidly in the past few decades

and lead to some great advances in the field. The tremendous efforts in these years paved

avenue that takes us to where we are and what we study, starting from QHE under field

with nonzero Chern number, to QSHE and 3D TI showing edge/surface states under no field

with nontrivial Z2, and finally QAHE in MTI showing spontaneous edge state with nonzero

Chern number.

In this PhD thesis, we will show our search, design, synthesis, characterization and opti-

mization of magnetic topological insulator MnBi2nTe3n+1 family. To realize a MTI material

platform for QAHE, material design is a key. There are mainly two components- topology

and magnetism. On the side of topology:

(1) To host nontrivial topology in TIs, one essential element is a strong SOC. The SOC

is proportional to the effective charge of nucleus. That usually takes us to the bottom right

of the periodic table, where atoms like Bi, Te, Sb, Pb etc. with high effective nuclear charge

are situated.

(2) It is optimal to have clean band structure at the Fermi level. This means there should

be ideally no other states between the bulk gap other than the topological surface states.

Existing TIs such as Bi2Te3 family are good candidates to start with. Then, hopefully the
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inclusion of magnetic atoms should not drastically change this prerequisite condition.

Then for magnetism:

(3) Magnetism requires unpaired electrons. The introduction of magnetic atoms should

not bring in states around the topological band near Fermi level, so ideally the moments

should be very much localized. This means, we are generally looking at the row for 3d

transition metals and 4f rare earth elements (lanthanide).

(4) FM is needed. If the magnetic order is not FM, the following question will be, how

can we make it into FM? This involves the design of different crystal structures and growth

of the proposed systems.

(5) As we bring in additional elements, it is facile to introduce defects such as crystal

defects and antisite defects. They can serve as scattering centers during the transport and

lower the electron mobility. They can also change the band structure, or the magnetic

structure by redistributing the magnetic atoms. Some defects are unavoidable. Some defects

may not be totally destructive. Therefore, a good understanding and capability to control

of these defects are essential for optimization of MTI.
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CHAPTER 2

Experimental techniques

2.1 Single Crystal Growth

For many experiments in the condensed matter field today, successful single crystal

growth of the material under studied is essential. A high-quality single crystal has many

privileges compared to their polycrystalline counterpart. It can allow many state-of-the-art

experimental techniques on the material. First of all, an ideal single crystal has only one

grain, so it contains fewer defects like grain boundaries, enabling physical measurements to

reflect the intrinsic characteristics of the material. Second, a single crystal has well-defined

surfaces and edges. The presence of the flat surfaces allows the surface-sensitive measure-

ments such as ARPES, STM, etc. Third, a single crystal has well-defined crystalline axis

(sometimes, one can even easily identify different crystallographic axis based on the growth

habit). Therefore, transport, thermodynamic, optical and other measurements can be made

along specific sample orientations so that anisotropic physical properties can be obtained.

For example, we can map out the 3D Fermi surfaces via quantum oscillation measurements

along different crystalline orientations, etc. There are many more advantages of a single

crystal, but for the MTI as a material platform to realize QAHE, there is one important

advantage for being single-crystal if it is van der Waals (vdW) material. That is, good single-

crystallinity and the fewer defects are superior for fabrication and quality improvement of

2D devices, providing access to study the physics in 2D limit.

Therefore generations of physicist in the field have been looking for the best recipes for

crystals and ways to optimize them to yield the highest-quality single crystals for these

purposes. Today, there are generally three possible routes to obtain a single crystal. One

38



is through solid-state melt growth. This is one where stoichiometric mixtures is first heated

so everything fully reacts and melts, then material is cooled from the liquid phase directly

but in a controlled fashion. A day-to-day example is freezing water into ice in our daily

life. However, ice is usually polycrystalline because without control of temperature gradient

there tend to be multiple grains forming together. Therefore, special ways were developed

to provide delicate control of the temperature near the melting point, including Bridgman,

Czochralski and floating-zone methods etc. These are often applied in the semiconducting

industries for Si wafers. In general, we use melt-growth to look for possible phases. Then

for single crystal growth, we are mainly using the other two types of growth, the flux-

growth using high-temperature liquid solution and the chemical vapor transport using high-

temperature gas vapor.

2.1.1 Flux Growth

Flux method involves growing single crystals out of high temperature liquid called flux.

The growth mainly occurs in four steps. Firstly, the starting materials all dissolve in the flux

at high temperature, effectively forming a high-temperature solution with the flux as solvent

and the constituent elements of the target phase as solute. The solution is held at this high

temperature for a few hours to ensure a homogeneous liquid formation. Secondly, upon

cooling to a temperature where the solubility of the solute becomes smaller than its actual

concentration in the flux, the system becomes oversaturated. As a result, the target phase

starts to precipitate through nucleation of tiny crystals and its concentration in the flux is

lowered to its solubility limit. Thirdly, with further slow cooling, the solubility continues to

decrease, forcing the target phase to grow around the nucleation sites. By continuous slow

cooling, the process repeats and single crystals can grow large. Eventually, at a temperature

that is tens degrees higher than the melting point of the flux, single crystals of the target

material can be separated from the flux in liquid phase by a centrifuge.

In order for the flux to accommodate the material growth in an extended temperature

range so that the single crystals can grow larger, the flux is usually chosen as the low-melting-
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point and low-vapor-pressure metals like Sb, Sn, Bi and others inside which each constituent

element can dissolve. A drawback here is that the flux may participate in the reaction, and

thus give wrong and additional phases. One possible way to avoid this problem is to use one

of the starting elements/compounds as flux, i.e., self-flux. In some cases, flux can also be

binary compounds. For the works of MnBi2nTe3n+1 presented in this paper, Bi2Te3 is used as

the self-flux. Because the crystal can form over a large temperature range, the control of the

growth rate and quality is much easier than solid state reaction. For example, the number of

nucleation is dependent on the cooling rate and starting elemental ratio. By tuning the two

parameters, one can get growths with lots of smaller crystals or a few very large crystals.

The details for each particular growth of the materials studied in this thesis is summarized

in each corresponding chapter. Here I will present an overview of the synthesis process for

flux growth. The synthesis always starts with weighing elemental forms of materials. If no

element is air-sensitive, like Mn, Bi, Te, this part can be done on a bench top. Otherwise,

this needs to be done in the glovebox. The samples are loaded in an alumina crucible.

Because the growth needs to be in an inert environment, i.e. either in vacuum or Ar gas,

quartz ampules are made to hold the growth at high temperature. A section of the quartz

tube is first melted at the middle to make shorter tubes with one closed end. The crucible

with the starting material is then loaded into the quartz tube with a little quartz wool at

the bottom and more on the top. Then a neck is made on top of the tube to leave a small

channel for pumping. The quartz tube is then pumped and purged for a few times until

the pressure falls down below 50 mTorr, one can seal the tube at the neck. That leaves us

with samples contained in a fully evacuated quartz ampule. Then the tube is placed in a

box furnace and first heated to very high temperature so everything is melted, followed by

slow cooling as described earlier in this section. When the final temperature is reached, the

quartz tube is quickly inverted and moved to a centrifuge. It quickly starts to spin the tube

at 3000 rounds per min, effectively providing a large centrifugal acceleration nearly 1000 g.

The large acceleration allows the most viscous liquid to flow out of the alumina crucibles so

that the crystals inside the crucibles can be separated from the liquid flux.
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2.1.2 Chemical Vapor Transport

In chemical vapor transport (CVT) growth, transport agents are frequently used and

single crystals are grown out of the vapor phase. Transport agents are volatile elements

or compounds such as halogens, AlBr3 and TeCl4, etc. In some special cases where one or

a few starting materials are volatile themselves, they are capable of transporting without

additional agents. For most reactions, which are exothermic, the source end where the

starting materials are loaded is hotter while the sink end where the single crystals grow is

colder. The transport agents react with the constituent elements of the target material at

the source end to form intermediate gaseous compounds. At the sink end, if the target phase

has a lower free energy of formation than the intermediate gaseous phases, the intermediate

phases disassociate and the target phase nucleates. Since the final product depends on the

transport rate of each element in the equilibrium state as well as the phase stability at the

sink end, the key of a successful CVT growth is to optimize the temperature profile, the

type of transport agent, the initial element ratio as well as the length of the tube so that

our target phase is favored at the sink end. Note the growth is an equilibrium process where

the intermediate compounds disassociate and associate simultaneously everywhere. Such

an equilibrium depends on multiple factors including the type of transport agent and the

temperature, so at different parts of the tube, the rate of disassociation and association varies.

Overall, the intermediate compounds form faster at the source end, while they disassociate

the most at the sink end. Therefore, the crystals can grow large at the sink end over time

until all constituent elements are transported to the sink end. It turns out the larger the

temperature gradient and the more the transport agent, the faster the growth rate.

Experimentally, elemental mixtures of starting materials are added in a quartz tube

which is then necked down as described in section 2.1.2. Then transport agent is carefully

added through the neck to avoid too much heating on the volatile transport agent during

the tube-sealing process. The growth ampule is slowly heated to high temperature to avoid

overpressure due to the volatile elements. Then it is transferred to a 3-zone tube furnace

where the temperatures at two ends of the ampule are calibrated. The growth time varies
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Figure 2.1: Bragg’s condition for constructive interference that gives the Bragg peak in XRD

spectrum.

from a few days to weeks to get mm-sized single crystals at the sink.

2.2 Structure determination

2.2.1 X-ray diffraction

Once crystals are grown, the next step is to determine the structure to identify the phase

and check the purity. Powder X-ray diffraction (XRD) are performed using PANalytical

Empyrean Cu-Kα diffractometer at room temperature. Each peak corresponds to a repeating

unit length along a certain direction in which the particle in the powder is oriented. The

relationship of the unit length and scattering angle is given by Bragg’s law.

nλ = 2d sin θ (2.1)

n is the diffraction order. λ = 1.5406 Åfor Cu-Kα. d is the length of the repeating unit

in real space, so it depends on and contains the crystal structural information. θ is the

diffraction angle. The peak marks the condition where the diffracted beam can interfere

constructively as shown in Fig. 2.1.

If the structure of a material is totally unknown, single crystal XRD is the most pow-

erful way to determine it since it maps out the reflection peaks in the entire 3D reciprocal
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space. With the structural information from every single peak, the powder XRD spectrum

is analyzed using HighScore Plus for phase determination. If needed, Rietveld refinement

is performed to refine the detailed crystalline information using the FullProf software [48].

Nonetheless, powder XRD is a destructive method. It allows us to check the phase purity

of an entire crystal at the expense of turning the crystal into powder. One alternative is to

check a particular surface reflection. It provides the phase information of that surface but

not the overall purity. For example, for MnBi2nTe3n+1, we can perform X-ray on the flat

side, i.e., (00L) surface. The (00L) spectrum reflects the lattice spacing along the c axis and

is usually a good guide to distinguish different members in MnBi2nTe3n+1.

2.2.2 Neutron Scattering

Neutron is an elementary particle that can diffract on crystals just like X-ray photons.

Furthermore, because neutron is a spin 1/2 fermion, it can diffract not only on the crystal

structure, which consists of mainly the heavy nuclei, but also on the electrons carrying or-

dered magnetic moments too. In comparison, photons are spin-0 bosons, so X-ray diffraction

cannot provide the magnetic information in XRD. On the other hand, neutron diffraction

can provide both the nuclear and magnetic structure.

Like XRD, neutron diffraction can be done on single-crystal and powder. For our studies,

single-crystal neutron diffraction was performed below the magnetic ordering temperature

for the magnetic structure determination, and high temperature for the crystal structure

refinement on HB-3A DEMAND single-crystal neutron diffractometer located at Oak Ridge

National Laboratory [49]. Neutron wavelength of 1.551 Å was selected by a bent perfect

Si-220 monochromator. The nuclear and magnetic structures were subsequently refined with

the FULLPROF SUITE software [48].

2.2.3 Energy and wavelength dispersive spectroscopy

Energy dispersive spectroscopy (EDS) and wavelength dispersive spectroscopy (WDS) are

two common ways for elemental analysis. While the diffraction studies can determine sample
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phases by solving the crystal structure, elemental analysis also provides direct chemical

analysis of the elemental ratio. In combination with the scattering tools, WDS and EDS

can help us better understand the extent of antisites, interstitials or vacancies in the sample.

Furthermore, for many doping studies, the actual doping level are usually different from the

nominal values from the growth. In these cases, EDS and WDS help to determine the actual

doping levels.

Both EDS and WDS analyze the X-ray emission spectrum after the sample is hit with

high energy electron (usually 15-20 kV). After the high energy electrons knock out a deeply

localized electron in an atom, the emission occurs as the outer electrons relax into the hole.

Since each element has unique atomic orbitals, it has a characteristic emission spectrum.

The total spectrum is a combination of the emissions from all the elements, which allows

qualitative determination of the elemental ratio.

EDS measurements were performed using an energy dispersive X-ray spectroscopic ana-

lyzer (EDAX; EDAX Inc.) mounted on a scanning electron microscope (JEOL JSM 6700 F).

It measures the entire X-ray emission spectrum, and does numerically fitting with the known

spectra of all elements to determine the elements and the ratios. WDS measurements were

performed on a JEOL JXA-8200 Superprobe. The probe comes with several diffraction unit

to measure the intensity of the emission at a particular wavelength. Each has been calibrated

with a pure elemental sample. The measurement gets the relative intensity compared to the

pure element, and outputs the percentage of the calibrated elements in the sample.

2.3 Physical property measurement

The physical property measurement in this study includes the field dependence and tem-

perature dependence of the electric transport, heat capacity and the magnetization.
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2.3.1 Electrical transport property measurement

Electrical transport measurements were performed using the Quantum Design Dynacool

Physical Properties Measurement System (QD Dynacool PPMS). They are done using the

standard six-probe configuration. The samples are typically cut or polished into a bar shape

whose dimensions can be well determined. The temperature dependence can be measured

from 1.8 K to 400 K. The magnetotransport data were collected during the field sweep from

-9 T to 9 T. In order to get rid of the mixed-channel signal, the data were then symmetrized

to obtain ρxx(B) using ρxx(B) = ρxx(B)+ρxx(−B)
2

and antisymmetrized to get ρxy(B) using

ρxy(B) = ρxy(B)−ρxy(−B)

2
. The sign of ρxy is chosen so that hole carriers lead to positive ρxy.

2.3.2 Specific heat measurement

Specific heat measurements were performed using QD Dynacool PPMS. The sample is

loaded onto a 2 mm x 2 mm platform. The sample surface in contact with the platform

needs to be flat to ensure a good thermal contact with the platform. Apiezon N grease is

used to further enhance the thermal contact between the sample and the platform in the

temperature rage we measured. The PPMS chamber is pumped to high vacuum during the

measurement to minimize the thermal transport through the gas medium.

The relaxation technique is used for the thermodynamic measurement. First heat is

applied at certain power for a short period of time. The heat is then gradually lost to the

environment through the supporting wires. The temperature response on the platform Tp is

recorded throughout the process, which follows

C
dT

dt
= −Kw(T − T0) + P (t) (2.2)

The Kw is the thermal conductance of the wires. T0 is the PPMS temperature. P (t) is the

power of the heat. The data allow us to solve for C, the total heat capacity of both the

sample and the platform. In practice, two sets of measurement are taken- first just for the

background which includes the platform and the grease, and then with the added sample.
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Eventually

Csample = Ctotal − Cbackground (2.3)

2.3.3 Magnetic property measurement

Magnetic property measurement was performed using the QD Magnetic Properties Mea-

surement System (QD MPMS3). The MPMS3 features a Superconducting Quantum Inter-

ference Device (SQUID) magnetometer, which has a pick up coil to detect the change of

internal field from the moving sample with the sensitivity on the order of 10−7 to 10−8 emu.

Both DC and AC moment data can be measured. In the vibrating sample magnetometer

(VSM) mode, the sample is vibrated at a set frequency, and the pick-up coil is used to detect

the electromotive force generated from the internal field and the motion, which is then pro-

cessed to determine the actual magnetic response from the sample with a few-times higher

sensitivity.

In preparation of the measurement, the sample is loaded on a quartz or straw holder with

GE varnish. For temperature-dependent susceptibility measurement, two cooling modes are

used, zero-field-cooled (ZFC) and field-cooled (FC). In the ZFC mode, the sample is first

cooled across the ordering temperature under no field before the field is switched on for

measurements. The ZFC data are taken while the sample is then warmed across the ordering

temperature with the field on. In the FC mode, the sample is cooled with field on, and data

are taken while the sample is then warmed across the ordering temperature. If FC and ZFC

data bifurcate, it indicates certain magnetic states such as spin glass or soft ferromagnets

where magnetic relaxation plays a role.
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CHAPTER 3

The discovery of MnBi4Te7: an intrinsic

antiferromagnetic topological insulator with weak

interlayer magnetic coupling

This chapter is adapted from [50]. This work was done in collaboration with Dan Dessau’s

group at University of Colorado, Boulder on ARPES measurements, Qihang Liu’s group at

Southern University of Science and Technology on first-principles band structure calculations,

Huibo Cao’s group at Oak Ridge National Lab on neutron diffraction measurements and

Arthur P. Ramirez’s group at University of California, Santa Cruz on magnetic property

measurement.

3.1 Introduction

The proposal and discovery of quantum anomalous Hall effect (QAHE) in MnBi2Te4 have

unarguably been one of the most significant breakthroughs in the field of condensed matter

physics in recent years [51–55]. Since the discovery of topological insulator (TI) in 2000s,

there have been predictions of various novel topological states when the topology is accom-

panied with magnetic order, such as the axion insulators, the magnetic Weyl semimetals,

the Chern insulators and the 3D quantum anomalous Hall (QAH) insulators [3]. The inter-

play between topology and magnetism can lead to fascinating phenomena including QAH

effect and quantized magnetoelectric effect (QME), and provides future opportunities for

application in low-energy-consumption devices, quantum metrology and quantum comput-

ing [56–58]. Therefore the search of these magnetic topological materials, and magnetic topo-
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logical insulator (MTI) in particular, have been a goal for many in the past decade. In 2013,

QAHE was first achieved in a MBE-grown thin film, made of MTI Cr0.15(Bi0.1Sb0.9)1.85Te3,

only at extremely low temperature of 30 mK [22]. The requirement for such a low tem-

perature to realize QAHE, is a result of defect that comes along with the chemical doping.

To overcome this issue, a topological material that is intrinsically magnetic was very much

desired.

Then comes MnBi2Te4, the first of such kind, an intrinsic system with both magnetism

and non-trivial band topology [51,51–55,59–67,67–72]. It crystallizes in the GeBi2Te4 struc-

ture with the septuple layers (SL) of [MnBi2Te4]. It orders below 24 K with the A-type

AFM structure, that is, the spins are FM aligned in the ab plane but AFM coupled along

the c axis. Its van der Waals (vdW) nature also makes exfoliation possible and facilitates

the fabrication of thin film devices. Indeed, within a year of its first proposal, quantized Hall

resistance is found at the record high temperature of 1.5 K under no field in a 5-layer device,

or tens of Kelvins when it enters the forced FM state above the saturation fields [54,55,67].

Although FM state is crucial to realize the QAH effect experimentally, as we await an ideal

candidate that has both TI and FM properties, an intrinsic AFM TI with low saturation fields

and clean band structure where only non-trivial bands cross the Fermi level can also provide

a good material platform. By this, the QAH effect may be realized with higher temperatures

and reasonably low magnetic fields, which will allow us to study their associated emergent

phenomena at more accessible conditions. How can we realize such intrinsic AFM TIs based

on the [MnBi2Te4] building block? Given that MnBi2Te4 is AFM with in-plane FM and out-

of-plane AFM exchange interaction, one material design strategy is to reduce the interlayer

AFM Mn-Mn exchange interaction by introducing spacer layers between [MnBi2Te4] layers.

Then what kinds of spacer layer can be compatible with [MnBi2Te4]? Recall that MnBi2Te4

crystallizes in the GeBi2Te4 structure, and GeBi4Te7 [73] with alternating SL [GeBi2Te4]

and quintuple layers (QL) [Bi2Te3] exists, therefore, [Bi2Te3] may alternate with [MnBi2Te4]

to form MnBi4Te7. with much larger Mn-Mn interlayer distance than that in MnBi2Te4.

This superior compatibility, if it works, will provide us with flexible structural control to
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achieve our goal. Furthermore, not only can such superlattices manifest weak interlayer

magnetic coupling, but they can also serve as natural heterostructures by exfoliation, which

may enable the realization of various topological states.

In this chapter, I will first review the structure and physical properties of MnBi2Te4.

Based on this building block, with our material design strategy, I will then present our

discovery of MnBi4Te7 which has alternating layers of the SL [MnBi2Te4] and QL [Bi2Te3]

building blocks. Through our transport, thermodynamic, collaborative angle-resolved pho-

toemission spectroscopy (ARPES) and density functional theory (DFT) calculations, we dis-

covered that MnBi4Te7 is a Z2 AFM TI with an out-of-plane saturation field as low as 0.22

T at 2 K, 40 times lower than that of MnBi2Te4. Furthermore, the natural-heterostructure-

like construction of MnBi4Te7 can host two distinct (001) surface states. For the [Bi2Te3]

termination, clean gapped surface states are observed as has long been desired; while for the

[MnBi2Te4] termination, nearly gapless surface Dirac cone is observed, similar to the case of

the MnBi2Te4 compound [66,68,69,74].

3.2 The first intrinsic AFM TI MnBi2Te4

The magnetism and topology of MnBi2Te4 have been extensively studied both exper-

imentally and theoretically. Its magnetism benefits from a nearly uniformly distributed

magnetic Mn layers in the middle of SL. Below the Néel temperature at 24 K, MnBi2Te4

adopts an A-type AFM structure: the Mn atoms in the same layer are FM coupled with the

moment pointing out of the plane, while the Mn magnetic sheet in one SL is AFM coupled

to the magnetic Mn sheet in the adjacent SL. Such a structure is plotted more clearly in Fig.

3.1 (a) and has been confirmed by transport, magnetization and neutron diffraction studies

previously [53,75].

In terms of topology, the strong spin-orbit coupling reverses the bands of Bi 6p and

Te 5p orbitals. The band inversion allows topological surface states in between, and rich

topological states under different magnetism and dimensions as shown in Fig. 3.1. In the A-
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Figure 3.1: (a) Crystal structure and A-type AFM structure in MnBi2Te4, featuring in-

plane FM and out-of-plane AFM. (b) Rich topological states in MnBi2Te4 thin films (2D)

and bulks (3D) in AFM, FM and PM state. AI denotes axion insulator; QSH denotes

quantum spin Hall; DSM denotes Dirac semimetal. (c) DFT-calculated band structure of

a 5-SL film featuring an edge state inside the gapped surface state. (d) ARPES k − E

map along k̄ − Γ̄− k̄ showing a linear, X-shaped, gapless state between the valence and the

conduction bands. (b)-(c) are taken from [52]. (d) is taken from [66].

type AFM, the (00L) surface is gapped due to the symmetry breaking and leaving an 1D edge

state in its 2D limit as shown in the DFT. While this is the case theoretically [51–53], both

gapless [66, 68, 69, 74, 76, 77] and gapped [53, 63, 75, 78, 79] surface states have been reported

in ARPES and caused a lot of debates. The seemingly contradictory result may come from

measurement effect of averaging of spectrum relevant to the spot size, or disordered surface

magnetism upon cleaving, etc. While whether such a surface state is gapped or gapless

remains in hot debates, QAH effect was indeed observed in a 5-layer device and Chern

insulator state was discovered in even-layer devices [54, 55, 67], bringing lots of excitements

in the field.
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Figure 3.2: (a) Crystal structure of MnBi4Te7 with the highlighted interlayer exchange

interaction J⊥ between the Mn layers. (b) Powder X-ray diffraction and the refinement of

MnBi4Te7. Inset: single crystal of MnBi4Te7 on mm-grids.

3.3 Growth and Characterization of MnBi4Te7

Although the existence of MnBi4Te7 was first reported in Ref [60], no single crystals were

made and no physical properties were reported for the sample in its pure phase. Therefore,

we have grown single crystals of MnBi4Te7 using Bi2Te3 as the self-flux. Mn, Bi, and Te are

mixed at a ratio of MnTe:Bi2Te3=15:85. The mixture is first placed in an alumina crucible

and sealed under 1/3 atm of Ar inside a quartz tube. The ampule was heated first to 900

◦C for a few hours to ensure a good mixing, quickly cooled to 600 ◦C followed by slow

cooling down the target decanting temperature 585 ◦C in 3 days. After dwelling at the final

temperature for 3 days, cm-sized plate-like single crystals can be obtained when the liquid

Bi2Te3 flux is spun out in a centrifuge.

Next, to find out the phase of single crystals from the growth, one quick way is to measure

XRD on their flat (00L) surfaces. Because MnBi4Te7 has a very distinct lattice parameter c

among other layered materials, their Bragg reflections on (00L) can well distinguish it from
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other layered materials such as the Bi2Te3 flux. Then we perform powder XRD to obtain

the crystallographic information, which is shown in Fig. 3.2 and Rietveld refinement of the

pattern agrees well the MnBi4Te7 structure model given in Figure 3.2 (a). The details of the

refinement could be found in Table B.1.

3.4 Magnetic, Transport, and Thermodynamic Properties

3.4.1 A-type AFM in MnBi4Te7 revealed by magnetic property measurements

The effect of the [Bi2Te3] spacer layers can be readily seen by comparing the transport and

magnetic data of MnBi2Te4 and MnBi4Te7. Figure 3.3 shows the measurement of magnetic

susceptibility and isothermal magnetization of MnBi2Te4 and MnBi4Te7 in comparison. In

Fig. 3.3 (a), the AFM of MnBi2Te4 transition is revealed by a cusp in χ(T ) at 24 K with H ∥

c. Under an external magnetic field along the c axis, a spin-flop transition starting at 3.5 T

indicated by a step-like increase in magnetization is shown in Fig. 3.3 (c). M(H) eventually

saturates around 7.7 T. On the other hand, if the field is along the ab plane, M(H) remains

linear with field up to 7 T and saturates at much higher fields [75]. The higher saturation

field along the ab plane indicates an easy c-axis for the moments in the system.

For the same data of MnBi4Te7 in the bottom panels of Fig. 3.3, one can see similar

traits to those for MnBi2Te4. Figure 3.3(b) presents the field-cooled (FC) and zero-field-

cooled (ZFC) magnetic susceptibility data of χab (H ∥ ab) and χc (H ∥ c) measured at 0.01

T for MnBi4Te7. For MnBi4Te7, the abrupt halt in the rise of χc on cooling suggests the

onset of AFM ordering at 13 K. This is consistent with the specific heat measurement as

shown in the inset of Fig. 3.3(b), where an anomaly associated with entropy release due

to the AFM transition emerges at 13 K. Fitting the (inverse) susceptibilities up to 80 K to

the Curie-Weiss law results in Weiss temperatures of Θab
W = 11.5 K, Θc

W = 12.2 K, Θave
W =

11.7 K, and effective moments of µab
eff = 5.4µB/Mn, µc

eff = 5.1µB/Mn and µave
eff= 5.3µB/Mn.

These values indicate magnetic isotropy above TN and thus negligible single ion anisotropy

in the material. Despite the fact that MnBi4Te7 is AFM below 13 K, the positive Θave
W of
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Figure 3.3: Temperature dependent magnetic, transport and specific heat properties of

MnBi2Te4 and MnBi4Te7. (a-b): The temperature dependent susceptibility taken at H

= 1 T for MnBi2Te4 and H = 0.01 T foe MnBi4Te7, respectively. Inset: The temperature

dependent specific heat for the respective compound. (c-d): Isothermal magnetization of

MnBi2Te4 and MnBi4Te7 for H∥c. For MnBi2Te4, there is a spin-flop near 3.5 T and no sign

of saturation is reached up to 7 T. For MnBi4Te7, the saturation occurs at 0.22 T and a hys-

teresis loop of isothermal magnetization is seen below 8 K. (e-f): Isothermal magnetization up

to 7 T with H∥ab for MnBi2Te4 and MnBi4Te7. (g-h): Anisotropic temperature-dependent

resistivity, ρxx and ρzz for MnBi2Te4 and MnBi4Te7.
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11.7 K suggests strong ferromagnetic (FM) exchange interactions. In comparison, MnBi2Te4

has a much higher TN of 24 K and a much lower Θave
W of 3 to 6 K, this may indicate that the

energy scales of the FM and AFM exchange interaction are much closer in MnBi4Te7. This is

consistent with our expectation that the extra [Bi2Te3] layer reduces the interlayer exchange

interaction between adjacent Mn layers as we initially designed. The AFM orders of both

MnBi2Te4 and MnBi4Te7 are formed under the superexchange scenario, where the magnetic

interaction between the adjacent Mn layers is mediated by the Bi and Te in the path. Despite

the long distance between the adjacent Mn layers (23.7Å), our DFT calculation indeed reveals

an A-type AFM configuration in MnBi4Te7 with the interlayer exchange coupling about -0.15

meV/Mn, which is about one order of magnitude smaller than the counterpart of MnBi2Te4.

More details are given in Supplementary Note of Ref [50].

Despite the close resemblance in temperature-dependent susceptibility, the magnetization

of MnBi2Te4 and MnBi4Te7 contrast strongly with each other under magnetic field. Figures

3.3(d) and (f) present the hysteresis loops of isothermal magnetization data for M c (H ∥ c)

and Mab (H ∥ ab) for MnBi4Te7. As shown in Fig. 3.3(d), in sharp contrast to MnBi2Te4

where a spin-flop transition takes place at 3.5 T, and saturates at 7.7 T in M c (H) [75],

MnBi4Te7 undergoes a first-order spin-flip transition with hysteresis starting at a much lower

field of Hf = 0.15 T. It quickly enters the forced FM state and saturates at Hc = 0.22 T.

The small saturation field again indicates weaker interlayer AFM exchange interactions than

in MnBi2Te4. Upon warming up to 10 K, the hysteresis area is gradually reduced to zero,

but Hc remains little changed, indicating a sharp triggering of the spin-flipping between 10

K and TN . With H ∥ ab, the saturation field is 1.0 T, indicating the c axis as the magnetic

easy axis and thus likely Ising form. As shown in Fig. 3.3(f), the saturation moment is

3.5µB/formula unit or 4.2 µB/Mn at 7 T, which is on the same order of 3.84 µB/Mn in

MnBi2Te4 at 7 T but smaller than the DFT calculated value of 4.6 µB/Mn. The reduced

Mn saturation moments in this family may arise from Mn disorders, which will be discussed

in Chapter 5.
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3.4.2 Strong coupling between charge carrier and magnetism of MnBi4Te7

Figure 3.3(g)-(h) show the temperature dependent in-plane (ρxx) and out-of-plane resis-

tivity (ρzz) for MnBi2Te4 and MnBi4Te7. For both curves above the transition temperature,

ρxx and ρzz decrease upon cooling with ρzz/ρxx near 18 and 53 for MnBi2Te4 and MnBi4Te7

respectively at 300 K, suggesting a large transport anisotropy that is consistent with its

vdW nature. With further cooling, ρxx and ρzz increase slightly, which is likely caused by

the enhanced scattering from spin fluctuations, a phenomenon frequently observed in low

dimensional magnetic materials. Then at the transition temperature, a sudden drop of ρxx

and a sharp increase of ρzz are observed. This is in agreement with the A-type magnetic

structure shown in Fig. 4.1 since the antiparallel alignment of Mn moments can reduce the

conductivity via spin-flip scattering, while parallel alignment of the Mn moments will elim-

inate such scattering and thus enhance the conductivity. The close resemblance here again

confirm the same A-type AFM structure in MnBi2Te4 and MnBi4Te7.

The spin-flip transition strongly affects the magnetotransport in MnBi4Te7, as shown in

Fig. 3.4 (a)-(b) for H∥c and Fig. 3.4 (c)-(e) for H∥ab. In Fig. 3.4 (a), ρxx(H), and ρxy(H) fol-

low the same hysteresis as that in M(H) at 2 K. With H∥c, the transverse magnetoresistivity

of ρxx with I∥ab (mid panel of Fig. 3.4(a)) enters into a plateau between 0 T to Hf at 0.15

T that correspond to the AFM state. Above 0.2 T, ρxx drops by 3.8%. In the bottom panel

showing the Hall resistivity, the negative overall slopes in ρxy(H) across all MnBi2nTe3n+1

suggest a universal n-type carrier in this family due to the Mn deficiencies. The linear

ρxy(H) to 9 T above 50 K indicates single-band transport. Then using n = H/eρxy, our

high temperature Hall data [50, 80] yield the electron carrier density of 2.84×1020 cm−3 for

MnBi4Te7, similar to that of MnBi2Te4 [53]. At 2 K, the Hall resistivity can be described by

ρxy = R0H + ρAxy, where the R0H is the ordinary Hall contribution and ρAxy represents the

anomalous Hall resistivity. For MnBi4Te7, ρ
A
xy is extracted to be 3.3 µΩ cm, which is half

of the one in MnBi2Te4. Consequently, the anomalous Hall conductivity σA
xy (=ρAxy /ρ2xx) is

25.5 Ω−1cm−1 and the anomalous Hall angle (AHA = ρAxy /ρxx) is near 1%.

Because ρzz can show a greater response than ρxx in the layered magnetism, it provides a

55



Figure 3.4: (a) Isothermal magnetization with H ∥ c, transverse magnetoresistivity ρxx, and

Hall resistivity ρxy at 2 K with I∥ab and H ∥ c. (b) The longitudinal magnetoresistivity of

ρzz, at 2 K with I∥ H ∥ c. (c) Isothermal magnetization with H∥ab at 2 K. (d) Longitudinal

magnetoresistivity ρxx, at 2 K with I∥H∥ab. (e) Transverse magnetoresistivity ρzz, at 2 K

with I∥c and H∥ab.
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Figure 3.5: Transverse magnetoresistance measured with H ∥c and I∥ab for (a) MnBi2Te4

and (b) MnBi4Te7 at various temperatures.

more prominent evidence of evolving magnetism. In Fig. 3.4 (b), the ρzz drops by about 50%

above the saturation field for H∥c. In Fig. 3.4(c)-(e), we compare the ρzz, ρxx, and M(H)

for H∥ab. From zero field to 1.0 T, ρzz decreases by 39%. Our data show that the transition

from AFM to FM spin alignment along the c axis has much stronger effect on ρzz than ρxx,

because the spin-flip scattering along c is more affected due to its A-type magnetic structure.

This provides us with an additional probe to understand the nature of the magnetism.

Figure 3.5 show the transverse magnetoresistance (TMR) for MnBi2Te4 and MnBi4Te7

at high field up to 9 T, defined as MR=(ρxx (H)-ρxx (0))/ ρxx (0). For MnBi2Te4 at lowest

temperatures, the MR is slightly positive near the spin-flop field, and then negative above the

spin-flop field beyond magnetic saturation. The negative MR persists above the transition

temperature, and only become positive above 50 K. The similar feature of negative MR

is seen in MnBi4Te7. For MnBi4Te7, the MR appears as the overall “W” shape of the

TMR for all samples. In Fig. 3.5(b) for MnBi4Te7, the “W” shape becomes deeper with

increasing temperature, with the largest negative TMR of 8% appearing at 12 K, which is

close to TN . Above TN , it starts to become shallower and finally transforms into an ordinary

parabolic shape at 50 K. The overall “W” shape can be understood in the framework of

FM fluctuations. Above 50 K, the lack of magnetic fluctuations leads to the parabolic
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TMR. Upon cooling, FM fluctuations begin to appear and become increasingly stronger and

maximized around TN . As a result, the summation of the positive parabolic TMR and the

negative TMR arising from the FM fluctuations under fields leads to a progressively deeper

“W” shape of TMR upon cooling. Below TN , the FM fluctuations are reduced, but still with

a strong presence, leading to the shallower “W” shape under field. The difference between

the two figures again lies in the fact that the interlayer AFM exchange is a lot weaker in

MnBi4Te7, so the magnitude of negative MR from the fluctuations are readily comparable at

low field to the positive MR from the phonon contributions. So for MnBi2Te4, the magnetic

fluctuations is much stronger and may require a field larger than 9 T to observe the “W”

shape.

3.5 3D magnetism revealed by single crystal neutron scattering

To confirm the long-range magnetic order in MnBi4Te7, in collaboration with Huibo Cao’s

group at Oak Ridge National Lab, we have performed single crystal neutron diffraction and

compared it with that of MnBi2Te4 [72]. Data were taken at the temperature above the

transition for the nuclear structure, and below the transition for the magnetic structure

refinement. The result provides direct evidence of the magnetic structure that we deduced

from the magnetic and transport property measurements. The structural refinement using

nuclear peak from the high temperature data are reported in [72]. Here we would like to still

focus on the result on the magnetic peaks in MnBi2Te4 and MnBi4Te7.

A-type magnetic structure is confirmed for both compounds. For MnBi2Te4 with a space

group of R-3m, its magnetic space group is RI-3c and the propagation vector is (0, 0,

3/2). For MnBi4Te7 with space group P -3m1, its magnetic space group is Pc-3c1 and the

propagation vector is (0, 0, 1/2).

The magnetic order parameters are shown in Figure 3.6. The critical behavior of the

magnetic phase transitions can be analyzed using a power-law fit I = A(TM−T
TM

)2β +B, where

TM is the critical temperature for magnetic phase transitions, β is the order parameter
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Figure 3.6: Magnetic order parameters upon warming at the magnetic reflections (-1, 0, 0.5),

(0, 1, 1.5) for MnBi2Te4 and MnBi4Te7, respectively. Solid lines represent the fits using the

3D Heisenberg (β = 0.367) and 3D Ising (β = 0.326) models. The image is taken from [81].

59



critical exponent and A and B are just constants [82–84]. The fitting yields 3D critical

exponents rather than 2D ones. For example, in Figure 3.6, for MnBi2Te4, the fitting results

in β = 0.367 from 20 K to 30 K and 0.326 from 4 to 20 K. While the former agrees with

the three dimensional Heisenberg model [82], the latter suggests the three dimensional Ising

model (3DIM) [83].

At the first glance, a 3D feature of the magnetic model for the whole family com-

pounds is unexpected given the fact that the crystal structure is characterized by the well-

separated magnetic layers. However, a recent inelastic neutron scattering work on the powder

MnBi2Te4 has disclosed that the magnetic interactions are Ising-like with strong interlayer

exchange interactions [70]. This indicates that the interlayer magnetic interactions could

be significant even though the inter-magnetic layers are considerably distant. The critical

behavior of the 3DIM adopted in MnBi2Te4 and MnBi4Te7 is consistent with the Ising-like

nature from the inelastic neutron scattering results [70, 85]. The power-law behavior can

be extrapolated to the zero temperature limit for all the cases, allowing us to evaluate the

ordered magnetic moment at zero temperature. Following the exponent parameters of the

3DIM and using the magnetic moment from the magnetic structure refinement at 4.5 K,

we obtained the ordered magnetic moments of 4.9(1) µB and 4.6(1) µB for MnBi2Te4 and

MnBi4Te7, respectively. These values are close to the expected totally ordered moment of 5

µB for Mn2+ ions.

3.6 Z2 AFM TI revealed by DFT calculation

MnBi4Te7 crystallizes in the space group P -3m1 (No. 164). By taking into account the

A-type AFM, the primitive cell doubles along the c axis, rendering a magnetic space group

Pc-3c1 (No. 165.96) under the Belov-Neronova-Smirnova notation as shown in Fig. 3.2. This

magnetic space group is derived from its nonmagnetic space group by adding an extra sub-

lattice generated by an operation that combines time-reversal T with a fractional translation

τ1/2. Then the full magnetic group is built as GM = G + GS, where S is a combinatory

symmetry S = Tτ1/2 with τ1/2 the half translation along the c axis of the AFM primitive
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Figure 3.7: Topological properties of bulk AFM MnBi4Te7 predicted by first-principles cal-

culations. (a) Band structure with the projection of Bloch eigenstates onto Bi-p (blue) and

Se-p (red) orbitals. SOC is included. (b) Evolution of Wannier charge centers (WCCs) for

kz = 0, indicating a nontrivial topological invariant Z2= 1. (c) Surface spectra of (010) side

surface, showing a gapless Dirac cone protected by S symmetry.

cell. Although the explicit T -symmetry is broken, the S symmetry (also referred to nonsym-

morphic time-reversal) still exists in bulk MnBi4Te7. In addition, MnBi4Te7 has inversion

symmetry P , while the square of the symmetry operator PS equals -1 at an arbitrary k in

momentum space. Therefore, analogous to TI with T -symmetry where Kramer’s degeneracy

is induced by T 2 = -1, in MnBi4Te7 the existence of the PS symmetry ensures an equivalent

Kramer’s degeneracy in the whole Brillion zone, and thus a Z2 topological classification.

Figure 3.7(a) shows the calculated band structure of bulk AFM MnBi4Te7 with the

presence of spin-orbit coupling. The conduction band minimum is located at the Γ point,

while the valence band maximum in the vicinity of Γ shows a slightly curved feature. The

calculated bulk band gap is about 160 meV. The projection of band eigenstates onto the

p-orbitals of Bi and Te (as indicated by the blue and red coloring) clearly indicates an

inverted order between several conduction and valence bands around the Γ point, which is

strong evidence of the possible nontrivial topological nature. On the other hand, the Mn-3d5

states form nearly flat bands far away from the Fermi level, indicating that the main effect

of Mn is to break T-symmetry by introducing staggered Zeeman field into the low-energy
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Hamiltonian.

To determine the topological properties of AFM MnBi4Te7, we first apply the Fu-Kane

formula [86] to calculate the Z2 invariant. The topological insulator phase of antiferro-

magnetic materials is protected by S symmetry, under which there are only four invariant

k-points forming a 2D plane in the momentum space. Thus, analogous to weak Z2 indices

in nonmagnetic materials, the S symmetry indeed protects weak Z2 topological phases in

antiferromagnetic materials. In AFM MnBi4Te7, four TRIM points, including Γ(0,0,0) and

three equivalent M(π,0,0), need to be considered here with k · τ1/2 = nπ. Due to the afore-

mentioned band inversion at the Γ point, we find that the parities for the occupied bands at

Γ are opposite to that of the other three M points, indicating a nontrivial Z2 = 1. To verify

our results, we also calculate the evolution of Wannier charge centers (WCCs) using the Wil-

son loop approach [87]. As show in Fig. 3.7(b), the largest gap function and the WCCs line

cross each other an odd number of times through the evolution, confirming that MnBi4Te7

is indeed a Z2 AFM topological insulator. Compared with TIs with T -symmetry, the pro-

tection of gapless surface states in AFM TIs requires that the cleaved surface respects S

symmetry that contains translation along the c axis. Figure 3.7(c) clearly shows the gapless

surface Dirac cone at the Γ point for the (010) surface, partially validating the bulk-surface

correspondence of MnBi4Te7 as an AFM TI. The easy-cleaved (001) plane, where the S sym-

metry is broken, are measured by ARPES and compared with our theoretical calculations,

as discussed in the following.

3.7 Surface and bulk states measured by ARPES

As mentioned earlier, unlike MnBi2Te4, MnBi4Te7 can terminate on two different sub-

lattice surfaces on the (001) plane, i.e., the [Bi2Te3] QL termination and the [MnBi2Te4]

SL termination, resulting in different surface states. ARPES with 47 eV, linear horizontal

polarized light and a small beam spot reveals two different types of E− k maps by scanning

across different parts of the sample in real space, as plotted in Figs. 3.8(d,e) and Figs.

3.8(h,i). There are several distinguishing features between the two types of surface spectra:
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Figure 3.8: Comparison between ARPES-measured and DFT-calculated surface states. (a–c)

The DFT-calculated k − E map along K ←− Γ −→ K on the [MnBi2Te4] SL termination:

(a) surface and bulk (S+B) spectrum, (b) bulk only, and (c) surface only. (d, e) The

experimental ARPES spectrum on the [MnBi2Te4] SL termination obtained with 47 eV,

linear horizontal light: (d) along M ←− Γ −→M , (e) along K ←− Γ −→ K high symmetry

direction. (f, g) The DFT-calculated k − E map along K ←− Γ −→ K on the [Bi2Te3] QL

termination: (f) surface and bulk (S+B) spectrum, (g) surface only. (h, i) The experimental

ARPES spectrum on the [Bi2Te3] QL termination obtained with 47 eV, linear horizontal

light: (h) along M ←− Γ −→ M , (i) along K ←− Γ −→ K high symmetry direction. (j)

The EDC plot at the Γ point (blue-line cut in i) showing three main peaks corresponding to

the bulk conduction band, surface conduction band, and mixed surface/bulk valence band.

The green curve shows the fitted Voigt profile peaks which sum to the blue curve.
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Figs. 3.8(h,i) appear to show a gap with massive quasiparticles while Figs. 3.8(d,e) show

a sharp Dirac-like crossing, possibly with a small gap. The spectra of Figs. 3.8(d,e) are

reminiscent of recent high resolution ARPES spectra of the MnBi2Te4 compound [66,68,69,

74] that show Dirac-like spectra, and we assign these states to the [MnBi2Te4] SL termination,

while we assign the other set of surface states to the [Bi2Te3] QL termination.

On these two terminations, symmetry operations combined with τ1/2 are not preserved.

In the ideal case that the surface magnetic structure perfectly inherits the bulk property, due

to the A-type out-of-plane magnetization of the Mn sublayers, the gapped surface states are

described by adding an exchange term to the ordinary Rashba-type surface Hamiltonian for

TI with T symmetry, i.e., Hsurf (k) = (σxky−σykx)+mS/Qσz, where σ is the Pauli matrix for

spin, and mS/Q the surface exchange field that distinguishes the [MnBi2Te4] SL and [Bi2Te3]

QL surfaces. Our calculation shows that the surface state terminated at the [Bi2Te3] QL

has a massive Dirac cone with a surface gap around 60 meV (Fig. 3.8(f,g)), and an overall

structure that agrees very well with the experimental data of Fig. 3.8(h,i), confirming the

assignment of the experimental data as arising from the [Bi2Te3] QL termination. When

comparing Fig. 3.8(i) with the bulk states calculated by DFT (Fig. 3.8 (b)), we can easily

distinguish the surface states from the bulk states. To measure gap sizes in Fig. 3.8(i), we

extract an energy distribution curve (EDC) at the Γ point and fit it to several Voigt profiles,

as shown in Fig. 3.8(j). We find that despite the appearance of some spectral weight in the

gapped region in Fig. 3.8(i), the EDC does not show any signature of a peak in the gapped

region, indicating that the surface state is gapped by approximately 100 meV while the bulk

gap is nearly 225 meV.

The equivalent calculation on the [MnBi2Te4] SL termination is shown in Figs. 3.8(a,c)

and does not agree well with the experimental data of Fig. 3.8(d,e). While the theory shows

that surface states merge with the bulk valence bands, the experiment suggests a Dirac-

like structure inside the gap. By taking full account of experimental resolution functions in

both momentum directions and in energy, the ARPES data are consistent with either no

gap or a maximum gap size of 10 meV. A similar feature, i.e., nearly gapless surface Dirac
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cone at the SL termination, was also observed in MnBi2Te4 single crystals [66, 68, 69, 74],

where the deviation between ARPES and DFT calculation is suggested to be due to the

surface-mediated spin reconstruction at the top layers of the [MnBi2Te4] SL termination.

Figure 3.9(a,b) show stacks of measured isoenergy surfaces for the [MnBi2Te4] SL and

[Bi2Te3] QL terminations over a wide range of energies both above and below the Dirac

point, while Fig. 3.9(c) shows equivalent calculations for the [Bi2Te3] QL termination. The

six-fold symmetric isoenergy surfaces are seen in all cases, including the hexagonal warping

or snow-flake effect [88]. We comment that while both terminations collapse to a single

resolution-limited point in k-space in the middle panels in Figs. 3.9 (a,b), this is expected

whether or not there is a gapless or gapped Dirac point, due to the broad energy band width

of the nearby valence and conduction bands (Fig. 3.8(j)).

3.8 Summary and outlooks

We have shown MnBi4Te7 is a vdW AFM TI. It is a 1:1 superlattice composing the

building blocks of AFM TI [MnBi2Te4] and T -invariant TI [Bi2Te3]. Our realization of the

superlattice design has three advantages. As expected, [Bi2Te3] serves as a “buffer layer”

that separates and thus effectively decreases the AFM coupling between the two neighboring

[MnBi2Te4] SLs, reducing the necessary weaker magnetic field to trigger the QAH. Second,

by interlayer coupling between [Bi2Te3] QL and the adjacent [MnBi2Te4] SLs, the SOC-

induced nontrivial topology of [Bi2Te3] ensures the band inversion in the 2D limit. As a

result, QAH is well expected in few-layer MnBi4Te7. Third, when MnBi4Te7 is exfoliated

into the 2D limit, natural heterostructures are made, which provides more 2D configurations

than MnBi2Te4 or Bi2Te3 single crystal since the latter ones are only stacked by one type

of building block. One can exfoliate MnBi4Te7 with designed termination, with different

film thickness and magnetization (require a low magnetic field). For example, two types

of three-layer systems with distinct topological properties, [MnBi2Te4]/[Bi2Te3]/[MnBi2Te4]

and [Bi2Te3]/[MnBi2Te4]/[Bi2Te3], should be easily obtained by exfoliation. Recent cal-

culations show that [MnBi2Te4]/[Bi2Te3]/[MnBi2Te4] is a QAH insulator if a small mag-
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Figure 3.9: Experimental and theoretical constant-energy slices. (a, b) ARPES constant

energy surfaces sliced at every 50 meV at SL and QL surface termination. (c) The same

contours calculated by DFT for the QL termination. The six-fold symmetric snowflake-like

surfaces are seen in all cases.
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netic field around 0.2 T is applied to stabilize the forced FM phase. On the other hand,

[Bi2Te3]/[MnBi2Te4]/[Bi2Te3] is suggested to be a QSH insulator with time-reversal break-

ing which cannot be achieved from the thin films of either MnBi2Te4 or Bi2Te3. Therefore,

the 2D version exfoliated from bulk vdW TI MnBi4Te7 may pave an avenue to chase the

long-sought emergent properties such as QAH effect and QSH effect.
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CHAPTER 4

The discovery of MnBi8Te13: the first intrinsic

ferromagnetic axion insulator

This chapter is mostly adapted from [80]. This work was done in collaboration with

Dan Dessau’s group at University of Colorado, Boulder on ARPES measurements, Tay-

Rong Chang’s group at National Cheng Kung University on first-principles band structure

calculations, Dongsheng Li’s group from Pacific Northwest National Laboratory on STEM

imaging, Huibo Cao’s group at Oak Ridge National Lab on neutron diffraction measurements.

4.1 Introduction

Since the discovery MnBi2Te4 as the first intrinsic AFM TI, various attempts have been

made to find related materials in order to reduce the AFM coupling and obtain FM topologi-

cal materials. In Chapter 3, we show by creating natural heterostructures MnBi4Te7, we can

achieve a weakly coupled AFM which can be easily polarized to FM state with merely 0.22

T. Although this value is 40 times smaller than that in MnBi2Te4, a finite field is still neces-

sary to force the sample to enter the FM state for QAHE. This greatly hinders application

with QAHE when one needs to couple QAHE with time reversal symmetry preserving sys-

tems such as s-wave superconductor to look for associated phenomena like Majorana modes.

Therefore, it is still desirable to further reduce the interlayer coupling so the FM state can

be obtained spontaneously without any field.

Motivated by our previous success in growing natural heterostructure MnBi4Te7, we take

a step further in looking for higher-n members in MnBi2nTe3n+1, i.e. inserting more nonmag-
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netic [Bi2Te3] layers in between [MnBi2Te4]. By this rational design, we made MnBi8Te13

for the first time. Through our studies, MnBi8Te13 was discovered to be the first intrinsic

FM topological insulator. The evolution of crystal and magnetic structure of MnBi2nTe3n+1

from n = 1 to n = 4 are shown in Fig. 4.1.

In this chapter, we will first overview the growth and characterization of MnBi2nTe3n+1

(n = 3 and 4). We then compare the thermodynamic, transport and neutron diffraction

measurements of MnBi8Te13 with MnBi6Te10. Our data show that while MnBi6Te10 is AFM

with the ordering temperature of 11 K, MnBi8Te13 manifests long-range Ising ferromagnetism

below 10.5 K with strong coupling between magnetism and charge carriers even when the

adjacent [MnBi2Te4] is 44.1 Å apart. Our first-principles calculations and angle-resolved

photoemission spectroscopy (ARPES) measurements further suggest that MnBi8Te13 is an

intrinsic FM axion insulator. With the natural heterostructure nature of MnBi8Te13 that

allows it to be exfoliated to different thin-film device, our finding may provide a superior

material realization to explore zero-field QAH effect, quantized topological magnetoelectric

effect, and associated phenomena.

4.2 Growth and Characterization

One of the big challenges of studying MnBi8Te13 lies in the crystal growth. Since

MnBi2nTe3n+1 compounds are metastable phases, their crystal growths are limited to a tem-

perature window of a couple of degrees. This situation becomes even more arduous with

increasing n, for example, we found that the growth window for MnBi8Te13 is extremely

narrow like half a degree and very close to the melting point of Bi2Te3 flux. Special tech-

niques were employed to ensure the success of the synthesis. Like MnBi4Te7, MnBi6Te10

and MnBi8Te13 are grown by Bi2Te3 flux. Experimentally, we found that a growth involving

mixing Mn, Bi, and Te at a ratio of MnTe:Bi2Te3=x : 100− x with 10< x <20 can all give

a good yield [50, 62, 80, 89]. For a larger n, a smaller x is preferred so there can be enough

flux. In general, x = 15 is used. The mixture first is placed in an alumina crucible and

sealed under 1/3 atm of Ar inside a quartz tube. The ampule was heated first to 900 ◦C for
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Figure 4.1: Schematic drawing of the crystal and magnetic structure of MnBi2nTe3n+1 (n

= 0, 1, 2, 3 and 4) with the stacking sequence listed. A, B and C represents the bilayers

of BiTe6 octahedra whose bottom Te atoms, center Bi atoms and top Te atoms are on the

cell edges, respectively. Magenta arrow: magnetic structure in the order state. Blue block:

edge-sharing BiTe6 octahedra; Magenta block: edge-sharing MnTe6 octahedra, which are

connected to the blue block via edge-sharing. Inset: Tc (The critical temperatures) vs.

dMn−Mn (the interlayer distance between the adjacent Mn-Mn layers) and n vs. dMn−Mn in

MnBi2nTe3n+1 (n = 1, 2, 3 and 4).
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a few hours to ensure a good mixing, quickly cooled to 600 ◦C followed by slow cooling down

the target decanting temperature Td in 3 days. After dwelling at Td for 3 days, cm-sized

plate-like single crystals is separated from the flux using a centrifuge.

Because all MnBi2nTe3n+1 phases are thermodynamically metastable and only exist in a

very limited temperature range, temperature control is the key to obtaining the right phase.

In fact, the phase of the obtained single crystals depends solely on the decanting temperature

Td, whereas the x in the initial concentration only affects the morphology of the crystals.

Therefore, the same furnace was used for all trials to avoid furnace-to-furnace temperature

variations. The location in the furnace, the length of the quartz tube, and the height of the

crucible within the tube, were also kept about the same for the same purpose when repeating

a growth. If the use of a second furnace is desired, we need to perform a careful calibration

first by an external thermocouple, and by performing a test growth for MnBi4Te7 to ensure

that we hit the growth window.

The systematic way to determinate the growth window for each phase is as follows, taking

MnBi8Te13 as an example. We first set the decanting temperature to be some T1, and then

decanted the growth by a pre-warmed centrifuge. If there is no liquid flux out during the

centrifuging process, it meant T1 is so low that all materials have been in the solid state

at T1. Then in the next growth, we increase the decanting temperature a little to T2 (this

could be done by carefully moving the synthesis in different locations inside the furnace),

then if we get MnBi6Te10 or MnBi4Te7 after decanting, this means T2 is too high and we

miss the growth window of MnBi8Te13. Then we decrease the decanting temperature to be

between T1 and T2. The trials continue until we hit the right temperature for MnBi8Te13.

The ideal temperature for each phase is summarized in Table 4.1. This is only a relative

guide, but again, the same trial process is needed when a new furnace is used.

In particular case of MnBi8Te13, we do not always see well-separated single crystals, but

rather a few crystals on top of a chunk inside the crucible. This is because the decanting

temperature is so close to the solidification temperature that during the process of decanting,

only the liquid on the top was successfully separated from the MnBi8Te13 crystals. To achieve
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Table 4.1: Summary table of the chemical, structural, magnetic, transport properties of

MnBi2nTe3n+1 from n = 1 to 4. ∗ The elemental ratio were determined by WDS. Anomalous

Hall angle (AHA) are calculated from the transport data.

MnBi2Te4 MnBi4Te7 MnBi6Te10 MnBi8Te13

Elemental ratio∗ 0.91(1):2.15(2):4 0.79(2):4.29(8):7 0.79(1):6.30(2):10 0.74(3):8.2(1):13

n 1 2 3 4

Space Group R-3m P -3m1 R-3m R-3m

a (Å) 4.3243(2) 4.3716(3) 4.3710(5) 4.3714(1)

dMn-Mn (Å) 13.629(1) 23.848(2) 33.944(4) 44.107(2)

Tgrowth (◦C) 587 585 583 582

Magnetism AFM AFM AFM FM

TN ,TC (K) 24 13 11 10.5

Hc
sat (T) 7.8 0.22 0.2 0.12

Hab
sat (T) 11 1.2 1.2 1.2

Mc
7T (µB/Mn) 4.2(1) 4.2(1) 4.4(1) 5.1(2)

AHA 1% 0.8% 0.2% 0.1%

a better spin-out, some additional protocols were used to slow down the cooling during the

centrifuge process. For example, the centrifuge cell was heated in a furnace shortly and

quickly moved back to the centrifuge seconds before the growth ampule is dropped in. An

additional quartz shell was painted with expired Ag paste to cover the sample quartz ampule

to provide better thermal insulation.

Next, to find out the phase of single crystals from the growth, one quick way is to

measure XRD on their flat (00L) surfaces. Because Bi2Te3 and MnBi2nTe3n+1 each have

very distinct lattice parameter c, their Bragg reflections on (00L) are completely different.
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Figure 4.2: (a) Distinct X-ray reflections on the (00L) surfaces of Bi2Te3, MnBi2Te4,

MnBi4Te7, MnBi6Te10 and MnBi8Te13. (b, c) Powder X-ray diffraction and the refinement of

MnBi6Te10 and MnBi8Te13 respectively. (d) STEM image of MnBi8Te13 made on a sample

after being cut by focused-ion-beam. The purple and the blue blocks mark the [MnBi2Te4]

SL and[Bi2Te3] QL respectively.
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As c increase with n, the Bragg peaks become more densely packed, as shown in Fig. 4.2

(a). Therefore, a quick surface scan allows us to easily determine the phase of each piece.

It is worth noting that especially since the growth window for MnBi2nTe3n+1 is narrow, the

temperature may sometimes lie at the boundary of two windows and give an internally mixed

phases that may not show up in the surface X-ray scan. For higher-n growth, the decanting

temperature is closer to the melting point of flux, so the chance of the intergrowth between

Bi2Te3 and MnBi2nTe3n+1 also increases. Therefore, extra care is needed to select the piece

for measurement by powder XRD. In Figure 4.2 (b)-(c), we show the powder X-ray spectra

and the refinements of MnBi6Te10 and MnBi8Te13 respectively. The refined lattice parameter

table is summarized in Table 4.1. The detailed atomic positions determined by powder XRD

is included in Tables B.2 and B.3. We also show in the summary table the chemical analysis

performed by WDS. In general, MnBi2nTe3n+1 are deficient in Mn compared with the ideal

chemical formula. In addition, we observe a reduction in Mn concentration with higher n

which is consistent with our neutron scattering data that will be shown later.

From the refined structure, unsurprisingly, all MnBi2nTe3n+1 follow the same stacking

rules, which are rationalized in [72]. The MnBi2Te4 layer is characterized by a monolayer of

MnTe6 octahedra sandwiched by two edge-sharing layers of BiTe6 octahedra running along

the c-axis. The Bi2Te3 are simply the two edge-sharing BiTe6 octahedra stacked together.

The distance between the nearest Mn-Mn interlayer is 13.6 Å for MnBi2Te4, 23.8 Å for

MnBi4Te7 and 33.9 Å for MnBi6Te10, and 44.1 Å for MnBi8Te13, as shown in the inset of

Fig. 4.1. Using Bi2Te3 as the starting point, along the c axis, the stacking of Bi2Te3 is

-A-B-C-A-B-C-, where A, B and C represents the bilayers of BiTe6 octahedra whose bottom

Te atoms, center Bi atoms and top Te atoms are on the cell edges, respectively. “Mn” layer

can replace “A” or “B” or “C” bilayers of BiTe6 octahedra to make MnBi2nTe3n+1. For

example, as shown in Fig. 4.1, for MnBi2Te4, the stacking is -Mn(B)-C-Mn(A)-B-Mn(C)-

A-; for MnBi4Te7, the stacking is -Mn(B)-C-A-; for MnBi6Te10, the stacking is -Mn(B)-

C-A-B-Mn(C)-AB-C-Mn(A)-B-C-A-; for MnBi8Te13, it is Mn(B)-C-A-B-C-Mn(A)-B-C-A-

B-Mn(C)-A-B-C-A-. Therefore, with the stacking rule, we can easily assign the stacking
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sequence for the yet-to-be-discovered higher n members of MnBi2nTe3n+1 or design new

magnetic topological insulators with the QL and SL building blocks.

The formation of MnBi8Te13 is also visualized by the scanning transmission electron mi-

croscopy (STEM) image, as shown in Fig. 4.2 (d). The STEM image shows vdW structures,

which is composed of repeating units of one SL block made of seven atomic layers and three

consecutive QL blocks made of five atomic layers.

4.3 Magnetic and Transport properties of MnBi6Te10 andMnBi8Te13

4.3.1 Magnetic properties

The evolution of magnetism from AFM to FM in higher nMnBi2nTe3n+1 is well revealed in

the magnetic and transport measurement. Figure 4.3 shows the measurement for MnBi4Te7,

MnBi6Te10 and MnBi8Te13 as comparison. The magnetic properties for MnBi4Te7 have

previously been described in Chapter 3. The same set of data are presented here in Fig. 4.3

(b), (e) and (h) for MnBi6Te10, and Fig. 4.3 (c), (f) and (i) for MnBi8Te13. We can observe

an overall similarity between MnBi4Te7 and MnBi6Te10 data. Yet, sharp contrast was seen

in MnBi8Te13. Firstly, the inset of Fig. 4.3 (b, c) present the specific heat data of MnBi6Te10

and MnBi8Te13. The specific heat anomaly associated with the magnetic phase transition

marked by arrow suggest the ordering temperature to be 11.0 K for MnBi6Te10 and 10.5

K for MnBi8Te13, which are slightly lower than 13 K in MnBi4Te7. From the susceptibility

curve in Fig. 4.3 (b), we observed a sharp cusp feature for MnBi6Te10 centering at 11.0

K in χc. Below that there is a small bifurcation between ZFC and FC curve under 9 K,

similar to the ones in AFM MnBi2Te4 and MnBi4Te7. However, a much larger bifurcation

of ZFC and FC data of χc appears below 10.5 K in MnBi8Te13 in Fig. 4.3 (c), where upon

cooling the ZFC data decrease but the FC data increase, suggesting the formation of FM

domains. Furthermore, at 2 K, the magnitude of the FC χc in MnBi8Te13 is by orders larger

than that in AFM MnBi2Te4, MnBi4Te7 and MnBi6Te10. The evidence undoubtedly points

to a distinct magnetic ground state in MnBi8Te13 compared to MnBi2Te4, MnBi4Te7 and
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Figure 4.3: Temperature dependent magnetic, transport and specific heat properties of

MnBi4Te7, MnBi6Te10 and MnBi8Te13. (a-c) The temperature dependent susceptibility taken

at H = 0.01 T for MnBi2nTe3n+1 (n = 2, 3, 4), respectively. Inset: The temperature depen-

dent specific heat for the respective compound. The criterion to determine Tc and TN are

shown in the inset. (d-f) Magnetic hysteresis loop of isothermal magnetization under low

field with H∥c at various temperatures for the three compounds respectively. (g-i) Mag-

netic hysteresis loop of isothermal magnetization up to 7 T with H∥ab and H∥c, for the

three MnBi2nTe3n+1. (j-l) Temperature-dependent anisotropic resistivity, ρxx and ρzz for

MnBi4Te7, MnBi6Te10 and MnBi8Te13.
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MnBi6Te10, while MnBi6Te10 adopts the same magnetic structure as MnBi4Te7.

The ferromagnetism in MnBi8Te13 is further confirmed by the hysteresis loop of isother-

mal magnetization curvesMc(H) (H∥c) shown in Fig. 4.3 (e, f) for MnBi6Te10 and MnBi8Te13.

At 2 K, unlike the Mc(H) data where multiple-step features are observed due to the spin-flop

transition in MnBi2Te4 [53,62] and spin-flip transition in MnBi4Te7 and MnBi6Te10, Mc(H)

in MnBi8Te13 shows a typical hysteresis loop for FM materials with the coercive field of Hc

= 0.075 T and saturation remanence of Mr = 4.1 µB/Mn. Upon warming, Hc decreases as

the hysteresis loop shrinks in area due to the enhanced thermal fluctuations. Figure 4.3(i)

shows the Mab(H) and Mc(H) of MnBi8Te13 up to 7 T, where a field about 1.1 T is required

to force spins to saturate in the ab plane. This value is 1.13 T for MnBi6Te10 in Fig. 4.3

(h). The saturation moment measured at 7 T for MnBi8Te13 is Ms = 5.1(2) µB/Mn whereas

it is 4.4(1) µB/Mn for MnBi6Te10. This suggests the mechanism causing the reduced Mn

saturation moment is weaker in the FM state of MnBi8Te13—-in Chap 5 we will see the dif-

ference comes from the decreasing MnBi formation with increasing n. The fitted Curie-Weiss

temperatures of MnBi8Te13 are θabw = 12.8 K and θcw = 12.1 K, confirming FM exchange

interactions. The fitted effective moments are µab
eff = 5.4µB/Mn and µc

eff=5.1µB/Mn, indi-

cating weak single-ion anisotropy. Although the effective moment is smaller than 5.9 µB/Mn

for a Mn2+ ion, it is similar to MnBi2Te4, MnBi4Te7 and MnBi6Te10.

4.3.2 Transport properties

Figures 4.3 (j)-(l) present the temperature-dependent in-plane (ρxx(H)) and out-of-plane

resistivity (ρzz(H)) of MnBi4Te7, MnBi6Te10 and MnBi8Te13. Above 20 K, all ρ show a

typical metallic behavior and decrease with lower temperature. Upon further cooling, when

approaching the transition temperature, because of the stronger scattering from enhanced

spin fluctuations, all curves values increase with lower T. ρxx(H) decreases below transition

temperature in all three plots. In addition for MnBi8Te13, a sharp drop appears in ρzz(H)

too below 10.5 K, suggesting the loss of spin scattering along the c axis below the ordering

temperature. The drop in ρzz(H) below Tc is distinct from that in MnBi4Te7 and MnBi6Te10,
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Figure 4.4: (a-c) The field-dependent magnetization M (top) with H∥c, transverse mag-

netoresistivity ρxx (middle) and Hall resistivity ρxy (bottom) at 2 K with I∥ab and H∥c

for MnBi4Te7, MnBi6Te10 and MnBi8Te13, respectively. (d-f) Transverse magnetoresistivity

ρxx with I∥ab and H∥c up to 9 T at various temperatures for MnBi4Te7, MnBi6Te10 and

MnBi8Te13, respectively.
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where the antiparallelly aligned Mn moments enhance resistivity via the spin-flip scatter-

ing. Therefore, the drop in ρzz(H) again suggests FM ordering in MnBi8Te13 because the

parallelly aligned Mn moments along the c axis eliminate such spin-flip scattering and thus

reduce electrical resistivity.

Strong coupling between charge carriers and magnetism is observed in all MnBi4Te7,

MnBi6Te10 and MnBi8Te13 through the magnetotransport measurements, as shown in Fig.

4.4 for H∥c and Fig. 4.5 for H∥ab. ρxx(H), and ρxy(H) follow the same hysteresis as that

in M(H). Using n = 1
e

dH
dρxy

, our 50 K data correspond to an electron carrier density of

4.92×1020 cm−3 and 1.66×1020 cm−3 for MnBi6Te10 and MnBi8Te13 respectively, which are

on the same order of the values for MnBi2Te4 and MnBi4Te7. We can again extract the

anomalous Hall resistivity by ρxy = R0H + ρAxy to compute the anomalous Hall angle AHA

= ρAxy /ρxx. The result is found to be 0.2% and 0.1% for MnBi6Te10 and MnBi8Te13. Both

are much smaller than that for MnBi2Te4 and MnBi4Te7.

Figures 4.4 (d)-(f) show the ρxx(H) curves up to 9 T at various temperatures for the

three samples. The overall “W” shape previously seen in MnBi4Te7 in Chapter 3 is universal

in MnBi6Te10 and MnBi8Te13 too, which was suggested to be a combination of nonmagnetic

parabolic MR contribution and negative MR originating from FM fluctuations. The same W-

shaped TMR at high field in MnBi4Te7 was seen up to 50 K. Here, the threshold temperature

to observe the shape is only 30 K and 20 K for MnBi6Te10 and MnBi8Te13 respectively. This

is in line with the overall weaker magnetism and fluctuations above Tc in MnBi6Te10 and

MnBi8Te13.

For H∥ab, we can also identify the coupling of magnetic structure and transport in Figure

4.5. The effect is prominent in ρzz(H). For all three MBT, the saturation field in ab plane

is about 1.2 T as marked by the dashed line in the figures. The percentage drop at the

saturation field is the highest in MnBi4Te7 at about 50%, but is down to to 12% in MnBi6Te10

due to fewer Mn and a weaker AFM state. The value is only 6% for MnBi8Te13, in which

case the drop only comes from the suppression of opposite FM domains.
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Figure 4.5: (a-c) The field-dependent magnetization M (top) with H∥ab, longitudinal mag-

netoresistivity ρzz (bottom) at 2 K for MnBi4Te7, MnBi6Te10 and MnBi8Te13 respectively.

4.4 Neutron scattering

Both MnBi6Te10 and MnBi8Te13 have the same crystal space group as MnBi2Te4. As

a result, the AFM in MnBi6Te10 gives the same magnetic diffraction peaks as MnBi2Te4.

Figure 4.6 shows the order parameter of a superlattice peak (0, 1, 1.5) below the ordering

temperature. On the contrary, no additional Bragg peaks are observed in MnBi8Te13 because

FM does not break any translation symmetry. Upon cooling below Tc about 10 K, the Bragg

peak intensity of the nuclear peaks gain additional intensity, indicating the development of

long-range magnetic ordering with the propagation vector k = 0. Starting from the nuclear

space group R-3m with Mn atoms occupying the Wyckoff position (0, 0, 0) and k = 0,

through symmetry analysis, we obtained the k-maximal magnetic subgroup as R-3m′ whose

symmetry only allows the presence of a FM arrangement with the Mn spins along the c axis.

The power law I = A(TM−T
TM

)2β +B was used to fit the intensity of magnetic reflection two

reflections in MnBi6Te10 and MnBi8Te13 as a function of temperature. The fitting can be

made satisfactorily with both 3D Heisenberg and 3D Ising models over the entire temperature

range. With the 3D Heisenberg fitting and refinement at 4K, we determine the ordered Mn

moment in the zero-temperature limit. The estimated magnetic moments are 4.4(5) µB and
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Figure 4.6: Magnetic order parameters upon warming at the magnetic reflections (0, 1,

1.5) and (1, 0, 1) for MnBi6Te10 and MnBi8Te13, respectively. The solid blue and red lines

represent the fits using the 3D Heisenberg (β = 0.367) and 3D Ising (β = 0.326) models.

The image is taken from [81].
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4.9(2) µB for MnBi6Te10 and MnBi8Te13 respectively. Both values are close to the expected

totally ordered moment of 5 µB for Mn2+ ions.

4.5 Ferromagnetic axion state revealed by DFT calculation

To investigate the band topology of MnBi8Te13, we calculated the electronic band struc-

ture in the FM configuration with the spin oriented along the c axis. Using the experimentally

determined lattice parameters and atomic positions, our calculation shows only a continuous

bulk energy gap. In contrast, using the experimental lattice parameters with relaxed atomic

positions, our calculation indicates a 170 meV global energy band gap (Fig. 4.7(b)). By

comparing our DFT calculation with the experimental ARPES data, the one with relaxed

atomic positions describes the material well.

To highlight the spin-splitting in the presence of FM ordering, we present the < Sz >

resolved band-structure in Figure 4.7 (c). The band structure projected on the Bi p and Te

p orbitals shows that the bands near the Fermi level mostly originate from the Bi p and Te p

orbitals. As shown in Fig. 4.7(d), there are clear band inversions between the Bi pz and Te

pz states. In fact, the Bi pz orbitals reach deep into the valence bands, indicating multiple

possible band inversions that originate from the different [Bi2Te3] QL and [MnBi2Te4] SL of

MnBi8Te13.

The presence of clear band inversions around the Γ point hints towards a topological

phase. To unravel the exact topology of this system, we first compute the Chern number in

the kz = 0 and kz = π planes. In both planes the Chern number is found to be zero. Next,

we compute the parity-based higher-order Z4 invariant, which is given by

Z4 =
8∑

i=1

nocc∑
n=1

(1 + ηn(Γi))/2 mod 4 (4.1)

Here, ηn(Γi) is the parity of the nth band at the ith TRIM point Γi , and nocc is the

number of occupied bands. The Z4 invariant is well defined for an inversion symmetric

system, even in the absence of time reversal symmetry [46,90,91]. The odd values of Z4 (1,
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Figure 4.7: DFT band structure of bulk MnBi8Te13. (a) Bulk Brillouin zone (BZ) and the

(001) surface BZ of MnBi8Te13 with the high symmetry points marked. (b) Bulk band

structure of MnBi8Te13 in the out-of-plane FM configuration, with spin-orbit coupling and

correlation parameter U included. (c) Spin-resolved band structure zoom in around the Γ

point. (d) Orbital-resolved band structure zoom in around the Γ point. The red and blue

dots indicate Te pz and Bi pz orbitals, respectively. There are clear band inversions between

the Te pz and Bi pz states at the Γ point.
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Table 4.2: The number of occupied bands of + and - parity eigenvalues at eight TRIM points

of MnBi8Te13.

Γi (0,0,0) (π,0,0) (0,π,0) (0,0,π) (π,π,0) (0,π,π) (π,0,π) (π,π,π)

n+
occ 65 67 67 67 63 63 63 67

n−
occ 60 58 58 58 62 62 62 58

3) indicate a Weyl semimetal phase, while Z4 =2 implies an insulator phase with a quantized

topological magnetoelectric effect (axion coupling θ = π) [36]. A detailed list of the number

of occupied bands with even (n+
occ) and odd (n−

occ) parity eigenvalues at the eight TRIM

points are shown in Table 4.2. Based on this, the computed Z4 invariant is found to be 2,

which demonstrates that MnBi8Te13 is an intrinsic FM axion insulator.

It is noted that, in calculations with or without atomic relaxation, the characteristics of

band inversion and the topology of whole system remain the same, i.e., an FM axion state.

In addition, we have investigated the evolution of the band structures by changing lattice

constants a, b (in-plane) and c (out-of-plane) simultaneously. Within the range from -3%

to +3% in MnBi8Te13, we did not find any crossing point or the additional band inversion

feature. Our calculation reveals that the axion phase in MnBi8Te13 is quite stable.

4.6 Surface state revealed by ARPES and DFT

To investigate if surface states appear in MnBi8Te13, our collaborators in Dan Dessau’s

group at CU-Boulder performed small-spot (20 µm × 50 µm) ARPES scanned across the

surfaces of MnBi8Te13. According to the crystal structure of MnBi8Te13, four different ter-

minations are expected during the cleave, as visualized in the cartoon pictures on the top

of Figure 4.8. Our ARPES data and DFT calculations indeed reveal distinguishing surface

states for the four different terminations of MnBi8Te13, which are summarized in Figure 4.8.

Figures 4.8(a-d) show the isoenergy surfaces at the Fermi level which uniquely fingerprints

each of the four possible terminations of MnBi8Te13. The measurements were done using 26
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Figure 4.8: The comparison of ARPES data and DFT calculation on MnBi8Te13 under

surface termination of SL, QL1, QL2, and QL3. (a-d) ARPES isoenergy surfaces at the

Fermi level . (e-h) Experimental ARPES E-k spectrum cut along the M ←− Γ −→M high

symmetry direction for various terminations. (i-l) Calculated DFT E−k spectrum cut along

the M ←− Γ −→M high symmetry direction for various terminations.
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eV, 20 µm× 50 µm spot-sized linear horizontal light at 12 K. We identify a unique circular

Fermi surface for the SL termination which has been observed in other MnBi2nTe3n+1 (n = 1,

2, 3) [50,89,92,93]. We find that the QLn terminations show a dominant six-fold symmetric

Fermi surface with decreasing cross-sectional area from QL1 to QL3. Our assignment of the

isoenergy surfaces to the respective terminations for MnBi8Te13 is consistent with previous

measurements on the simpler MnBi2Te4, MnBi4Te7, and MnBi6Te10 compounds. Figures

4.8(e-h) present the experimental ARPES E − k maps along the M-Γ-M high symmetry di-

rection. Different types of surface states are observed for each of the four terminations. For

the SL termination, a gapless or nearly gapless surface state appears (Fig. 4.8e), consistent

with the gapless surface state observed on the SL termination in previous ARPES measure-

ments of MnBi2Te4, MnBi4Te7, and MnBi6Te10 [50, 66, 89, 92, 93]. The QL3 termination,

which is unique to MnBi8Te13, shows mass renormalization near the Fermi level (Fig. 4.8h).

Furthermore, a large surface gap of about 105 meV centering around the charge neutrality

point of -0.35 eV is clearly revealed in the QL1 termination and is highlighted by the arrow

(Fig. 4.8f). It is noted, we find that the spectra taken below and above the transition tem-

perature are very similar in terms of the size of the gap, except for thermal broadening of

the electrons. This has been observed in various magnetic topological insulators, including

MnBi2Te4, MnBi4Te7, MnBi6Te10 and the origin of it is under debate [66,94].

In order to confirm the topological nature of MnBi8Te13, we calculated the surface spectral

weight throughout the (001) surface BZ using the semi-infinite Green’s function approach

for SL, QL1, QL2, and QL3 terminations correspondingly. The result is shown in Fig. 4.8(i-

l). Each state is plotted with a color corresponding to the integrated charge density of

the state within the topmost QL or SL. In addition, we shift the Fermi level to match the

experimentally observed Fermi level.

Excellent agreement between the experimental ARPES data and DFT calculation is

achieved for the QLn terminations as shown in Fig. 4.8. Our calculation suggests that the

sizable surface band gap presented in the QL1 termination around -0.35 eV is a hybridiza-

tion gap induced from the hybridization effect between the topmost QL and the nearest-
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neighboring SL. Although the calculated band gap value is smaller than that from ARPES,

it is a well-known problem in that GGA generally underestimates the band gap in semi-

conductors and insulators [95, 96].The hybridization gap seems universal in MnBi2nTe3n+1,

which has been suggested for MnBi6Te10 [97] and MnBi4Te7 [98]. However, until now, it is

unclear if the hybridization gap exists and supports QAH in the 2D limit. To settle down

this issue, we have performed DFT calculation on a 7-layered finite-size slab model with

the arrangement of vacuum-[QL-SL-QL-QL-QL-SL-QL]-vacuum, i.e. a structure that has

the QL1 termination on both surfaces. The main features of the slab result shown in Fig.

4.9(a) are consistent with our semi-infinite Green’s function approach. We then calculate the

Chern number of this slab model based on the Wilson loop method [99]. Our result shows

a nontrivial Chern number (C = 1) in this hybridization gap (Fig. 4.9(b), demonstrating

that MnBi8Te13 is indeed a QAH insulator in its 2D limit if the Fermi level is gated to the

middle of the large hybridization gap.

As a consequence of strong exchange fields from the Mn magnetic layer in the SL termina-

tion, our calculation on the SL termination results in a parabolic large gapped surface band

dispersion in the bulk energy gap (Fig. 4.8i). This is in sharp contrast with the gapless Dirac

surface state revealed by the ARPES (Fig. 4.8e). For the SL termination, the deviation be-

tween ARPES and DFT calculation as well as the gapless Dirac surface state are universal in

the MnBi2nTe3n+1 family (n = 1, 2, 3) [66,89,92,93]. The unexpected gapless surface state is

argued to be caused by the surface spin reconstruction when the magnetic [MnBi2Te4] layer

is at the vacuum-sample interface [66, 92, 93]. Further experiments in identifying the spin

reconstruction on the SL termination are urged to settle down this issue.

4.7 Summary and outlooks

We have presented the realization of the first intrinsic ferromagnetic topological material,

MnBi8Te13. Our work has several implications. First, our theoretical calculations show that

MnBi8Te13 is a ferromagnetic axion insulator. Such a topological axion state suggests a

quantized magnetoelectric coupling and an emergent axion electrodynamics. Therefore, the
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Figure 4.9: DFT band structure of MnBi8Te13 in a seven-layered finite-sized slab model

corresponding to the QL1 surface arrangement, i.e., with vacuum-[QL-SL-QL-QL-QL-SL-

QL]-vacuum. (a) Band structure of this slab model. The sizes of the blue and red dots

represent the fraction of electronic charge residing in the topmost QL and the nearest-

neighboring SL, respectively. (b) Evolution of the sum of Wannier charge centers (WCCs)

along ky in the kz = 0 plane. The trajectory of WCC is an open curve traversing the whole

BZ once, indicating the Chern number C = 1 in the kz = 0 plane.
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optical responses of MnBi8Te13, especially in the terahertz regime, may be of great interest.

Second, the intrinsic ferromagnetism paves the way for the realization of QAH state at zero

magnetic field. Third, when it is exfoliated into the 2D version, the superlattice nature and

the stacking of vdW MnBi8Te13 makes it possible to fabricate richer combinations of nat-

ural heterostructures than those from AFM MnBi2nTe3n+1 (n = 1, 2, 3). Various emergent

properties such as QAH state and QSH state are proposed for such heterostructures. Fur-

thermore, the observation of long-range magnetic order is striking considering the extremely

large separation of 44.1 Å between the adjacent [MnBi2Te4] SLs; further investigations will

shed light on the mechanism of the long-range magnetic ordering in MnBi8Te13 and will

advance our understanding on the magnetism in vdW materials. Finally, our work here in

general establishes natural heterostructure as a powerful way to rationally design and control

magnetism and other broken symmetry states in layered vdW materials.

We have shown the structural and magnetic and topological properties of the magnetic

topological material series MnBi2nTe3n+1. We were able to implement our structural design of

inserting the nonmagnetic QL layer between the magnetic [MnBi2Te4] SL layer. Such rational

design and great tunability of the structure of SL and QL layers allow MnBi2nTe3n+1 to have

various magnetic ground state. By such, we obtained weakly interlayer coupled A-type AFM

MnBi4Te7 and MnBi6Te10, and FM MnBi8Te13. In terms of topology, we demonstrated

MnBi4Te7 is an AFM TI; similar is expected and reported for MnBi6Te10. Finally, we

revealed that MnBi8Te13 is an intrinsic FM axion insulator, and similar is expected for

n > 4 sample. As the foundation of engineering 2D heterostructures, such a highly tunable

topological vdW material systems could open up unprecedented opportunities in discovering

novel fundamental physics as well as making new quantum devices.

Now, in order to observe these exotic states predicted by theory based on MnBi2nTe3n+1,

such as QAHE, it is essential to have the Fermi level to near the Dirac point or the bulk

and surface gap to observe the edge or surface states. In reality, this is not the case in

the bulk crystals due to the presence of various defects. Other than gate-tuning and other

post treatment that can tune the Fermi level in the thin-film sample to a certain extent, it
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remains a challenge to grow an intrinsically low-carrier bulk sample. This motivates further

studies on the defects and growth optimization. To that end, ongoing studies are carried out

in the field. We will discuss our studies on the role of Sb doping in Chapter 5 and how the

growth optimization can help in Chapter 7, respectively.
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CHAPTER 5

Tuning magnetism and band topology through antisite

defects in Sb-doped MnBi4Te7

This chapter is adapted from [100]. This work was done in collaboration with Tay-Rong

Chang’s group at National Cheng Kung University on first-principles band structure calcu-

lations, Igor I. Mazin at George Mason University on the phenomenological magnetic model,

and Huibo Cao’s group at Oak Ridge National Lab on neutron diffraction measurements.

5.1 Introduction

In the previous chapters, we have seen MnBi2Te4 is a Z2 AFM TI with A-type magnetic

structure where spins antiferromagnetically couple strongly along the c axis and ferromag-

netically align in the ab plane. Then we could effectively reduce the interlayer coupling by

increasing n and thus the interlayer Mn-Mn distance in MnBi2nTe3n+1 which evolves from

a Z2 AFM TI with saturation fields of 7.7 T in MnBi2Te4 (n = 1) [53, 62, 75], 0.22 T in

MnBi4Te7 (n = 2) [50, 101] and 0.18 T in MnBi6Te10 (n = 3) [89, 92, 102, 103], to a FM

axion TI in MnBi8Te13 (n ≥ 4) [80, 104], leading to a highly tunable intrinsic natural het-

erostructural topological insulator series which are excellent candidates to realize QAHE and

QME.

However, n is a discrete tuning parameter which cannot lead to continuous change of

interlayer Mn-Mn coupling and thus provides less insight in the rich competition between

various ground states. Meanwhile, chemical doping serves as a continuous tuning parameter.

Compared to the case of trivial magnetic metal, in small-gap MTI MnBi2nTe3n+1, chemical
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doping may not only tune their magnetism but also their band topology and carrier density.

Profound effects of Sb doping has been observed in Mn(Bi1−xSbx)2Te4 single crystals. Besides

an electron-carrier to hole-carrier change [65,105], the series evolve from AFM MnBi2Te4 to

ferrimagnetic MnSb2Te4 [105–107]. This evolution suggests complicated doping mechanism

and defect chemistry in this series. Although single crystal neutron scattering study on

MnBi2Te4 indicates Bi atoms substitute on Mn sites with no discernable Mn atoms on Bi sites

[72], similar measurements on MnSb2Te4 reveal substantial antisite disorder between Mn and

Sb 6c sites [106,107], resulting in two Mn sublattices. The delicate energy-scale competition

was demonstrated in a recent study on MnSb2Te4 [107]. While these two Mn sublattices

always couple antiferromagnetically, in samples with slightly lower antisite disorder, each

Mn sublattice orders antiferromagnetically; in samples with slightly higher antisite disorder,

each Mn sublattice orders ferromagnetically.

Compared to MnBi2Te4, the members with n ≥ 2 has extra spacer [Bi2Te3] layers and

thus much larger Mn-Mn interlayer distances. Therefore, the AFM and FM ground states

can be closer in energy, so these high n members are more sensitive to perturbations. Here we

report a systematic study of the effect of Sb doping on MnBi4Te7 and reveal the important

role of the Mn/Sb antisite disorder caused by Sb-doping in governing the magnetism.

5.2 Growth and Characterization

Single crystals were grown using the flux method [50,62]. Elemental forms of Mn, Bi, Sb

and Te are mixed at the ratio of MnTe:(Bi1−xSbx)2Te3=15:85 in an alumina crucible sealed

in a quartz ampule under 1/3 atm of argon. The quartz ampule is quickly heated to 900◦C

and stays for 5 h, followed by a quick cooling to 10◦ above the targeted spin-out temperature.

Then it is slowly cooled to the spin-out temperature over three days and stays for another

three days before the spin out. Since the growth window is narrower than the undoped

growth and different for each doping level, similar trial-and-error strategy (See Chapter 4))

was employed to determine the spin-out temperature for the 147 phase for the doping level.

92



Figure 5.1: (a) PXRD of Mn(Bi1−xSbx)4Te7 for the pieces for which the data in the paper

were collected. The peak positions of the 147 phase are marked. Inset: the zoom-in plot of

the (104) PXRD peaks. (b) The doping-dependent relative lattice parameters a/a0, c/c0 and

nominal concentration xnominal used in the growth. a0 and c0 are the lattice parameters for

MnBi4Te7. (c) Crystal structure of Mn(Bi1−xSbx)4Te7 viewed from [1 -1 0] direction, marked

with potential Mn sites labelled as Mn1, Mn2 and Mn3.

93



Both the PXRD and chemical analysis via WDS indicate that Sb was successfully doped

into MnBi4Te7 and the results are summarized in Fig. 5.1 and Table 5.1. Figure 5.1(a) shows

the PXRD patterns for various doping levels. All peaks can be indexed by the 147 phase. If

there is 023 phase impurity, a clear hump will appear at the left shoulder of the (104) peak.

As shown in the inset of Fig. 5.1(a), the 023 phase is indiscernible or less than 5% if there is.

With Sb doping, the (005) peak roughly stays at the same angle while the (104) peak shifts

moderately and the (110) peak shifts much to higher angles, indicating distinct in-plane and

out-of-plane lattice response to the Sb doping. Figure 5.1(b) shows the doping-dependent

lattice evolution. The lattice parameter a decreases linearly by 2% up to our highest doping

level x = 0.76 while the lattice parameter c remains almost the same. This lattice evolution

is similar to that in Mn(Bi1−xSbx)2Te4 [105].

WDS reveals the real doping level of Sb as well as a universal deficiency of Mn in all

compounds as seen in Table 5.1. The total Mn concentration is near 0.8 for all but slowly

increases with x. This is because when Sb substitutes Bi, it also introduces the preferable

MnSb antisites [105–108] (high-spin Mn2+ ionic radius, 99 pm, is closer to that of Sb3+, 90

pm, than to Bi3+, 117 pm [109]). Therefore, upon Sb doping, more and more Mn can enter

into the Bi/Sb sites. In contrast to the Mn(Bi1−xSbx)2Te4 series where two Mn sublattices

exist due to the Mn(Bi,Sb) antisite formation, Sb doping in MnBi4Te7 gives rise to a more

complex antisite chemistry, where three Mn sublattices appear. We denote the Mn atoms

occupying the Mn site as Mn1 sublattice, the Mn atoms on the Bi site within SLs as Mn2

sublattice, and the Mn atoms on the Bi site in QLs as Mn3 sublattice in the structure plot

in Figure 5.1. In this study, we will show while the Mn2 and Mn3 antisites are much less

concentrated than Mn1, they do make a big impact on the overall magnetism and band

topology.

5.3 Evolution of magnetic properties with chemical doping

The evolution of magnetic structure in the series can be well traced in the temperature-

dependent susceptibility with H∥c (χc(T )), the temperature-dependent resistivity with I∥ab
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Figure 5.2: The evolution of magnetism with temperature in Mn(Bi1−xSbx)4Te7 from x = 0

to x =0.76: (a)-(d) Top panel: χc(T ), the temperature-dependent ZFC and FC magnetic

susceptibility under 0.01 T with H∥c. Middle panel: ρxx(T ) and ρzz(T ), the temperature-

dependent electrical resistivity with the current along the ab plane and the c axis. Bottom

panel: Cp(T ), the temperature-dependent specific heat and the zoom-in of Cp(T ) near tran-

sitions (inset).
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(ρxx(T )) and I∥c (ρzz(T )), as well as the temperature-dependent specific heat (Cp(T )) data in

Figure 5.2. For x = 0, at TN = 12.7 K, the sharp cusp in χc(T ) and the kink in Cp(T ) signal

the PM to AFM phase transition. Furthermore, below TN , the sudden increase of ρzz(T )

and drop of ρxx(T ) are indicative of the gain (loss) of the spin-disorder scattering along the

c axis (ab plane). This suggests spins parallel in the ab plane but anti-parallel along the c

axis, consistent with the A-type AFM structure revealed by neutron data [72,103].

For x = 0.13, in addition to a sharp cusp at TN = 12.8 K in χc(T ) suggesting AFM

transition like the parent compound, a second transition occurs at TC = 6.0 K marked by

a sudden increase and a large bifurcation in the ZFC and FC data of χc(T ). From TN to

TC , ρzz(T ) increases sharply and ρxx(T ) drops, analogous to that of the x = 0 sample, while

below TC , ρzz(T ) decreases sharply due to the loss of spin scattering like that in the FM

MnBi8Te13 [80]. Meanwhile, since Mn1 and Mn2 sublattices in the SL plane are strongly

AFM coupled to each other through superexchange interaction [107], Mn2 sublattice most

likely orders simultaneously and antiferromagnetically with Mn1 at TN . Therefore, we argue

that from TN to TC , Mn1 and Mn2 sublattices each adopts A-type AFM, while they also

AFM coupled to each other. Below TC , while Mn1 and Mn2 sublattices are still AFM coupled

to each other, they are FM within themselves. We denote these two magnetic structure as

FerriAFM and FerriFM , as depicted in Fig. 5.3(a).

For x = 0.48, the shapes of the χc(T ), ρzz(T ) and ρxx(T ) curves are similar to those of

the x = 0.13 compound, manifesting a FerriAFM state between TN = 13.3 K and TC = 10.2

K and a FerriFM state below TC . However, in sharp contrast to the x = 0.13 sample where

specific heat anomaly only appears at TN , an additional small specific heat anomaly emerges

at TC for x = 0.48, indicating an entropy release which is not directly originated from the

AFM-FM transition of the Mn1 and Mn2 sublattice at TC . Since it is natural to believe

that Mn3 concentration is higher in this doping level than that in the x = 0.13 sample. This

additional specific heat release is very likely to be related to the increasing amount and the

magnetic state of the Mn3 sublattice.

For x ≥ 0.58 like Fig. 5.2(d), only one phase transition is observed. As a representative,
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Figure 5.3: The evolution of magnetism with field in Mn(Bi1−xSbx)4Te7 from x = 0 to

x =0.76: (a-d) The isothermal magnetization M(H) at 2 K with H∥c and H∥ab. The

unit is chosen as µB/Mn where the Mn concentrations via WDS data are used. (e-h): The

hysteresis of M(H) (top), ρxx(H) (middle) and ρxy(H) (bottom) with H∥c at 2 K (unless

noted otherwise). At 2 K, the hysteresis of the M(H) curve goes from AFM type (x = 0)

to FM type (x = 0.76).

the data for x = 0.76 is shown in Figure 5.2 (d). The χc(T ), ρzz(T ) and ρxx(T ) are reminiscent

of those of the x = 0.13 and 0.48 compounds in the FerriFM state, suggesting Mn1 and Mn2

sublattices order simultaneously at 14.5 K into the FerriFM state.

Figures 5.3(a)-(d) present the isothermal magnetization data at 2 K under H∥ab and

H∥c. The data suggest an easy-c axis for the whole series. It also allows us to estimate the

uniaxial anisotropy SD via SD = (1/2)gµBHab− gµBHc [105], where g = 2 and Hab and Hc

are the field marked by the arrows in the figures. The obtained SD is summarized in Table

5.1. As we can see that SD decreases with high Sb doping, similar to the case of Sb-doped
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MnBi2Te4 [105]. Figures 5.3(e)-(h) show the magnetic hysteresis loop, the field-dependent

electrical resistivity (ρxx(H)) and Hall resistivity (ρxy(H)) with H∥c. A spin flip transition

with hysteresis was observed at 0.15 in the x = 0 sample. The envelopes of the M(H) curves

in the FerriFM ground state are nontrivial. Instead of a standard FM hysteresis loop, a

bow-tie-shaped hysteresis loop can be clearly observed at 2 K. A recent magneto-optic study

suggests this bow-tie-shaped hysteresis may be related to the formation of low-field fine-

structured isotropic domains and high-field less isotropic sea-urchin-shaped domains [110].

We also note that the multi-step feature of the M(H) curve at 6 K for the x = 0.13 compound

is reminiscent of that of the MnBi6Te10 compound [110]. This may suggest the existence

of small amount of FM domains in the AFM state of MnBi6Te10. Therefore, close energy

scales of FM and AFM is universal in the n ≥ 2 MnBi2nTe3n+1 members. This explains

the controversies on the magnetic ground states of MnBi4Te7 obtained from different growth

methods, while the first-principle calculations suggest an AFM ground state [50, 101]. This

is all because slight site defects are enough to tune the exchange energy to surrender one

and boost the other.

Magnetism and charge carriers are strongly coupled in the series. At x = 0, a sharp

drop in ρxx(H) can be observed at the spin-flip field around 0.15 T due to the loss of spin-

disorder scattering. On the other hand, ρxx(H) shows subtle decrease for the x = 0.13,

0.48 and 0.76 samples, consistent with their FerriFM ground state. In the Hall resistivity

panels, anomalous Hall effect arising from the internal magnetization can be seen in all

concentrations. Furthermore, a clear sign change of ordinary Hall resistivity appears at

x =0.48. We then determine the carrier density using n = 1
RHe

where the Hall coefficient

RH is the slope of ρxy(H) at 20 K in Figure 5.4. After interpolating the carrier density with

doping level, an estimated charge neutrality point is found near x = 0.36, as shown in Figure

5.4(b).
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Figure 5.4: Hall resistivity and carrier concentration. (a) Hall resistivity measured at 20 K

with I∥ab. (b) Doping-dependent carrier density.

5.4 Estimating MnBi antisites using magnetic and neutron scat-

tering data

Based on our aforementioned discussions about Fig. 5.1, we have hypothesized the mag-

netic structures of the Mn1 and Mn2 sublattices. However, a few important questions remain

unclear for this doping series. What are the concentrations of the Mn1, Mn2 and Mn3 sub-

lattices? Does the Mn3 sublattice order? If yes, what is its ordering state? If not, is it

glassy or fluctuating? Single-crystal neutron scattering measurements were performed on

the x = 0.76 sample. Together with the high-field M(H) data which provides an alternative

way to estimate the concentrations of the three Mn sublattices, they shed light on these

questions.

The preliminary refinement of the single-crystal neutron data with all fitting parameters

free indeed indicates a FerriFM state of the Mn1 and Mn2 sublattice at 5 K, consistent

with Fig. 5.5(a). The refinement further suggests the moment contributed from Mn3 atoms

is 0.13(10)µB/f.u. This small moment either implies negligible Mn3 concentration, or Mn3

sublattice is glassy/fluctuating. To differentiate these two scenarios, let us focus on the high-

field M(H) data with H∥c shown in Figs. 5.3(a)-(d). Above a sharp increase caused by the

Mn1+Mn2 complex below 0.2 T, a universal, subtle, but clear medium-field magnetization
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Table 5.1: Chemical composition of Mn(Bi1−xSbx)4Te7, the estimation of defects concentra-

tion with m, n, and l representing the Mn occupancy on Mn2 sites, Mn3 sites, and Mn1 sites

respectively. The magneocrystalline anisotropy parameter is estimated from the saturation

field of the dominant Mn1 sublattice (Hab
sat)Mn1 (see text).

xnominal Mn:Bi:Sb:Te Sb/(Bi+Sb) m n l SD (meV)

WDS 0 0.78(3):4.27(7):0:7 0 0.015(5) 0.03(1) 0.73(3) 0.052

0.1 0.79(2):3.70(3):0.57(1):7 0.13(1) 0.020(5) 0.04(1) 0.70(3) 0.053

0.4 0.81(4):2.19(5):2.04(1):7 0.48(1) 0.025(5) 0.055(10) 0.65(3) 0.026

0.7 0.82(1):1.00(3):3.08(2):7 0.76(1) 0.060(5) 0.07(1) 0.56(3) 0.015

neutron 0.7 0.88(3): 1.15(6):2.96(6):7 0.72(2) 0.06(1) 0.07 0.62(1) 0.015

increase appears around 1-5 T in the whole doping series. Because the coupling between

Mn1 and Mn3 is weaker than that between Mn1 and Mn2, Mn3 should polarize at a lower

field than Mn2. Therefore, this medium-field magnetization increase should arise from the

polarization of the Mn3 sublattice since the Mn2 sublattice will flip at a much higher fields.

Indeed, for x = 0.76, M(H) is only 3.4 µB/Mn at 13 T. Despite reaching a plateau, it is

still much smaller than 5 µB/Mn, the theoretical value for Mn2+. This strongly indicates

the flipping of Mn2 will happen at a field higher than 13 T. As a reference, in MnBi2Te4,

the flipping process of the Mn2 sublattice starts at 20 T and ends at 60 T [111].

Such a field-dependent magnetic structure evolution is depicted in Fig. 5.5(b), which

allows us to separate the contribution of magnetization from each Mn sublattices in theM(H)

curve with H∥c (Figs. 5.3(a)-(d)). Right before the sizable polarization of Mn3 sublattice,

the sample is in the state I depicted in Fig. 5.5(b) and we denote the moment to be α. Then

with increasing field, more and more Mn3 atoms are polarized into the state II as pictured

in Fig. 5.5 (b), leading to a plateau in M(H) with the moment of β. With even higher

fields, Mn2 will be polarized and finally all three Mn sublattices stay in state III as drawn in

Fig. 5.5 (b), resulting in a moment of γ. Therefore, the difference in α and β can tell us the

total moment contributed by Mn3 atoms under field. For x = 0.76, this value is ∼ 0.8(1)
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Figure 5.5: (a) The depiction of the FerriAFM and FerriFM states. Red, olive and pink arrows

represent the Mn1, Mn2 and Mn3 spins. (b) FerriFM state with H∥c at low, medium and

high field: the depiction of the process of the polarization of Mn3 and the spin-flipping of

Mn2.

µB/Mn, suggesting the Mn3 spins contribute significantly to the ordered moment under

fields and thus Mn3 concentration is not negligible. Together with the neutron scattering

data which reveal all Mn3 atoms only contribute 0.13(10)µB/f.u. at zero field, we conclude

that Mn3 atoms are in the glassy/fluctuating state at 5 K. Furthermore, considering that

Mn3 atoms need above 1 T to be polarized while the recent ac susceptibility measurements

of the x = 0.76 sample only show relaxation behavior below 500 Oe [110], it is likely that at

5 K the Mn3 atoms are not in the glassy state, but rather fluctuating in the paramagnetic

state. Future site-sensitive nuclear magnetic resonance measurements can help clarify the

magnetic state of the Mn3 sublattice.

According to the sequential field-induced processes illustrated in Fig. 5.3 (b), we can

quantitatively estimate the concentration of the three Mn sublattices based on the M(H)

data. If we set the amount of the Mn2 and Mn3 antisites and the Mn occupancy on the

Mn1 site to be m, n and l respectively, then the concentration of the Mn1, Mn2 and Mn3

sublattices is 1− l, 2m and 2n with 2m+2n+(1− l) = MnWDS where MnWDS is the total Mn
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concentration determined by the WDS measurement. Assuming the ordered-moment/Mn

for Mn1, Mn2 and Mn3 is the same, we can readily write down a set of equations based on

Fig. 5.3(b):

(l − 2m)/MnWDS = α/γ (5.1)

(l − 2m+ 2n)MnWDS = β/γ (5.2)

(2m+ 2n+ l)/MnWDS = 1 (5.3)

For the x = 0.76 sample, MnWDS = 0.82. We take the moment at 1 T as α where

the subtle slope change in M(H) suggests the onset of the polarization process of the Mn3

sublattice. We then take the moment at 13 T as β and assume γ = 5 µB/Mn. Using these

values, we estimate m, n and l to be 0.060(5), 0.07(1) and 0.56(3). For the other dopings,

since M(H) was only measured up to 7 T, we set β to be the moment at 7 T plus 0.1µB/Mn.

The obtained m, n and l are summarized in Table 5.1.

Keeping the afore discussed defect estimation in mind, next let us switch gear back to

the neutron data. Quantitatively, since this is a doped system with multiple types of defects,

we have to make several assumptions for the refinement. Firstly, for the magnetic reflection

data taken at 5 K, we fix the ordered moment of Mn3 as 0 and the concentration of Mn3 as

0.07; we then assume a fixed moment of 4.6 µB/Mn for Mn1 and Mn2, the same value as that

of the parent MnBi4Te7 obtained from neutron scattering [81]. By these restrictions, Mn1

and Mn2 occupancy are refined. Secondly, the Mn1 and Mn2 occupancies are then used for a

more comprehensive structural refinement for the scattering data at 50 K to better determine

the atomic coordinates and the Sb and Bi level. Such information is then fed back to the

magnetic refinement of the 5 K data. A recursive process is repeated until all values converge.

Eventually, the refinement with 27 reflections at 5 K yielded RF=3.03% and χ2 = 1.99; the

refinement with 118 reflections at 50 K yielded RF=2.16% and χ2 = 1.46. The refinement

result is summarized in Table 5.2 and Table 5.1. Our refinement unambiguously shows

site mixing. Opposite magnetic moments are observed in Mn1 and Mn2 sites, suggesting the

FerriFM state. m is 0.06(1), l is 0.62(1) and the total Mn concentration is 0.88(3). Considering

that the Mn3 concentration is fixed with no error in the neutron refinement which will lead to
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Figure 5.6: (a) The temperature-doping (T -x) phase diagram. With increasing x, the carrier-

type changes from electron to hole. A linear fitting with the carrier density data in Figure

5.4 yields a charge neutrality point (CNP) near x= 0.36. (b) The doping-dependent MnWDS,

m, n and l.

a smaller error bar in the total Mn concentration, these defect concentrations are consistent

with the ones obtained from the M(H) and WDS data. In addition, Sb atoms are found to

be inhomogeneously doped in each site. The Sb has an overall higher concentration in the

SLs than in QLs. In the Mn1 site, no Bi is found at all.
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Table 5.2: Refined structural parameters for the Mn(Bi1−xSbx)4Te7 for x =0.76 based on

single crystal neutron diffraction measurement at 50 K and 5 K.

Name x y z occ. Moment at 5 K

Mn1 0 0 0.5 0.623(4) 4.6 µB/Mn

Bi1 0 0 0.5 0

Sb1 0 0 0.5 0.377(4)

Bi2 0.333 0.667 0.342(1) 0.21(2)

Sb2 0.333 0.667 0.342(1) 0.73(2)

Mn2 0.333 0.667 0.342(1) 0.06(1) -4.6 µB/Mn

Bi3 0.333 0.667 0.0842(1) 0.37(2)

Sb3 0.333 0.667 0.0842(1) 0.56(2)

Mn3 0.333 0.667 0.0842(1) 0.07 0

Te1 0 0 0 1

Te2 0.333 0.667 0.155(1) 1

Te3 0 0 0.273(1) 1

Te4 0.333 0.667 0.430(1) 1
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5.5 Understanding the doping and temperature-dependent mag-

netic evolution

We argue that the AFM to FM transition of the dominate Mn1 sublattice arises from

the delicate competitions between the direct Mn1-Mn1 AFM interlayer interaction and Mn3-

assisted Mn1-Mn1 FM interlayer coupling. The magnetic Hamiltonian may be approximated

as follows. The Mn1 sublattice itself has strong FM intralayer couplings J0 and weak inter-

layer AFM interactions J1. The Mn2 and Mn3 sublattices are so sparse that the interactions

among themselves are negligible, but they couple to Mn1 through strong superexchange

interactions J2 and J3 due to their proximity. Finally, there is Mn2-Mn3 coupling, which

modifies J3 into Jeff
3 . Note that the sign of Jeff

3 can vary from site to site (for instance,

depending on whether the closest Mn neighbor to a Mn is Mn1 or Mn2).

Now, while Mn2 just follows Mn1 and does not affect the overall Mn1-Mn1 interlayer

ordering, Mn3 introduces an effective FM interlayer coupling when they couple to the neigh-

boring Mn1 layers above and below:

Hinterlayer = J1⟨M1 ·M′
1⟩+ ⟨Jeff

3 (M1 ·M3 + M′
1 ·M3)⟩, (5.4)

where M1 and M′
1 are the local magnetization of the two neighboring Mn1 layers, M3 is the

local magnetization of the Mn3 bilayer between these Mn1 layers, and the brackets denote

the average of the ab plane. The second term equals 0, if the Mn1 sublattice is AFM, and

−2⟨|Jeff
3 M3M1|⟩, if the Mn1 sublattice is FM, regardless of the sign of Jeff

3 ; thus it always

favors the FM ordering of the Mn1 sublattice (that is, the Mn3 mediates FM interlayer

coupling of the Mn1 sublattice). We can see that if |2c3Jeff
3 M3| > c1J1M1, the system orders

into the FerriFM state with the energy E1 = c1J1M
2
1 −2c3|Jeff

3 M3M1|, and otherwise into the

FerriAFM state with E2 = −c1J1M2
1 ,where c1 and c3 are the concentrations of the Mn1 and

Mn3 sublattice.

This consideration implicitly implies that the susceptibility of the Mn3 subsystem is

infinite, which would be true at T = 0, and if the Mn3-Mn3 interaction can be neglected.

Our neutron scattering indicates that Mn3 spins are strongly fluctuating, which suggests that
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the susceptibility of this subsystem, χMn3, is finite. This does not change the conclusions

qualitatively; the only change is that if χMn3 is relatively small, the net Mn3 subsystem

magnetization M3 becomes proportional to M1χMn3(T ), and thus explicitly T -dependent.

With this in mind, we can explain both the temperature and doping evolution of the

magnetism. Because of the Mermin-Wagner physics, M1 only weakly depends on T except

close to TN . Meanwhile, as long as the concentration of Mn3 remains low, Mn3 can be

treated as free spins in an external field (the molecular field induced by Mn1) with M3 ∝

χMn3(T ) ∝ 1/T . Thus, upon cooling, the effective FM interaction increases much faster

than the AFM, resulting in a FerriAFM to FerriFM transition at TC < TN once |2c3Jeff
3 M3| >

c1J1M1. Furthermore, Fig. 5.6(b) and the comparison of the neutron refinements of the

x = 0 [72] and x = 0.76 samples all indicate that c3 increases and c1 decreases with Sb

doping. Therefore, inevitably, in the T −x phase diagram, three doping regimes can appear:

low doping region where the FerriAFM state is stable at any temperature, high doping region

when only the FerriFM state is stable, and intermediate doping region, where the FerriFM

state is stable only up to some TC < TN with TC increasing with x. This doping dependence

is exactly what we have observed in Fig. 5.6(a).

We note that l decreases with increasing x, so besides the formation of antisites, Sb doping

also leads to the magnetic dilution effect of the Mn1 sublattice. Future doping studies, such

as Pb, Sn or Ge substitution on Mn site, if they will not cause antisite defects as the Sb

doping does, may provide a cleaner platform to investigate the magnetic dilution effect on

the magnetism in the MnBi2nTe3n+1 family.

5.6 Band topology

In Chapter 3, we find that MnBi4Te7 is an antiferromagnetic topological insulator.

For the doped compounds with FM ground states, we discuss two limiting cases. In case

I, no defect is considered and FM configuration is used. In case II, a large amount of antisites

are studied and the FerriFM order is used. For the sake of feasibility, in case II, we assume
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Figure 5.7: (a-f) DFT calculations in the defect-free and FM configuration case: (a-e) Bulk

band structures. The red and blue dots indicate (Bi,Sb)-p and Te-p orbitals, respectively.

(f) Layer-resolved AHC for x = 0.1 sample. Partial AHC of each atomic layer (blue line);

Integral of the partial AHC (red line). (g-l) DFT calculations in the 16.7% of periodic Mn2

antisites and FerriFM configuration case: (g) The depiction of the structure model used.

(h-k) Bulk band structures. (l) Surface band structure (x = 0.5) along the momentum space

cut that goes through a direct pair of Weyl nodes W1 and W2.

only Mn1 and Mn2 sublattices exist and 16.7% of Bi/Sb atoms in the SLs exchange with

the Mn atoms on the same layer to form Mn2 antisites. The value is close to the antisite

concentration in MnSb2Te4 [107], but much larger than that in our samples. Hence this will

give an exaggerated effect of antisites.

5.6.1 Case I: the defect-free scenario

We first construct a tight-binding Hamiltonian for both FM MnBi4Te7 and MnSb4Te7

using our experimental lattice parameters in Fig. 5.1. Then the electronic structures of

the doped compounds are calculated by a linear interpolation of tight-binding model matrix
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Figure 5.8: Band structures of the vacuum-[SL-QL-SL-QL-SL]-vacuum atomic layer finite-

sized slab model for defect-free case and the corresponding anomalous Hall conductivity

(AHC) for x = 0.1.

elements of the Hamiltonians. This approach was successfully applied to investigate the

evolution of band topology in BiTlSe1−xSx TI and MoxW1−xTe2 Weyl semimetal [112, 113].

By that, the calculated band structure without defects is shown in Figs. 5.7(a)-(e).

For all doping levels, a sizable band gap of 200–300 meV opens, with a band inver-

sion between the (Bi, Sb)-p and Te-p states in the vicinity of EF . Our topological in-

variant calculations show the Chern numbers to be zero both in the kz = 0 and kz = π

planes. Next, we compute the parity-based higher-order Z4 invariant, which is defined by

Z4 =
∑8

i=1

∑n=occ
n=1 [(1 + ξn(γi)]2 mod 4, where ξn(γi) is the parity eigenvalue (+1 or -1) of

the n-th band at the i-th time reversal invariant point Γi and n = occ is the number of

occupied bands [46]. The Z4 invariant is well defined for an inversion symmetric system,

even in the absence of time reversal symmetry. The odd values of Z4 (Z4=1,3), indicate

a Weyl semimetal phase, while Z4 = 2 corresponds to an insulator phase with a quantized

topological magnetoelectric effect (axion coupling θ = π) [80,114]. Our calculation shows the

Z4 invariant of Mn(Bi1−xSbx)4Te7 with FM configuration to be 2 for all x, which suggests a

3D FM axion insulator phase.

To show the novel physics, taking the x = 0.1 compound as an example, we further

investigate the anomalous Hall conductivity (AHC) in the 2D limit. Figure 5.8 show the

vacuum-[SL-QL- SL-QL- SL]-vacuum band structure of the slab model and the corresponding
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AHC. Our calculation shows that the Hall conductivity exhibits a quantized plateau AHC

= −e2/h when the EF is gated inside the energy band gap. Otherwise the intensity of AHC

decreases rapidly when EF shifted away from the gap. Next, we project the AHC onto a

real space of the slab model based on the local Chern number density [34]. The equation of

the layer-resolved AHC can be expressed as

σp
xy(l) =

e2

h
· −4π

A ·Nk

Im
∑

k,α,α′,β

Xα,c,kY
†
α′,β,kρα′,α,k(l) (5.5)

, where Xα,c,k = <α,k|iℏvx|β,k>
Eβ,k−Eα,k

and similarly for Yα′,β,k. The v = −i
ℏ [r, H] in Xα,c,k is the

velocity operator. ρα′,α,k(l) =
∑

j ψ
∗
α,kψα′,k is the Bloch representation of the projection onto

the corresponding layer l, where the j indicates the orbital index in a certain l layer. The

indices α and β denote the VBs and CBs, respectively. For a 31 atomic layer symmetric slab,

vacuum-[SL-QL-SL-QL-SL]-vacuum, when the EF is gated inside the energy band gap, the

layer-resolved AHC calculation (the blue line in Fig. 5.7 (f)) shows that the AHC mainly

comes from the atomic layers on the top and bottom surfaces (about one SL and half QL),

and the intensity rapidly decreases to approximately zero in the middle region of the device.

As a result, each surface (fewer or near 10 atomic layers) contributes (the red line in Fig.

5.7(f)) −0.5 e2/h to AHC, and gives −1 e2/h for the whole slab. The half-integer quantized

plateau in the middle indicates that the axion coupling strength equals the quantization value

of π in this device, further confirming the x = 0.1 compound as a FM axion insulator [34].

5.6.2 Case II: periodic Mn2-antisite scenario

To include the antisite effect in case II, we perform the supercell calculation. First, we

construct a
√

3×
√

3 supercell of MnBi4Te7. In this model, one atomic Mn layer contains three

Mn atoms (Mn1 sublattice). Then we exchange one Mn atom and one Bi atom within the SL

(Mn2 sublattice), resulting a chemical formula of (Mn0.67 Bi0.33) (Bi0.833 Mn0.167)2Te4·Bi2Te3

as shown in Fig. 5.7(g). By this, we calculate the band structure of MnBi4Te7 with 16.7% of

the antisite disorder. We then perform a similar procedure to calculate the band structure

of (Mn0.67 Sb0.33) (Sb0.833 Mn0.167)2Te4·Sb2Te3. Finally, electronic structures of the doped
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compounds are calculated by a linear interpolation of tight-binding model matrix elements

of the Bi and Sb versions.

Our calculation indeed shows that, in this defect limit, the magnetic configuration of Mn1

and Mn2 is FM individually while Mn1 and Mn2 are coupled antiferromagnetically, forming

the FerriFM ground state. In the FerriFM state, the bulk band gap of MnBi4Te7 is greatly

reduced to about 20 meV. Meanwhile, the character of the band inversion also alters with

doping, as shown in Figs. 5.7(h)-(k). Consequently, in the intermediate doping region at

x = 0.5 for example, one can see a small energy gap about 10 meV near the Γ point (inset of

Fig. 5.7 (i)). This tiny gap implies the existence of a Weyl semimetal state. Since the gapless

Weyl points are not guaranteed to locate on the high symmetry point or the high symmetry

line, to confirm the chirality of the Weyl nodes, we calculate the chiral charge based on the

Wilson loop method. The associated chiral charge for W1(W2) is calculated to be −1(+1)

based on the Wilson loop method, indicating that they carry opposite chirality and do form

a pair of Weyl nodes. Furthermore, a topological Fermi arc state, the characteristics of

Weyl semimetal, appears in the (100) surface states and terminates directly at the projected

Weyl nodes (Fig. 5.7(l)). This further supports the picture of a ferrimagnetic type-I Weyl

semimetal with only two Weyl nodes.

5.6.3 Summary on topology

It remains an open but important question how robust the nontrivial band topology

and thus the associated emergent phenomena will be against the antisite defects. Recent

studies showed that Mn antisites are universal in MnBi2nTe3n+1; ∼ 3(1)% for MnBi2Te4 and

∼ 13%-16% for MnSb2Te4 [107, 111]. While it is impossible to construct a structure model

to reflect the real and complex chemical defects in our DFT calculations, our attempts with

the defect-free and periodic-Mn2-antisites scenarios shed light on this puzzle. Two insightful

observations can be made from Fig. 5.7.

First, in case II, the effect of Mn2 antisites is exaggerated on the band topology, especially

for the low and intermediate dopings where the antisite defects are significantly smaller than
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16.7%. However, even in this high-concentration case with periodic antisites, our calculations

show robust band inversion and non-trivial topology, resulting in a Weyl semimetal state at

the intermediate dopings. Second, in the Bi-rich side, the characteristics of the band inversion

are very similar for the two cases (Figs. 5.7(a) and (h)). However, in the Sb-rich side, the

features of band inversion are apparently different (Figs. 5.7(e) and (k)). This observation

implies that the antisite defect has stronger effect on modifying the band topology in the

Sb-rich 147 phase than the Bi-rich 147 phase. Therefore, we believe that the non-trivial

topology is likely robust against the small amount of antisite defects here, especially at the

Bi-rich side. Our finding is consistent with the observation that despite 3(1)% of antisite

defects, a zero-field QAH effect appears at 1.5 K in a 5-SL device of MnBi2Te4 [54]. Future

systematic ARPES measurements, in combination with the DFT calculations on Sb doped

MnBi4Te7, will help settle this outstanding question.

5.7 Summary and outlooks

In Sb doped MnBi4Te7, the competition of the Mn1-Mn1 AFM interlayer coupling and the

Mn3-assisted Mn1-Mn1 FM interlayer interaction leads to lower-temperature FerriFM state

and higher-temperature FerriAFM state where the Mn3 sublattice is dynamically fluctuating

at all temperatures. Meanwhile, the non-trivial band topology appears robust against low or

intermediate antisites, pointing to a kaleidoscope of magnetic topological phases including

the FM axion insulator state at low Sb-dopings and possible type-I ferrimagnetic Weyl

semimetal states at intermediate Sb dopings. Future work in fine tuning the Sb doping level

to the charge neutrality point so that quantum oscillation study can be made to shed light

on this type-I FM Weyl semimetal state is strongly urged.
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CHAPTER 6

Magnetic dynamics in FM MnBi2nTe3n+1 family

The majority of this chapter has been adapted from [115]. This work was done in collab-

oration with Ruslan Prozorov’s group at Ames lab on the magnetic imaging measurements.

6.1 Introduction

In Chapter 3 and 4, we have shown how to reduce the interlayer AFM coupling by adding

nonmagnetic Bi2Te3 QL between [MnBi2Te4] SLs to physically separate the magnetic SLs.

By this design, MnBi4Te7 and MnBi6Te10 are found to be weakly-coupled A-type AFM

[50,72,89,89,92–94,101–103,116,117], and ferromagnetism is achieved in MnBi8Te13 [80,81].

In Chapter 5, we have discussed the effect of doping Bi by Sb. Upon Sb doping, Mn(Bi, Sb)

antisites are produced and enhanced due to the tendency of Sb and Mn to form antisites.

The presence of antisites introduces additional Mn sublattices which facilitates FM coupling

of the dominant Mn sublattice [100, 107, 118, 119]. As a result, the magnetic transition

of the dominant Mn sublattice becomes FM-like in high-antisite MnSb2Te4. [107, 118, 119],

Sb-doped Mn(Bi1−xSbx)4Te7 [100], and Sb-doped Mn(Bi1−xSbx)6Te10 [120].

Despite much efforts in studying magnetic properties of the MnBi2nTe3n+1 family, most

works have been only about the steady state. For practical applications, especially in the

pursuit of high-temperature QAHE when fluctuations become important, the study on mag-

netic dynamics is indispensable for the ferromagnetic members. A slow magnetic relaxation

behavior was found in Mn(Bi0.7Sb0.3)6Te10 at low temperatures. This behavior is attributed

to the vanishing interlayer coupling due to the large interlayer distance between SLs for

n ≥ 2 [120]. This so-called single-layer magnetism picture is a two-dimensional analog of the
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single-molecule magnet, a typical system to exhibit the superparamagnetic (SPM) behavior.

In the other limit, the slow relaxation dynamics is also found in FM MnSb2Te4 [121], where

the interlayer distance is much smaller. A frequency-dependent peak shift χ′(T ) is attributed

to a spin glass (SG) state, but the mechanism of the glassiness is unclear.

To understand the origin of the relaxation behavior in this family, we perform a compre-

hensive study of the dynamical magnetic properties in FM MnBi8Te13, Mn(Bi0.93Sb0.07)6Te10

and Mn(Bi0.24Sb0.76)4Te7 by the AC susceptibility and magneto-optical image measurements.

We show that the slow relaxation behavior is universal among all FM MnBi2nTe3n+1 mem-

bers, which arises from the dynamics of irreversible domain wall movements rather than

the SPM or SG scenarios. Our study suggests FM domains in MnBi2nTe3n+1s are very soft

and weakly pinned, resulting a unique “double-peak” behavior in the real part of the AC

susceptibility χ′(T ) under DC fields.

6.2 Magnetic relaxation revealed by AC susceptibility

In Figure 6.1, we show the zero-field-cooled (ZFC) and field-cooled (FC) DC temperature-

dependent susceptibility χ(T ) and isothermal magnetizations M(H) of the three compounds.

The TC determined at the sharp turn in χ(T ) [80,100] are at 14.2 K, 11.1 K and 10 K respec-

tively. The difference in the ordering temperatures among the three, from Mn(Bi0.24Sb0.76)4Te7

to MnBi8Te13, lies in both the increasing interlayer distance and the decreasing extent of

the Mn(Bi, Sb) antisites. The larger the distance, the weaker the interlayer interaction, so TC

is the lowest in MnBi8Te13. As antisites switch the dominant Mn sublattice from AFM to

FM in MnBi4Te7 and MnBi6Te10, they also increase the overall interlayer interaction and

hence give rise to the higher TC than the Néel temperature of the parent compounds [50].

In the M(H) data presented in Figs. 6.1(b)(d)(f), FM hysteresis can be seen at 2 K for

all compounds, and is the smallest in Mn(Bi0.24Sb0.76)4Te7 and the largest in MnBi8Te13.

The softness of a FM is controlled by two factors, one is the magnetocrystalline anisotropy,

the other is defect. The crystalline anisotropy is proportional to the coercive field according

to the Stoner-Wohlfarth model for a single-domain FM, while the defects tend to provide
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Figure 6.2: The temperature-dependent AC susceptibility for the FM Mn(Bi0.24Sb0.76)4Te7,

Mn(Bi0.93Sb0.07)6Te10 and MnBi8Te13 measured in different conditions with Hac and Hdc

parallel to the c axis. (a-c) Hac = 10 Oe with different sweeping frequency f ; Hdc = 0 Oe.

(d-f) Hac = 10 Oe with f = 100 Hz; Hdc varies. (g-i) Hac = 10 Oe with varying f ; Hdc = 300

Oe. Insets: Vogel-Fulcher fitting showing linearity between the log of f and 1/(Tf -T0).
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more pinning. Thus the higher the magnetocrystalline anisotropy, the harder the FM; the

more the defects, the harder the FM. Since the saturation field of MnBi8Te13 with H//ab

is about 3 times of that for Mn(Bi0.24Sb0.76)4Te7, the former has higher magnetocrystalline

anisotropy [80, 100]. Meanwhile, neutron scattering data suggest that Mn(Bi0.24Sb0.76)4Te7

has more defects than MnBi8Te13 [80, 100]. Therefore, the fact that MnBi8Te13 is the hard-

est among all three suggests that the magnetocrystalline anisotropy dominates the level of

softness in MnBi2nTe3n+1, which indicates that the domain pinning caused by the defects

is very weak in MnBi2nTe3n+1. We also note that the hysteresis curves are non-trivial with

the “bow-tie”-shaped hysteresis most clearly demonstrated at around 6 K in Fig. 6.1(d) and

(f). This unusual hysteresis loop can be linked to the anomalous behavior of the FC χ(T ).

Instead of a smooth increase with establishing FM order upon cooling, FC χ(T ) first shows

a flat plateau below TC before a clear slope change can be observed in the FC χ(T ) near

6 K. These anomalous observations are likely to be caused by possible non-trivial domain

formation in MnBi2nTe3n+1, as will be discussed later.

To probe the non-steady state directly, we performed a DC scan to study the relaxation

in MnBi8Te13 at constant temperatures over a long time. The measurement was taken after

the sample was FC under 0.1 T to the target temperature and then the field was switched

off. A clear relaxation of the overall magnetization can be observed. The time scale for the

relaxation depends heavily on the temperature. As shown in Fig. 6.1 (g), it is on the order

of hundred seconds at 4 K and tens of seconds at 3 K. However, at temperatures below 3 K,

the relaxation is simply too slow to see any decay of moment; at temperatures above 5 K,

the relaxation time is so short that all moments fully decay before we make measurements.

This motivates us to use the AC susceptibility to study the relaxation phenomena more

comprehensively.

The temperature-dependent AC susceptibility of the three compounds measured under

an AC field of Hac = 10 Oe with different frequencies are summarized in Figs. 6.2(a)-(c).

When f = 2 Hz, χ′(T ) has the similar shape and peak position to that of the ZFC χ(T ) data,

but it is narrower on the low temperature end. In addition, non-zero χ′′(T ) can be detected
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Figure 6.3: (a-c) Cole-Cole plots for Mn(Bi0.24Sb0.76)4Te7, Mn(Bi0.93Sb0.07)6Te10 as well as

MnBi8Te13. χ
′′(χ′) data are taken from AC susceptibility at the selected temperature and

DC field, across various frequencies. The fittings are done with Eqn. 6.4. (d-f) The DC

field-temperature phase diagrams mapped via the AC susceptibility data. Also included are

the saturation fields Hsat obtained in the M(H) measurements.
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in all FM compounds. This confirms the presence of slow relaxation in the FM state, whose

time scale is close to the oscillation period of the applied AC field. χ′′(T ) is peaked near 6

K, 9 K and 8 K for Mn(Bi0.24Sb0.76)4Te7, Mn(Bi0.93Sb0.07)6Te10 and MnBi8Te13 respectively,

where χ′(T ) has the steepest increase with temperature. With increasing AC frequency,

the overall weight of the entire χ′(T ) and the low-temperature-end of χ′(T ) shift to higher

temperatures, concurrent with the frequency-dependent peak shifts in χ′′(T ). Meanwhile,

the peak position in χ′(T ) signaling TC shows no frequency dependence and χ′′(T ) drops to

zero at TC , unlike that of a typical SG or SPM [122,123].

In attempt to single out the frequency dependent component, we then performed the AC

susceptibility measurements at Hac = 10 Oe and f = 100 Hz under various DC field bias

(Hdc). The result is summarized in Fig. 6.2 (d)-(f). Remarkably, in all three compounds, an

additional low-T peak appears in χ′(T ) under Hdc, resulting in the unusual “double-peak”

feature. As Hdc increases, the original high-T peak slightly moves to higher temperatures

while the low-T peak shifts to lower temperatures quickly. The magnitudes of these two

peaks in χ′(T ) decrease upon increasing Hdc and the low-T peak is completely suppressed

with merely 600 Oe, 400 Oe, and 300 Oe in Mn(Bi0.24Sb0.76)4Te7, Mn(Bi0.93Sb0.07)6Te10 and

MnBi8Te13, respectively.

To better understand this rare AC magnetic behavior under Hdc, we measured the AC

susceptibility with varying f under a fixed Hdc. The data are shown in Figs. 6.2(g)-(i). It

turns out that the magnitude and the peak position of the high-T peak are f -independent

while the low-T peak shows a strong frequency dependence, suggesting the low-T peak is

related to the freezing of some relaxation mechanism while the high-T peak is associated with

the long range ordering. Therefore, the temperature at the high-T or low-T peak maximum

are labeled as TC or Tf , respectively.

Next we focus on the low-T peak. No matter the underlying causes for the slow relaxation,

the overall dynamics of relaxation is similar. Therefore, we can extract some characteristic

parameters by analyzing the AC susceptibility data to differentiate various physical scenarios.

From the frequency dependence of Tf , we can calculate the Mydosh parameter K, a measure
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of the relative peak shift per log frequency, by

K =
T1 − T2

Tf0(log f1 − log f2)
, (6.1)

where T1, T2 and Tf0 are taken as the Tf at f1 = 2 Hz, f2 = 200 Hz and the DC limit (2 Hz),

respectively. The obtained K for each compound are 0.025, 0.016 and 0.020 respectively.

The values are a few times greater than those in canonical SG with strong interaction and

cooperative freezing such as Cu1−xMnx (K =0.005) [122, 123], but much smaller than those

in the non-interacting SPM with gradual blocking such as α-[Ho2O3(B2O3)] (K =0.28) [122–

124], placing these materials in neither category.

Then we performed the Vogel-Fulcher fitting shown in the insets of Figs. 6.3(g)-(i). The

frequency dependence of Tf can be fitted by the Vogel-Fulcher formula

τ(T ) = τ0 exp(Ea/k(T − T0)). (6.2)

Here, τ is the most probable relaxation time for the system to overcome the energy barrier

for spin reversal. At Tf , τ can be taken as 1/f . Ea is the thermal activation energy barrier

for the spin reversal, τ0 is a time constant which is temperature-independent and usually

larger than 10−13s [125]. T0 is an empirical parameter in order to account for the deviation

from a single-relaxation-time process due to the interaction between moments. Hence T0

would be zero for an ideal non-interacting SPM. Yet fitting with T0 = 0 would yield an

unphysical value with τ0 < 10−30s for all three samples. For the best fitting shown in the

insets, T0 and τ0 are found to be around 8.16 K and 2.0 × 10−6 s for Mn(Bi0.24Sb0.76)4Te7,

8.44 K and 5.4×10−9 s for Mn(Bi0.93Sb0.07)6Te10 and 7.14 K and 1.95×10−9 s for MnBi8Te13.

This again confirms that the relaxation behavior in these materials cannot be described by

a single-relaxation-time process, but rather with a certain distribution of relaxation times.

To quantify the spread of the relaxation time, we performed Cole-Cole fitting [125,126].

The generalized Debye formula describes the dynamic susceptibility as,

χac(ω) ≡ χ′ − iχ′′ = χS +
χT − χS

1 + (iωτ)(1−α)
(6.3)

Here ω = 2πf , χS and χT are the high frequency and static constants, respectively, and α is

an empirical parameter to account for the variation of the relaxation time around τ in the
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system. We can write down

χ′′(χ′) = − χT − χS

2 tan[(1− α)π/2]
+

√
(χ′ − χS)(χT − χ′) + (

χT − χS

2 tan[(1− α)π/2]
)2 (6.4)

α would be 0 for an ideal SPM with single-relaxation-time process, and around 0.9 for a

SG system whose relaxation time has a broad variation. We extracted the χ′′(χ′) data at

selected temperatures from Figs. 6.2(a)-(c) and 6.3(g)-(i), and fitted the data using Eqn.

6.4 with α, χS and χT as the fitting parameters. The results are shown in Figs. 6.3(a)-(c).

The obtained α are below 0.3, far from the expected value for SG 0.9 [122]. The values

are also consistent with the previous reports on Mn(Bi0.7Sb0.3)6Te10 [120]. Therefore, similar

relaxation process with α < 0.3 is not just limited to systems with large SL-SL separations

but likely to be present among all members with FM coupling in this family.

So far we have shown that 1) the Mydosh-parameter estimation places these three com-

pounds in neither SG nor ideal SPM type; 2) the Vogel-Fulcher fit suggests that the relaxation

time has variations, excluding the ideal SPM scenario; 3) the fit of the Cole-Cole plot leads

to a relatively moderate α < 0.3, excluding the SG scenario. This leaves us with two possible

scenarios causing the relaxation behavior, the irreversible domain wall movement and cluster

SG. To differentiate these two, we constructed the T -Hdc phase diagram which mapped out

TC , Tf and the corresponding Hdc shown in Figs. 6.3(d)-(f). The obtained phase diagrams

are shown in Fig. 6.3(d)-(f). Also included are the saturation fields obtained in M(H) from

Fig. 6.1 (b)(d)(f) at different temperatures. Interestingly, the Tf line matches or stays below

the data line obtained from M(H) in the field regime where the low-T peaks appear. This

observation suggests the relaxation behavior only occurs before the magnetization saturates,

that is, when there are irreversible domain wall motions [127]. Furthermore, in the view of

energy scales, this observation also excludes the cluster SG scenario since the energy of 500

Oe magnetic field is too small to suppress a cluster SG whose freezing temperature is 6-8 K.
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6.3 Magneto-optical imaging of ferromagnetic domains

To directly visualize the domain shapes, Ruslan Prozorov’s group at Ames lab performed

the magneto-optical imaging measurements. The FM nature of MnBi8Te13 is unambiguously

established by the direct observation of the FM domains shown in Figs. 6.4 and 6.5.

Figure 6.4 illustrates the appearance and evolution of the FM domains when a DC field is

applied after the sample was ZFC to 5.2 K, well below the FM transition. So Fig. 6.4 shows

the penetration of the magnetic field after ZFC. This is a direct polarized light imaging with

the contrast enhanced by setting the gray-scale levels using the imaging processing software,

but no structural alterations were introduced and no local corrections were performed. With

the increasing applied magnetic field, the first dendrite-looking domains appear at around

650 Oe and then the dendrites grow mostly in a one-dimensional fashion, similar to freezing

ice. Eventually, at higher magnetic field the entire area is filled with the dark domain

along the applied field. The dendritic growth is magnetically very soft, because the domains

propagate and grow with almost no lateral displacement of the domain wall, spearheaded by

the domain tip.

Note that a direct comparison with the M(H) curve shown in Fig. 6.1(f) indicates a

somewhat lower range of magnetic coercivity field compared to the imaging in Fig. 6.4. The

difference is expected and is due to the difference in sample thickness. For imaging, very thin

samples were used in search for the clean surface area, whereas magnetic measurements were

performed on thicker samples. Initially, in a mono-domain state, the effective magnetic field

on the edge is the sum of the applied field, H0, and demagnetizing field, Hedge = H0−NM ,

where M is volume magnetization and N is the effective demagnetizing factor [128]. For a

FM sample, M is positive and the effective edge field is reduced. Therefore, for a thinner

sample where N is larger than that of a thicker sample, the difference in the effective field

can be quite substantial. In the future, for a more quantitative analysis, we will need to

image and measure magnetization of the same sample. Here, the imaging is used as an

unambiguous proof of long-range FM and it establishes a very soft nature of the magnetic

domains to explain the peculiarities of the AC response.
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Figure 6.4: Magneto-optical polar Kerr effect imaging of the FM domains in MnBi8Te13.

After cooling in zero magnetic field to 5.2 K ( ZFC) a magnetic field of indicated amplitude

was applied. Up to about 600 Oe, no domains appear. After that dendritic domains (rectan-

gles highlight part of the dendritic domains) show up with a distinct one-dimensional grows

along the dendrite tips.
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Figure 6.5: The remanent-state ferromagnetic domains in MnBi8Te13 crystals at 5.2 K and

H = 0. The indicated magnetic field was applied and then removed, mimicking the “minor”

hysteresis loop to investigate the irreversible coercive response. There is a significant change

of the domain structure around 500 Oe with higher field triggering the appearance of sea-

urchin domains (rectangles highlight part of the sea-urchin domains domains).

Figure 6.5 further demonstrates the soft nature and low coercivity of the FM state of

MnBi8Te13 crystals. In this experiment, after ZFC to T = 5.2 K, the magnetic field shown

in the legends was applied and then turned off (reduced to zero). So, all images in Fig.

6.5 shows flux exit and thus the structure of the magnetic remanence. While in the ZFC

imaging shown in Fig. 6.4, a threshold field above 600 Oe is needed for the actual domains

to appear, here we also see that the remanent-state domains do not appear up to about 300

Oe, probably indicating no domains or unsolvable fine domain structure upon minor M(H)

loop when the field is reduced to zero. The suggestion of a very fine structure finds indirect

support in the images obtained after 330 Oe and 440 Oe were applied and removed. We see
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a labyrinth-like structure, typical of very soft FM material, such as Permalloy [129]. Only

above 500 Oe, the distinctly different, sea-urchin-looking structure, appears and is stabilized

at the higher fields with “spines” clearly protruding off the body of the urchin-domains,

suggesting small domain wall energy. Meanwhile, this pattern, when the domain of one

sign (of local magnetization) is embedded into the continuous matrix of another dominant

domain, is characteristic of very soft magnetic response with small domain wall energy [129].

Similar domain structures are reported for MnSb2Te4 [119], so the soft FM is universal

in all FM Mn-Bi-Te members.

6.4 Discussion

Based on our observations of 1) the relaxation behavior arises from the irreversible domain

movement as indicated in Figs. 6.3(d)-(f), and 2) FM in this family is very soft and the

domains are quite weakly pinned as revealed in Figs. 6.4 and 6.5, we can understand the

distinct “double-peak” AC response, including its f -dependence and Hdc-dependence shown

in Fig. 6.2 as the following. Firstly, the high-T f -independent peak arises from the long-

range FM ordering, which should show no AC frequency dependence and monotonic increase

TC with Hdc in Fig. 6.2 (d)-(i). Secondly, the low-T f -dependent peak is due to the

relaxation from the irreversible domain movements. According to Eqn. 6.2, the irreversibility

increases with lowering temperatures. Thus, upon cooling, the domain regime crosses over

from saturated single domain (reversible) to the emergence of domains, and then to the peak

at Tf where τ(Tf ) = 1/f and finally viscously slowing down and essentially freezing out

with no response to the AC field at the lowest temperatures, resulting in the relaxation peak

observed.

This low-T peak should be f -dependent because the viscous force experienced by the

domain walls is proportional to the instantaneous domain wall velocity, thus to the frequency.

Although the relaxation is from domain formations, rather than the scenario of SG or SPM,

the overall dynamics is similar to the SG, even more so, to a system of SPM nanoparticles
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where instead of magnetic clusters here we have very soft and practically isotropic magnetic

domains. Similar to the nanoparticles, domains are subject to a magnetic random potential

pinning landscape with a spread of energy barriers for the thermally-activated relaxation,

resulting in an effective barrier that depends on the driving force. This mechanism leads to

f -dependent characteristic Tf where the temperature scales with the log of the frequency as

shown in the inset in Figs. 6.2(g)-(i) and a moderate α between 0.1 to 0.3 in the Cole-Cole

fitting as shown in Fig. 6.3(a)-(c) [130,131].

The low-T peak should also be Hdc dependent. When Hdc is increased, the single domain

region expands to lower temperatures as shown in Figs. 6.1(b), (d) and (f), so the low-T

relaxation peak separates from the high-T ordering peak. The signature of peak separation in

χ′ upon Hdc was observed in the other soft FM FeCr2S4 [132]. However, it is more significant

here since the FM here is softer. Such a small energy scale is a common feature in the

FM members of MnBi2nTe3n+1 systems, likely due to the quasi-two-dimensionality and weak

interlayer coupling.

Now let us understand the anomalous FC χ(T ) and the “bow-tie”-shaped hysteresis.

Figure 6.5 reveals two types of domains, one is the fine-structured one and the other is the

sea-urchin one. Although both types of domains are very soft, the sea-urchin one is less

isotropic and thus more irreversible. Therefore, sea-urchin domains appear and dominate at

lower temperatures/higher fields while the fine-structured ones emerge at higher tempera-

tures/lower fields. This observation shed light on the non-trivial bow-tie shaped hysteresis

observed. At lower fields, the fine-structured domains dominate with very small hysteresis

while at higher fields, the emergence of the sea-urchin domains leads to larger hysteresis.

Following the line, the unusual slope change in FC χ(T ) thus likely separates the high-

temperature fine-structured domain regime from the low-temperature sea-urchin domain

regime where large bifurcation of ZFC and FC data appear. Future temperature-dependent

magneto-optical imaging measurements will help verify this picture.

The origin of the existence of two-types of domains may be related to the level of coupling

between adjacent magnetic layers. At high temperatures or low fields, the interlayer coupling
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is weak comparing to the thermal fluctuations, so each magnetic layer forms individual

domains, resulting in the fine-structured domains. When FC to low temperatures or under

higher fields, the interlayer coupling wins over the thermal fluctuation, leading to the larger

sea-urchin-shaped domains. Future measurements such as µSR are encouraged to illuminate

this scenario.

6.5 Summary

Slow relaxation dynamics is observed in the DC and AC susceptibility measurements for

all FM members in the MnBi2nTe3n+1 family. Such a phenomenon arises from the irreversible

domain movement below the saturation field, in these soft ferromagnets with very weak pin-

ning. The magneto-optics provides the direct evidence for the magnetic softness, manifesting

as two types of isotropic remnant-state domains, a very fine-structured one and a much larger

sea-urchin one. The former tends to dominate at lower fields, and the opposite for the latter,

which may explain the anomalous bow-tie-shaped hysteresis loop and the slope change in the

FC temperature-dependent susceptibility. Such knowledge of the domains will be essential

for the ongoing pursuit of high temperature QAHE and other topological phenomena in the

MnBi2nTe3n+1 device.
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CHAPTER 7

Growth, characterization and Chern insulator state in

MnBi2Te4 via the chemical vapor transport method

The majority of this chapter has been adapted from [133]. This work was done in collab-

oration with Suyang Xu’s group at Harvard University on thin-film device fabrication and

transport measurement, Dan Dessau’s group at University of Colorado, Boulder on ARPES

measurements and Ilija Zeljkovic’s group at Boston College on STM studies.

7.1 Introduction

Although MnBi2nTe3n+1 series of compounds are proposed as intrinsic MTI, chemical

defects are avoidable in the MnBi2nTe3n+1 family as we have learned in Chapters 3 to 5. For

flux-grown MnBi2Te4, studies find that 18(1) % of Mn sites are occupied by Bi atoms [72]

while only 1-4% of Bi sites are occupied by Mn atoms [63, 72, 105, 134, 135]. Mn and Bi

sites, as well as the antisite defects are displayed in Fig. 7.1 (a). This chemical complexity

leads to electron carrier concentration on the order of 1020 cm−3 in samples grown by flux

method or from stoichiometric melting [62, 75, 136]. Besides making the sample heavily-n

doped, chemical defects have profound impacts on the magnetism and band topology of

MnBi2nTe3n+1 compounds. Antisites result in additional Mn sublattices in MnBi2nTe3n+1.

While the effect is relatively weak in MnBi2Te4, it is exaggerated in MnSb2Te4 [107, 137],

Sb-doped MnBi2Te4 [105] and Sb-doped MnBi4Te7 [100] where sizable amount of MnSb an-

tisites are introduced when Sb atoms are present in the lattice, leading to ferrimagnetic

ground states. From the aspect of band topology, large amount of MnSb antisites can be
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detrimental to non-trivial band topology in MnBi2nTe3n+1 [100, 107]. Because the QAHE

is proposed theoretically on the ideal MnBi2Te4 structure, the defects which have caused

the aforementioned complications may hinder the exploration of QAHE in MnBi2nTe3n+1.

Therefore, growth of single crystals that have a lower carrier concentration, fewer defects

and higher magnetic homogeneity is highly desired for the exploration of various emergent

phenomena and future applications of the material.

In this chapter, we report a new single crystal growth route of MnBi2Te4 via chemical

vapor transport (CVT) using I2 as the transport agent. We find that a small thermal gradient

is sufficient to drive the CVT growth and allows a good control of growth. Through magnetic,

transport and spectroscopic measurements, we show the carrier density is greatly reduced in

the CVT-grown samples. Chern insulator state is observed in a 6-SL device with the highest

reported mobility. All evidence points to a new promising growth route so that enhanced

functionality of the devices can be made.

7.2 Growth optimization

Single crystals of MnBi2Te4 were grown using CVT method with I2 as the transport

agent. Our initial trials of the CVT-growth of MnBi2Te4 were made in a Thermo Scientific

muffle furnace rather than tube furnaces due to the two following considerations. First, the

temperature profile of the CVT-growth is more delicate than the flux-growth of MnBi2Te4.

The growth-end of the CVT-MnBi2Te4 should be kept at the temperature which is tested

optimal for its flux growth. Second, a small temperature gradient of ∼ 2-3 K is sufficient

and essential for the success of the CVT growth. As shown in Figs. 7.1(b) and (c), when

the CVT-growths are positioned in the furnace, the thermal gradient intrinsic to the box

furnace, either vertically between the top and bottom of the furnace, or horizontally between

the heating element to the furnace center, is responsible and sufficient for driving the vapor

transport. The temperature gradient is indicated by the arrows in both Figs. 7.1(b) and (c),

which is only 2-3 degrees from source to end.
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Figure 7.1: (a) Crystal structure of MnBi2Te4 with marked crystallographic Bi and Mn

sites. Blue ball: Bi. Purple ball: Mn. Grey ball: Te. Mn site has Bi substitutions while the

formation of MnBi antisites results in a small amount of Mn atoms occupying the Bi site.

The Mn atoms on the Mn site is denoted as Mn1, the Mn atoms on the Bi site is denoted

as Mn2. Under TN Mn1 sublattice is AFM by itself; Mn2 sublattice is AFM by itself; Mn1

and Mn2 sublattices are AFM to each other. (b-c) Schematics for the CVT growth, using

the internal horizontal and vertical temperature gradient in a box furnace, respectively. The

arrow indicates the gradient direction. (d) Schematics of the growth in a fine-tuned three

zone furnace. Inset: mm-lateral-sized single crystals with thickness from tens to hundreds

of microns after being taken out of a 19-mm-diameter tube and rinsed. (e) X-ray diffraction

spectrum on the (001) surface and the (012) surface of a CVT-grown single crystal. Inset:

a hexagonal shaped single crystal from an one-week growth is shown on top of the 1×1

mm-grids. The as-grown surface orientations are indexed.
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Elemental form of Mn, Bi, Te and I are mixed according to the ratio of 1.7 : 2 : 4 : 1.

Adding extra Mn or MnTe in the source end raises the melting point of the starting chunk,

so it can remain as solid and allows a better control of its position at the source end during

the transport. The elements were then sealed in a two-segment quartz tube as depicted in

Fig. 7.1(b) or (c) under vacuum. The purpose of the two-segmented tube in a box furnace

is to separate materials in the source (hot) and sink (cold) ends, and to have a balance over

the cold-end area and transport rate so as to get sizable and abundant crystals. The quartz

tube was then slowly heated to 900oC overnight to avoid over-pressure. Afterwards, the

tube is air-quenched and transferred back to this box furnace preset at 585oC, which was

pre-determined as the optimal temperature for our flux growth trials, and measured with an

external thermocouple. The same thermocouple is used as the standard as we change between

the furnaces, and as we measure the temperature gradient between the exact positions of hot

and cold ends. In our trial-and-error process we find if the preset furnace temperature is 10

degrees higher, MnBi2Te4 in the cold end will be in the liquid form as condensed droplets;

if the temperature is set to 10 degrees lower than the optimal, mixed phases of Bi2Te3 and

MnBi2nTe3n+1 (n ≥ 2) will form. A short tube with a length of 8-10 cm was used to ensure

the minimal temperature fluctuations. It is noted that all I2 is reacted in the first step of

slow warming so MnI2 becomes the effective transport agent. After an optimal growth time

of one to two weeks, mm-lateral-sized single crystals with thickness from tens to hundreds of

microns are obtained at the cold end of the growth together with red MnI2. Longer growth

time yields larger crystals, but they are more likely to grow into each other. When samples

are taken out, the mixtures from the cold end are rinsed with water to remove MnI2 and to

isolate the MnBi2Te4 crystals. A crystal grown with setup in Fig. 7.1(b) is shown on top of

mm-grids in the inset of Fig. 7.1(e).

With the experience of growing MnBi2Te4 in the box furnace, we can also accommodate

the growth in a three-zone tube furnace. Here, a very careful calibration is needed ahead

of the time at the exact location of both ends of the growth ampule. The furnace is set so

that the cold end has the same temperature as that in the mid-bottom of the box furnace in
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Figs. 7.1(b)(c) and the hot end is merely 3 K hotter. The cold end is then nested within an

additional alumina crucible so that the temperature gradient can be further smoothed near

the end as shown in Fig. 7.1(d). Eventually MnBi2Te4 and MnI2 crystals form and almost

cover the cold end of the tube. Figure 7.1(d) includes a picture showing a plate “webbed” by

MnBi2Te4 single crystals which were taken from a one-month growth in a 19-mm-diameter

quartz tube and rinsed with water. With the careful calibration, the CVT-growth in the

tube furnace can result in higher yields than both setups in box furnaces. The crystals in

the “web” can still be separated from each other for further measurements.

For comparison, MnBi2Te4 crystals were also grown using Bi2Te3 flux as described in

Chapter 3. Comparatively, the CVT samples tend to have a hexagonal shape with well-

defined edges along the a and b directions. They can be up to 1 mm thick and appear

more three-dimensional with flat and shiny edge surfaces. Hence in addition to the (00L)

reflections, other reflections such as (012) can be observed on the as-grown surfaces on the

side, as shown in Fig. 7.1(e). The two surfaces giving the XRD pattern are indexed for

the crystal in the inset of Fig. 7.1(e). The WDS conducted over 15 pieces of hexagonal

crystals from several CVT batches finds an elemental ratio of Mn0.94(3)Bi2.09(7)Te4 with no

significant batch-to-batch variation. There is piece-to-piece variation. We note that pieces

with six well-defined edges as shown in the inset of Fig. 7.1(e) in general have higher Mn

concentrations than those with one as-grown edge. The highest Mn ratio is up to 0.98.

In comparison, the elemental analysis on our flux-grown crystals finds Mn0.90(1)Bi2.08(5)Te4.

This suggests an overall enhancement of Mn concentration, and motivates us to look into its

impact on the physical properties.

7.3 Physical properties

The effect of higher Mn concentrations in CVT samples can be reflected in the bulk mag-

netic and transport measurements. The results in Fig. 7.2 are measured on and compared

between a CVT-grown sample (CVT-S1) with Mn0.95(1)Bi2.09(1)Te4 and a flux-grown sample

(flux-S1) with Mn0.90(1)Bi2.11(2)Te4, each characterized with WDS. Figures. 7.2 (a) and (b)
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Figure 7.2: Comparison of the CVT-S1 and flux-S1 samples. (a-b) Temperature-dependent

magnetic susceptibility measured along H//c = 1 T and longitudinal resistivity ρxx measured

in the ab plane. (c-d) Field-dependent MR and the magnetization with marked spin-flop

transition field and saturation field measured at 2K. (e-f) Hall resistivity ρxy measured from

2 K to 50 K for the two samples. Inset: Extracted carrier density from the slope of ρxy(H)

in the polarized FM phase at each temperature.
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show the temperature-dependent susceptibility χH∥c and resistivity ρxx (I//ab). The AFM

transition appears as a sharp kink in χH∥c(T) in both panels, which is found to be 24.6 K

for CVT-S1 and 23.8 K for flux-S1. The drop of ρxx under TN is consistent with the reduced

spin-disorder scattering due to the formation of the in-plane ferromagnetic (FM) order.

The magnetism of MnBi2Te4 couples strongly with the charge carriers. The comparison

of the magnetoresistance (MR), magnetization under field at 2K, as well as Hall resistivity

from 2 to 50 K between the two samples is included in Figs. 7.2 (c)-(f). In Fig. 7.2(d), the

magnetization per Mn is calculated based on the Mn concentration obtained from WDS. At

3.3 T for flux-S1, a feature from the spin-flop transition shows up across all panels. The

MR drops sharply with the sharp increase of the magnetic magnetization. In comparison,

the CVT-S1 sample shows the same feature at 3.5 T. Then at 7.7 T, a feature due to the

magnetic saturation is seen as a peak in MR and a subtle kink in Hall resistivity for both

samples in Figs. 7.2 (c) (e) (f). Using the slope of Hall resistivity in the polarized FM phase,

we calculate the electron-type carrier density at 2 K to be 5.79×1019 cm−3 and 1.62×1020

cm−3 for the CVT-S1 and flux-S1 sample at 2 K. The same calculation is carried out for

each temperature. The temperature dependent carrier density is plotted in the insets of Fig.

7.2(e) and (f).

The magnetization data provides valuable insights on the distribution of Mn occupancy

[100, 139]. Bi substitutions of Mn on the Mn site as well as a very small amount of MnBi

antisites exist in MnBi2Te4. We denote the Mn atoms on the Mn site as Mn1, the Mn atoms

on the Bi site as Mn2. Previous studies of the sample grown by the flux method [139] show

that below 20 T, the Mn2 sublattice, aligns antiferromagnetically with the Mn1 sublattice.

Therefore at Hsat, each Mn1 and Mn2 spins enter into its individual polarized FM state

while these two sublattices are AFM to each other. Ref. [139] also shows at 50 T, Mn1 and

Mn2 spins become parallel to each other. Therefore, the higher the Mn2-to-Mn1 ratio, the

smaller the magnetic moment will be near 8 T since Mn1 and Mn2 are AFM to each other

at 8 T. Considering the M(H) curve is linear between Hsf and Hsat, we can estimate the

moment at Hsat. The values are found to be 3.86 µB/Mn for CVT-S1 and 3.94 µB/Mn for

133



5 nm
a

b

95 pm0

5 nm

115 pm0

1.5 V 0.2 V(a)

(c)

HighLow

(b)

(d)

QBragg

-400 -200 0 200 400
0

2

4

6

8

10

12

dI
/d

V 
(a

.u
.)

Bias (mV)

Figure 7.3: Scanning tunneling microscopy and spectroscopy of CVT-grown MnBi2Te4. (a)

Large-scale STM topograph showing a large, flat surface obtained by the cleaving process.

Dark triangular features in the topograph represent Mn substitutions at the Bi site [138]. (b)

Zoom-in on a smaller region showing the expected hexagonal atomic structure. (c) Average

dI/dV spectrum. (d) Fourier transform of the topograph in (b), with the atomic Bragg peaks

denoted by black circles. STM setup condition: (a)1.5 V/1.5 nA ; (b) 200 mV/200 pA; (c)

400 mV/300 pA (4 mV bias excitation). All data is acquired at 4.5 K.
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flux-S1. We can then further quantitatively estimate the occupancy of Mn1 and Mn2 using

m1 + 2m2 = MnWDS (7.1)

m1 − 2m2

m1 + 2m2

=
M8T

M50T

(7.2)

Here m1 and m2 are the occupancy of Mn1 and Mn2, respectively. MnWDS is the Mn con-

centration obtained from WDS. M8T is the initial magnetization value estimated from the

M −H curve at 8 T. M50T is the final magnetization value when Mn2 are also polarized to

align in parallel with Mn1, which is suggested to be 4.6µB/Mn [139] based on the measure-

ment up to 50 T. Based on these, m1 and m2 are found to be 0.835 and 0.032 for flux-S1,

and 0.874 and 0.038 for CVT-S1.

To observe the distribution of the defects and their effects on the electronic structure,

STM was performed on a CVT-grown MnBi2Te4. The CVT-grown single crystals were

cleaved at room temperature at the pressure of 1 × 10−10 Torr and were immediately inserted

into the STM head. Typical STM topographs show a flat surface with a hexagonal atomic

structure (Fig. 7.3(a,b,d)), consistent with the expected MnBi2Te4 topmost surface layer

composed of Te atoms. Dark triangular features in the high-bias STM topograph in Fig.

7.3(a) can be identified as Mn substitutions at the Bi site [138]. By manual counting of

individual defects observed in the topograph, we calculate the density of these substitutions

in our CVT samples to be around 3.5%. The antisite concentration is up from 3% in the STM

of the flux-grown sample [62], suggesting a similar trend we found from our magnetization

data. Lattice constant extracted from the Fourier transform (FT) of the topograph (Fig.

7.3(d)) is about 4.49 Å. Average dI/dV spectra show a sharp upturn in conductance at

around -200 mV in Fig. 7.3(c). We note that this spectral feature is about 300 meV closer

to the Fermi level compared to the spectra obtained in previous work [62, 135], which may

indicate a lower level of self-doping in our samples.

The effect of defects and charge carriers on the band structure can be seen more clearly

with ARPES. The measurements were made on three different CVT-samples. CVT-S2 has
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Figure 7.4: ARPES band maps and spectra on MnBi2Te4 sample CVT-S2. (a) ARPES

intensity maps taken at Ef and the Dirac point at -0.24 eV binding energy. (b) ARPES

spectra taken at 10 K and 35 K on the Γ to K cut, showing the TSS as well as a splitting of

the bulk conduction band. ARPES data was taken with 26 eV, and the energy of the Dirac

point is -0.24 eV, determined by finding the minimum of the energy distribution curve at Γ.
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6 as-grown edges while CVT-S3 and CVT-S4 have only one as-grown edge. The topological

surface state (TSS), along with bulk conduction and valence bands were observed. Figure 7.4

summarizes the ARPES data taken on CVT-S2. Figure 7.4(a) shows ARPES intensity maps

at the Fermi energy, and at the Dirac point (DP) at -0.24 eV binding energy, respectively.

Figure 7.4(b) shows the band structure of CVT-S2 cutting from the Γ point to K point in

the Brillouin zone above and below the Néel temperature near 24 K. A splitting of the bulk

conduction band is clearly observed below the Néel temperature in the 26-eV spectra, similar

to previous reports on samples grown by the flux method or stoichiometric melting [68,140].

The energies of the Dirac point can be estimated as the minimum of the energy distribution

curve at the Γ point. It is -0.24 eV for CVT-S2, -0.26 eV for CVT-S3, and -0.275 eV for

CVT-S4. This variation in energy is consistent with what we have learned from our WDS

measurements, that is, the well-shaped CVT crystals have higher Mn concentrations. In

previous measurements on flux-grown samples, the DP energy ranges from -0.275 eV to -

0.28 eV binding energy [66, 69, 141], and samples grown with stoichiometric melting have

DP energies at -0.27 and -0.275 eV binding energy [68, 140]. Therefore, compared to flux-

grown samples, the CVT-grown samples are in general more intrinsic. Especially, for the

hexagonal-shaped CVT-2, the DP is around 35 meV lower and closer to the TSS. This is

again consistent with the lower carrier concentration extracted from the Hall resistivity.

7.4 Chern insulator state in 2D limit

To investigate the transport properties of the CVT-grown samples in the 2D limit, we

exfoliated the MnBi2Te4 samples down to the atomically thin regime and fabricated 2D

quantum devices. Figures 7.5 (a)-(c) show representative data of a 6-SL device made of a

CVT grown MnBi2Te4 crystal. In the AFM phase (H = 0), our transport measurement

(Fig. 7.5 (a)) shows a clear insulating behavior with the resistance reaching over 106 Ohms.

This agrees with the theoretical expectation that the 6-SL AFM MnBi2Te4 is an Axion

insulator with zero Chern number. Notably, as shown in Fig. 7.5 (a), the gate voltage

that corresponds to the charge neutrality in the CVT-device is very close to VBG=0 V. This
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Figure 7.5: Observation of Chern insulator state in CVT and flux grown MnBi2Te4. All data

are taken at 1.8 K. For the CVT-device and flux-device respectively: (a)(d) gate-voltage-

dependent longitudinal resistance Rxx in the AFM state at zero field. At the gated charge

neutrality point, Rxx(T) in (a) is 10 times of that in (d) with a much sharper response to

the gating voltage, suggesting better quality of the device. (b)(e) gate-voltage-dependent

longitudinal resistance Rxx in the FM state at 8 T, with marked reduction of resistance near

the charge neutrality point. (c)(f) gate-voltage-dependent Hall resistance Ryx in the FM

state at 8 T, with marked quantized value of − h
e2

near the charge neutrality point.
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indicates that natural doping in this 6-SL MnBi2Te4 device is small, consistent with the

reduced carrier density that we obtained from the bulk transport measurements. Based on

the field effect model, we estimate a carrier mobility of ∼ 2500 cm2/V·s, which is the highest

that has ever been reported. In the FM phase (H=8 T), our transport data reveal a fully

vanishing longitudinal resistance Rxx and fully quantized Hall resistance, which demonstrate

the topological Chern insulator state, consistent with previous studies [54, 55].

7.5 Discussion

WDS reveals higher amount of Mn concentration in CVT-S1 than that in flux-S1. Mean-

while from the analysis of the M(H) data, the concentrations of Mn1 and Mn2 sublattices,

that is m1 and m2, are 0.835 and 0.032 for flux-S1, and 0.874 and 0.038 for CVT-S1, re-

spectively. Ideally, MnBi2Te4 crystals with more Mn atoms going into the dominant Mn site

(higher m1) and less Mn atoms occupying the Bi site (lower m2) will have better magnetic

homogeneity and thus be more promising for the realization of QAHE, etc. However, our

experiments indicate that the higher the total Mn concentrations we pushed in by optimiz-

ing the growth condition and method, the higher the m1 and m2 though m2 increases much

slower than m1. Therefore, there is no way that MnBi2Te4 crystals with simultaneously

higher Mn1 concentration and lower MnBi can be made. If so, when screening samples for

the device fabrication, will the samples with total higher Mn concentration be more ready

to show quantized Hall conductance in devices? To answer this question, we compare the

6-SL device using the CVT-grown MnBi2Te4 crystal with a 6-SL device using a flux-grown

MnBi2Te4 crystal. As shown in Fig. 7.5, the two devices show qualitatively similar be-

haviors, i.e., an insulating behavior in the AFM phase and a topological Chern insulator

behavior with quantized Hall response in the FM phase. However, one can clearly see that

the resistance peak is much sharper and higher for the CVT-device as a result of the larger

carrier mobility. Based on the field effect model, carrier mobility of the flux-device is found

∼ 800 cm2/V·s, which is around one third of the CVT one. We further note that the Chern

insulator behavior appears in a narrower range of gate voltage in the CVT-device. This may
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be related to the larger amount of antisite disorder present in the CVT-crystal. Despite this,

the CVT-devices have a higher success rate in realizing the Chern insulator state with the

same carefully-controlled fabrication process. We realized Chern insulator state in 6 out of

18 flux samples and 4 out of 5 CVT samples. The success rate of the device made from CVT-

samples is more than twice as large as that of flux sample, which is likely to be attributed to

the high Mn1 concentration that gives higher magnetic homogeneity. Therefore, the higher

the m1, the higher the success rate in realizing the Chern insulator state; the higher the m2,

the narrower the gate voltage window the Chern insulator state will appear.

The fact that both m1 and m2 are higher in CVT-S1 also explains why the magnetic

transition temperature of CVT-S1 is higher. The higher Mn occupancy can also be associated

with the reduced carrier concentration in the CVT-S1, since Bi atoms on Mn site is an

electron-donor and makes the sample more n-type, while Mn on Bi site is an electron-

acceptor [142] which makes the sample more p-type. Compared to the flux-S1 sample,

the Mn1 occupancy of the CVT-S1 sample increases by 0.039 while the Mn2 occupancy

only increases by 0.006. This decreases the number of electron-donors and increases the

number of electron-acceptors, thus making the sample less n-doped. Indeed, the low carrier

concentration is universal in CVT single crystals. At 2 K, the carrier concentrations from 15

measured pieces from different batches range from 2.7-10 ×1019 cm−3 with an average of 5.8

×1019 cm−3. The values from 5 measured pieces from different flux batch range in 1.3-2.0

×1020 cm−3 with an average of 1.6×1020 cm−3.

7.6 Summary and outlooks

In summary, compared with the flux-grown MnBi2Te4 single crystals, the CVT-grown

ones have less Bi substitution on the Mn site and slightly more MnBi antisites, leading to a

smaller carrier density and reduced energy difference between the Fermi level and the Dirac

point in bulk CVT-sample. Furthermore, when exfoliated into 6-SL device, the CVT samples

show by far the highest mobility of 2500 cm2V·s with vanishing Rxx and quantized Rxy at

8 T. Therefore, our new growth design readily allowed us to achieve the Chern insulator
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state in devices with higher quality and high success rate. This paves a new way to optimize

crystal growth of MnBi2Te4 and related MnBi2nTe3n+1 (n ≥2) to investigate the emergent

phenomena arising from the interplay of topology and the magnetism. Future optimization

such as varying the Mn concentration in the source end, using other transport agents such

as TeI4, etc. can be explored to further improve the sample quality.
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CHAPTER 8

Conclusion

In this dissertation, I presented our studies on the MnBi2nTe3n+1 (MBT) family in dif-

ferent aspects including design, growth, characterization, magnetism, topology, defect chem-

istry, and magnetic dynamics. Our proposed material design of inserting [Bi2Te3] spacer

layer between the magnetic [MnBi2Te4] layers was realized with the successful single crystal

growths of natural heterostructures MnBi2nTe3n+1. The subsequent characterization, physi-

cal property measurement and our collaborations with other groups show that the n = 2, 3

numbers are intrinsic Z2 AFM TIs with very weak interlayer magnetic coupling. We further

demonstrated that the n = 4 member is the first intrinsic FM axion insulator ever discovered.

Therefore, as the interlayer coupling decreases with increasing n and increasing interlayer

Mn-Mn distance, the magnetism and band topology in MBT can be tuned from AFM TI

to FM axion insulator, suggesting the close competition between AFM and FM inside this

family. Then our study of the Sb-doped MnBi4Te7 single crystals provides a material series

whose magnetism can be tuned in a controllable and continuous manner from AFM to FM

and then to ferrimagnetic. We attribute such an evolution of magnetism to the increas-

ing amount of the MnBi, Sb antisites arising from the Sb doping. The antisites mediate an

additional effectively-FM exchange path that is temperature and defect-density dependent,

leading to the competition with the original AFM interlayer superexchange interaction and

thus the observed evolution of magnetism. We close our investigation of the magnetism in

MBT by discussing the magnetic dynamics in FM MBTs. It is found that the van der Waals

magnetism with strong FM intraplanar coupling and vanishing interplanar coupling host

unique domain formation that gives rise to the exotic magnetic relaxation behavior. Last

but not least, we have developed a new way to grow MnBi2Te4 via chemical vapor transport
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(CVT) and have optimized the recipe to enhance the crystal size and yield. The comparison

between the crystals grown by the CVT methods and flux methods in defects, magnetism

and device quality indeed suggests that our new growth design readily allowed us to achieve

the quantized Hall conductance in devices with higher quality and success rate.

From their magnetic and topological properties, we have seen the MnBi2nTe3n+1 family

are great candidates for QAHE and can host many interesting magnetic topological states

such as FM axion insulator, type-I magnetic Weyl semimetal, etc. Up to the time of this

writing, however, there has only been one report of zero-field QAHE in MnBi2Te4 [54]. This

could come from different fabrication environment in which bulk crystals are exfoliated and

made into a device, or something intrinsic to the crystals like Mn deficiencies and MnBi

antisites. To consistently achieve high-temperature realization of quantum anomalous Hall

effect in MBT family, optimizations of both 2D device fabrication and 3D bulk material

are needed. For the former aspect, the side effect of each fabrication step especially on the

exfoliated surface needs to be investigated. On the material side, although MnBi2nTe3n+1

host intrinsic magnetism, antisite defects and Mn deficiencies are prevalent in the crystals.

Given these understandings, it is desired in the future work to optimize the growth of 3D

MBT crystals to lower the Mn deficiency and antisites. New material discoveries based on

the [MnBi2Te4] and other building blocks are also urged to bring breakthroughs.
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Appendix A

Additional Method for structural, magnetic and

topological property measurement

A.1 Method for Band structure calculation and measurement

A.1.1 DFT

We computed the electronic structures using the projector augmented wave method

[143, 144] as implemented in the VASP package [145] within the generalized gradient ap-

proximation schemes (GGA) [146] and GGA plus Hubbard U (GGA + U) [147] scheme.

On-site U = 5.0 eV was used for Mn d orbitals. A 11×11×5 MonkhorstPack k-point mesh

was used in the computations. The spin-orbit coupling effects were included in calculations.

The experimental lattice parameters were used. The atomic positions were relaxed until the

residual forces were less than 0.01 eV/Å. We used Mn d orbitals, Bi p orbitals, Sb p orbitals,

and Te p orbitals to construct Wannier functions, without performing the procedure for

maximizing localization [148].

A.1.2 ARPES

We have seen DFT as a powerful way to obtain the band structure of the material and

thereby the topological number. Experimentally, electronic band structures can be directly

probed by angle-resolved photoelectronic spectroscopy. A beam of photon with known energy

Ei and momentum ki vector is shined on a cleaved surface of a crystal. The distribution of

energy Ef and moment kf of the excited electrons are measured. By comparing the input
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and the output, one can reconstruct the energy and moment of the electron before excitation.

Therefore one can get from ARPES the electron distribution in the reciprocal space, i.e. the

band structure.

For many topological materials such as Dirac semimetals, Weyl semimetals , one key

feature is the linear dispersion. This can be directly seen by ARPES. ARPES can be used to

distinguish their surface state from the bulk states. For example, with topological insulators

like Bi2Se3, ARPES can clearly shows the gap opening by SOC. For our studies, ARPES

usually goes in hand with DFT, so the calculation with topological numbers are done in a

valid band structure.

ARPES measurements were carried out at the Advanced Light Source (ALS) endstation

7.0.2.1, and Stanford Synchrotron Research Laboratory (SSRL) beam-lines 5-2 and 5-4. Data

was taken with photon energies of 26 eV with linear horizontal polarization. Samples were

cleaved in situ and measured under ultrahigh vacuum below 3 ×10−11 Torr at SSRL 5-4,

4 ×10−11 Torr at SSRL 5-2, and 2 ×10−11 Torr at ALS. Data was collected with Scienta

R4000, DA30 L, and R4000 analyzers at SSRL 5-4, SSRL 5-2 and ALS, respectively.

A.2 Method for scanning probe and imaging

A.2.1 Scanning tunnelling microscopy

Scanning tunneling microscopy (STM) data was acquired using a customized Unisoku

USM1300 microscope. Single crystals were cleaved at room temperature in ultra-high vac-

uum (UHV) pressure of about 1×10−10 Torr and immediately inserted into the STM chamber

where they were kept at 4.5 K during the measurements. Spectroscopic measurements were

made using a standard lock-in technique with 915 Hz frequency and bias excitation as de-

tailed in figure captions. STM tips used were home-made chemically-etched tungsten tips,

annealed in UHV to bright orange color before being used for imaging.
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A.2.2 Magneto-optical Kerr imaging

Direct magneto-optical Kerr imaging was performed using a helium flow-type cryostat

with temperature down to 5 K and the ability to apply a 1kOe - range magnetic field. Opti-

cal imaging in linearly polarized light was done using a Leica DMLM polarized microscope

equipped with the high quality polarizer and analyzer. In the experiment, the sample is

positioned on top of a gold-plated copper stage with its flat surface perpendicular to the di-

rection of light propagation. The light polarization direction, also perpendicular to the light

propagation direction (thus parallel to the sample surface that is being imaged), was con-

trolled by a polarizer and could be changed with respect to the stationary sample for optimal

contrast. Upon reflection off the sample, polarization direction rotates by the angle propor-

tional to the surface magnetization (magneto-optical polar Kerr effect). Due to chirality of

the problem, opposite magnetic moments lead to the opposite directions of the polarization

rotation. When viewed through an analyzer rotated almost perpendicular to the polarizer,

a 2D image of the magnetic pattern emerges. The appearance can be switched at will by

adjusting the polarizer/analyzer pair and we chose to show domains along the direction of

the applied field to be dark, whereas opposite domains are white and not magnetized state is

neutral-gray. In this setting, the maximum contrast between the domains is achieved. More

detailed discussion of magneto-optical techniques can be found elsewhere [129].
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Appendix B

Structural Refinement from MnBi2nTe3n+1 single

crystals
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Table B.1: Refined structural parameters for MnBi4Te7 at room temperature based on the

powder X-ray diffraction data. [50]

Atom Site x y z B

Mn 1b 0 0 0.5 0.8

Bi1 2d 0.3333 0.6667 0.0866(4) 0.8

Bi2 2d 0.3333 0.6667 0.3407(4) 0.8

Te1 1a 0 0 0 0.8

Te2 2d 0.6667 0.3333 0.1546(7) 0.8

Te3 2c 0 0 0.2671(7) 0.8

Te4 2d 0.6667 0.3333 0.4355(6) 0.8

Table B.2: Refined structural parameters for MnBi6Te10 at room temperature based on the

powder X-ray diffraction data. [80]

Atom Site x y z B

Mn1 3a 0 0 0 0.8

Bi1 6c 0 0 0.2357(1) 0.8

Bi2 6c 0 0 0.2953(1) 0.8

Bi3 6c 0 0 0.4704(1) 0.8

Te1 6c 0 0 0.0535(2) 0.8

Te2 6c 0 0 0.1154(2) 0.8

Te3 6c 0 0 0.1790(2) 0.8

Te4 6c 0 0 0.3490(2) 0.8

Te5 6c 0 0 0.4133(2) 0.8
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Table B.3: Refined structural parameters for MnBi8Te13 at room temperature based on the

powder X-ray diffraction data. [80]

Atom Site x y z B

Mn1 3a 0 0 0 0.8

Bi1 6c 0 0 0.18221(4) 0.31(7)

Bi2 6c 0 0 0.22824(5) 0.31(7)

Bi3 6c 0 0 0.36168(5) 0.31(7)

Bi4 6c 0 0 0.40865(6) 0.31(7)

Te1 6c 0 0 0.04172(8) 1.6(1)

Te2 6c 0 0 0.0897(1) 1.6(1)

Te3 6c 0 0 0.13757(8) 1.6(1)

Te4 6c 0 0 0.2707(1) 1.6(1)

Te5 6c 0 0 0.32131(7) 1.6(1)

Te6 6c 0 0 0.4524(1) 1.6(1)

Te7 3b 0 0 0.5 1.6(1)
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