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Abstract

Three-dimensional Object Tracking in Panoramic Video and LiDAR for Radiological
Source-Object Attribution and Improved Source Detection

by

Matthew Marshall

Doctor of Philosophy in Nuclear Engineering

University of California, Berkeley

Professor Kai Vetter, Chair

The detection and localization of radiological and/or nuclear material remains a key
challenge in homeland security, especially in urban environments. In an effort to improve
detection and localization capabilities, networked detector systems can be deployed in ur-
ban environments to aid in the detection and localization of radiological and/or nuclear
material. However, effectively responding to and interpreting a radiological alarm using
spectroscopic data alone may be hampered by a lack of situational awareness, particularly
in complex environments. This work investigates the use of LiDAR and streaming video to
enable real-time object detection and tracking, and the fusion of this tracking information
with radiological data for the purposes of enhanced situational awareness and increased de-
tection sensitivity. This work presents an object detection, tracking, and novel source-object
attribution analysis that is capable of operating in real-time. The analysis pipeline is imple-
mented on a custom-developed system that comprises a static 2 in.× 4 in.× 16 in. NaI(Tl)
detector co-located with a 64-beam LiDAR and 4 monocular cameras. Using this analysis
approach on the static system, physics-based models that describe the expected count rates
from tracked objects are used to correlate vehicle and/or pedestrian trajectories to measured
count-rate data through the use of Poisson maximum likelihood estimation and to discern
between source-carrying and non-source-carrying objects. In this work, the source-object
attribution approach is explained in detail and a quantitative performance assessment that
characterizes the source-object attribution capabilities of both video and LiDAR is pre-
sented. Additionally, experimental results from a mock urban environment are shown using
the contextual-radiological data fusion methodology. With this data, the ability to simul-
taneously track pedestrians and vehicles in a mock urban environment is demonstrated,
and using this tracking information both detection sensitivity and situational awareness is
improved.

The addition of contextual sensors to mobile radiation sensors provides valuable infor-
mation about radiological source encounters that can assist in adjudication of alarms. This
study explores how computer-vision based object detection and tracking analyses can be used
to augment radiological data on a mobile detector system. Using these analyses on a mobile
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system, this work studies how contextual information (streaming video and LiDAR) can be
used to associate dynamic pedestrians or vehicles with radiological alarms to enhance both
situational awareness and detection sensitivity. To perform this study, data was collected in
a mock urban environment where participants included pedestrians and vehicles moving in
the vicinity of an intersection. Data was collected with a vehicle equipped with 6 NaI(Tl)
2 in.×4 in.×16 in. detectors in a hexagonal arrangement and multiple cameras and LiDARs
as well as an IMU and an INS. In this work, the source-object attribution approach as ap-
plied to a mobile system with multiple detectors in the presence of static and moving sources
is demonstrated. The results show improved situational awareness and detection sensitivity
using video and LiDAR-based trajectories. In addition, it is seen that LiDAR data produces
more reliable position estimates of an object compared to using video data, which enables
more effective object tracking and attribution, especially in scenarios with vehicle speeds of
about 20 mph. Furthermore, with both video and LiDAR data, improved detection sensi-
tivity is demonstrated using an optimal configuration of detectors within a detector array
compared to the summed response of a detector array in a mock urban environment. Finally,
by correlating vehicle and/or pedestrian trajectories to measured count-rate data, the source
is inherently localized to an object, which enables a new paradigm for source localization
and might reduce the complexity in detector array design. To test this concept, source-
object attribution is performed using different detector array configurations with varying
levels of complexity to understand the impact of the angular response on radiological source
localization when tracking information is available. The findings demonstrate that using
the source-object attribution analysis approach can enable simpler detector array designs to
perform source localization in the investigated scenarios.
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Chapter 1

Introduction

This dissertation focuses on the improvement in detection, localization, and attribution of
radiation detection systems composed of radiation detector(s) and contextual sensors in
urban environments to improve both situational awareness and detection sensitivity. This
topic is explored using both static and mobile radiation detection systems. The following
sections introduce these topics and also discusses the motivation and challenge of detecting
and localizing gamma-rays in urban environments.

1.1 Motivation for Gamma-ray Detection and Localization in Ur-
ban Environments

In an urban environment, the two main categories of domestic nuclear threats are special
nuclear material (SNM) and a radiological dispersion device (RDD) or a ”dirty bomb”. The
SNMs of main concern are highly enriched Uranium (HEU) and Pu (either weapons-grade
or reactor-grade) because both of these nuclear materials could be used to construct an
improvised nuclear explosive by subnational groups or a crude nuclear weapon by proliferant
states [3, 4]. Due to easier access and a simpler device design, it is thought the crude nuclear
weapon would most likely be constructed using HEU instead of Pu [5], while either material
could be used to construct improvised nuclear explosives. It should be noted alternate
nuclear materials (ANM) (i.e., 237Np and Am) and other actinides could be used as well by
proliferant states and subnational groups [4]. For additional information regarding how to
assess the risk posed by different types of materials and different combinations of materials
by proliferant states and subnational groups refer to [4, 6].

RDDs use conventional explosives to disperse radiological material. The isotopes most
likely considered to be used in a RDD are 60Co, 137Cs, 192Ir, and 241Am [5]. These isotopes
have medical or industrial purposes and could be more easily obtained compared to other
isotopes, and most importantly, these isotopes can be obtained with high activities, which
mainly increases the public perception of the risk.

Both the isotopes comprising SNM or considered in RDD emit characteristic gamma-rays,
which can be used to detect and localize illicit nuclear and radiological material in urban
environments. In the case of SNM, in particular HEU, the emission spectrum consists of low
energy gamma-rays such as 186 keV for 235U that require minimal shielding material (e.g.
lead) around the SNM to reduce detection efficiency. HEU can have 232U impurities which
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has a daughter isotope 208Tl that emits a 2614 keV gamma-ray and is more penetrating
compared to the 186 keV gamma-ray of 235U. Depending on the shielding thickness, this line
could be more easily detected, but it is not a reliable signature [3]. Since the isotopes used
in RDD can be obtained with large activities, the gamma-ray signatures emitted from these
devices would be harder to shield against detection. Generally, RDD are considered the
more likely nuclear threat compared to SNM since the isotopes used in RDD are ubiquitous
in medical or industrial settings and RDD require simpler dispersal designs [5]. Neutron
signatures could also be used for detecting and localizing potential nuclear threats in urban
environments. However, neutron emissions from HEU are weak [3] and none of the RDD
isotopes have neutron signatures. For these reasons, this work focuses on detecting and
localizing gamma-ray emitting isotopes.

1.2 Challenges for Detecting and Localizing Gamma-ray Sources
in Urban Environments

The detection and localization of radiological and/or nuclear material remains a key challenge
in homeland security, particularly in urban environments [3, 7]. These environments are
dynamic and highly cluttered from both a physical and radiological perspective, making the
detection and localization of radiological threats extremely challenging. The detection of
radiological and/or nuclear material involves finding a potentially weak or shielded source in
an environment where the background gamma ray rate is not well understood. Additionally,
the presence of static and dynamic objects makes the attribution of a radiological signal to a
particular physical object (e.g. a given vehicle or person) particularly difficult, and in most
cases, attribution needs to be performed in a matter of a few seconds. Methods to overcome
the source search problem in urban environments can involve using static or mobile detector
systems.

Static networked detector systems for urban search and radiological surveillance can be
deployed in transportation hubs, cities, and other high risk areas in an effort to improve
detection and localization capabilities in urban environments. Network detector systems are
capable of running autonomously and use an array of detectors that are usually separated
by several meters to broaden the coverage of these sensors because urban environments are
unconstrained in extent. Radiation detection is governed by the inverse square law and as
the distance decreases between a sensor and a radiological source, the signal-to-noise (SNR)
ratio increases for the detector. The SNR changes in a networked detector system can be
used to track a radiological source over time [8, 9]. Mielke et al. [10] coupled contextual
information (microphone, light sensor, thermistor, and two-axis micro electro mechanical
system (MEMS) accelerometer) with radiation sensors to detect the presence of a vehicle
and collect radiation data from the triggered sensor.

In comparison to static systems, mobile detector systems rely on the free-movement of
the system to survey an urban environment. This enables more autonomy in decision-making
when surveying for radiological and/or nuclear material in large-scale urban environments,
such as city blocks. For example, an operator could decrease the distance between the
detector system and a suspicious object to monitor how the SNR changes with time. Addi-
tionally, mobile detector systems can house large amounts of detectors allowing for detection

2



of weaker sources that are at larger standoff distances (greater than 10 m) from the detector
system [11, 12]. Penny et al. [11] reported the ability to detect and locate sources in 3D at
standoff distances of over 100 m. However, unlike static systems, mobile systems need to be
monitored continuously, have sparser coverage in space, and are more conspicuous. Thus,
the use of static or mobile detection systems is largely dictated by the needs of the survey
mission in urban environments.

Overall, for both static and mobile detector systems, when a radiological and/or nuclear
alarm occurs, alarm adjudication for an operator is still difficult given the complex, clut-
tered nature of urban environments. Furthermore, with mobile systems, the motion of the
mobile detector system relative to objects in the scene compounds the issue. The follow-
ing two sections (Section 1.3 and Section 1.4) discuss a source-object attribution approach
that is explored in this thesis to overcome the radiological source search problem in urban
environments using static and mobile detector systems.

1.3 Source-Object Attribution on a Static System

Augmenting spectroscopic radiation data with contextual information, such as Light Detec-
tion and Ranging (LiDAR) or streaming video, can provide important situational awareness
in urban environment scenarios and help inform the interpretation and adjudication of nu-
clear and radiological alarms. While contextual data can undoubtedly aid the analysis of
radiological data by a human operator, recent advances in computer-vision based object
detection [13, 14, 15] now make it possible to perform radiological-contextual data fusion in
real-time, and provide automatic associations between radiological signals and the physical
objects in a scene. This has the potential to improve the speed and efficiency with which
radiological/nuclear sources can be detected and localized in complex environments while
providing significantly enhanced situational awareness to a human operator.

Previous work has demonstrated the use of video and rudimentary vehicle tracking to
enhance the performance of a large gamma-ray imaging system for portal monitoring [16, 17].
More recent advances in contextual sensing, and the processing of contextual data, have
enabled the exploration of object tracking and the correlation of the trajectories of objects
in a scene with data from isotropic radiation detectors. Such methods have the potential to
provide source localization in poorly constrained measurement environments, and without
the need for large, complex gamma-ray imagers.

Recently, object tracking and radiological attribution was demonstrated using a LiDAR
point cloud projected onto the X-Y plane [18]. This top-down LiDAR projection was used
to identify objects in the scene, the 2D trajectories associated with these 2D objects were
then correlated with the data recorded by co-located radiation detectors. This correlation
was performed using a non-negative least squares method and was used to attribute the
radiological data to the person carrying the source. This approach neglects static sources
when performing attribution, performs object tracking only in 2D, and is unable to handle
dynamic occlusions. Therefore, while they may be adequate in certain situations, these
specific methods are likely to offer limited utility in complex, real-world environments.

In this work, 3D object tracking and radiological data fusion using multicamera video
and LiDAR is demonstrated. LiDAR and video are analyzed independently and the object
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tracking performance from these sensors are combined with radiological signals and their
performance compared. Object detection is performed using lightweight neural networks.
Lightweight neural networks have less layers compared to traditional neutral networks so
they are less accurate at classifying objects; however, lightweight neural networks are ca-
pable of running in real-time on board a custom-developed system at Lawrence Berkeley
National Laboratory (LBNL). Object tracking is performed in three dimensions using a
class-specific (e.g. pedestrians, vehicles) Kalman filter. Tracking in a 360-degree field of
view (FOV) is achieved by using four cameras and a 64-beam LiDAR. These tools are then
used to evaluate the performance of object tracking on radiological alarm attribution and
optimized spectroscopic search, with the objective of demonstrating these concepts and their
performance in a challenging mock urban environment. It should be noted that given the
scenario considered, a mock urban environment with minimal constraints in the 3D motion
of people and vehicles and with various occluding objects, a system without video or LiDAR
would be limited so no comparisons are drawn between the sensor system and one without
video or LiDAR.

1.4 Source-Object Attribution on a Mobile Detector System

The addition of contextual sensors (streaming video and LiDAR) to free-moving detector
systems can provide valuable information about radiological source encounters that can as-
sist in adjudication of alarms. Wulf et al. [12] demonstrated the ability of simple contextual
information (GPS and a camera) on a mobile detector system to improve situational aware-
ness by overlaying a reconstructed gamma-ray image onto a camera image creating a 2D
gamma-ray image. More recent work have explored and demonstrated 3D gamma-ray imag-
ing with free-moving handheld devices [19, 20, 21] by leveraging advances in sensor and
computational technology. These methods utilize a set of contextual sensors, such as LiDAR
and/or streaming video, in conjunction with radiation sensors and algorithms that produce
pose (position and orientation) estimates of the free-moving device in a consistent reference
frame. All of the contextual sensor information, radiological data, and pose estimates are
processed in real-time to produce 3D visualizations of both the scene and gamma-ray im-
age as the device moves throughout a scene. While these methods can improve situational
awareness by enabling 2D or 3D reconstructions of gamma-ray sources, these methods utilize
maximum likelihood expectation maximization (ML-EM) to perform 2D or 3D gamma-ray
image reconstructions, and ML-EM can suffer from overfitting the radiological data [22, 23]
leading to distributed source intensities. In addition, these works focus on static sources in
stationary environments and currently are not well suited for dynamic environments with
moving sources. Thus, alarm adjudication by an operator in a cluttered environment with
dynamic objects would still be difficult to perform quickly and efficiently.

Here the contextual-radiological data fusion concept introduced in Section 1.3 is ap-
plied to a free-moving ground vehicle to correlate trajectories from tracked objects with
radiological data to better improve localization capabilities of moving sources compared
to the conventional reconstruction approaches mentioned previously. This work builds
upon the previous work outlined in Section 1.3 by applying the source-object attribution
analysis concept on a mobile detector system equipped with video and LiDAR as well as
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six 2 in.×4 in.×16 in. NaI(Tl) detectors in a hexagonal arrangement. One of the objectives
of this work is to demonstrate improved situational awareness on a mobile platform system
in the presence of dynamic radiological sources in a mock urban environment by fusing con-
textual information with radiological data to perform real-time source-object attribution.
Another objective of the work is to demonstrate that contextual information can be used to
improve detection sensitivity of a detector array. These topics are explored using the LiDAR
Enhanced Mobile Urban Radiation Search (LEMURS) vehicle.

Additionally, with source-object attribution the source is inherently localized to physical
objects in a scene. Previous methods for source localization in urban environments involved
using planar arrays of detectors with coded masks on large mobile systems [11, 12]. Cooper
et al. [24] demonstrated the LEMURS vehicle (a mobile detector system) that uses a smaller
vehicle with a less complicated detector array that relies on inter-detector modulation and
contextual data for 3D radiation imaging. However, all of the detector arrays in these
systems, along with others, are designed without considering the contextual information
available. If the amount of source localization provided by source-object attribution is suf-
ficient, a detection system that performs localization in the conventional sense (i.e., relying
on the angular resolution of a detector array) might not be necessary. Thus, source-object
attribution has the potential to reduce the cost and complexity of detector array designs.
The work presented in this section also explores this topic and how source-object attribution
might be considered in the design of detector arrays.

1.5 Dissertation Structure

The dissertation is organized as follows:

• Chapter 2 discusses how gamma-rays interact with matter, the gamma-ray detection
process, the source-object attribution analysis pipeline, and a track-informed optimal
integration window analysis.

• Chapter 3 demonstrates performing source-object attribution using a static contex-
tual sensor system co-located with a single radiation detector as well as performs a
spectroscopic analysis using track-informed optimal integration windows.

• Chapter 4 investigates performing source-object attribution and a spectroscopic anal-
ysis using track-informed optimal integration windows on a mobile platform system.
The ability of contextual information to influence detector array design is also explored.

• Chapter 5 provides conclusions on the work and includes future outlooks.

1.6 Relevant Publications

Text and figures from the following paper, of which I was the primary author, are included
in this dissertation with the permission of all authors:
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• M. R. Marshall, D. Hellfeld, T. H. Y. Joshi, M. Salathe, M. S. Bandstra, K. J.
Bilton, R. J. Cooper, J. C. Curtis, V. Negut, A. J. Shurley, and K. Vetter. 3-D Object
Tracking in Panoramic Video and LiDAR for Radiological Source-object Attribution
and Improved Source Detection. IEEE Transactions on Nuclear Science, 68(2):189202,
2021. [25]

Other text and figures presented will be included in a future publication.

6



Chapter 2

Methods for Attributing Radiological
Sources to Objects

This chapter first presents how a gamma-rays interact in matter and the gamma-ray detec-
tion process in Section 2.1 and Section 2.2, respectively. The subsequent section discusses
gamma-ray imaging concepts (Section 2.3). The following sections discuss each stage of the
source-object attribution analysis pipeline starting with object detection (Section 2.4), ob-
ject tracking (Section 2.5), modeling and fitting radiation data to trajectories (Section 2.6),
and attributing trajectories to radiological data (Section 2.8). The final two sections –
Section 2.9 and Section 2.10 – discuss performing source-object attribution when multiple
sources of the same type are present in a scene and using track-informed signal-to-noise ratio
(SNR) optimization to improve detection sensitivity, respectively.

2.1 Gamma-ray Interaction Mechanisms in Matter

Gamma-rays interact with matter primarily through three mechanisms: photoelectric ab-
sorption, Compton scattering, and/or pair production. This section will briefly describe all
three interactions. For more information see [26].

Figure 2.1 displays the mass attenuation coefficients for gamma-ray interactions specif-
ically in NaI(Tl). At low energies (1-300 keV), photoelectric absorption is the dominant
gamma-ray interaction mechanism. Above 300 keV Compton scattering becomes the domi-
nant interaction until about 6 MeV where pair production begins to dominate. The majority
of gamma-ray energies that are of interest from a nuclear security standpoint are within the
energy region where Compton scattering is dominant. It should be noted there are relevant
gamma-ray energies below 300 keV; however, these isotopes can be more easily shielded.

Photoelectric absorption is the process where all the gamma-ray energy is transferred
primarily to a bound k-shell electron. In photoelectric absorption, the energy is sufficient
enough to liberate the photoelectron from the bound electron shell. Once the photoelectron is
removed from the electron shell, a hole occupies the electron vacancy. Either the capture of a
free electron in the surrounding medium or electrons from predominantly outer shell electrons
will move to fill the vacancy. As electrons from outer shells move to fill the vacancy, either
Auger electrons or X-ray photons will be emitted from the atom with an energy equal to the
difference in the binding energy of the initial and final state. If photoelectric absorption
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Figure 2.1: Mass attenuation coefficients for gamma-ray interactions specifically in NaI(Tl).
Data taken from [1].

occurs near the surface of the detecting medium, the X-ray could escape the detecting
medium without interacting resulting in an energy deposition that is less than the incident
gamma-ray energy. This tends to occur more often with low energy gamma-ray isotopes such
as 241Am (59.54 keV) because the cross-section for photoelectric absorption is proportional
to Z4−5/E3.5. As seen in Figure 2.1, at lower energies photoelectric absorption dominates
compared to all the other interactions. For 241Am, the mean free path in NaI(Tl) is ∼0.4 mm
so the gamma-ray has a high likelihood of interacting near the surface of the detector. As
the energy increases, the probability of photoelectric absorption starts to decrease. With
a 661.67 keV gamma-ray from 137Cs, the mean free path in NaI(Tl) is ∼3.7 cm; thus, the
interaction has a higher probability of occurring deeper in the NaI(Tl) detector away from
the detector edge. In this case, the characteristic X-ray will be absorbed more often resulting
in an energy deposition that is equal to the incident gamma-ray energy. It is important to
note that in order to know the full energy of the gamma-ray, a photoelectric absorption must
take place.

In Compton scattering an incident gamma-ray with an initial energy Eγi interacts inelas-
tically with a bound electron resulting in a scattered and lower energy gamma-ray Eγf and
a recoil electron. The energy of the gamma-ray following the inelastic scatter depends on
the incident angle of the gamma-ray (θ) described by

Eγf =
Eγi

1 +
Eγi
mec2

(1− cos(θ))
, (2.1)

where mec
2 is the rest mass energy of an electron (0.511 MeV). The energy of the scattered

gamma-ray ranges from small energy transfers (θ = 0◦) up to the maximum amount of energy
transfer (θ = 180◦). Following an inelastic scatter with an electron, the scattered gamma-ray
can continue to Compton scatter within the detecting medium. Eventually, the scattered
gamma-ray will either escape the detecting medium or will be photoelectrically absorbed.
The cross-section for Compton scattering is proportional to Z/E, and as mentioned earlier,
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Compton scattering is the dominant interaction mechanism for most isotopes of importance
to nuclear security.

Pair production occurs when an incident gamma-ray has an energy greater than twice
the rest mass energy of an electron (1.022 MeV). The interaction likelihood increases as the
incident gamma-ray energy increases as seen by Figure 2.1. In this interaction the gamma-ray
energy is sufficient that when the gamma-ray interacts within the coulomb field of a nucleus
an electron and positron pair are created. Once the positron slows down, the positron will
annihilate with an electron creating two annihilation photons that have energies of 511 keV.
The two annihilation photons are emitted approximately 180◦ from each other to conserve
momentum.

2.2 Gamma-ray Detection Mechanisms

In order to attribute radiological signals to objects in a contextual sensors field of view
(FOV) gamma-rays need to be detected. This section provides a brief overview on gamma-
ray detection primarily focusing on NaI(Tl) since the majority of this work was performed
with NaI(Tl) detectors. For more information please refer to [26].

The detection process starts with a gamma-ray interacting within the detector material
and transferring some or all of its initial incident energy to an electron. The energy trans-
ferred to the electron is sufficient to liberate the electron so that it is free to move in the
detecting medium, and a vacancy (hole) in the electron shell is created. Electron-hole pairs
are produced along the electron’s track as the electron deposits its energy. In NaI(Tl) to
improve the scintillation process activator sites are added into the crystal. For NaI(Tl), the
activator is thallium. Holes move to occupy and then ionize one of these activator sites,
and the electrons will drift through the detecting medium until they encounter an ionized
activator site. Once a drifting electron encounters an ionized activator site, the electron will
be captured by the activator site creating a set of excited states. The de-excitation of these
excited states can result in the emission of a photon in the visible light spectrum. The pho-
tons are emitted isotropically, and a fraction of them will make it to the photocathode. From
here, the photocathode converts the photons to electrons, and these electrons are multiplied
by the photomultiplier tube (PMT) to amplify the signal. The PMT amplifies the electrons
such that the amplitude of the voltage pulse is still proportional to the charge deposited.
The amplitude of the voltage pulses can be plotted using a histogram to create an energy
spectrum (Figure 2.2).

During the scintillation process, it is possible for the electron and hole to drift together
through the crystal. In this process, the electron-hole configuration is known as an exciton,
and the exciton will migrate until it encounters an activator site. Similar to the aforemen-
tioned process, a set of excited states will be created, and a photon in the visible range can
be emitted during the de-excitation process.

As outlined above, the scintillation process is an inefficient process. There are multiple
stages throughout the detection process where valuable scintillation photons or photoelec-
trons can be lost. The following example illustrates the various inefficiencies and how these
impact the photoelectron statistics and ultimately the energy resolution. With NaI(Tl), the
light yield is about 38,000 photons/MeV and the scintillation efficiency is ∼12%. Assum-
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ing a 662 keV gamma-ray deposits all of its energy through photoelectric absorption and
the average energy of the photons produced through scintillation are 3 eV, ∼26,500 scin-
tillation photons will be produced. Further assuming all of these 26,500 photons reach the
photocathode, which will not be the case, a photocathode has a typical efficiency of ∼20% so
5,300 photoelectrons will be generated. The photoelectrons generated from the photocath-
ode are proportional to the deposited charge so the amount of peak broadening is dependent
on the photoelectrons leaving the photocathode. Finally, assuming Poisson statistics, the
full-width at half maximum (FWHM) will be 2.355 ×

√
5300 resulting in an energy resolu-

tion of 0.6%. However, clearly there is more that contributes to energy resolution than solely
photoelectron statistics because the energy resolution for NaI(Tl) at 662 keV is ∼6-7%.

The other important factor that contributes to poor energy resolution in NaI(Tl) is
nonproportionality of light yield. The emission of a visible photon is one of several competing
processes (e.g., quenching) for an excited state to de-excite back to a stable configuration.
This leads to a spectra of electron energies. Therefore, the total light yield can vary for each
gamma-ray interaction if the detector does not have a linear response to electron energies.

Both photoelectron statistics and nonproportionality of light yield contribute to an energy
resolution that is worse than some other – more expensive – scintillators such as LaBr or
semiconductors such as high purity germanium (HPGe) or CZT; however, the advantage
of NaI(Tl) detectors is that they are more affordable, available in large volumes, and more
durable detectors compared to these other detectors.

2.2.1 Gamma-ray Background

With gamma-ray detection, there is an omnipresent background radiation (hereafter referred
to as background) from a combination of terrestrial radionuclides and cosmic origins [27].
This is seen in the energy spectrum displayed in Figure 2.2. The energy spectrum is for 137Cs,
which only emits a 662 keV gamma-ray; however, more gamma-ray energies are observed
throughout the spectrum, especially at 911.2, 1120.3, 1460, 1764.5, 2204.2, and 2614.5 keV.
These energies arise from primordial radionuclides 40K (1460 keV), 235U, 238U, and 232Th
and the daughter nuclides of the U – the 1120.3, 1764.5, and 2204.2 energy lines are from
214Bi, respectively, a daughter nuclide of 238U – and Th isotopes – the 911.2 and 2614.5 keV
energy lines are from 228Ac and 208Tl, daughter nuclides of 232Th, respectively. Additionally,
the background contribution can fluctuate with time. 222Rn is a gaseous isotope that is a
daughter of 238U, and the movement of 222Rn can be influenced by meteorological conditions.
All of these factors contribute to a background radiation that is not known a priori and thus
can interfere with detecting radiological anomalies when surveying urban environments. Ap-
proaches can be made to minimize the background contribution to the gamma-ray spectrum
(e.g., house the detector in lead shielding, anticoincidence shield); however, these methods
sacrifice precious counts in radiation source search missions. In Section 2.6, an anomaly
detection algorithm is briefly introduced that is used in this thesis to detect the presence of
anomalies in unknown background situations.
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Figure 2.2: A 137Cs gamma-ray spectrum using a NaI(Tl) detector. The 137Cs, 228Ac, 214Bi,
40K, and 208Tl photopeaks are labeled.

2.3 Gamma-ray Imaging

The determination of a detected gamma-ray’s origin (i.e. x, y, and z location in space) is
referred to as gamma-ray imaging. For nondirectional detectors, source localization can be
determined by monitoring count rates as either the detector is moved around an environment
or as objects move in front of the detector because detection efficiency increase as the square
of the source distance from the detector decreases. This method only works well for con-
strained environments, and has limited capacity in large, unconstrained environments such
as city blocks. More complex methods of gamma-ray imaging use passive or active masks
to infer gamma-ray directionality. In the coming sections, a brief overview on the more so-
phisticated gamma-ray imaging techniques will be given along with a contextual-radiological
data approach (source-object attribution) to gamma-ray imaging.

2.3.1 Passive and Active Imaging

Passive gamma-ray imaging involves placing shielding material (i.e. Pb) in front of detectors
to collimate the radiological source. In the case of multiple detectors, the shielding mate-
rial can be arranged in unique patterns so that directionality can be inferred. Depending
on the location of the radiological source, a certain shadow will be cast on the detectors
and the source location can be found. Coded aperture imagers can provide accurate and
precise source localization capabilities and have applications in nuclear security [12, 11, 28].
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However, there are limitations with this approach. Coded aperture imagers are typically
constructed using planar arrays of detectors with a coded mask, and this limits the FOV of
the system. Also, the shielding material that is necessary for source localization reduces de-
tection efficiency. In the case of weakly emitting sources or long-standoff distances (> 10 m),
long dwell times are needed to get adequate counting statistics in the detectors. Thus, it
is a trade-off between detection efficiency and localization with passive gamma-ray imaging
systems.

More recent approaches utilize active imagers. With active imagers the detectors are
arranged in order to increase detection efficiency while maintaining localization capabilities.
In this case instead of using passive shielding material to cast a unique shadow, detectors are
used as the occluding material and the inter-detector modulation enables source localization.
Since detectors are the modulating material, active masks are lighter compared to passive
systems and can be handheld. This concept of active mask imaging has been demonstrated
using a spherical arrangement of detectors [29] and also a two-plane arrangement of detectors
[20]. In addition, active mask imaging has been implemented on a mobile platform system
[30]. While active mask imagers provide source localization without sacrificing detection
efficiency, the systems typically involve complex arrangements of the detectors and can be
expensive since detectors are the modulating material. This dissertation focuses on a new
paradigm for source localization that also enables improved detection sensitivity which is
described in the following section.

2.3.2 Source-Object Attribution

With recent advances in computer-vision-based object detection [14, 15], it now makes it
possible to perform radiological-contextual data fusion in real-time and provide automatic
associations between radiological signals and the physical objects in a scene, which enables
a new paradigm for source localization and might reduce the complexity in detector array
design.

In this work, source-object attribution is explored using panoramic video and LiDAR on
either a static contextual sensor system or a mobile detection platform. Objects are detected
in image frames or LiDAR scans using open-source object detection algorithms, and a class-
specific (e.g. pedestrians, vehicles) Kalman filter is used to convert the series of detections
into object tracks. The attribution analysis is triggered by spectroscopic alarming using a
method based on non-negative matrix factorization [31]. During the attribution analysis,
models that describe the time-dependent photopeak count-rate expected in a detector from
each trajectory are calculated and compared with the time-series photopeak data. A model
for each trajectory includes the 1/r2 profile of the trajectory (r is the distance from the
detector to the source), the angular detector response, and gamma-ray attenuation in air
and in intervening tracked objects. An estimate of goodness-of-fit is used as a discrimination
metric to perform attribution (or exclusion) between the radiological data and the model
from each trajectory. Optimized spectroscopic search is performed using the same models
from trajectories to identify the temporal segments for each trajectory that provide and
optimize the SNR, demonstrating enhanced detection sensitivity via data fusion. Sensor
readout and synchronization was handled with the Robot Operating System (ROS).

Figure 2.7 shows an example output from running the source-object attribution analysis
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pipeline for both video and LiDAR on a static system. Each process of the pipeline will be
explained in more detail in the subsequent sections for both the static and mobile system.

2.4 Object Detection

The following two sections provide a brief overview for the object detection convolutional
neural networks (CNN) and open-source software used in this work. In addition, the process
for converting 2D bounding boxes to 3D bounding boxes is discussed in Section 2.4.1. For
more detail regarding object detection CNN please refer to current object detection literature
[14, 32].

2.4.1 Video

Object detection from video frame images was performed using the open-source you only look
once (YOLO) [13] detector and the ROS implementation, YOLO ROS [33], for the static
system. In the static work, YOLOv3-tiny - a lightweight model pre-trained on the COCO
dataset [34] capable of inference times of 66 ms on the the 4 camera system was used. It
should be noted that while higher performing YOLO models exist, such as YOLOv3-608,
they cannot be run in real-time on the 4 camera system due to the additional computational
burden and limited resources.

For the mobile cases, YOLO ROS [33] was modified to handle YOLOv4-tiny [14]. YOLOv4-
tiny was pretrained the on the COCO data set and runs at an inference of 66 ms similar to
YOLOv3-tiny [34]. At the time of writing this dissertation, YOLOv4 was the most current
yolo version. Additionally, YOLOv4-tiny was not available when the static analysis was
performed.

YOLO ROS returns identification labels for the detected objects with confidence scores
and 2D bounding boxes in image coordinates (see Figure 2.7a). The distance (depth) of the
detected object to the camera is inferred by comparing the height of the 2D bounding box
to the height of a person or a car. For a person, a nominal height of 1.75 meter (m) [35] is
used and for a car, 1.43 m, which is what is considered to be an average size of a compact
car in this study, is used. Heights of 1.80 m, 0.80 m, and 2.5 m are used for labels of truck,
motorcycle, and bus, respectively. The 2D bounding boxes are mapped to 3D using

Z(depth) =
H · fx
H ′

, (2.2)

where fx is one of the camera focal length parameters and H and H ′ are the nominal height
of an object and the object height in pixels, respectively. The width in depth is given by

∆Z =
W · Z
fy

, (2.3)

where W is the width of the object in pixels and fy is a camera focal length parameter.
A separate object detection process is performed for each camera that is on the system.

The camera frames are synchronized, and the object detections from all the cameras are
collated. This is done to avoid double-counting detections that take place in regions where
the camera images overlap.
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2.4.2 LiDAR

The object detection in LiDAR point clouds was performed using the sparsely embedded
CNN detection framework SECOND [15] with the PointPillars fast feature encoding [36].
A multi-class detector model was trained on the nuScenes dataset [37] (32-beam LiDAR
spinning at 20 Hz) developed for autonomous driving research. In accordance with SECOND,
the model was trained on point clouds generated from 10 LiDAR scans to achieve higher
point density for inference. It is worth noting explicitly that because the LiDAR provides
data which is inherently three-dimensional, the object detection algorithm is able to return
3D bounding boxes, removing the need to infer the distance to the object that is necessary
in the case of video.

In the application presented here for the static system, two scans of the Ouster 64-
beam LiDAR generated sufficiently dense point clouds without significant motion blurring
from dynamic objects. The inference time using a NVIDIA Xavier GPU is sufficiently fast
(∼125 ms) to enable the object detection to keep up with the point cloud data (200 ms).
The LiDAR object detection returns labelled 3D bounding boxes with associated confidence
scores using the same ROS message format as the video results (see Figure 2.7b).

As mentioned, the mobile platform system used in this work was the LEMURS vehicle
(discussed in more detail in Section 4.1). LEMURS has two separate LiDAR, and in this case,
two scans from each LiDAR were performed to generate sufficiently dense point clouds. The
point clouds were moved from each respective LiDAR reference frame into the body-fixed
reference frame of LEMURS (hereby referred to as base link) using a Universal Robotic
Description File (URDF) file. A URDF is a file that describes the orientation of each
component of a system. Figure 2.3 displays the LiDAR and base link orientations from the
LEMURS URDF in ROS. The labels correspond with the frame IDs for each component
of the system, and base link is the body-fixed reference frame. In this case, the origin
and orientation of base link corresponds with the onboard inertial measurement unit (IMU)
sensor.

With the URDF, ROS is able to calculate a transformation matrix between any two
components in the system. ROS uses the frame IDs from each sensor to lookup the trans-
formation matrix between that sensor and the target coordinate frame. ROS provides the
transformation matrix (T) to the target coordinate frame (G) from that of sensor frame (S),
and with this information the data (x) is transformed using Eq. 2.4

[x]G = [T ]GS[x]S + [x]G. (2.4)

With the point clouds in base link, the two point clouds can be aggregated into one point
cloud when LEMURS is operated as a static system. However, when LEMURS is operated as
a mobile system, the two point clouds need to be motion corrected before they are aggregated
because they may not align in base link. To do this, the point clouds are moved from base link
into a world-fixed frame. The transformation from base link to the world-fixed frame was
found using two different methods. In the first method, the pose (position and orientation)
estimates of the LEMURS vehicle in a world-fixed frame are found by using the onboard
inertial measurement unit (IMU) sensor and running the Google Cartographer simultaneous
localization and mapping (SLAM) algorithm [38]. The other method involved using a global
positioning system (GPS) stabilized by an Inertial Navigation System (INS) (SPATIAL [39])
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data to track the pose estimates of the LEMURS vehicle in a world-fixed frame. The point
clouds are aggregated in the world-fixed frame, but when SECOND performs its voxel grid
on the aggregated point cloud it assumes the sensor is at the origin, which is base link. If
inference is performed in the world-fixed frame, SECOND will have no points to perform
detection on. Thus, the aggregated point cloud is transformed back to base link from the
world-fixed frame, and the timestamp used to map the point cloud back to base link is the
average of all the timestamps from the point cloud messages that were used to generate the
aggregated point cloud. Once in base link, inference is performed on the aggregated point
cloud for both situations where LEMURS is operated static or mobile.

Figure 2.3: URDF file for LEMURS showing only orientations of the two LiDAR, base link,
Occam camera, and NaI(Tl) bar array. Certain components were omitted from the visualiza-
tion. The orientation of each component in the system is indicated by the red (x-axis), green
(y-axis), and blue (z-axis) lines. The frame ID of each component is labeled. base link is the
body-fixed reference coordinate system of LEMURS. Only two components of the Occam
camera are labeled, but the frame IDs increase counter-clockwise from camera 0 to camera
4. The detector IDs increase clockwise from Detector 1 to Detector 6.

2.5 Object Tracking

2.5.1 Overview of Kalman Filter

This section provides an overview of the basic principles of a Kalman filter. The next section
explains how the Kalman filter is applied to track detected objects between video frames or
LiDAR scans. Refer to [2, 40] for more details.

Figure 2.4 shows the basic principles behind the Kalman filter. The first step in the
Kalman filter is the prediction step. The goal of the prediction step is to use the prior
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state information (posterior) to predict the next state (prior). This is done using a set of
linear, kinematic equations that model the expected behavior of each state variable (x) and
predicts the next state at time k given the previous state at k-1. The state transition matrix
F describes the kinematic equations for each state variable and is applied to the previous
state at k-1

xk|k−1 = Fxk−1|k−1, (2.5)

which gives the predicted next state. In Eq. 2.5, F is invariant and does not evolve with
time. The covariance matrix in the the prediction step (P ) is determined with

Pk|k−1 = FPk−1|k−1F
T +Q, (2.6)

where Q is the process noise covariance matrix. The process noise tries to account for
unknown factors that are not accounted for in the linear, kinematic model. It is assumed
the process noise is a zero-mean Gaussian distribution with a known covariance matrix Q.
Since the process noise has a zero-mean Gaussian distribution, it was omitted from Eq. 2.5.

Figure 2.4: Modified from [2]. An example showing the Kalman filter equations and how an
object’s state is updated using a sensor measurement and an estimate of the object’s state.

The update step for the Kalman filter weights the measurement z and the predicted state
using the Kalman gain K and places the updated state somewhere between the measurement
and predicted state. For example, if there is more confidence in the predicted state than the
measurement, the updated state will be closer to the predicted state, and vice versa if the
measurement has more confidence. The state is updated with

xk|k = xk|k−1 +K(zk −Hxk|k−1), (2.7)

where H is the measurement function. The measurement function is a matrix that moves
the predicted state into measurement space so the difference between the measurement and
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prediction can be calculated. This is commonly referred to as the residual. The uncertainty
in the update step is given by

Pk|k = (I −KH)Pk|k−1(I −KH)T +KRKT , (2.8)

where R is the measurement noise uncertainty, and I is the identity matrix. Similar to the
process noise, the measurement noise is assumed to be a zero-mean Gaussian distribution
with a known covariance matrix R - N (0,R).

Figure 2.5: An example of a Kalman filter. The color-coding is consistent with Figure 2.4.
The Kalman filter uses the sensor measurement and prediction to update the object’s state
over time.

Figure 2.5 shows an example of tracking an object over time using a Kalman filter and a
noisy sensor. The colors and symbols are consistent with Figure 2.4. With the initial mea-
surement, the object’s position is uncertain so an initial guess is made and high uncertainty
(P ) is placed on this prediction. As seen, the Kalman filter gives more weight to the mea-
surement in the initial measurement. With time, the state’s covariance P starts to decrease
as the Kalman filter becomes more confident in the object’s position. This is seen around 11
- 12 seconds when the sensor makes a series of noisy measurements, and the Kalman filter
gives more weight to the prediction than the measurement when updating the object’s state.
For each measurement, the Kalman filter will use the measurement and the prediction model
to determine the best estimate for the object’s state.

However, Kalman filters can be designed to have too much confidence in the prediction
model. In these cases, the Kalman filter is smug, and the Kalman filter predictions can start
to diverge from the actual measurements because more weight is consistently given to the
predicted state than the measurement. To improve the performance of the Kalman filter, Q
needs to be adjusted so the Kalman filter adapts to changes in the measurements and is not
overly confident in the predictions. A small Q results in a smug Kalman filter that is too
confident in the predicted model, but when Q is too large, the Kalman filter is slow to adapt
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to changes that occur. A value for Q is normally found through experimental data, and
iterating through different values of Q until a desired Kalman filter performance is found.
The process for determining Q in this work is explained in the following section.

An advantage of Kalman filters is the ability to estimate states that are not measured
directly through the measurement sensor. These estimated states are called hidden variables.
Both sensors, LiDAR and video, measure an object’s position (x, y, z) but neither measure
velocity (vx, vy, vz). However, position and velocity are correlated, with velocity being the
first derivative of position, and in this work, a multivariate Kalman filter was employed to
track two state vectors: position and velocity. After a few position measurements over time,
the Kalman filter can start to get a good estimate of the object’s velocity. The covariance
between position and velocity arises from FPk−1|k−1F

T +Q in Eq. 2.6. By taking advantage
of the correlation between position and velocity, it improves the Kalman filters ability to
estimate the object’s state compared to relying solely on position.

2.5.2 Tracking Video or LiDAR Detected Objects

To convert sequences of detections into object tracks, the Kalman-filter-based Simple Online
Realtime Tracking (SORT) algorithm [41] was used. SORT was extended to process both
video and LiDAR detections in three-dimensions. SORT was further modified by replacing
the method used to associate detections with the most likely corresponding track. The
conventional intersection-over-union (IOU) method was replaced with a multivariate normal
(MVN) representation of the 3-D bounding boxes and the Hellinger Distance (HD). The
underlying representation of objects in SORT is a Kalman filter which uses an MVN as its
state, so this was adopted for tracking, and MVNs are capable of accounting for variable
uncertainties in object extent and enabling tracking across multiple cameras. The HD is a
measure of similarity between two MVNs that is scaled between 0 and 1, where 0 represents
high similarity [42]. It is important to note that other data association techniques exist
such as the Mahalanobis distance. However, comparing the performance of different data
association approaches in source-object attribution is outside the scope of this dissertation.

To create the MVN representation of a 3D bounding box, the center of the bounding box
is converted to the mean of the MVN, and scaled dimensions of the bounding box populate
the covariance matrix (P ) for position uncertainty. Different scaled dimensions were used
for video and LiDAR 3D bounding boxes. Since LiDAR has a relatively high precision of
±1.5-5 cm [43], the applied position uncertainty was 20% of the bounding box in all three
dimensions. For video, the position uncertainty was 25% in the width of the bounding box,
33% in length, and 50% in depth. The largest uncertainty in the object’s position is the
depth because it is estimated using a nominal height.

Additionally, SECOND provides the heading (yaw) of bounding boxes. This information
was used to transform the off-diagonal elements of the covariance matrix. For video, no
heading information is provided and so the off-diagonal elements of the video covariance
matrix are not transformed.

In the modified SORT algorithm, as mentioned earlier, a multivariate Kalman filter was
employed to track two state vectors: position (x, y, z) and velocity (vx, vy, vz). The diagonals
of the velocity uncertainty in the covariance matrix are populated according to the detection
label. For vehicles, 4.44 m2/s2 is used and 0.28 m2/s2 for pedestrians; thus, enabling the
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Kalman filter to simultaneously track both pedestrians and vehicles. The determination of
these values is explained later in this section.

Data association between the detected objects and the most likely corresponding track
is performed using the HD. HD is calculated with the following equation

HD =

√
1− det(Σ1)1/4det(Σ2)1/4

det(Σ1+Σ2

2
)1/2

exp
(
− 1

8
(µ1 − µ2)T

(Σ1 + Σ2

2

)−1

(µ1 − µ2)
)
, (2.9)

where µ1 and µ2 represent the MVN mean for the detected object and track, respectively,
and Σ1 and Σ2 represent the MVN covariance matrix for the detected object and track,
respectively. In Eq. 2.9, Σ1 and Σ2 are 3×3 matrices that have been moved into measurement
space by

HPk|k−1H
T +R, (2.10)

which is often referred to as the system uncertainty. It is worth explicitly noting that in
Eq. 2.9 the distance metric calculation is determined in the sensor frame so µ1 and µ2 are
the center of the bounding boxes with Σ1 and Σ2 as the position covariance matrices.

Using Eq. 2.11, Eq. 2.9 is calculated for each possible detection and track pair creating a
matrix that is D × T , where D is the total number of detections present and T is the total
number of available tracks: ∑

D

∑
T

HDDT . (2.11)

To assign the detected object with its most likely corresponding track, linear assignment
(also known as the Hungarian Method) is applied to the matrix [44]. Subsequently, if a
detection and a track have a calculated HD of less than 0.8 they are consolidated to a single
track. The velocity uncertainties and HD thresholds for pedestrians and vehicles were found
by running an optimization over those variables on a scene only containing either pedestrians
or vehicles. The objective was to reduce the number of objects with disjoint tracks while
also ensuring a low number of incorrect associations by the data association algorithm.

In order to track objects across multiple cameras, the MVNs are transformed from the
image frame into either the base link or world-fixed coordinate frame prior to computation
of the HD for the static and mobile system, respectively. Additionally, the LiDAR-tracked
objects are transformed into the base link coordinate frame so all the trajectories are in one
coordinate system. The data is transformed using Eq. 2.4, and the covariance matrix (c) is
transformed by

[c]G = [T ]GS[c]S[T ]
GS
. (2.12)

With a mobile system, tracking and attribution needs to be performed in a world-fixed
frame and not the body-fixed frame of LEMURS. Objects in the scene should be invariant
to the motion of LEMURS which is not the case in a body-fixed frame. To generate pose
estimates of LEMURS in a world-fixed frame, INS or SLAM information is processed, and
pose information is produced at a rate of 10 Hz. It is thought that a system that has a
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navigational system that relies on GPS to produce pose estimates of the system’s location
in a global frame would have degraded tracking and attribution performance in an urban
environment compared to applying SLAM. Urban environments are cluttered with buildings
that can occlude or reflect signals from GPS satellites to the LEMURS system. To test this
concept, the tracking and source-object attribution performance of using SLAM or INS to
produce pose estimates of the LEMURS system in a world-fixed frame are compared in a
mock urban environment using a mobile detection system.

Additionally, higher position uncertainty is assigned to objects near the edges of the cam-
era images to improve tracking capabilities across multiple cameras. This is done because the
cameras are not perfectly calibrated and the camera parameters can vary between cameras.
Therefore, when an object passes from one camera to another, the object’s estimated position
can vary such that the calculated HD considers the new estimated position too dissimilar
to the previous position and will spawn a new track. To determine the detected object’s
position in the image, the image width and center are calculated, and the center of the 2D
bounding box in the image coordinate frame from the object detection CNN is determined.
If the center of the bounding box is more than ∼33% away from the center of the image, the
object is considered near the edge of the image, and an additional scaling factor is applied
to the position uncertainty in addition to the aforementioned scaling factors.

Figure 2.6 shows an example of applying higher position uncertainty at the edge of
images. The bounding boxes in the images are MVN representations of bounding boxes and
the extent of the bounding boxes reflect the position uncertainty. When the object is near
the edge of the image, their position uncertainty is much larger compared to when the object
was near the center of the image.

(a) (b)

Figure 2.6: Comparison of position uncertainties. While the object is near the edge of the
image (a) the position uncertainty is higher, but once the object approaches the center of the
image (b), the position uncertainty decreases. The bounding boxes are MVN representations
of bounding boxes and the extent of the bounding boxes reflects the position uncertainty.

Using the object’s label, different scaling factors are applied to pedestrians and vehicles.
For people, the position uncertainty in width, which is the direction of travel between cam-
eras, is scaled by 350%, and the uncertainty in depth is scaled 200%. For vehicles, the extent
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of the object is larger so the position uncertainty in width is scaled by 700% and depth is
scaled 200%. However, with increased uncertainty at the edges this approach does result in
more incorrect associations especially at the camera edges.

Small FOV overlaps exist between the cameras and therefore it is possible for multiple
cameras to independently detect the same object. However, once the MVNs are transformed
from the image coordinate system into the global frame, these bounding boxes will overlap.
To prevent the same object from being tracked more than once, these overlapping bounding
boxes are merged if the calculated HD is less than 0.6. This merging of bounding boxes sup-
plements the nonmax suppression being performed with YOLOv3-tiny in each independent
camera frame.

The tracker output is presented to an operator using the object’s label (e.g., person
or vehicle) and a track ID, where the track ID increases by 1 for each newly generated
track. An example is shown in Figure 2.7c and Figure 2.7d for both video and LiDAR,
respectively, using the static contextual sensor system. The bounding boxes displayed are
MVN representations of bounding boxes and will no longer match the bounding boxes output
from the object detection CNN. Also, it should be noted that an object’s orientation is not
considered so all the bounding boxes will have the same orientation.

Given the nature of the object detectors, false detections can occur so the track ID will
normally be higher than the total number of objects that have been present in the system’s
FOV. Additionally, untracked objects and detections not being assigned right away to the
correct track contribute to a higher total track ID number. To limit the number of tracked
objects, a track is discarded from the Kalman filter if the track is not associated with a
detection in 5 consecutive frames, and a new track will be spawned for the object if it is
detected again.

2.6 Modeling and Fitting Radiation Data to Trajectories

The source-object attribution process is invoked when a radiological anomaly is observed.
The presence of an anomaly is determined by the Berkeley Anomaly Detection (BAD) al-
gorithm, a spectroscopic detection algorithm based on Non-negative Matrix Factorization
(NMF) [31]. BAD provides high sensitivity detection, even in low signal-to-background
regimes and serves as a robust trigger for the source-object attribution algorithm. This algo-
rithm also provides an isotope ID which is used to define a spectral region of interest (ROI)
for the extraction of time-series count-rate data. The source-object attribution analysis is
performed on all trajectories that are within 7 seconds of the start and stop of the radio-
logical alarm in the case of a static system. When source-object attribution is performed
using a mobile platform system, trajectories within 2 seconds of the radiological alarm are
modeled and fit to the count-rate data. For more information about BAD refer to [31].

In the case of multiple detectors, BAD is run independently on each detector, and if
a radiological alarm is triggered for any detector, the attribution analysis starts for all
detectors.
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2.6.1 Generating Models based on Trajectories

The first step in the source-object attribution process is the generation of a set of models
that describe the time-dependent count-rate that would be expected to be observed were
each track to be associated with the detected anomaly. To model the expected counts in
the detector, the following approach is used. For a given discrete time step, i, the expected
number of detected events, ci, within a spectral ROI, E, from a radioactive source with
gamma-ray flux α in the presence of a constant background b can be described by

ci(E) =
ε(Ω̂, E)αe−µ(E)ri

4πr2
i

·∆ti + b , (2.13)

where ε is the effective area of the detector, ri is the distance from the detector to the source,
∆ti is a given integration time, and µ is an energy and medium dependent linear attenuation
coefficient. The effective area is a function of energy and the direction between the tracked
object’s position and the detector, Ω̂. In the current implementation, ε takes the form of a
pre-computed response matrix which is used as a look-up table based on the spectral ROI and
the direction between the object and the detector at any given time. Details of the process
through which this response matrix was generated are provided later in Section 2.6.1.1.

The total attenuation coefficient, µ, describes the combination of attenuation in air and
in occluding objects in the scene. Before this can be applied, it is necessary to determine
whether a given object track is subject to occlusion from another object. To do this, the
MVNs are converted back to 2D bounding boxes, and the IOU is calculated. If the IOU is
greater than 90%, an object in the scene is considered to be obstructing another object. To
determine which object is occluded, the distance from the system to each object is calculated
using the estimated positions from the Kalman filter and the object farthest from the system
is considered to be the one subject to occlusion. However, when objects pass within 1 m
or less of each of other, their Kalman filter estimated positions can overlap, especially using
video trajectories where depth is inferred, making it difficult to accurately determine which
object is occluded in the scene. This is a limitation of the current attenuation approach.

The total attenuation imposed by the occluding object is then determined by its size
and an estimated linear attenuation coefficient which is based on the label associated with
the object. For example, pedestrians are modeled using the average elemental composition
of a human (65% Oxygen, 18.5% Carbon, 9.5% Hydrogen, 3.2% Nitrogen, 1.5% Calcium,
1% Phosphorus) [45] while vehicles are modeled as hollow Aluminum boxes with 2 in thick
sides. In the current implementation, additional attenuation from other components of the
vehicle are not modeled and the orientation of the vehicle is not accounted for. This results
in a slight underestimate of the total attenuation in some situations.

Once the attenuation has been calculated, the size of the bounding box is subtracted
from the object’s total distance from the system, and the remaining distance to the detector
is considered to be air. This process is then repeated for each object in the image frame or
LiDAR scan. This allows the model to account for cases in which a given object is subject
to occlusion by multiple objects. It is important to note that if an object is occluded for
more than 5 frames, a new track will be spawned for the object when it is detected again.

Accounting for the effect of occlusion when computing the best-fit models improves the
source-object attribution performance by allowing tracks which would otherwise be degen-
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erate, e.g., those which overlap closely in time and space, to be distinguished. A limitation
of the current approach is that it accounts only for attenuation in tracked objects. Including
attenuation in the environment would likely improve the source-object attenuation power in
particularly complex scenes.

An additional attenuation effect that can occur is anisotropic shielding from the tracked
object. To better handle anisotropic shielding from tracked objects, the following reasonable
assumptions are made for both pedestrians and vehicles. With pedestrians, the radiological
source is assumed to be in a backpack behind the object; whereas, with a vehicle, the source
is assumed to be inside the vehicle as opposed to on top of it. In order to find how attenuation
changes as a function of angle relative to LEMURS, simulations were run using the Monte
Carlo simulator MEGAlib [46]. A pedestrian was modeled using the normal composition
of a human, and a vehicle was modeled using a 1 m thickness of Aluminum (Al) for the
hood of the vehicle and 5 cm thickness of Al for the doors. A 137Cs source was placed either
behind the pedestrian or inside the vehicle. A NaI(Tl) detector was moved in 5◦ azimuthal
increments around either object at a constant elevation in line with the source. The amount
of attenuation present at each azimuth was calculated and applied to Eq. 2.13 for a given
angle relative to LEMURS. It should be noted that the heading of each object is necessary
for this calculation and thus can only be performed with LIDAR detected objects.

2.6.1.1 Directional Response for the Static and Mobile System

For the static contextual system, the directional response matrix that describes the detector’s
energy and effective area was generated using a Geant4 simulation [47]. The matrix was
populated by modeling a 2 in. × 4 in. × 16 in. NaI(Tl) detector in air and, for each of
several discrete energies, placing a gamma-ray source at 3072 equal-area discretized pixels
on a sphere [48] at a constant distance of 10 m (R2

sim) from the detector. At each source
position, the total number of counts within the relevant ROI (Xcnts) was computed. For a
given energy and source position (i.e., direction), ε is given by

ε =
4π ·R2

sim ·Xcnts

NSimParticles

, (2.14)

where NSimParticles is the total number of particles emitted into 4π.
In order to validate these simulations, experimental measurements were made using a

137Cs source placed at several positions around the detector. The validation process is
discussed in more detail later in the dissertation (Section 3.2).

For mobile detector systems, different response functions with varying levels of fidelity
were used. The first response function was generated using MEGAlib [46], a Monte Carlo
method based on Geant4, which was modeled with a high fidelity. It should be noted the
response function was not validated with experimental measurements. The MEGAlib model
included the detectors, vehicle, operators, electronics, and mechanical supports [30]. The
response function was generated by modeling a radiological source 10 m from the detector
array center and 1.3 m off the ground, which corresponds with the center of the array in
elevation. The source was moved in 10◦ increments in azimuth around LEMURS, and at
each source position (i.e., direction), 5 × 1010 particles were simulated. Finally, to generate
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a 4π response function, the response function was cosine modulated. A detailed description
and characterization of the response function for LEMURS is given by [30].

The other response function is a lower fidelity model of LEMURS and was generated using
a zero-energy approach, which does not account for any gamma-ray physics (i.e. no scattering
and infinite attenuation), with OpenGL [49]. OpenGL enables fast generation (≈ 30 sec) of
4π response functions. The 4π response function was generated placing a gamma-ray source
at 3072 equal-area discretized pixels on a sphere. At each location, 2.25 ×106 uniformly
spaced parallel rays were randomly generated along a circular plane and simulated. The
visible surface area of each modeled surface at a given source location is determined by
assigning a unique 8-b red value to each surface and histogramming the pixels by color. The
generation of the OpenGL response functions are described in more detail in Section 4.5.

Finally, an isotropic directional response was generated by assigning the same detector
response for all of the 3072 equal-area discretized pixels on a sphere, and this is the lowest
fidelity model.

2.6.2 Fitting Models to Radiation Data

The best-fit model for each trajectory is found by extracting the time-series ROI count-rate
in a time window around the radiological alarm, and maximizing the Poisson likelihood
between Eq. 2.13 and the observed count-rate data with a maximum likelihood estimation
algorithm [50], where α and b are free parameters. An overview of the maximum likelihood
estimation algorithm is provided in the following section.

For the example in Figure 2.7, the images in panels Figure 2.7e and Figure 2.7f show the
best-fit models for the tracks extracted from the video and LiDAR data, respectively, along
with the measured count-rate. It is seen that the simple physics equation in Eq. 2.13 is quite
effective at modeling the count-rate data from the detector because a clear association exists
between the best-fit model for the object responsible for the radiological alarm (Track 5 in
Figure 2.7e and Track 5 in Figure 2.7f) and the radiological data.

When modeling and fitting trajectories to multiple detectors, the radiation data is con-
catenated to a single array, and models for each detector for a given trajectory are generated
and also concatenated to a single array. A global best-fit model is found by fitting the
modeled trajectory array to the radiation data array.

2.6.3 Maximum Likelihood Estimation Maximization

The objective of Maximum Likelihood Estimation Maximization (ML-EM) is to find an
estimated source distribution that best fits the measured radiological data. ML-EM is an
iterative algorithm that converges to a solution, and it enforces that the estimated source
distribution counts are non-negative. The following explanation gives an overview of the
ML-EM algorithm.

To find the modeled time-dependent count-rate expected in the detector from each tra-
jectory in Eq. 2.13, an initial estimate of the source distribution λ at a point in time i and
iteration number n is made. The estimated source distribution is moved into detector-space
by the system matrix A for each voxel k:
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K∑
k=1

Aklλk. (2.15)

The result from Eq. 2.15 is compared with the measured counts g indicating how the initial
source distribution estimate should be updated for the next iteration:

gi∑K
k=1 Ajkλk

. (2.16)

This value is projected back into the imaging space by A for each detector j and is sensitivity
corrected. Finally, the initial estimate is updated. The full ML-EM equation is given by

λn+1
i =

λni∑J
j=1Aji

J∑
j=1

( giAji∑K
k=1 Ajkλk

)
. (2.17)

The first iteration of ML-EM is a back-projection, and the choice of iteration number is
arbitrary. Typically, the ML-EM iteration number is determined through several experiments
with known outcomes. In this work, 100 iterations was chosen for fitting modeled data to
experimental data.

2.7 Binomial Down-sampling Spectra

Most of the alarm encounters considered in this dissertation involve a 1.87 mCi 137Cs source
and close proximity between the source and radiation detector(s). This results in high count
rates in the detector(s) even for transient alarm encounters. In order to better study weakly
emitting sources, which is a goal in radiological source search, binomial down-sampling of
the spectra was used. The counts in each spectrum are binomial sampled with a probability
of acceptance which is the desired fraction of the original spectrum. This results in fewer
counts in the new spectrum and preserves Poisson statistics.

For a given alarm encounter, the radiological data is a combination of source (S) and
background (B) resulting in a total number of events E = S+B. To extract the source contri-
bution during the alarm encounter, an estimation of the background contribution is needed.
The estimated background contribution was found by averaging spectra over 10 second time
windows 20 seconds before and after the alarm encounter. This estimated background con-
tribution spectrum (BE) was then Poisson sampled over time. Subsequently, the estimated
source contribution (SE) in a spectrum is found by SE = E −BE, and the estimated source
contribution was binomial down-sampled (Sd). Thus, the background contribution during
the alarm encounter is preserved. Finally, the down-sampled source contribution is added
back to the spectrum Ed = Sd +BE.

2.8 Attributing Trajectories to Radiological Data

The final step of the attribution analysis identifies the trajectories that are unlikely to be
associated with a radiological alarm through the use of an estimated goodness-of-fit metric.
The Poisson deviance or log-likelihood ratio statistic [51] was selected as the appropriate
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statistic for estimating goodness-of-fit. Its distribution is approximated by using the best-
fit model to estimate its first three moments and adjusting the moments according to the
number of model parameters (e.g., the mean is decreased by 1 for every model parameter). A
shifted Gamma distribution that matches these moments was then used to calculate a p-value
from the deviance statistic given this distribution. Finally, an S-value [52] was calculated
from the p-value and used hereafter. The S-value is the -log2 of the p-value, and it enables
rejection of trajectories that are inconsistent with the data.

In the case of multiple detectors, an overall global goodness-of-fit metric is calculated
from fitting the modeled trajectory array to the radiation data array.

The computation assumes that the source is located at the Kalman filter position esti-
mate. If the source is not located at this position, such as in the case of a source located
in the trunk of a vehicle when the position estimate is at the center of the vehicle, then
an offset between the best-fit model and the photopeak count-rate could occur. To account
for this potential offset between the assumed and true source location, the best-fit model
is calculated multiple times over a two second window while the track is shifted in 0.1 sec-
ond increments. The Poisson S-value is computed each time and the lowest value is used
to determine the best fit. It should be noted that this only accounts for source offsets in
the direction of travel, but does not account for potential source offsets in the other two
dimensions that could exist.

With the attribution analysis, there are cases when an object is not tracked continuously
during the radiological alarm. In these cases, tracks before or after the alarm are associated
mostly with flat background, which, with α set to zero in Eq. 2.13, can always be well
described by the model, and thus cannot be excluded from the analysis. To determine
whether the best-fit model is responsible for the radiological alarm or if it is fit to background,
a likelihood ratio test is performed between a background only model - α set to zero in
Eq. 2.13 - and a source plus background model. The preferred model to describe the best-fit
model, either a background only model or source plus background model, is selected using
the Bayesian Information Criterion (BIC) [53]. The BIC is given by

BIC = log(n)k + 2`(x|λ), (2.18)

where k is the estimated number of parameters in the model, n is the length of the modeled
fit, and `(x|λ) is the negative log-likelihood of observing the counts within a spectral ROI x
given the expected number of events within a spectral ROI λ. In this case, λ is the best-fit
model for a trajectory and x is the count-rate over the span of the trajectory. The negative
log-likelihood is determined by

`(x|λ) = [λ− x� logλ+ log[Γ(x + 1)]]T · 1, (2.19)

where � denotes element-wise multiplication and Γ(·) is the gamma function.
It is determined whether the source term is merited by setting k = 1 or k = 2 in Eq. 2.18

for the background only model and the source plus background model, respectively. The
model with the lower BIC better describes the best-fit model. In the cases where the source
term is not merited and the best-fit model is consistent with a background only model, the
best-fit model is flagged as background, and thus that track most likely is not responsible
for the radiological alarm.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: Example showing the object detection, tracking, and attribution pipeline for
both video [(a), (c), and (e)] and LiDAR [(b), (d), and (f)]. In the scene, two individuals are
walking in a straight line past the detector at a standoff of 5 m at closest approach, and one
of the individuals is carrying a 189 µCi 137Cs source. The bounding boxes shown in (a) and
(b) are the object detection CNN outputs for video and LiDAR, respectively, with the object
label and confidence score. In (b) ”ped/cyc” refers to pedestrians or cyclists. The LiDAR
CNN groups both labels into the same category. The bounding boxes displayed in (c) and
(d) are the object tracking outputs, and the bounding boxes are MVNs converted back to
bounding boxes and will not match the bounding boxes in (a) and (b). In (d) the object’s
trajectory up to that point is indicated by the line proceeding each respective bounding box.
In (b) and (d) the white grid squares represent 1m2, and the area of no points exist from
the field of view of the LiDAR. In (e) and (f) the best-fit models for each trajectory from
(c) and (d), respectively, to the count-rate data are displayed. In both (c) and (d), Track 5
was carrying the 137Cs source. The pink bars represent the time interval for a radiological
alarm, and the count-rate from the 2 in.× 4 in.× 16 in. NaI(Tl) detector is shown in black.
Additionally, the dashed lines in (e) and (f) depict the moment in time these images were
taken from.
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2.9 Additive Track Source Localization

The formulation of the source-object attribution analysis mentioned in Section 2.6.1 assumes
a single point source and does not account for multiple radiological sources of the same type.
Recent work from [23, 22] demonstrates a mathematical framework for additive point source
localization (APSL) that could be applied to scenarios where multiple trajectories in a scene
are carrying the same source type. In [23, 22], a continuous 5D space consisting of source
weights ws, source background b, and position (~rs (x, y, and z)) is searched over to minimize
the loss of Eq. 2.19. The source position is optimized over continuous space using a non-
convex optimizer, and ML-EM is run at each trial source position for the optimal ws and
b. Additionally, the additive nature of Poisson random variables allows the inclusion of
multiple, known source contributions into the formulation of the problem.

With tracking information, ~rs is constrained to the track location so the space that needs
to be optimized over is ws and b. In this case, a track is modeled and fit to the radiation
data, and the negative log-likelihood is calculated both for the modeled fit and background
only. If the calculated BIC value is lower for the modeled fit then the background only, the
track is accepted. Subsequently, the ws for the track is fixed and another track is added.
The new track is fit to the radiation data given the fixed source weight of the first track.
Using Eq. 2.18, the BIC is calculated with the addition of the new track. BIC penalizes
the addition of new trajectories by setting k = N + 1 in Eq. 2.18 where N is the number
of parameters estimated by the model (source intensity and background). If the BIC for a
two-track-fit is lower than the single track, the new source is accepted. The algorithm then
performs a check to determine whether one of the trajectories is weakly contributing or low
intensity. The trajectory is excluded from the analysis if this is the case. Finally, if a new
track was accepted as being responsible for the radiological signal, the source weights for
each trajectory are re-optimized. This process is continued for the number of trajectories
present.

If more than one track describes the data, all the tracks that best describe the data are
flagged, and the source-object attribution for those tracks is performed using the summed
fit from all the contributing trajectories. Thus, all the trajectories that describe the data
will have the same S-value score.

2.10 Track-informed Signal-to-Noise Ratio Optimization to Im-
prove Detection Sensitivity

With knowledge of an object’s trajectory, it is possible to identify a combination of time-
segments that, when combined, maximize the expected signal-to-noise ratio (SNR) for spec-
tral analysis of that object. For this analysis the SNR for a trajectory is considered, present
across N discrete time windows, as,

SNR = (
N∑
i

si∆ti)(
N∑
i

bi∆ti)
−1/2 (2.20)

where si = ε(θ, E)αe−µ(E)ri/(4πr2
i ) is the photopeak count-rate within a fixed integration

window ∆t at a point in time i, and bi is the background rate within ∆ti. From this
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equation it can be seen that SNR may be maximized by considering only a subset of time-
segments (T ∈ [1, N ]). Since the radiological sources of interest are long-lived (i.e., half-lives
on the order of hours or greater), the source strength is considered constant. The mean
background rate is also considered constant in time. With these assumptions, the sensitivity
($T ) which is proportional to the SNRT is described by

SNRT ∝ $T =

∑
i∈T

ε(Ω̂, E)∆ti
4πr2

i

e−µ(E)ri

√∑
i∈T

∆ti

. (2.21)

Eq. 2.21 may then be used to solve for the subset of measurements T , that maximizes $
and, in turn, maximizes SNR for the trajectory in question. Two observations about this
formulation are noted. First, the optimal time windows do not need to be contiguous.
Second, under the assumption of constant source strength and background, the optimal
integration windows are independent of source strength and background and are entirely
determined using tracking information.

To account for the position uncertainties of each track in the optimal integration window
formulation, Markov Chain Monte Carlo (MCMC) [54] was applied to the data to appro-
priately sample from the position uncertainties to better determine the optimal integration
window. MCMC is a method that draws samples directly from the posterior probability den-
sity function (PDF) distribution [55]. MCMC does this by creating M walkers that explore
the parameter space and generate models of the data at each position. The walker vector is
defined by

θi =

xiyi
zi

 , (2.22)

where θi is the position at a discrete time step i for a given trajectory. The priors for each
walker are the position uncertainty in xi, yi, and zi around each respective mean value. The
θi parameters are modeled to the count-rate data using Eq. 2.13, and source activity α and
background are extracted from the best-fit model for the track.

The initial guess for θi is the best-fit model for the track. A total of 400 iterations with
600 walkers are run. However, the first 100 iterations are discarded because the walkers
start close to the initial guess before fully exploring the parameter space. This results in
180,000 samples. The optimal integration window is calculated for a subset of the 180,000
samples along with the negative log-likelihood using Eq. 2.19. The model that produces the
largest integration window but lowest negative log-likelihood within the subset is chosen as
the optimal window.

The formulation in Eq. 2.21 is for a single radiation detector; however, it can easily be
extended to account for multiple detectors. With multiple detectors, the model from each
detector along with the detector ID associated with the model are concatenated together.
The subset of measurements T , that maximizes $, is calculated using the concatenated
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data, and the signal from each detectors respective optimal window is combined together to
produce an optimal spectrum.

In addition, track uncertainty can be accounted for with multiple detectors. A random
subset of samples is chosen from the 180,000 samples. The optimal integration window
for each detector is summed together to produce an overall integration window. Similar to
above, the largest summed integration window with the lowest negative log-likelihood within
the subset is chosen as the optimal window.

To test the optimal integration window concept for either a single or multiple radiation
detectors, a spectroscopic analysis to either fixed integration windows (1.0, 2.0, 3.0, 4.0,
and 5.0 seconds), a common analysis approach, or to each trajectory’s optimized integration
window is applied. The spectroscopic analysis computes an anomaly value, the Poisson
deviance between the observed data and a mean background spectrum scaled to match
the observed counts. Subsequently, the magnitude of the anomaly value for the different
integration windows are compared, a larger anomaly value for the optimized integration
window suggests improved detection sensitivity through this track-informed analysis. This
comparison is presented as a proof-of-concept, and it should be noted that quantitative
evaluation of increased detection sensitivity would require appropriate handling of anomaly
thresholds, which must vary with the number of statistical tests performed to maintain a
fixed False Alarm Rate (FAR). Such a quantitative analysis would, in turn, require definition
of strategies for when to used fixed integration windows (because tracking is not perfect)
and when to use track-optimized windows.
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Chapter 3

Static system: Contextual Sensor
Package

In the following sections (Section 3.3 – Section 3.6), the methods for object detection, track-
ing, and attribution on a static system, previously described, are demonstrated. First, the
static system is described in Section 3.1, and in Section 3.2 the generation of the effective
area for the NaI(Tl) detector is detailed. Then the ability of the attribution analysis to dis-
criminate degenerate tracks is evaluated by determining the minimum separation between
two tracks (in the worst case scenario of identical time of closest approach and velocity) re-
quired to allow correct identification of the trajectory associated with the radiological alarm
(Section 3.3). Subsequently, the performance of the source-object attribution analysis is
demonstrated in a mock urban environment (Section 3.4). Using this experimental data, the
potential for tracking-enhanced detection sensitivity is demonstrated in Section 3.5 by show-
ing spectroscopic anomaly values can be increased using track-informed integration windows.
Finally, in Section 3.6 using synthetic data multiple radiological sources of the same type
are simulated in a scene and source-object attribution is performed.

3.1 Static system: Contextual Sensor Package

The source-object attribution analysis analysis pipeline was implemented on a custom de-
veloped platform which is shown in Figure 3.1. This system includes an Ouster 64-beam
LiDAR unit [43] and four AR1335 monocular cameras [56] arranged to provide a 360-degree
panoramic view around the system. A NVIDIA Jetson AGX Xavier computing platform
with 512-core Volta GPU [57] is used to readout the camera and LiDAR sensor and per-
form on-board data processing. The system is designed as a standalone contextual sensor
package (CSP) and can be used to augment a range of radiation detectors. In this work,
a 2 in. × 4 in. × 16 in. NaI(Tl) gamma-ray detector was co-located with the system. The
detector was instrumented with an Ortec DigiBASE [58] multi-channel analyzer and config-
ured to publish gamma-ray spectra at 20 Hz. The system was powered by a 296 Watt-hour
(24 V) battery. Sensor readout and synchronization was handled with ROS [59].
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Figure 3.1: Object detection, tracking, and source-object attribution system. The system
consists of an Ouster 64-beam LiDAR that is mounted above 4 AR1335 monocular cameras
to provide a full panoramic field of view. A NVIDIA Xavier is located in the base of the
setup for on-board processing. The system is powered by a 296 Watt-hour (24V) battery.

3.2 Geant4 Modeling and Benchmarking of Directional Response

A directional response matrix describes the expected detector response and efficiency to a
particular radiological source from a given location. This information was found by modeling
different radiological sources at different source locations around the NaI(Tl) detector in air
using Geant4. The simulated responses were generated for photon energies at 122 keV
(57Co), 662 keV (137Cs), 1173 keV (60Co), and 1332 keV (60Co). For each photon energy,
the source was placed a constant 182 cm from the edge of the NaI(Tl) detector and 3072
different source locations around the NaI(Tl) detector were modeled. At each source location,
1,000,000 gamma-rays were simulated using a directional cone-beam directed at the NaI(Tl)
detector to increase the efficiency of the simulations. The number of gamma-rays that would
have been emitted isotropically into 4π was found by determining the fraction the cone
subtends of the 182 cm source distance sphere.

The simulations were validated using the experimental setup shown in Figure 3.2. A
10µCi 137Cs source was placed 182 cm from the detector edge and was elevated to be 20 cm
above the benchtop. The NaI(Tl) detector was then rotated along its azimuth from the
4 in. × 16 in. detector-face side (0◦) to the 2 in. × 16 in. detector-face side (90◦) in 30◦

increments. At each source location data was taken for 5 minutes. The measurements (i.e.,
rotating the detector from 0◦ to 90◦) were repeated multiple times to account for variations in
moving the NaI(Tl) detector. Before and after the measurements, 30 minutes of background
data was collected.

An experimental and simulated spectrum generated from when the source was in front
of the 2 in. × 16 in. side of the detector for 137Cs is shown in Figure 3.3a. The experimental
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Figure 3.2: Experimental setup of a NaI(Tl) bar and 137Cs source to find the photopeak
efficiency of the detector at different source angles.

spectrum is background-subtracted using the 30 minutes of background data collected and
is normalized by the emission rate of the radiological source. The simulated spectrum is also
normalized by emission rate and was re-sampled using a normal distribution to agree with
the experimental data. For a given energy location, the mean of the normal distribution was
the energy, and the standard deviation at that particular energy was found from an energy
resolution model that was generated from performing the experimental measurements with
57Co, 137Cs, and 60Co. It is seen there is good agreement between the two spectrum; however,
there is a discrepancy in the the magnitude of the photopeak between the simulated and
experimental spectrum.

In order to benchmark the simulations and experiments, the photopeak efficiency was
compared. The photopeak efficiency was found by fitting a Gaussian model to the photopeak
and using the area of the fit. Figure 3.3b shows an example of fitting a Gaussian model to
the simulated photopeak. In addition to the Gaussian model, a line is fit to the photopeak to
remove excess background from the photopeak. This is more applicable for the experimental
data.

The results of the photopeak efficiency between the experimental and simulated data for
the different source locations is shown in Figure 3.4. There is agreement between the exper-
imental data at each source location. However, there is a discrepancy between the Geant4
simulations and experiments. To ensure the discrepancy was not due to a modeling error,
the simulations were repeated using MEGAlib. Both the Geant4 and MEGAlib simulations
are within a two standard deviation statistical agreement indicating the discrepancy is not
a modeling error. Understanding the discrepancy between the experimental and simulated
photopeak efficiency is outside the scope of this dissertation, but surface roughening by the
crystal manufacturer is believed to be the cause of the issue. Curtis et al. [30] provides a
more detailed explanation. In order to get the experimental and simulated data to agree, an
energy dependent correction factor was applied to each directional response to account for
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(a) (b)

Figure 3.3: Comparing an experimental (blue) and simulated (red) spectrum both generated
with a NaI(Tl) detector and a 137Cs oriented in the middle of the 2 in. /times 16 in. side
of the detector shown in (a). The spectra are normalized to the emission rate of the 137Cs
source, and the experimental spectrum is background subtracted. In (b), a Gaussian model
plus a line model was used to fit the photopeak of the simulated 137Cs source.

the offsets.

Figure 3.4: Comparison of photopeak efficiencey between experimental measurements (Di-
gibase and analog) and simulation (Geant4 and MEGAlib). The experimental data is within
statistical variation at all source angles, and the simulated data is within statistical varia-
tion at all source angles except for at 60◦. The photopeak efficiency is within two standard
deviations at this particular location but not when experiment and simulation are compared.
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3.3 Track Discrimination in Source-Object Attribution

Most encounters with a radioactive source traveling along a straight trajectory will result
in count-rate distributions as a function of time that mimic 1/r2, the falloff of detection
efficiency with the square of the source distance from the system, and will exhibit the highest
count-rate at closest approach. The worst case situation from an attribution perspective
are two objects traveling at identical speeds and reaching the closest approach distance
simultaneously. However, even slight variations in closest approach distance and the angular
sensitivity of the detector prevent full degeneracy.

To judge the performance of the attribution pipeline in this type of scenario, a systematic
study was performed using a 189 µCi (6.993 MBq) 137Cs source to determine the distance
needed between two nearly degenerate tracks to correctly identify the trajectory associated
with the radiological alarm. In this analysis occlusion/attenuation from objects was not
present/considered because the trajectories for this study were created by a single person
walking in front of the system (Figure 3.5). Radiation data and object trajectories were
collected from 3-8 m distance of closest approach in 1 m increments. For each source distance,
the 137Cs source was walked past the system at a walking speed of approximately 0.30 m/s,
and at each distance, the person carrying the source walked in front of the system 8 times.
This analysis was done by using the photopeak ROI (614 keV - 685 keV) for 137Cs.

Figure 3.5: A person walking 5 m at closest approach in front of the static contextual system
carrying a 137Cs source.

The radiation data and trajectory from the 5 m source distance at closest approach were
chosen as reference. The trajectory at 5 m was replaced with the trajectories from 3, 4, 6,
7, and 8 m to determine how well these trajectories would correlate with the radiological
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data produced by the 5 m trajectory. The peak count-rate from each trajectory was aligned
temporally with the radiation data at 5 m to ensure the trajectories were compared in the
most degenerate scenario. Figure 3.6 shows an example of fitting a trajectory 3 m at closest
approach to radiation data generated from a source passing by the detector at 5 m at closest
approach. Track 1 was generated using LiDAR. The peak is aligned temporally with the
radiation data and there is some correlation between the best-fit model for Track 1 and the
count-rate data. However, comparing the best-fit model with a 5 m best-fit model (Track 5
[source carrier] in Figure 2.7f), there is reduced quality in the best-fit model for Track 1
indicated by a S-value of 21.8 compared to 3.59 for 5 m.

Figure 3.6: A trajectory at 3 m aligned temporally and fit to radiation data generated from
a source passing by the detector at 5 m closest approach.

To supplement the limited statistics of these measurements, synthetic count-rate data
and trajectories were generated. At each distance from the system, the mean and standard
deviation of the position uncertainty for each trajectory was calculated as a function of both
distance and angle from the system. These experimentally measured position uncertainties
were used to noise simulated trajectories. Count-rate data were sampled according to Poisson
statistics from the expected number of detected events calculated through Eq. 2.13. 1000
trials of this random sampling process were then subjected to the same analysis as the
experimental data.

The Poisson S-values from analysis of these experiments, comparing 5 m count-rate data
with different trajectories, are shown in Figure 3.7. The results show the experimental
trajectories from video and LiDAR are both within one standard deviation of each other
and their synthetic trials.

S-value thresholds, 11.75 for video and 5.25 for LiDAR, were defined based on a 95% true
positive rate for 5 m synthetic trajectories with the 5 m synthetic count-rate data. Under
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these criteria, degeneracy is successfully broken 45% (58%) of the time for video (LiDAR)
trajectories with 1 m difference from the true trajectory. When there is a 2 m separation,
degeneracy is successfully broken 99% (99%) of the time for video (LiDAR) trajectories.
These results demonstrate the ability of an object tracking and alarm attribution analysis,
using either video or LiDAR, to be quite robust against track degeneracy within 2 m for a
5 m distance of closest approach.

Figure 3.7: Discrimination of orthogonal trajectories in the alarm attribution analysis relative
to 5 m with both LiDAR and video trajectories. The simulated data represents synthetic
trajectories and count-rate data that was randomly sampled for 1000 trials and subjected to
the same analysis as the experimental data. The large uncertainties in the synthetic trials
reflects the sensitivity of the goodness-of-fit metric. The exclusion metric is the S-value.

An additional phenomena that modulates the radiological signal is attenuation, and in
dynamic scenes one would expect objects occluding a particular object to also attenuate a
radiological signal associated with that object. This could help to break the degeneracy in
tracks, particularly, when two objects cross in front of the detector system. Synthetic data
were used to study how occlusion, in conjunction with 3D object tracking, might further
improve attribution in scenarios where degenerate tracks are present.

For this analysis, two objects with similar stand-off distances and walking velocities were
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considered, such that the two objects crossed paths at the distance of closest approach.
Figure 3.8 demonstrates the experimental setup this analysis is capturing with synthetic
trajectories. Two sets of trials were performed to test how occlusion might further improve
attribution. In the first set of trials, the source-carrier was 5 m from the system at closest
approach, and the non-source-carrier was either 6 m or 7 m from the system. For the second
set, the source-carrier was again 5 m from the system at closest approach while the non-
source-carrier was either 3 m or 4 m from the system. To simulate two objects crossing
paths, synthetic detections were generated, and random noise based on the derived track
uncertainties from LiDAR or videos was applied. The detections were then fed into the
MVN SORT algorithm to create tracks. This procedure accounts for the data association
algorithm potentially switching track IDs when the two objects cross paths. The count-rate
data was simulated based on the object at 5 m using the same approach as outlined in the
previous section. 1000 trials were simulated for each case within each trial scenario.

Figure 3.8: An example of two trajectories walking degenerate paths and crossing in the
middle of the scene. Synthetic trajectories were created to replicate the experimental setup
shown in this figure.

The attribution analysis was again applied to this synthetic data, with the inclusion of an
attenuation factor in the response calculation. The applied attenuation factor accounted for
either air or people. The attenuation factor for people was applied for portions of trajectories
where objects were being tracked but occlusion was occurring. In the first set of trials,
using the S-value thresholds of 11.75 (5.25) for video (LiDAR), degeneracy was considered
successfully broken if the source-carrier at 5 m had a S-value score below the S-value threshold
while the other trajectory at 6 m or 7 m was above the same threshold amount. The results of
this analysis show that when the two objects are separated by 1 m, degeneracy is successfully
broken 39% (69%) of the time for synthetic data with track uncertainties derived from video
(LiDAR). When the distance between the two objects is 2 m, degeneracy is broken 82% (96%)
of the time for video (LiDAR). For the second case when the source was occluded by the
non-source-carrier, the results show when the two objects are separated by 1 m, degeneracy
is successfully broken 33% (63%) of the time for synthetic data with track uncertainties
derived from video (LiDAR). With a separation of 2 m between the two objects, degeneracy
is broken 74% (84%) of the time for video (LiDAR).
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In theory, by accounting for the effect of occlusion in the attribution analysis, the ability
to break degeneracy should increase. However, here it is observed that the results are
only better for LiDAR at 1 m separation in both cases where the source was and was
not occluded. In the other cases, by including MVN tracking through SORT, the position
uncertainties sometimes lead to wrong data associations or disjoint tracks, which negates the
gains from occlusion and results in worse performance. Additionally, when the source-carrier
was occluded, the ability to break degeneracy is diminished compared with the results where
the source-carrier was not occluded. In this scenario, the best-fit model underestimated the
amount of attenuation present in some of the trials resulting in a S-value that was higher
than the threshold.

While the results, including attenuation, are not better compared to the earlier results,
they provide a more realistic picture of crossing scenarios, where often, it is challenging
to track through an occlusion without losing or misidentifying the two tracks, relying on
only HD as a metric. Without this problem, occlusion should be an effective tool to deal
with track degeneracy. This topic was going to be explored in greater detail but due to the
pandemic caused by COVID-19, two people could not get close enough to truly disentangle
the two effects of attenuation and tracking through temporary occlusions.

3.4 Source-Object Attribution in a Mock Urban Environment

To evaluate the system’s source attribution performance for encounters with multiple ve-
hicles and pedestrians simultaneously, data was collected at the University of California’s
Richmond Field Station (RFS) in a mock urban environment. The contextual system, co-
located with the detector, were placed at one corner of an intersection containing traffic lights
and crosswalks (Figure 3.9). The detector was oriented vertically with the 4 in. × 16 in.
face towards the center of the intersection. Long-dwell measurements, spanning ∼30 min-
utes, were performed with dynamic pedestrian and vehicle traffic with vehicle speeds ranging
from 0-9 m/s. During data collection a 1.87 mCi (69.19 MBq) 137Cs source was placed in
the trunk of a vehicle (white station wagon) and was shielded by 1.5 cm of lead reducing the
activity of the 137Cs source to 318 µCi (11.78 MBq). The following analyses are associated
with individual source encounters triggered by the spectroscopic alarm.

An example of a single alarm encounter, showing multi-camera object tracking and at-
tribution analysis results, is shown in Figure 3.10. The colors used for each trajectory are
consistent across the sub-figures. Figure 3.10a shows images from the four cameras (at dif-
ferent times throughout the alarm encounter), overlaid with the 3D bounding boxes of the
labeled object trajectories, illustrating the consistent tracking of the white vehicle through
the encounter. A top-down view of the object trajectories during this encounter are shown
in Figure 3.10b, with the FOV of the cameras also shown. The estimated track positions
have large variations especially for objects more than 10 m away from the system. Both
Track 5 and Track 19 have particularly large variations at an X position of 10-20 m and a
Y position of 5-10 m. These tracks were stationary vehicles at the beginning of the alarm
encounter. However, the noise in the trajectories is expected given the heuristic approach to
depth estimation used for visual tracking.

The best-fit results from the attribution analysis and the conclusion of the encounter are
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Figure 3.9: The contextual system, co-located with a NaI(Tl) detector, at the corner of an
intersection at the University of California’s Richmond Field Station (RFS).

shown in the top plot of Figure 3.10c. The majority of tracks are clearly excluded as having
an association with the alarm, but three tracks (Track 7 (white vehicle), Track 20 (pedestrian
in the background of Figure 3.10a image B), and Track 5 (black car)) show consistency with
the radiological signals. Of these, the source-carrier (Track 7) is tracked for an extended
period of time, while the other trajectories were not continuously tracked throughout the
alarm encounter and cannot be excluded.

The temporal evolution of the attribution analysis scores (S-values) are shown in the
bottom plot of Figure 3.10c. Short trajectories often have little modulation of 1/r2 and are
thus likely to result in a model that fits the radiological data. Furthermore, before and after
the alarm window, tracks are associated mostly with flat background, which, with α set
to zero in Eq. 2.13, can always be well described by the model. However, continuous and
consistent tracking of objects throughout an alarm encounter allows for effective attribution
(or exclusion).

In this encounter, it is seen that the total number of objects present (6) does not corre-
spond with the total track ID number, which is 20 by the end of the alarm encounter. This
is caused from both a high number of untracked objects and detections not being assigned
right away to the correct track. Short trajectories, which is defined in this dissertation as 5
or less Kalman filter poses, are more easily fit to the count-rate data and therefore, cannot be
excluded from the analysis. In an effort to reduce false positives in the attribution analysis,
the attribution analysis is only performed on tracks that have 3 or more Kalman filter poses.

In Figure 3.11a the results from the same source-encounter, but now using LiDAR track-
ing are shown. The color-coding of the tracked objects (but not their labels) has been kept
consistent with Figure 3.10. The accurate depth estimates from the LiDAR result in sub-
stantially smoother object trajectories. In addition, it is seen again that the track ID’s are
higher than the total number of objects present in the scene, and this is due to false detec-
tions from the object detection CNN and detections not being assigned right away to the
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(a)

(b) (c)

Figure 3.10: Source-object attribution in a mock urban scene with both pedestrians and
vehicles using camera data. The progression of the scene as the vehicle - Track 7 (the white
station wagon) - carrying the radiological source moves past the system is shown in (a).
The associated trajectories for each object in the scene with each camera’s FOV overlaid on
top of it is displayed in (b), and the different letters correspond with (a). In (b), Track 20
corresponds with the pedestrian in the background of (a) image B. Track 5 and Track 18
are examples of disjoint tracks, and both tracks correspond with the black car in (a) image
C. The black car is not tracked continuously through the occlusion temporarily caused by
Track 3. The top plot in (c) is the associated best-fit models of each object in the scene to
the ROI count-rate data from the 2 in. × 4 in. × 16 in. NaI(Tl) detector, which is shown
in black, and the dashed lines correspond with (a) starting with the upper left image, then
upper right image, then lower left image, and finally the lower right image. The * indicates
the source-carrier, and the † indicates the tracks were generated by the same object. The
bottom plot in (c) displays the exclusion metric as a function of time for each trajectory.

correct track.
Furthermore, the LiDAR object detector is more robust at detecting objects further away

from the system and tracking through temporary occlusions compared to the visual object
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detector. In particular, Track 8 was continuously detected and tracked throughout the scene
with the LiDAR; whereas, the same pedestrian using video data (Track 20, the pedestrian
from the background of Figure 3.10a image B) was not continuously detected or tracked.
Additionally, Track 44 was tracked through a temporary occlusion from Track 3 driving
straight, but with the video-based trajectories, this same object (Track 5 and Track 18 which
are both associated with the black car from Figure 3.10a image C) has disjoint tracks from
the temporary occlusion. The improved tracking from LiDAR allowed both this pedestrian
and vehicle to be rejected as source-carriers, which was not the case in video. As seen
in Figure 3.11b, by continuously tracking objects, the source-object attribution analysis is
able to take advantage of the full dynamics in the scene to exclude trajectories that do not
correlate with the count-rate data.

In this scenario, the best-fit model (Track 50 - white station wagon from Figure 3.10a)
clearly follows the count-rate data observed in the detector. This attribution is correct as the
137Cs source was located in the trunk of Track 50. The time-dependence of the source-object
attribution metric is shown in Figure 3.11c. The continuous tracking of object through
LiDAR allows rapid exclusion of all tracks except Track 50 by the time of closest approach
(38 sec).

Though there is a clear correlation for both Track 7 and Track 50 in video and LiDAR,
respectively, the S-values are larger than the statistically motivated thresholds for association
defined in Sec. 3.3. This result is most likely driven by using a simple physics model within a
scenario that contains anisotropic shielding/attenuation, which is not included in the model.

Figure 3.12 shows the results from all of the alarm encounters at RFS for both video and
LiDAR. The exclusion metric for both video and LiDAR show large variability between trials
mainly due to the use of the simple physics model. Nonetheless, with LiDAR trajectories, the
source-carrier was still assigned the lowest S-value score in 21 out of 26 alarm encounters.
In the 5 encounters where the source-carrier could potentially be excluded as the object
responsible for the radiological alarm, there is a clear correlation between the count-rate
data and the best-fit model for the source-carrier, and an operator monitoring the system
in real-time would be able to sift through the trajectories present to identify the most likely
trajectory for alarm adjudication.

Using video trajectories, the results show a large number of tracks that have 5 or fewer
poses in a majority of the alarm encounters. These short tracks are caused by YOLOv3-
tiny’s inability to consistently detect objects, especially pedestrians, more than about 10 m
from the system. This results in short trajectories that are more easily fit to the count-rate
data and therefore, cannot be excluded from the analysis. In addition, inconsistent tracking
allows tracks to only associate mostly with flat background, which will be well described by
the model since α will be set to zero in Eq. 2.13; thus, preventing these tracks from being
excluded from the analysis. However, in 16 out of the 26 alarm encounters an operator
monitoring the system would be able to correctly identify the trajectory responsible for the
radiological alarm. In these 16 cases, there was a clear correlation between the source-carrier
and the radiological data. Of these 16, there were 5 alarm encounters where the source-carrier
had both a clear correlation and the lowest S-value score. There were 10 alarm encounters
out of the 26 where a clear correlation did not exist because the source-carrier had disjoint
tracks from either inconsistent tracking or the data association incorrectly assigning the
wrong track ID to the source-carrier when it passed closely by another vehicle.
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(a)

(b) (c)

Figure 3.11: Source-object attribution in a mock urban scene with both pedestrians and
vehicles using LiDAR data. The same source-encounter from Figure 3.10a, where a vehicle
- Track 50 (white station wagon from Figure 3.10a) - carrying a 137Cs source drove past the
system, is shown in (a), and the * in (a) indicates the source-carrier. (a) corresponds with
camera image C in Figure 3.10a. The bounding box colors (but not the labels) for each
object are consistent with Figure 3.10a. In (a), the trajectory of each object in the scene
up to that point in time is indicated by the lines proceeding each respective bounding box.
The white grid lines represent 1 m2, and the area in the middle without points is caused by
the field of view of the LiDAR. The count-rate data from the 2 in.× 4 in.× 16 in. NaI(Tl)
detector (black line) and the best-fit models to the ROI count-rate data is displayed in (b).
The dashed line corresponds with the image from Figure 3.11a, and (c) displays the evolution
of exclusion metric as a function of time for each trajectory, and he pink bars indicate the
time interval for the radiological alarm.
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Figure 3.12: Source-object attribution analysis results from 26 alarm encounters in a mock
urban environment. The total number of tracks generated during each alarm encounter
for pedestrians, vehicles, and the source-carrier are presented. The top (bottom) plot was
performed with LiDAR (video) trajectories. † indicates that the source carrier went straight
past the operator during the trial. ‡ indicates that the source carrier was first stopped at
a red light then proceeded straight past the operator during the trial. ∗ indicates that the
source carrier turned right during the trial, and ∗∗ indicates that the source carrier was
stopped at a red light and then turned right. Lastly, ∆ indicates a left turn by the source
carrier during the trial, and ∆∆ indicates the source carrier was stopped at a red light and
then performed a left-hand turn.

These results, collected in the mock urban environment, demonstrate that situational
awareness can be improved for both LiDAR and video using the source-object attribution
analysis. In the majority of alarm encounters for both LiDAR and video, a connection
between the object carrying the radiological source and the radiological data could be made.

3.5 Improved Detection Sensitivity with Track-informed Optimized
Integration Windows

In addition to enabling automated identification of pedestrians and/or vehicles correlated
with radiological alarms, object tracking has the potential to enable increased detection sen-
sitivity through track-specific time integration windows. As discussed in Section 2.10, using
a model encapsulating the geometric and detector response associated with a trajectory, one
may identify the selection of time-segments that should optimize SNR under the assumption
of isotropic source emission and constant background. This optimum integration window
analysis was performed on the same alarm encounters in the mock urban environment as the
previous analyses and compared with fixed integration times.

In Figure 3.13a and Figure 3.13c, the calculated time segments that should optimize
SNR when combined for the source carrier using video-based trajectories and LiDAR-based
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trajectories are shown, respectively. The source carrier trajectory used for this analysis
correspond with the source carrier trajectory from Figure 3.10 and Figure 3.11, and the
color coding of the source carrier is consistent with each respective figure. It should be
noted this analysis was performed without using MCMC. The optimal integration for both
video and LiDAR occurs during the period of time while sensitivity, which is proportional to
SNR (Section 2.10), is increasing. For both video and LiDAR, the calculated track-informed
contextual integration window is 2.25 seconds. The optimal integration window overlaid on
the radiological data for both video and LiDAR is displayed in Figure 3.13b and Figure 3.13d,
respectively. The optimal window for both video and LiDAR corresponds with the time of
closest approach for the source carrier. However, due to the anisotropic attenuation of the
source carrier, which is not accounted for in the physics equation model, the optimal time
window does not fully encapsulate the period of time in which the source carrier was closest
to the system.

(a) (b)

(c) (d)

Figure 3.13: Track-informed integration windows using video-based trajectories (a-b) and
LiDAR-based trajectories (c-d) for the source carrier (Track 7 and Track 50) from the alarm
encounter in Figure 3.10 and Figure 3.11, respectively. In (a) and (c), the calculated time
segments that should optimize SNR for the source carrier from video and LiDAR, respec-
tively. The dashed line indicate the time period in which sensitivity was increasing. In (b)
and (d), the time segments that should maximize SNR overlaid on the radiological data.

Figure 3.14 shows the results for a single alarm encounter, showing the maximum relative
anomaly value, normalized against the maximum anomaly value with a 1.0 second integration
time, for all tracks in the scene as well as different fixed integration times. Again, the
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trajectories used for this analysis correspond with the trajectories from Figure 3.10 and
Figure 3.11, and the color-coding for the tracked objects is consistent with the color-coding
from each respective figure. In this encounter results are consistent with the hypothesis that
the optimized time-window for the source-carrying trajectory should yield a larger anomaly
value. However, in both video and LiDAR, the source-carrying trajectory did not have the
maximum anomaly value amongst the different integration times which was produced using
a 4 second integration time. In this case, the optimal window does not produce the highest
anomaly value due to anisotropic shielding from the vehicle, which is significant enough such
that the assumptions of the analysis fail. Also observed is an elevated anomaly value for
another track which corresponds to the researcher who was operating the system, who was
nearby and stationary during this particular alarm encounter.

(a) (b)

Figure 3.14: Relative anomaly values from track-informed optimized integration windows
and fixed integration window of 1, 2, 3, 4, and 5 seconds for both video (a) and LiDAR
(b) data. The anomaly values are normalized to the 1.0 second fixed integration window.
These results are from the alarm encounter shown in Figure 3.10 and Figure 3.11. The
star indicates the track carrying the source in each scenario, and the time duration for each
optimal window is provided in the parentheses.

The results from applying this analysis to the 26 different alarm encounters in a mock
urban environment are shown in Figure 3.15 for both video and LiDAR.

The results show that using a tracking-informed integration window can improve the
anomaly value, a proxy for detection sensitivity, compared to various fixed integration win-
dows. Two alarm encounters (22∗∗ and 24∗∗), in particular, produced large relative anomaly
values compared to fixed integration windows for both video and LiDAR. In both of these
cases, the vehicle carrying the source was stopped at a red light next to the system for an
extended period of time before the vehicle proceeded making a right-hand turn past the
system.

From the results in Figure 3.15, the LiDAR-generated trajectories are more consistent
than the video-based trajectories in yielding this enhanced sensitivity. This is consistent with
the previous results showing that the LiDAR detection and tracking is more effective than
video at consistently tracking objects through the scene. Even in the case of LiDAR tracking,
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there are alarm encounters where a fixed integration window of 1, 2, 3, 4, or 5 seconds yields
larger anomaly values. These cases were often driven by the object not being detected or
fully tracked across the system’s entire FOV. In several cases, however, the object was fully
tracked and again it is hypothesized that the anisotropic shielding from the vehicle was
sufficiently significant that the assumptions of the analysis fail. On the whole, this analysis
suggests that contextual information can be used to improve the detection sensitivity of a
static spectrometer.

(a) (b)

Figure 3.15: Maximum relative anomaly values from each alarm encounter using either
track-optimized time-windows or fixed integration windows from 26 alarm encounters in
a mock urban environment. The anomaly values are normalized to the 1.0 second fixed
integration window. Results from the video and LiDAR are shown in sub-figure (a) and (b),
respectively. The green squares, circles, stars, or diamonds indicate the encounters where
the optimal integration window yielded a higher anomaly value than a 2, 3, 4, or 5 second
integration window, respectively. The time duration for each optimal window is provided in
the parentheses, and in the case for (a) the time duration with the longest window is provided
in certain alarm encounters where the source-carrier had disjoint tracks. † indicates that the
source carrier went straight past the operator during the trial. ‡ indicates that the source
carrier was first stopped at a red light then proceeded straight past the operator during the
trial. ∗ indicates that the source carrier turned right during the trial, and ∗∗ indicates that
the source carrier was stopped at a red light and then turned right. Lastly, ∆ indicates a left
turn by the source carrier during the trial, and ∆∆ indicates the source carrier was stopped
at a red light and then performed a left-hand turn.
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3.5.1 MCMC Track-informed Optimized Integration Windows

The above optimal window analysis does not account for the uncertainty in the object’s po-
sition when determining the optimal integration time. In order to account for this, MCMC
can be applied to the optimal integration window formulation for the source carrier in Fig-
ure 3.13(a–b) (video) and Figure 3.13(c–d) (LiDAR). As mentioned in Section 2.10, the
position of the object is varied and the count-rate data is modeled and fit for that trajectory
at each varied position. The position of the object is constrained to the position uncertainty
in x, y, and z around each respective mean value. The optimal integration window is cal-
culated from a randomly chosen subset object positions, and the largest integration window
with the lowest negative log-likelihood within these random object positions is chosen as the
optimal window.

The results from applying MCMC to the optimal integration window analysis are shown
in Figure 3.16 for video and LiDAR. The color coding is still consistent with Figure 3.13.
By accounting for position uncertainty, the time duration of the optimal integration for both
video (Figure 3.16a) and LiDAR (Figure 3.16b) is longer relative to Figure 3.13(a–b) and
Figure 3.13(c–d), respectively. With the longer time lengths for both video and LiDAR,
the signal caused by the anisotropic shielding from the source carrier’s vehicle is almost
completely integrated.

(a) (b)

Figure 3.16: Accounting for the position uncertainty of an object in the optimized integration
window calculation using video (a) and LiDAR-based trajectories (b). The trajectories for
this example are for the source carrier (Track 7 and Track 50) from the alarm encounter in
Figure 3.10 and Figure 3.11 for video and LiDAR, respectively. The optimized integration
window overlaid on the count-rate data for video (a) and LiDAR (b) is shown.

A spectroscopic analysis was applied to the MCMC optimized integration windows and
was compared to either the non-MCMC optimized integration window or fixed integration
windows. The results of this analysis are shown in Figure 3.17. The relative anomaly
values for the MCMC optimized integration windows offer improved detection sensitivity
compared non-MCMC optimized integration windows for both video (Figure 3.17a) and
LiDAR (Figure 3.17b). In Figure 3.17b, the MCMC optimized integration window has an
anomaly value that is equal to a fixed integration window of 4 seconds which is the optimal
integration window.

Subsequently, this analysis was applied to all of the alarm encounters for LiDAR (Fig-
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(a) (b)

Figure 3.17: Relative anomaly values from track-informed optimized integration windows
and fixed integration window of 1, 2, 3, 4, and 5 seconds for both video (a) and LiDAR (b)
data, respectively. The anomaly values are normalized to the 1.0 second fixed integration
window. These results are from the alarm encounter shown in Figure 3.10 and Figure 3.11.
The star indicates the track-informed optimized integration window analysis was performed
with MCMC, and the time duration for each optimal window is provided in the parentheses.

ure 3.18) – video results are not shown because of inconsistent tracking in multiple alarm
encounters. It is seen that accounting for the position uncertainty in the optimal window
formulation can improve the detection sensitivity compared to not accounting for position
uncertainty. In 25 out of 26 trials, the MCMC optimized integration window offers improve-
ment, and in the remaining trial, the MCMC optimized integration window offered similar
detection sensitivity to the non-MCMC optimized integration window. These results demon-
strate that accounting for an object’s uncertainty in the optimized integration window can
improve detection sensitivity relative to not accounting for the object’s uncertainty.
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Figure 3.18: Maximum relative anomaly values from each alarm encounter using either
track-optimized time-windows, MCMC track-optimized time-windows, or fixed integration
windows from 26 alarm encounters in a mock urban environment using LiDAR-based trajec-
tories. The anomaly values are normalized to the 1.0 second fixed integration window. The
hatch marks represent the MCMC track-optimized time-windows. The blue (green) squares,
circles, stars, or diamonds indicate the encounters where the MCMC optimal integration
window (non-MCMC optimal integration window) yielded a higher anomaly value than a
2, 3, 4, or 5 second integration window, respectively. The time duration for each optimal
window is provided in the parentheses.

3.6 Additive Tracking Source Localization and Source-Object At-
tribution

The previous sections (Section 3.3 - 3.5) investigated scenarios in which only a single point
source was present at a time. However, in urban environments, multiple trajectories in
a scene could be carrying the same source type. The mathematical framework of APSL
outlined earlier in Section 2.9 can be directly applied to this problem. Since each track is
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considered to be carrying a source the APSL formulation can be changed from searching
x, y, and z as well as the source weights to only optimizing the source weights of each trajec-
tory. This adjusted formulation is hereby referred to as Additive Track Source Localization
(ATSL).

To demonstrate the capabilities of ATSL, synthetic trajectories and count-rate data was
generated. Three random trajectories all with the same track length and moving with a
constant speed of 3 m/s past a detector were generated (Figure 3.19), and the number
of trajectories carrying a 137Cs source past the system was varied. The trajectories were
shifted in time so that each trajectory passed in front of the detector at different times. In
Figure 3.20, three different scenarios are presented.

Figure 3.19: Three random trajectories walking past a detector (a). In any given scenario
Track 0, Track 1, or Track 2 could be carrying a 120 µCi, 140 µCi, or 189 µCi 137Cs source,
respectively.

In the first scenario, Track 1 is carrying a 140 µCi 137Cs source past the system. Track 1
is 4.02 m from the system at closest approach. Figure 3.20a and Figure 3.20b shows the
results of using ATSL and source-object attribution in the case of a single source. ATSL
searches through the present trajectories in sequential order searching for the trajectory or
trajectories that best describe the data. Both Track 0 and Track 2 were correctly rejected as
weakly contributing to the source, and ATSL correctly determined Track 1 was carrying the
source. Not surprisingly the best-fit model for Track 1 correlates well with the radiological
data.

To test how ATSL performs when multiple trajectories are carrying sources of the same
source type, Track 0 and Track 1 both were given a source. The result of this encounter
using ATSL is shown in Figure 3.20c. The two trajectories have different times of closest
approach which results in a bump in the count-rate data around the 6 second mark when
Track 0 passes in front of the detector first before Track 1. Track 0 and Track 1 are correctly
identified as the trajectories responsible for the radiological signal while Track 2 is rejected.
The source-object attribution of this encounter are shown in Figure 3.20d. The best-fit
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models for both the single source approach and ATSL are presented. Using the single source
approach, all the trajectories could be excluded from the analysis because none correlate
with the radiological data. However, by using the summed contribution of Track 0 and
Track 1 there is a clear correlation and neither trajectory can be excluded.

In Figure 3.20e and Figure 3.20f the same random trajectories from the previous two
source encounters are used but now all three trajectories are carrying a source. In this
scenario, all three trajectories are correctly identified as contributing to the source, and the
summed best-fit model for all three trajectories has a clear correlation with the radiological
data.

The ATSL scenarios above demonstrate the capabilities of performing source-object at-
tribution, when multiple sources of the same type are present, in relatively high SNR envi-
ronments. Using the same scenario, the source activities were lowered and the track lengths
of each object are varied reflecting more realistic situations.

Figure 3.21a demonstrates that the trajectory responsible for the radiological data can
still be correctly identified in low SNR situations. Track 1 was carrying the source, but
performing attribution none of trajectories can be excluded (Figure 3.21b). In low SNR
situations, the model for a trajectory can be more easily fit to the data, which improves the
S-value. This is a limitation of this approach. In Figure 3.21c, ATSL correctly identifies
both trajectories contributing to the count-rate data when both Track 0 and Track 1 are
carrying a radiological source, and the correct trajectories are attributed to the radiological
data (Figure 3.21d). Without using ATSL, Track 1 could have potentially been missed. In
Figure 3.21e, the addition of Track 2 did not improve the likelihood enough to warrant the
addition of a third trajectory and was incorrectly rejected. However, performing attribution
in this scenario (Figure 3.21f), Track 2 correlates with the radiological data and would
probably be flagged by an operator.

The results of this analysis demonstrate that attribution can be performed when multiple
sources of the same type are present in a scene by applying the ATSL formulation.

Due to restrictions placed by Coronavirus Disease 2019, experimental results demonstrat-
ing these capabilities were not able to be performed. However, using synthetic data, this
work was able to show the effectiveness of ATSL in performing source-object attribution
when multiple sources of the same type are present.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.20: Performing source-object attribution when multiple trajectories are carrying
a radiological source of the same source type. The trajectories presented correspond with
Figure 3.19. In (a) and (b), Track 1 is carrying a 140 µCi 137Cs is shown. In (a), the
expected contribution of the source is shown along with the summed contribution, and (b)
is the best-fit models for each trajectory to the count-rate data. The † indicates that both
trajectories contributed to the best-fit model. The results in (c) and (d) are from Track 0
and Track 1 carrying a 120 µCi 137Cs or 140 µCi 137Cs source, respectively. The results in
(e) and (f) are from Track 0, Track 1, and Track 2 carrying either a 120 µCi 137Cs, 140 µCi
137Cs source, or a 189 µCi 137Cs, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.21: Performing source-object attribution when multiple trajectories are carrying
a radiological source of the same source type. The trajectories presented correspond with
Figure 3.19. In (a) and (b), Track 1 is carrying a 12 µCi 137Cs is shown. In (a), the expected
contribution of the source is shown along with the summed contribution, and (b) is the best-
fit models for each trajectory to the count-rate data. The † indicates that both trajectories
contributed to the best-fit model. The results in (c) and (d) are from Track 0 and Track 1
carrying a 10 µCi 137Cs or 12 µCi 137Cs source, respectively. The results in (e) and (f) are
from Track 0, Track 1, and Track 2 carrying either a 10 µCi 137Cs, 12 µCi 137Cs source, or
a 17 µCi 137Cs, respectively.
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3.7 Conclusions & Future Directions

A contextual sensor system has been developed and demonstrated that performs multi-class
object detection, 3-D tracking, and source-object attribution in real time using either LiDAR
or visual cameras. This system, and the methods it implements, can improve the localization
of radiological/nuclear materials in urban environments by enhancing situational awareness
and allowing nondirectional detectors to provide localization information. Furthermore, in
urban environments, this system has the potential to improve detection of radiological/nu-
clear materials by increasing detection sensitivity.

The findings from this study demonstrate that radiological sources can be successfully
attributed to objects derived from video and LiDAR in a mock urban environment. The
findings further show that LiDAR offers superior tracking performance when compared to
video, and this improves the ability of the source-object attribution analysis to reject tra-
jectories that are inconsistent with the data, while providing a more apparent correlation
between the object responsible for the radiological alarm and the count-rate data. With
LiDAR, the source carrier had a clear correlation with the radiological data in all 26 of the
alarm encounters considered; whereas, using video-based trajectories an operator monitoring
in real time would only be able to identify the source carrier in 16 alarm encounters.

Using track-specific integration windows it was demonstrated that object tracking can
improve the anomaly value, a proxy for detection sensitivity, compared to fixed integration
windows for both video and LiDAR. Again, since LiDAR offers superior tracking perfor-
mance compared to video, more enhanced sensitivity was seen with LiDAR-based trajec-
tories. Furthermore, accounting for uncertainty in an objects extent when performing the
optimal integration window analysis improves the anomaly value relative to not accounting
for uncertainty.

Finally, through simulation it was shown that multiple sources of the same type within a
scene can be correctly attributed to the objects responsible for the radiological alarm using
source-object attribution in conjunction with ATSL. ATSL was able to correctly reject and
identify tracks that did or did not contribute to the radiological alarm even in low SNR
regimes.

From these results, it can be concluded that using video and LiDAR to augment a static
radiation detector does enhance situational awareness and strongly suggests that contextual
information can be used to improve the detection sensitivity of a static radiation detector.

Future work is needed to explore improving tracking capabilities for video to limit track
switches and disjoint tracks. One area of improvement is investigating different lightweight
neural networks that offer better performing object detection algorithms. While attribution
could be performed with visual imagery, the results were limited compared to LiDAR. The
current object detection network is not built to deal with small objects in images that are far
away from the system. At distances larger than 10 m pedestrians cannot reliably be tracked
anymore. This leads to short or split tracks that often score better on the attribution metric
than the true source-carrier’s trajectory. New developments, particularly feature pyramid
networks [32], are trying to address these issues and might result in lightweight networks with
better detection performance. Recent tests with yolov4 [14] show very promising results.

The ATSL simulations demonstrated the capabilities of using ATSL in conjunction with
source-object attribution; however, this needs to be further investigated using experimental
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data.
Additionally, the results presented in this section were limited to a static system co-

located with a single radiation detector. Section 4 will investigate the application of track-
ing and attribution performance for mobile systems where both sensors and objects are in
motion. Furthermore, performing source-object attribution using a detector array will be
explored in Section 4.
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Chapter 4

Mobile system: LiDAR Enhanced
Mobile Urban Radiation Search
Vehicle

The following sections (Sections 4.2 – 4.6) detail the source-object attribution capabilities
on a mobile detector system. Section 4.2 performs a quantitative study with LEMURS
in the presence of mobile and static sources. Following, the performance of the source-
object attribution approach is tested in a mock urban environment with a mobile source
(Section 4.3). Within Section 4.3, an environment with source attenuation present and a
mobile source is also tested (Section 4.3.3). In Section 4.4, optimized spectroscopic search
using track-informed integration windows is applied to the data from Section 4.3 to improve
detection sensitivity. Additionally, the importance of the detector response and the impact
of the angular response on radiological source localization when tracking information is
available is evaluated using source-object attribution in Sections 4.5 and 4.6, respectively.
Finally, the localization performance of source-object attribution is compared to different
reconstruction algorithms in Section 4.7.

4.1 LiDAR Enhanced Radiation Urban Search (LEMURS) Vehi-
cle

For this analysis, the LiDAR Enhanced Mobile Urban Radiation Search (LEMURS) vehicle
[24] (Figure 4.1) was used. LEMURS consists of 2 16-beam LiDAR, multiple IMU and
INS (SPATIAL [39]) devices, a 360◦ panoramic camera, and 6 NaI(Tl) detectors arranged
in a hexagonal array. Each detector is equipped with an Ortec DigiBASE multichannel
analyzer [58] and configured to publish list-mode gamma-ray interaction data packets at
≈ 20Hz. The contextual sensor data and gamma-ray events are acquired within the ROS
[59] across multiple single-board computers with clocks synchronized by the network time
protocol (NTP) [60].
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Figure 4.1: The LEMURS system which consists of a panoramic Occam Omni 60 camera,
2 LiDAR, multiple IMU and INS devices, and 6 2 in.× 4 in.× 16 in. NaI(Tl) detectors.

4.2 Quantitive Assessment of Attribution Analysis

To assess the performance of the source-object attribution analysis, LEMURS did straight
line passes past moving and static sources. The following sections (Section 4.2.1 – 4.2.2) out-
line the source-object attribution capabilities using the LEMURS vehicle. In both sections,
SLAM was used to produce pose estimates of LEMURS in the world-fixed frame.

4.2.1 Degenerate Scenario

An important aspect of the attribution analysis is correctly performing attribution when
static objects are closely spaced together, such as a parking lot, and LEMURS is mobile. To
explore this scenario, a degenerate scenario was created. The degenerate scenario consisted
of vehicles parked on either side of the road such that the time of closest approach and
distance from LEMURS was identical as LEMURS drove by the vehicles. This scenario
represents a worst-case scenario for LEMURS. Using the inter-detector attenuation effects
of the detector array could add the necessary constraints to break degeneracies present.

In the scenario, LEMURS drove straight past static cars on either side of the road going
10 mph. The cars were aligned such that cars on opposite sides of the road had similar time
of closest approach (less than 0.1 seconds) and the rear of the vehicles were 4.1 ± 0.1 m from
the edge of LEMURS as shown in Figure 4.2. In addition, there was a 2 meter separation
between the cars on the same side of the street. A 1.87 mCi 137Cs source inside of 2 cm
Pb shielding was placed in the trunk of a vehicle. For each trial, LEMURS performed 20
source drive-bys. Attribution was performed using the photopeak ROI (600 keV - 725 keV)
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for 137Cs.

Figure 4.2: A degenerate scenario where LEMURS drove straight down the center of the
road with cars parked on either side of the road. A 1.87 mCi 137Cs source inside of 2 cm Pb
shielding was placed in the trunk of a vehicle.

Figure 4.3 shows the results from one source encounter using LiDAR-based trajectories
and a LEMURS speed of 10 mph in the degenerate scenario. The source carrier and sur-
rounding objects are continuously tracked throughout the alarm encounter. The Kalman
filter’s localization prediction is based on the center of an objects bounding box and thus
deviates continuously by about 2 meters from the actual source location, in the trunk of the
car.

Figure 4.4 shows the result of performing source-object attribution on the above source
encounter using all 6 NaI(Tl) detectors. The variation in the Kalman filter positions and the
position-source offset cause the best-fit models to underestimate the magnitude of the source
activity. However, using the lowest exclusion metric as a metric for localization performance,
the source is correctly attributed and localized to the source carrier (Track 39) while all the
other trajectories can be rejected from the analysis.

Synthetic count-rate data and LiDAR trajectories were created to model the degenerate
scenario. LEMURS was modeled traveling 10 mph past the source carrier. The source was
offset from the source carrier’s position by 2 m to match experiment. The expected count
rate from the source carrier was generated using Eq. 2.13 and then was Poisson sampled. At
each position of LEMURS, the angle between LEMURS and the objects present is calculated.
An attenuation parameter is then applied to the count-rate data before Poisson sampling
to account for attenuation changing over time as LEMURS moves past the source carrier.
Also, the position and distance of LEMURS from each object is utilized to randomly sample
the trajectories according to experimental trajectories. Using the synthetic data, 1000 trials
were created for each scenario and attribution was performed similar to the experimental
data.

The results from all the source encounters and the synthetic data are shown in Figure 4.5
for LiDAR (Figure 4.5a) and video-based trajectories (Figure 4.5b). In both Figure 4.5a and
Figure 4.5b, the color coding from the experimental data is consistent with the objects shown
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Figure 4.3: LEMURS drives past 4 stationary cars, where a vehicle – Vehicle 39 (red bounding
box) – has a 1.87 mCi 137Cs source inside of 2 cm Pb in the trunk of its vehicle. The trajectory
of each object in the scene up to that point in time is indicated by the lines associated with
each respective bounding box. The white grid lines represent 1 m2, and the area in the
middle without points is caused by the field of view of the LiDARs.

Figure 4.4: Performing source-object attribution with LiDAR-based trajectories and using
all 6 NaI(Tl) detectors in the array. The trajectories are from Figure 4.3 and the color coding
of the objects is consistent. The count-rate data from the full 6 NaI(Tl) detector array and
the best-fit models to the count-rate data are displayed.

in Figure 4.3. The results of this analysis show that the experimental and simulated data
are within a standard deviation for each respective object in the scene for both LiDAR and
video. A S-value threshold of 363.5 (444.5) was set to define a 95% true positive rate for the
source carrier for LiDAR (video). With a S-value threshold of 363.5 (444.5), the left-right
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degeneracy that exists between the source carrier and the vehicle directly across the road is
successfully broken 100% (100%) of the time using LiDAR-based trajectories (video-based
trajectories). This is due to the angular resolution of the LEMURS array. When static
vehicles are separated by 2 meters, the source carrier is correctly identified 67% (16%) of the
time with LiDAR (video).

Even though a 1000 trials were run using the synthetic data, the statistical variation
is large, in particular for the source carrier and the adjacent vehicle. This represents the
sensitivity of the goodness-of-fit metric. Variations in the estimated Kalman filter track
position can influence the quality of fit, and the large statistical variation would be expected
in the experimental data as well with more trials. With video, the variations for the source
carrier are due to the inferred distance estimate which causes large uncertainties.

The results of this analysis demonstrate the ability of the source-object attribution analy-
sis along with using the full NaI(Tl) array to model and fit trajectories to the count-rate data
to be quite robust against track degeneracy for LiDAR. Using LiDAR-based trajectories, at-
tribution was successfully performed in 67% of the trials. With video, the large uncertainties
primarily due to the inferred distance estimate reduces the ability to distinguish cars parked
within 2 m of each other.

(a) (b)

Figure 4.5: Results from all 20 alarm encounters in the degenerate scenario using source-
object attribution using LiDAR (a) and video-based trajectories (b), respectively. The color
coding in (a) and (b) is consistent with Figure 4.3, and source-object attribution was per-
formed using the 6 NaI(Tl) detectors independently. In (a) and (b), the red dashed line
represents a S-value threshold of 363.5 or 444.5, which defines a 95% true positive rate for
the source carrier for LiDAR or video-based trajectories, respectively. The black markers
indicate the attribution analysis was performed using synthetic data in (a) and (b).

4.2.2 Mobile Source

In urban environments, radiological sources can also be mobile. To understand attribution
performance in the presence of mobile sources, the source carrier from Section 4.2.1 was used.
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LEMURS and the source carrier performed straight line passes at 10 mph on a straight two-
lane road. In this case, three different scenarios were explored: source carrier only, source
carrier followed by a vehicle, and source carrier between two vehicles. For each scenario, a
total of 10 source passes was conducted.

Similar to Section 4.2.1, synthetic count-rate data and trajectories were generated. Again,
the expected count rate from the encounters was calculated using Eq. 2.13 and was Poisson
sampled. In this case, the 137Cs source was displaced from the center of the source carrier
vehicle by 1 m corresponding with the trunk of the vehicle. The synthetic trajectories were
randomly sampled using experimental data and the angle and distance of the objects from
LEMURS. 1000 trials were conducted using the synthetic data and was subjected to the
same analysis as the experimental data. However, in this case, synthetic count-rate data
and trajectories could not be generated for the non-source-carrying vehicles because there
was too much variation in each alarm encounter. For each trial, the distance between the
source carrier and non-source-carriers was about 3 m. However, for a given trial, deviations
in the distance between the cars could affect the best-fit model for that particular object.
Too much time or distance between the vehicles resulted in a best-fit model for the non-
source-carrier that was outside the alarm window and therefore was better described by a
background only model.

The experimental results from the scenario where the source carrier is between two ve-
hicles is shown in Figure 4.6 for video and LiDAR. In this case, the attribution analysis is
able to correctly localize the source to the source carrier in all 10 trials using both video
and LiDAR while the vehicles surrounding the source carrier can be rejected. These results,
while limited in statistics, demonstrate that typical car lengths between moving vehicles is
sufficient to effectively perform attribution.

(a) (b)

Figure 4.6: Results from performing source-object attribution for 10 alarm encounters with
LEMURS in a mobile scenario using video (a) and LiDAR (b). In the scenario, LEMURS
drives straight past three cars in a row where one of the vehicles is carrying a 1.87 mCi 137Cs
source inside of 2 cm Pb. In both (a) and (b), the faded (outlined) points indicate best-fit
models that were better described by a background only (source plus background) model.
The green circles indicate tracks that are 95% or more outside of the radiological alarm.

The experimental results of the 30 alarm encounters for the source carrier along with the
synthetic results for video and LiDAR are shown in Figure 4.7. The experimental results
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for the source carrier from all the three scenarios are presented together since all the alarm
encounters involved straight line passes with LEMURS. For both video and LiDAR, the
experimental and synthetic data are within a standard deviation. A threshold value of
261.78 (118.36) was set to define a 95% true positive rate for video (LiDAR). The frame-
to-frame variation in the distance estimate for video causes the large statistical variation in
the exclusion metric results. Additionally, the inferred distance is the reason the threshold
value for video is higher compared to LiDAR.

Comparing the threshold value of 118.36 for LiDAR with the threshold value of 363.5
from Section 4.2.1 for LiDAR demonstrates the large statistical variations that can exist
when performing source-object attribution. For a given alarm encounter, the duration an
object is tracked, the distance of the source from the detectors, the complexity of the scene
(i.e. attenuation and scattering from untracked objects), and the location of the source in
the object can all influence the goodness-of-fit metric. By setting a threshold value for video
or LiDAR, this could cause a high number of false negatives, which cannot be tolerated in
radiological source search in urban environments. Thus, determining the object responsible
for the radiological alarm in a particular encounter varies from encounter to encounter, and
it is dependent on identifying the object(s) with the lowest S-value(s) present that are within
the alarm window and have best-fit models that are not best described by a background-only
model. Subsequently, the object(s) can be flagged as potentially being responsible for the
radiological alarm. By not using a threshold value, a low number of false positives is achieved
by only performing attribution when BAD detects the presence of an anomaly.

Figure 4.7: Exclusion metrics from 30 different experimental alarm encounters performing
source-object attribution with the LEMURS system driving straight past a mobile vehicle
carrying a 1.87 mCi 137Cs source inside of 2 cm Pb shielding using LiDAR (a) and video-
based trajectories (b), respectively. The simulated data represents synthetic trajectories
and count-rate data that was randomly sampled for 1000 trials and subjected to the same
analysis as the experimental data. The sensitivity of the goodness-of-fit metric is indicated
by the large uncertainties in the synthetic trials. The exclusion metric is the S-value.
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4.3 Source-Object Attribution in a Mock Urban Environment

After characterizing the performance of the source-object attribution analysis in the presence
of static and mobile sources, a mock urban environment at RFS was created to further
characterize the attribution analysis approach. A 1.87 mCi 137Cs source inside of 2 cm
of lead-shielding was placed in the trunk of a vehicle. LEMURS and the source carrier
performed straight line drive-bys going either 10 or 20 mph. Both LEMURS and the source
carrier drove straight for 15 m before passing in the middle of an intersection that had
pedestrians on either side of the intersection walking parallel to LEMURS and the source
carrier. Two stationary cars were on both sides of the intersection and were perpendicular
to the direction of motion for LEMURS. Additionally, the source carrier was followed by a
car traveling 10 or 20 mph depending on the trial. This scenario was repeated more than 18
times for both speeds.

In the below Sections 4.3.1–4.3.2, attribution was performed using the individual de-
tectors from the detector array. Comparisons are made between using LiDAR and video
for source-object attribution. In addition, the tracking and source-object attribution per-
formance of using SLAM or INS to produce pose estimates of the LEMURS system in a
world-fixed frame are also compared.

In Section 4.3.3, source attenuation is present and attribution is performed. Attribution
is performed using the individual detectors from the detector array and SLAM is used to
produce pose estimates.

4.3.1 10 mph Scenario

Figure 4.8 shows the results from a single alarm encounter using video data and SLAM to
create pose estimates of LEMURS in a world-fixed frame. Figure 4.8a shows the progression
of the alarm encounter as the source carrier (Track 4 - white vehicle) drives past LEMURS.
The source carrier and surrounding objects are continuously tracked throughout the alarm
encounter. The trajectory for each object is depicted in Figure 4.8b with the FOV of each
LEMURS camera overlaid on top. The inferred depth estimation for each object causes the
noise in the trajectories. Both Track 6 and Track 2 were stationary vehicles throughout the
encounter, but due to frame-to-frame uncertainty in the distance estimate for video-base
trajectories, the Kalman filter pose estimation for both objects varies.

The results of the alarm encounter in Figure 4.8c show that Track 4 (white vehicle)
has a clear correlation with the radiological data. This is the correct attribution as the
white vehicle was responsible for the radiological alarm. Track 5 has some correlation with
Detectors 1-3, but with the angular response of the detector array, the trajectory does not
follow the count-rate data in Detectors 4-6 and can be excluded. The remaining trajectories
can also all be excluded from the analysis.

In Figure 4.9, the same alarm encounter as Figure 4.8 is shown but now using LiDAR
trajectories and SLAM. The color-coding of each object (but not the labels) has been kept
consistent with Figure 4.8a. The scene shown in Figure 4.9b corresponds with Figure 4.8a
image C. The trajectories of each object are smoother compared to video data (Figure 4.8b),
and the variability of Track 11 and Track 13 (Track 2 and Track 13 from Figure 4.8a image
B and A, respectively) is more concentrated around each object’s respective position. The
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(a) (b)

(c)

Figure 4.8: Performing source-object attribution in a mock urban environment using video
data and SLAM to produce pose estimates in a world-fixed frame with the LEMURS system
driving 10 mph straight past a mobile vehicle (Vehicle 4 - white SUV) traveling 10 mph and
carrying a 1.87 mCi 137Cs source inside of 2 cm Pb shielding. In (a), three different moments
of the alarm encounter are depicted, and (b) shows the trajectories for each object with
the FOV of each camera overlaid on top of it. Additionally, the orientation of LEMURS
is depicted by the red (x-axis), green (y-axis), and blue (z-axis) axes, and each detector’s
orientation is represented by the arrows. The camera FOV and detector positions correspond
with image C in (a). In (c), the result of the alarm encounter is shown. The individual count-
rate data from each 6 NaI(Tl) detector is displayed, and the pink bar indicates the period of
time the radiological alarm was triggered. Also, the dashed lines from left to right correspond
with images a–c in (a).

inherent depth information extracted from LiDAR enables more reliable position estimation.
The results from the alarm encounter are shown in Figure 4.9b. All of the trajectories can

be excluded from the analysis except for Track 17, which correlates with the radiological data
and is the correct attribution. With LiDAR, there are more trajectories than objects present
in the scene. The LiDAR detection CNN has a higher number of false positive detections
(i.e., detecting an object when in fact no object is present at the given location) compared
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(a) (b)

Figure 4.9: Performing source-object attribution in a mock urban environment using LiDAR
data with the LEMURS system driving straight past a mobile vehicle (Vehicle 4 - white
SUV from Figure 4.8a) carrying a 1.87 mCi 137Cs source inside of 2 cm Pb shielding. SLAM
was used to generate pose estimates of the LEMURS system in a world-fixed frame. The
alarm encounter is the same as shown in Figure 4.8. The bounding box colors in (a) of the
objects (but not the labels) are consistent with Figure 4.8. In (a), the trajectory of each
object to that point is shown. The white grid lines represent 1 m2, and the orientation of
the two LiDARs and detector array on LEMURS are indicated by the red (x-axis), green
(y-axis), and blue (z-axis) axes. (b) shows the trajectories for each object with the FOV
of each camera overlaid on top of it. Additionally, the orientation of LEMURS is depicted
by the red (x-axis), green (y-axis), and blue (z-axis) axes, and each detector’s orientation is
represented by the arrows. In (c), the result of the alarm encounter is shown. The count-rate
data is the summed response from all 6 NaI(Tl) detectors, and the pink bar indicates the
period of time the radiological alarm was triggered. Also, the dashed line corresponds with
image c in Figure 4.8a. The diamond indicates the best-fit model was better described by
a background only model, and the dagger indicates more than 95% of the trajectory was
outside of the radiological alarm.

to Yolov4-tiny. These artifacts could be limited by increasing the minimum confidence
score needed to track an object. However, increasing the minimum confidence score could
decrease tracking performance for certain objects. The false positive detections would need
to be discarded by an operator in real time.

The results from analyzing the above alarm encounters using INS to produce pose es-
timates in a world-fixed frame for video are shown in Figure 4.10a-b. The color-coding is
consistent with Figure 4.8a. In Figure 4.10a, the trajectories of each object in the scene are
overlaid on the FOV of the cameras. The trajectories created from tracking using the INS
frame are comparable to the trajectories shown in Figure 4.8b when tracking with SLAM.
In addition, the trajectory of LEMURS is continuous and smooth similar to the trajectory
using SLAM. The result of this alarm encounter is seen in Figure 4.10b. Similar to Fig-
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ure 4.8c, there is a clear correlation between the source carrier (Track 5 – white vehicle) and
the count-rate data and all other trajectories can be rejected.

(a) (b)

(c) (d)

Figure 4.10: Performing source-object attribution in a mock urban environment using video
(a-b) and LiDAR (c-d) data and INS to produce pose estimates in a world-fixed frame with
the LEMURS system driving 10 mph straight past a mobile vehicle (Vehicle 5 (a) - white
SUV from Figure 4.8a - and Vehicle 17 (Figure 4.9b)) carrying a 1.87 mCi 137Cs source
inside of 2 cm Pb shielding. The alarm encounter corresponds with the alarm encounter
shown in Figure 4.8. (a) and (c) show the trajectories for each object with the FOV of each
camera overlaid on top of it for video and LiDAR, respectively. Additionally, the orientation
of LEMURS is depicted by the red (x-axis), green (y-axis), and blue (z-axis) axes, and each
detector’s orientation is represented by the arrows. In (b) and (d), the result of the alarm
encounter is shown for video and LiDAR, respectively. The individual count-rate data from
each 6 NaI(Tl) detector is displayed, and the pink bar indicates the period of time the
radiological alarm was triggered.

Using LiDAR-based trajectories and tracking with the INS enables smooth trajectories
and consistent tracking of objects similar to Figure 4.9a (Figure 4.10c). The color-coding
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of each object has been kept consistent Figure 4.8a. The results of this analysis are similar
to Figure 4.10b. The source carrier (Track 20) has a clear correlation with the count-rate
data. In this case, the quality of the fit is improved relative to performing source-object
attribution with SLAM trajectories. Track 20 has an S-value of 14.71 compared to 23.74 for
Track 17.

In Figure 4.11, all of the alarm encounters at 10 mph are shown using SLAM for tracking.
For both video and LiDAR, the source carrier was detected and tracked throughout all the
alarm encounters. Using LiDAR, the source carrier has the lowest exclusion metric in 19
out of 19 trials, and for video-based trajectories, the source carrier has the lowest exclusion
metric in 18 out of 19 trials. In some of these trials, best-fit models for other trajectories
were best described by a background only model or more than 95% of the trajectory was
outside of the radiological alarm so the trajectories can be excluded from the analysis. The
LiDAR source carrier best-fit model has better correlation than the video source carrier best-
fit model due to the inherent depth from LiDAR. The frame-to-frame depth estimation can
vary significantly which can affect the attribution analysis. In the one trial where the source
carrier did not have the lowest exclusion metric for video, an obvious correlation between
the best-fit model and radiological data existed. An operator monitoring in real time would
be able to correctly attribute the radiological alarm to the source carrier.

While direct comparisons cannot be made between Section 3.4 and the above video-based
results since the alarm encounters considered vary, it is seen that using YOLOv4-tiny allows
for more consistent object detection compared to YOLOv3-tiny. As a result, this enables
better tracking and source-object attribution.

(a) (b)

Figure 4.11: Source-object attribution on a mobile detector system in a mock urban environ-
ment using video (a) and LiDAR (b) and SLAM to produce a world-fixed frame. In both (a)
and (b), the faded (outlined) points indicate best-fit models that were better described by a
background only (source plus background) model. The green circles indicate tracks that are
95% or more outside of the radiological alarm.

The results of tracking using pose estimates produced with the INS for all the alarm
encounters for video and LiDAR are shown in Figure 4.12a and Figure 4.12b, respectively.
The results are similar to tracking and performing source-object attribution using SLAM. In
this case, the source carrier has the lowest exclusion metric in 19 out of 19 trials using both
LiDAR and video-based trajectories. The results from this analysis do not match the hy-
pothesis that INS should produce degraded pose estimates in an urban environment, which
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would adversely impact the source-object attribution analysis. In a typical urban environ-
ment, buildings will reflect and block satellite signals causing signal interference reducing
the position accuracy in the pose estimate. With navigational systems, this loss of position
accuracy from obstructions is expressed as dilution of precision (DOP). The fewer satellites
available for the pose estimate, the higher the DOP value. In the mock urban environment
considered here the vertical DOP (VDOP) and horizontal DOP (HDOP) values range from
1–20, respectively, where values ranging from 5–20 indicate moderate to low confidence levels
in the pose estimates due to high satellite interference. The larger DOP values are due to a
high number of tall trees in the mock environment that occlude the satellite signal. While
the INS does filter between GPS coordinates at ∼1 Hz to improve GPS accuracy and reduce
jitter in the pose estimates, in these environments the position accuracy is still reduced.
When the INS pose information for the alarm encounters is overlaid onto a map there is
an obvious drift over time of the pose estimates (Figure 4.13). However, for a given alarm
encounter, all the objects in the scene are relative to this drift since the objects are trans-
formed into the world-fixed frame. Thus, tracking and attribution can still be performed
effectively.

Overall, this analysis demonstrates that source-object attribution can improve situational
awareness in a mock urban environment using either video or LiDAR as well as INS or SLAM.
In all of the alarm encounters, an obvious correlation existed between the best-fit model for
the source carrier and the count-rate data.

(a) (b)

Figure 4.12: Source-object attribution on a mobile detector system in a mock urban environ-
ment using video (a) and LiDAR (b) and INS to create the world-fixed frame. In both (a)
and (b), the faded (outlined) points indicate best-fit models that were better described by a
background only (source plus background) model. The green circles indicate tracks that are
95% or more outside of the radiological alarm.
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Figure 4.13: Top-down view of the INS pose estimates overlaid onto a map for all the alarm
encounters. The blue lines should be within the bounds of the road, Owl Way, but there is
a drift of the estimates over time.

4.3.2 20 mph Scenario

The same scenario presented in Section 4.3.1 was repeated for a LEMURS and source carrier
speed of 20 mph. These trials were performed to better understand tracking and attribution
performance at higher vehicle speeds that are more relevant for urban environments. In this
case the scenario was repeated 23 times.

Figure 4.14 shows the results from one of the alarm encounters using video-based tra-
jectories. Figure 4.14a shows the progression of the alarm encounter as the source carrier
(Track 15 - white SUV) drives past LEMURS. The source carrier is tracked across three
different cameras during this alarm encounter. The large bounding boxes in image B for
Track 11, Track 15, and Track 17 reflects the high position uncertainty assigned to objects
near the edge of camera images. Once the objects are closer to the center of the image
frame in image C, the bounding boxes are much more concentrated around the objects. This
indicates a higher certainty in the object’s position.

The source carrier and surrounding objects are continuously tracked throughout the
alarm encounter. The results of the alarm encounter in Figure 4.14b show that the source
carrier has a clear correlation with the radiological data, which is the correct attribution,
and Track 15 has the highest association between the physics-based model for the trajectory
and radiological data indicated by a S-value of 201.10. Both Track 14 and Track 17 correlate
well with the count-rate data; however, both can be excluded from the analysis. Track 14
has a best-fit model that is better described by background, and more than 95% of Track 17
is outside of the radiological alarm.

In Figure 4.15, the results of LiDAR tracking using SLAM (Figure 4.15a) and performing
attribution (Figure 4.15b) are shown. The color-coding is consistent with Figure 4.14. It is
seen that the objects are consistently tracked throughout the alarm encounter in Figure 4.15a.
With this tracking information, a clear correlation between the source carrier (Track 33) and
the count-rate data from all 6 NaI(Tl) detectors exists. In this case, Track 17 and Track 38
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(a) (b)

Figure 4.14: Performing source-object attribution in a mock urban environment using video
data with the LEMURS system driving straight past a mobile vehicle (Vehicle 15 - white
SUV) carrying a 1.8 mCi 137Cs source inside of 2 cm Pb shielding. In (a), three different
moments of the alarm encounter are depicted. The bounding boxes are MVN representations
and the size of the bounding boxes reflects the certainty in an object’s position. In (b), the
attribution analysis of this alarm encounter is shown. The count-rate data from each detector
is labeled with the detector ID. The pink bar indicates the period of time the radiological
alarm was triggered. The dashed vertical lines from left to right correspond with images a–c
in (a). The diamond indicates the best-fit model was better described by a background only
model.

correlate with the count-rate data, but both tracks can be excluded from the analysis because
a background only model better describes the best-fit models for both tracks.

The results from these individual encounters demonstrate the flexibility of a Kalman filter
and the advantage of using MVN tracking. In both cases, objects were only detected and
tracked for a short period of time; however, for both video and LiDAR, all the objects were
continuously tracked throughout the transient alarm encounter. This enabled more effective
alarm attribution in these cases.

Using INS to track and perform source-object attribution is shown in Figure 4.16. Similar
to the results shown in Figure 4.15b, the source carrier (Track 34) has a clear correlation with
the count-rate data. The best-fit model for Track 34 has the highest association between the
physics-based model for the trajectory and the radiological data indicated by a S-value of
20.47, which is the correct attribution. Best-fit models with lower S-values can be excluded
because the best-fit models for those trajectories are better described by a background only
model.

The INS analysis was also extended to video-based trajectories; however, due to inconsis-
tent tracking, attribution could not be performed for this particular alarm encounter (results
not shown).

The results from all the alarm encounters for the 20 mph scenario using SLAM are shown
in Figure 4.17 for both video and LiDAR. In Figure 4.17a, 20 out of 23 trials the source carrier
had the lowest exclusion metric. In one of the trials, the source carrier was inconsistently
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(a) (b)

Figure 4.15: Performing source-object attribution in a mock urban environment using LiDAR
data with the LEMURS system driving straight past a mobile vehicle (Vehicle 33 - white
SUV from Figure 4.14) carrying a 1.8 mCi 137Cs source inside of 2 cm Pb shielding. In this
example, tracking and attribution was performed using SLAM. In (a), a LiDAR point cloud
of the alarm encounter is depicted and corresponds with the image C from Figure 4.14b.
In (b), the attribution analysis of this alarm encounter is shown. The count-rate data from
each detector is labeled with the detector ID. The pink bar indicates the period of time the
radiological alarm was triggered. The dashed vertical line corresponds with the moment in
time in (a). The diamond indicates the best-fit model was better described by a background
only model.

tracked and no attribution between the object responsible for the radiological alarm and
the count-rate data was made. For the remaining two trials, a clear correlation existed and
an operator monitoring in real time would be able to identify the object responsible for the
radiological data. Using LiDAR-based trajectories (Figure 4.17b), the source carrier was
assigned the lowest exclusion metric in 23 out of 23 trials, but a clear correlation existed in
all of the trials.

Using the source-object attribution analysis with SLAM, these results demonstrate that
situational awareness can be improved for both LiDAR and video with increased source
carrier and LEMURS vehicle speeds. In these transient encounters, the object responsible
for the radiological alarm was correctly attributed to the count-rate data in a majority of
the alarm encounters.

Tracking using INS, the source carrier has the lowest exclusion metric in 10 out of 23 alarm
encounters with video-based trajectories (Figure 4.18a) and 22 out of 23 alarm encounters
with LiDAR-based trajectories (Figure 4.18b). With video, there were 13 alarm encounter
where alarm attribution could be not performed due to inconsistent tracking. This result is
in contrast with the video SLAM results from Figure 4.17a where the source carrier had the
lowest exclusion metric in 20 out of 23 alarm encounters. Also, a clear correlation existed in
2 of the 3 remaining trials between the source carrier and the count-rate data. It is thought
the discrepancy in the results is due to the noise from the INS pose information. While
all the objects in the scene are relative to the INS drift, the INS noise can cause position
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Figure 4.16: LiDAR-based source-object attribution results from Figure 4.15 using INS
information for tracking. The color-coding is consistent with Figure 4.15. The count-rate
data from each detector is labeled with the detector ID. The pink bar indicates the period
of time the radiological alarm was triggered. The dashed vertical line corresponds with the
moment in time in (a) from Figure 4.15. The diamond indicates the best-fit model was
better described by a background only model.

(a) (b)

Figure 4.17: Results from performing source-object attribution on all radiological alarm
encounters when both LEMURS and the source carrier were traveling 20 mph relative to
each other in the mock urban environment using video (a) and LiDAR (b). SLAM was used
in (a) and (b) to generate pose estimates in a world-fixed frame. In both (a) and (b), the
faded (outlined) points indicate best-fit models that were better described by a background
only (source plus background) model. The green circles indicate tracks that are 95% or more
outside of the radiological alarm.

variations ranging from 25 to 50 cm between data packets for a given alarm encounter. In
the 20 mph case, this noise is sufficient enough along with the inferred distance information
and increased speed to cause degraded tracking and attribution performance for video. The
LiDAR results are comparable to Figure 4.17b due to the inherent depth information.
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(a) (b)

Figure 4.18: Source-object attribution on a mobile detector system in a mock urban environ-
ment using video (a) and LiDAR (b) and INS to create the world-fixed frame. In both (a)
and (b), the faded (outlined) points indicate best-fit models that were better described by a
background only (source plus background) model. The green circles indicate tracks that are
95% or more outside of the radiological alarm.

The findings from this analysis demonstrate that situational awareness can be improved
using LiDAR and INS; whereas with video, there was a reduction in attribution performance
compared to using SLAM. However, it is expected performance with an INS to worsen in an
environment subject to degraded GPS performance (e.g. an urban canyon).

4.3.3 Source Attenuation Scenario

The above two sections (Section 4.3.1 and Section 4.3.2) involve alarm encounters where the
source carrier is never occluded from LEMURS. Additionally, the scenarios involve localizing
the source to a vehicle and not a pedestrian. To explore performing source-object attribution
with attenuation present, a mock environment was created using the intersection at RFS.
A 1.87 mCi 137Cs source in 2 cm of lead-shielding was put in a briefcase and carried by a
pedestrian. LEMURS traveled through the intersection at a speed of 10 mph in the same
direction as the source carrier. As LEMURS approached the source carrier, vehicles traveling
in the opposite direction of LEMURS and the source carrier temporarily occluded the source
carrier from LEMURS causing modulation in the count-rate data at different moments in
time. This scenario was repeated 10 times.

An example of one alarm encounter using LiDAR-based trajectories is shown in Fig-
ure 4.19. Figure 4.19a shows the LiDAR point cloud with the tracking bounding boxes and
each object’s trajectory to that point in time overlaid on top of it. All the objects are contin-
uously tracked throughout the alarm encounter. In particular, the pedestrian carrying the
source (Track 16) is effectively tracked through temporary occlusions caused by Track 28 and
Track 41 as both objects drive through the intersection. Track 38, Track 39, and Track 46
are false detections. No objects were present at those positions.

In Figure 4.19b, the result of the alarm encounter is shown. From about 18.5-19.25 sec-
onds and 20-21 seconds in the alarm encounter, the source attenuation from Track 28 and
Track 41, respectively, occluding the pedestrian (Track 16) carrying the radiological source
is clearly present in the count-rate data. With the continuous tracking in particular through

74



the temporary occlusion, the attenuation that is present is captured in the best-fit model for
Track 16, and the best-fit model for Track 16 clearly follows the radiological data, especially
the modulation from the source attenuation. In this case, Track 16 was responsible for the
radiological alarm and has the lowest S-value. Track 38, 50, and 52 have lower S-values but
can be excluded from the analysis because the best-fit models for these objects are either
better described by a background only model or are more than 95% of the track is outside
the alarm window. The remaining trajectories can be excluded from the analysis and do not
follow the radiological data.

To determine if accounting for attenuation improves attribution performance relative to
neglecting attenuation effects in the best-fit model, the above analysis was repeated (Fig-
ure 4.20). However, this time attenuation was not accounted for in the best-fit model. The
best-fit model for Track 16 follows the count-rate data and has the lowest S-value among
all the objects present, but the modulation in the count rate is not captured by the best-fit
model, in particular in Detectors 4-6. Interestingly, the best-fit model in this case produces
a lower S-value compared to the best-fit model from Figure 4.19b (550.36) even though the
best-fit model does not follow the source attenuation in the count-rate data. This result
suggests that the goodness-of-fit metric lacks sensitivity to transient attenuation effects in
the scene.

In Figure 4.21, the same alarm encounter as Figure 4.19 is shown but now using video-
based trajectories. The color coding has been kept consistent with Figure 4.19. Figure 4.21a
shows three different camera images as LEMURS drives past the source carrier. The tracks
for each object throughout the alarm encounter overlaid on each cameras FOV is shown in
Figure 4.21b. The source carrier is continuously tracked through the temporary occlusions
caused by Vehicles 18 and 14 as they pass through the intersection. The large variation in
the source carrier’s position around an X-position of 14 m is due to the temporary occlusion
from Vehicle 18. Also, both Track 9 and Track 16 (Track 24 and Track 26 in Figure 4.19a)
were stationary objects throughout the alarm encounter; however, there are large variations
in the estimated position for these objects due to the distance estimation.

The result of this alarm encounter is seen in Figure 4.21c. The source carrier (Track 10)
clearly follows the count-rate data, and the source attenuation caused by the temporary oc-
clusion from Vehicle 14 and Vehicle 18 is reflected in the best-fit model. All of the trajectories
can be excluded from the analysis except for Tracks 14, 9, and 20. Of these, only Track 9
follows the count-rate data; however, the model for Track 9 misses the attenuation that is
present in the count-rate data. Track 14 and 20 are tracks generated from the same object
due to inconsistent tracking between cameras. Due to this, Track 14 and 20 are shorter tracks
and thus are more easily fit to the radiological data, but an operator monitoring would be
able to determine that the trajectories are most likely not responsible for the radiological
alarm.

The video results were repeated for this alarm encounter without accounting for atten-
uation in the model generation for trajectories. Similar to the results for LiDAR without
accounting for attenuation, the best-fit model for the source carrier had a lower S-value
(559.61 – result now shown) compared to the S-value generated by accounting for attenua-
tion. This result along with the S-value generated for Track 9 from Figure 4.21c demonstrate
that the goodness-of-fit metric is not sensitive enough to attenuation effects.

The results of all of the alarm encounters with attenuation present are seen in Figure 4.22
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(a)

(b)

Figure 4.19: Performing source-object attribution in a mock urban environment using Li-
DAR. In this example, the LEMURS system drives straight past a mobile pedestrian (Per-
son 16 - red bounding box) carrying a 1.8 mCi 137Cs source inside of 2 cm Pb shielding,
and when LEMURS passes Person 16, Vehicle 28 and Vehicle 41 occlude the source carrier
from LEMURS at different points in time throughout the alarm encounter. In (a), a LiDAR
point cloud of the alarm encounter is depicted. In (b), the attribution analysis of this alarm
encounter is shown. The count-rate data from each detector is labeled with the detector ID.
The pink bar indicates the period of time the radiological alarm was triggered. The dashed
vertical line corresponds with the moment in time in (a). The diamond indicates the best-fit
model was better described by a background only model, and the dagger represents the track
was more than 95% outside of the alarm window.

for both video and LiDAR. In Figure 4.22a, the results show that the source carrier has the
lowest exclusion metric in 3 out of 10 trials. In 6 of the remaining trials, inconsistent
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Figure 4.20: Performing source-object attribution without including attenuation effects in
the best-fit model calculation in a mock urban environment using LiDAR. The alarm en-
counter considered corresponds with Figure 4.19. The count-rate data from each detector
is labeled with the detector ID. The pink bar indicates the period of time the radiological
alarm was triggered. The dashed vertical line corresponds with the moment in time in Fig-
ure 4.19a. The diamond indicates the best-fit model was better described by a background
only model, and the dagger represents the track was more than 95% outside of the alarm
window.

tracking of objects allowed best-fit models to have lower exclusion metrics than the source
carrier. However, there was 1 trial (Trial Number 6) where adjudicating the alarm could
not be performed. In this case, the tracking of the object was consistent, but there was
too much noise in the source carrier’s trajectory preventing correct attribution. When the
above analysis was performed without accounting for attenuation in the physics model, the
best-fit model for the source carrier had the lowest exclusion metric in 3 out of 10 trials,
which matches the results when attenuation is accounted for in the physics model. However,
the S-values were lower when attenuation was not included in the model generation.

With LiDAR (Figure 4.22b), the source carrier is correctly assigned the lowest exclusion
metric in 1 out of 10 alarm encounters. As mentioned earlier in Section 4.3.1, the threshold
to track a detected object using SECOND is low to enable more consistent tracking of
objects; however, this allows for more false positive object detections. In 6 of the remaining
trials, false positives prevented the source carrier from having the lowest exclusion metric.
Repeating the analysis without accounting for attenuation in the physics model resulted in
the source carrier having the lowest exclusion metric in 4 out of 10 trials, and again, the
S-values were lower compared to accounting for attenuation in the model generation.

In Figure 4.22, the S-values for the source carrier are quite large in these encounters
for both video and LiDAR. The large S-values are caused by an incomplete modeling of
the attenuation present. The current implementation of the attenuation calculation only
applies attenuation when an object is fully occluded. This is a limitation of this approach
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(a) (b)

(c)

Figure 4.21: Performing source-object attribution in a mock urban environment using video.
In this example, the LEMURS system drives straight past a mobile pedestrian (Person 10
- red bounding box) carrying a 1.8 mCi 137Cs source inside of 2 cm Pb shielding, and
when LEMURS passes Person 16, Vehicle 14 and Vehicle 18 occlude the source carrier
from LEMURS at different points in time throughout the alarm encounter. (a) shows three
different image frames as LEMURS drives past the source carrier In (b), a top-down view
of the video trajectories overlaid on top if the FOV of each camera. The color-coding of the
objects is consistent with Figure 4.19. In (c), the attribution analysis of this alarm encounter
is shown. The count-rate data from each detector is labeled with the detector ID. The pink
bar indicates the period of time the radiological alarm was triggered. The dashed vertical
lines from left to right correspond with images ac in (a). The diamond indicates the best-fit
model was better described by a background only model.
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because attenuation does not occur instantaneously. Rather, the amount of attenuation
present changes with time as the fraction of the solid angle covered by an occluding object
between the detector and radiological source changes. Also, the attenuation from tracked
objects is not known a priori and is assumed. This can cause either an overestimation or
underestimation of the total attenuation imposed by an occluding object. Additionally, the
findings suggest that the goodness-of-fit metric is not sensitive enough to attenuation effects
in the count-rate data. In the alarm encounters, when attenuation was not accounted for in
the physics model, the S-value was lower indicating a better association between the best-fit
model and radiological data compared to the results when attenuation was accounted for in
the model generation. With more complete modeling and a more sensitive goodness-of-fit
metric, attenuation effects should further improve attenuation performance. Nonetheless,
the results of this analysis demonstrate that situational awareness can be improved when
the source is occluded. In a majority of the alarm encounters using video and LiDAR, a clear
correlation between the best-fit model and the count-rate data existed even when the source
was attenuated, and an operator monitoring in real-time would still be able to perform alarm
adjudication.

(a) (b)

Figure 4.22: Results of performing source-object attribution with source attenuation present
in the scene for video (a) and LiDAR (b). In both (a) and (b), the faded (outlined) points
indicate best-fit models that were better described by a background only (source plus back-
ground) model. The green circles indicate tracks that are 95% or more outside of the radio-
logical alarm.

4.4 Improved Detection Sensitivity with Track-informed Optimized
Integration Windows

With tracking information, optimal integration times to maximize SNR can be found using
the formulation discussed in Section 2.10. Furthermore, for a given alarm encounter, certain
detectors will be closer to the source carrier and will experience higher SNR than the de-
tectors further from the source carrier. Thus, an optimal configuration of detectors should
exist that should maximize SNR. The following two sections (Section 4.4.1 and Section 4.4.2)
investigate optimizing integration windows to maximize SNR using a mobile detector sys-
tem in the presence of a mobile source. Optimal integration windows are found either using
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the 6 NaI(Tl) detectors independently or summing the response of the 6 NaI(Tl) detectors.
In both cases, position uncertainty of the object is accounted for with MCMC. Also, the
analyses were only performed using the trajectories generated from tracking with SLAM.

4.4.1 10 mph Scenario

Figure 4.23 shows an example of applying the optimum integration window analysis for
multiple detectors for the alarm encounter from Figure 4.9. The time-segments that should
optimize SNR for the detector array for this alarm encounter are overlaid on the count-rate
data. It is seen that the time-segments correspond with the time of closest approach between
LEMURS and the source carrier. The spectral data from each detector’s integration window
is then combined to produce an optimal spectrum.

Figure 4.23: Optimized integration windows for all 6 NaI(Tl) detectors overlaid onto the
count-rate data (black line) for the alarm encounter from Figure 4.9. The color coding for
the source carrier (Track 17) is consistent with Figure 4.9.

The above approach can also be applied to the summed response of all 6 NaI(Tl) detectors.
With the summed response, the detector array becomes a monolithic detector, and the
optimal integration window is determined from the summed response.

Figure 4.24a and Figure 4.24b show 100 different samples drawn from the posterior
distribution using MCMC along with the model that maximizes the likelihood for both
video and LiDAR, respectively. The 100 samples demonstrate the variability of the best-fit
model calculation when accounting for position uncertainty, and by constraining the priors
in the MCMC calculation, the drawn samples correlate with the radiological data and do
not deviate significantly from each other. For LiDAR, the MCMC sampling overestimates
the radiological data before (∼ 16 seconds) and after the radiological alarm (∼ 17.5 seconds)
demonstrating that the simple physics model is not perfect at modeling the expected count-
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rate. Nonetheless, the model that maximizes the likelihood for both video and LiDAR
correlates well with the radiological data.

(a) (b)

Figure 4.24: Applying MCMC to account for the position uncertainties in the source carrier
track and in the optimal integration window formulation for video (a) and LiDAR (b). The
trajectories are from the alarm encounter shown in Figure 4.8a and Figure 4.9a for video
and LiDAR, respectively. The best-fit model for each track is shown, and the faded lines
represent the different samples of the posterior distribution. The dashed-line is the MCMC
sample that maximized the likelihood.

Figure 4.25a and Figure 4.25b show the calculated optimal integration windows overlaid
on the count-rate data for both video and LiDAR, respectively. In both cases, the optimal
integration window captures the time of closest approach. The optimal spectrum is produced
by combining the spectral information within the time segments.

(a) (b)

Figure 4.25: Optimal integration windows overlaid on the count-rate data for both video
(a) and LiDAR (b). The trajectories are from the alarm encounter shown in Figure 4.8a
and Figure 4.9a for video and LiDAR, respectively, and the color-coding in (a) and (b) is
consistent with Figure 4.8a and Figure 4.9a, respectively.

It is seen in both Figure 4.23 and Figure 4.25 the optimal integration windows does
not capture the anisotropic attenuation from the source carrier. For video, an anisotropic
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attenuation from an object is not accounted for in the simple physics model in Section 2.6.1
since heading information is not available. However, even for LiDAR where an attenuation
correction is added to the data, there is not an improvement in the track-informed window
capturing the anisotropic attenuation that is present.

An optimized spectroscopic search was applied to the optimal spectrum produced using
the 6 NaI(Tl) detectors independently for all the trajectories and was compared to either
the optimal spectrum created from the summed response of the source carrier or different
fixed integration windows for video (Figure 4.26a) and LiDAR (Figure 4.26b), respectively.
The color coding in Figure 4.26a and Figure 4.26b is consistent with Figure 4.8a and Fig-
ure 4.9a, respectively. The optimal integration window analysis using the 6 NaI(Tl) detector
independently for the source carrier in video (Track 4) and LiDAR (Track 17) produce close
to the largest anomaly value relative to the other trajectories in the scene. In both cases, it
is seen that trajectories with similar trajectories to the source carrier have elevated anomaly
values as well such as Track 2 and Track 5 for video and Track 5 in LiDAR. The optimal
integration window for video improves detection sensitivity relative to a fixed integration
window of 1.0, 3.0, 4.0, and 5.0 seconds. For LiDAR, the track-informed integration window
is the optimal integration window compared to all fixed integration windows.

Using a summed detector response in both video and LiDAR, a track-informed integra-
tion window of 1 second is the optimal integration window compared to a fixed 1, 3, 4, or
5 second integration window but is less than a fixed integration window of 2 seconds. For
both video and LiDAR, using all 6 NaI(Tl) detector independently to find an optimal con-
figuration of detectors improves detection sensitivity relative to using the summed response
of the detectors, which matches the hypothesis that for a given alarm encounter there exists
an optimal configuration of detectors that will maximize SNR compared to summing the
response of all the detectors together. The results of this analysis for video and LiDAR
suggests that track-informed integration windows can improve the anomaly value, a proxy
for detection sensitivity, relative to different fixed integration windows.

Figure 4.27 shows the results from all of the alarm encounters when LEMURS was trav-
eling 10 mph for both video and LiDAR. With video trajectories (Figure 4.27a), using the
6 NaI(Tl) detectors individually and MCMC to produce the track-informed optimal integra-
tion window yielded an optimal window in 8 of the 19 trials, and for the other 11 trials the
track-informed window is close to the optimal integration window in most of the encoun-
ters. When the response function is summed together and MCMC is applied to the data
the track-informed optimal integration window is the optimal window in 2 of the 19 trials.
The discrepancy between the two track-informed optimal integration windows is due to the
higher amount of background that is present in the summed response. With the 6 NaI(Tl)
detectors, the optimal window for each detector captures the time of closest approach when
the signal is highest, which improves the anomaly value, a proxy for detection sensitivity. In
15 out of the 19 trials, using the 6 NaI(Tl) detectors individually produces a higher anomaly
value compared to the summed response.

For LiDAR trajectories (Figure 4.27b), the results show that the track-informed inte-
gration window is the optimal window in 6 (1) of the 19 trials for optimal configuration of
detectors (summed response). In both cases, the track-informed windows are close to the
optimal integration window in the remaining 13 (18) trials. In this case, the optimal config-
uration of detectors produces a larger anomaly value compared to the summed response in
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(a) (b)

Figure 4.26: Spectroscopic analysis for video (a) and LiDAR-based (b) trajectories using
either the trajectory’s optimized integration window or fixed integration windows. The
trajectories for this analysis are from Figure 4.8a and Figure 4.9a for video and LiDAR,
respectively. Also, the color coding in (a) and (b) is consistent with Figure 4.8a and Fig-
ure 4.9a, respectively. In addition, the ∗ indicates the spectroscopic analysis was performed
using the summed response of the detector array, and the parentheses indicate the time
duration of the optimal integration window for the summed response.

all of the alarm encounters. This result along with the video-based results aligns with the
hypothesis that for a given alarm encounter there exists an optimal configuration of detectors
that will maximize SNR compared to summing the response of all the detectors together.

Overall, from these transient alarm encounters, the track-informed integration approaches
for both video and LiDAR produce optimal integration windows that are either the optimal
integration window or are close to the optimal integration window. In most cases, a fixed
integration window of 1 or 2 second produces the optimal integration window, but there
is variability in which fixed integration window produces the best result. Even though the
track-informed integration windows were not always the optimal window, the results from
this analysis demonstrate that the track-informed integration approach can better inform
integration times by adapting to the dynamics of the scene and relative motion of objects in
a scene. In addition, the results suggest the track-informed integration windows can improve
detection sensitivity on a mobile system relative to fixed integration windows.

To explore the track-informed optimal integration formulation in lower SNR environ-
ments, the spectra data in the above alarm encounters were binomial down-sampled. In
order to properly compare the spectroscopic analysis using the individual detectors or sum-
ming the detectors into a monolithic detector, the binomial down-sampling was applied to
the spectra data from each individual detector. Subsequently, the spectroscopic analysis was
either applied to the individual detectors by summing the spectral data from each detector’s
respective optimal integration window or to the summed response from all 6 NaI(Tl) detec-
tors. The spectra data was binomial down-sampled by 75% of the highest count-rate data
within a given alarm window.

The results of this analysis for video-based and LiDAR-based trajectories is shown in
Figure 4.28a and Figure 4.28b, respectively. In Figure 4.28a, the optimal configuration of

83



(a) (b)

Figure 4.27: Maximum relative anomaly values from each alarm encounter from Figure 4.11a
and Figure 4.11b using either track-optimized time-windows or fixed integration windows for
both video (a) and LiDAR (b), respectively. In (a) and (b), the solid red bars (red bars with
hatch marks) indicate track-optimized windows using the 6 NaI(Tl) detectors independently
(summing the response of the detectors). The grey, blue, black, orange, and purple bars
indicate a fixed integration window of 1.0, 2.0, 3.0, 4.0, or 5 seconds, respectively. The
blue (green) diamond, dagger, triangle, filled in circles, or right facing triangle indicate
the encounters where the optimal integration window yielded a higher anomaly value than
a 1, 2, 3, 4, or 5 second integration window, respectively, using the 6 NaI(Tl) detectors
independently (summing the response of the detectors).

detectors improves the anomaly value relative to all fixed integration windows in 5 out of
the 19 trials. In the remaining cases, the track-informed integration window produces an
anomaly value that is close to the maximum anomaly value generated using a 1 second
integration window. By performing the spectroscopic analysis on the summed response of
the detectors, performance is degraded compared to the optimal configuration of detectors.
None of the cases produce the maximum anomaly value. Additionally, the track-informed
anomaly values are not close to the maximum anomaly value produced by the the fixed
integration window of 1 second.

For LiDAR-based trajectories (Figure 4.28b), using the optimal configuration of detec-
tors, the optimal integration window has the highest relative anomaly value in 6 of the
19 trials, and in the remaining cases, the track-informed integration window produces an
anomaly value that is close to the maximum anomaly value produced by the 1 second fixed
integration window. Similar to higher SNR environment presented earlier in this section, the
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optimal configuration window enables better detection sensitivity compared to the summed
response.

The results from the lower SNR study support the hypothesis that using tracking infor-
mation can better inform integration times. In Figure 4.27, the maximum anomaly value
in a majority of the alarm encounters was generated using a 2 second fixed integration win-
dow; whereas in the lower SNR environment presented in Figure 4.28 a 2 second window
only produced the maximum anomaly value in 1 alarm encounter. In this environment, a
1 second fixed integration window generated the maximum anomaly value in the majority
of cases. Multiple fixed integration windows can be run in tandem to try and maximize
detection sensitivity. However, it is not possible to account for the countless changes that
can occur in a scene that could impact detection sensitivity with a fixed integration win-
dow. For example, if a source-carrying vehicle is stopped at a light near LEMURS for more
than 10 seconds, a 1 or 2 second fixed integration window will give lower anomaly values
compared to a longer integration window. This is the advantage of using the track-informed
integration window which adapts to the scene and motion of objects. Overall, the findings
from this analysis further suggests that detection sensitivity can be improved relative to
fixed integration windows in low SNR environments.
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(a) (b)

Figure 4.28: Maximum relative anomaly values from each alarm encounter from Fig-
ure 4.11 using binomial down-sampled spectral data and applying either track-optimized
time-windows or fixed integration windows for video (a) and LiDAR (b). In (a) and (b), the
red bars with hatch marks (solid red bars) indicate track-optimized windows using summing
the response of the detectors (6 NaI(Tl) detectors independently). The grey, blue, black,
orange, and purple bars indicate a fixed integration window of 1.0, 2.0, 3.0, 4.0, or 5 seconds,
respectively. The time duration for the summed response optimal window is provided in
the parentheses. The green (blue) diamond, dagger, triangle, filled in circles, or right fac-
ing triangle indicate the encounters where the optimal integration window yielded a higher
anomaly value than a 1, 2, 3, 4, or 5 second integration window, respectively, using the
6 NaI(Tl) detectors independently (summing the response of the detectors).

4.4.2 20 mph Scenario

The spectroscopic analysis from Section 4.4.1 was applied to the alarm encounters where
both the source carrier and LEMURS were traveling at 20 mph relative to each other to
further explore the optimal integration window analysis in more transient alarm encounters.

In Figure 4.29, the results of applying this analysis to all 23 alarm encounters for video
and LiDAR are shown. For both video and LiDAR, the track-informed integration windows
were calculated using either the summed response of the detector array or summing the
optimal integration windows from each respective detector to produce an optimum spectrum.
In Figure 4.29a, the track-informed integration window produces the maximum anomaly
value in 10 (11) out of 23 trials compared to different fixed integration windows using the
summed response of the detector array (summing the optimal integration windows from
each respective detector to produce an optimum spectrum). There was inconsistent tracking
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with alarm encounter 1 and 3 causing degraded detection performance. The LiDAR-based
track-informed integration window produces the largest anomaly value in 4 (5) out of 23
alarm encounters using the summed response of the detector array (summing the optimal
integration windows from each respective detector to produce an optimum spectrum) shown
in Figure 4.29b. However, in each case, the relative anomaly value for the track-informed
integration window using either method is close to the largest anomaly value produced by a
1 second fixed integration window.

While it is expected that using an optimal configuration of detectors throughout an
alarm encounter will produce higher anomaly values, in the 20 mph case, the time of closest
approach between LEMURS and the source carrier is quicker resulting in the counts from
the radiological source to be more concentrated around the time of closest approach, which
reduces the contribution of background when a spectroscopic analysis is performed. As a
result, the anomaly values using the summed response of the detector array were comparable
to the summing the optimal integration windows from each respective detector to produce
an optimum spectrum. Altogether, the results of this analysis show that the track-informed
integration window can improve the anomaly value compared to different fixed integration
windows using either approach for video or LiDAR.
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(a) (b)

Figure 4.29: Maximum relative anomaly values from each alarm encounter from Figure 4.17a
and Figure 4.17b using either track-optimized time-windows or fixed integration windows
for both video (a) and LiDAR (b), respectively. In (a) and (b), the solid red bars (red
bars with hatch marks) indicate track-optimized windows using the 6 NaI(Tl) detectors
independently (summing the response of the detectors and applying MCMC). The grey,
blue, black, orange, and purple bars indicate a fixed integration window of 1.0, 2.0, 3.0, 4.0,
or 5 seconds, respectively. The time duration for the summed response optimal window is
provided in the parentheses. The blue (green) diamond, dagger, triangle, filled in circles, or
right facing triangle indicate the encounters where the optimal integration window yielded a
higher anomaly value than a 1, 2, 3, 4, or 5 second integration window using the 6 NaI(Tl)
detectors independently (summing the response of the detectors and applying MCMC).

4.5 Importance of Detector Response in Source-object Attribu-
tion

For mobile detector systems, the intrinsics of the vehicle (i.e. number of occupants, occluding
material, etc.) can vary often, and all of these variations will impact the response function
differently. However, it is not possible to properly account for the myriad different changes
that can occur within the vehicle. In order to understand the importance of the detector
response for source-object attribution, detector responses with varying levels of complexity
were applied to the same alarm encounters considered in Section 4.3.1. In addition, the
detector responses were applied in a degenerate scenario described in Section 4.2.1. It should
be noted this analysis was only performed using SLAM to generate a consistent reference
frame.
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The responses compared in this analysis were an isotropic response (lowest fidelity), zero
energy response, and the current LEMURS response function (highest fidelity) which is a
Monte Carlo response described in Section 2.6.1.1.

The zero energy response functions were generated using OpenGL [49] (Figure 4.30a). As
mentioned in Section 2.6.1.1, a zero-energy approach does not account for any gamma-ray
physics (i.e. no scattering and infinite attenuation). The OpenGL response consisted of the
detector array, vehicle frame, roof rack, and engine block - the major occluding structures
in LEMURS (Figure 4.30a). Figure 4.30b shows a zero-energy response map for Detector 0
from Figure 4.30a. The coordinate system of the NaI(Tl) detector array in OpenGL was
oriented such that the Z axis was up; however, in the URDF of LEMURS (Figure 2.3), the
NaI(Tl) detector array is oriented with Z down. Thus, the directional response of OpenGL
was rotated to correctly correspond with the URDF file.

(a) (b)

Figure 4.30: LEMURS system modeled with OpenGL (a). Zero-energy directional response
for Detector 0 from the LEMURS NaI(Tl) array is shown in (b). The response is in the
reference frame of the NaI(Tl) array which is oriented with the z-axis down (see Figure 2.3).

The OpenGL and isotropic response functions were used to perform source-object attri-
bution on the same alarm encounter from Figure 4.8 for video-based trajectories. The results
from using the OpenGL response function are shown in Figure 4.31a. A clear correlation
exists between the source carrier (Track 4) and the count-rate data and all of the other
trajectories can be rejected. However, even though a correlation exists, the quality of the
fit is diminished compared to the results in Figure 4.8c. The S-value for the source carrier
is higher in this case. When the isotropic response function is used (lowest fidelity model),
the quality of the fit is further reduced. Across all 6 detectors the best-fit model for Track 4
is the same with only the magnitude of the count rate varying between detectors. Since the
response is the same in every direction, no modulation is present from the detector array, but
the correct attribution is still made with this low fidelity response function while all other
trajectories can be rejected. Applying these response functions to LiDAR-based trajectories
(results not shown), a similar result is seen. The S-value for the source carrier increases as
the fidelity of the response function is diminished; nonetheless, the correct attribution is still
made for the OpenGL and isotropic response functions while all other trajectories can be
rejected.
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(a) (b)

Figure 4.31: Comparison of using different response functions with varying fidelity to perform
source-object attribution. In (a), the response function was modeled with OpenGL and
corresponds with Figure 4.30, and (b) is an isotropic response. Both (a) and (b) correspond
with the alarm encounter from Figure 4.8.

The results show that using an isotropic response with LiDAR-based (video-based) tra-
jectories the source carrier has the lowest exclusion metric in 17 (11) out of the 19 trials
Figure 4.32b (Figure 4.32a). For LiDAR-based trajectories, this is comparable to the results
using the current LEMURS response function (Figure 4.11b). However, the exclusion metric
values are on average higher compared to the Monte Carlo approach for both video and Li-
DAR (Figure 4.11a and Figure 4.11b, respectively), but an operator monitoring the system
would be able to correctly perform alarm adjudication in all 19 trials.

(a) (b)

Figure 4.32: Applying an isotropic response function to the alarm encounters presented in
Figure 4.11 for video (a) and LiDAR (b), respectively. In (a), an isotropic response is used
for video-based trajectories and (b) shows the results for LiDAR-based trajectories. In both
cases, the trajectories were modeled and fit to the 6 NaI(Tl) detectors independently from
LEMURS. The faded (outlined) points in (a) and (b) indicate best-fit models that were
better described by a background only (source plus background) model. The green circles
indicate tracks that are 95% or more outside of the radiological alarm.

The results for the zero energy response function show an improvement in attribution
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performance compared to the isotropic response for both video (Figure 4.33a) and LiDAR
(Figure 4.33b). The source carrier has the lowest exclusion metric in 18 (16) out of 19 trials
for LiDAR (video) trajectories, and a clear correlation between the best-fit model for the
source carrier and radiological data exists in each trial, but the exclusion metrics are still
higher than the current LEMURS response function.

Overall, this analysis demonstrates that the fidelity in the response function does con-
tribute to the performance of the source-object attribution analysis. With a more detailed
response function, the best-fit model for the object responsible for the radiological alarm
correlates better with the radiological data. However, most of the localization and attribu-
tion performance is driven by proximity (1/r2), and with any of the response functions, an
operator monitoring in real time would be able to correctly perform alarm adjudication.

(a) (b)

Figure 4.33: Applying a zero-energy response function to the alarm encounters presented
in Figure 4.11. In (a), a zero energy response function is used for video-based trajectories
and (b) shows the results for LiDAR-based trajectories. In both cases, the trajectories
were modeled and fit to the 6 NaI(Tl) detectors independently from LEMURS. The faded
(outlined) points in (a) and (b) indicate best-fit models that were better described by a
background only (source plus background) model. The green circles indicate tracks that are
95% or more outside of the radiological alarm.

In the above analyses, the proximity between LEMURS and the source carrier was small
(less than 2 m) and the activity of the source present was high leading to large count rates
in the detectors. To investigate weaker source encounters with lower counting statistics in
the detectors, the count-rate data was binomial down-sampled. The count-rate data was
down-sampled by a factor 25%, 75%, 90% of the highest count rate within the time of
closest approach of the source carrier. The lowest Exclusion Metric was used as a metric for
localization performance.

The results from this analysis are shown in Figure 4.34 for both video (Figure 4.34a)
and LiDAR (Figure 4.34b). With both video and LiDAR, the localization performance for
both the OpenGL and isotropic response functions decreases with weaker source encounters
(i.e., higher percentage of binomial down-sampling); however, a clear correlation does exist
in every alarm encounter between the source carrier and the radiological data. In the weaker
source encounters, the duration of the radiological alarm window is about 0.5 seconds or
less, which leads to encounters where a majority of trajectories have more than 95% of their
trajectory outside of the alarm window including the source carrier. To limit rejecting too
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many trajectories in these situations, if the alarm window is not greater than 0.5 seconds
trajectories that are outside of the alarm window are not rejected, which limits localization
performance. Nonetheless, with the Monte Carlo response function, the localization perfor-
mance is consistent across the different source strength encounters. The results from this
analysis demonstrate that a higher fidelity response function enables more effective rejection
of trajectories that are consistent with the radiological data.

(a) (b)

Figure 4.34: Comparing the source-object attribution performance using response functions
with varying levels of fidelity and binomial down-sampled data. The alarm encounters cor-
respond with Figure 4.11 for both video and LiDAR. In total 19 alarm encounters were
performed. The annotation in each square represents the number of trials the source carrier
had the lowest exclusion metric. The x-axis shows the percentage of the highest count rate
within a particular alarm encounter the spectra data was binomial down-sampled, and the
y-axis represents the different response functions used to perform source-object attribution.

This topic was further explored using the degenerate scenario described in Section 4.2.1.
Similar to the analysis above, localization performance was determined by the number of
encounters where the source carrier had the lowest exclusion metric. This analysis was
performed using LiDAR-based trajectories, and the analysis was performed with and without
binomial down-sampled data.

Figure 4.35 shows the results of performing source-object attribution in the degenerate
scenario with different response functions. The color coding is consistent with the objects
shown in Figure 4.3. In both Figure 4.35a and Figure 4.35b, the lower fidelity detector
response functions (OpenGL and Isotropic, respectively) have reduced localization perfor-
mance compared to the higher fidelity model (Monte Carlo). With the isotropic response
function, all directional information from the detector array is lost since the response is the
same in all directions so the degeneracy between the source carrier and the vehicle directly
across from the source carrier cannot be broken. The OpenGL response can break the de-
generacy present between the source carrier and the vehicle directly across from the source
carrier because there is modulation information from the detector array in the response func-
tion; however, there is large statistical variation in the exclusion metric for the source carrier
in both Figure 4.35a and Figure 4.35b. This leads to the source being localized to both the
source carrier and vehicle adjacent to the source carrier; whereas, the Monte Carlo response
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(a) (b)

Figure 4.35: Localization performance in a degenerate scenario (described in Section 4.2.1)
using source-object attribution and detector response functions with varying levels of fidelity.
In (a), the results of performing source-object attribution without binomial down-sampling
the data is shown, and in (b) the count-rate data was down-sampled by 25% of the highest
count rate within the time of closest approach by LEMURS. For both (a) and (b), the x-axis
describes the fidelity of the detector response function, and the color coding is consistent
with the objects shown in Figure 4.3.

function is able to correctly localize the source to the source carrier in both Figure 4.35a and
Figure 4.35b.

The results from this analysis demonstrate that the additional information gained from a
higher fidelity detector response function does enable better source localization information,
especially in degenerate scenarios.

4.6 Importance of Angular Response in Source Localization

To better understand the impact of the angular response on source localization when tracking
information is available, source-object attribution was performed using different detector
array configurations. The different detector array configurations were generated from the
6 NaI(Tl) detector array of LEMURS. This was done by combining the radiation data from
the individual detectors of the 6 NaI(Tl) detector array to create a left-right detector array,
a 3 NaI(Tl) detector array, or a monolithic detector (Figure 4.36).

Localization performance of the detector array configurations are first compared to the
localization performance of the full 6 NaI(Tl) detector array using source-object attribution.
Subsequently, the source localization performance of the different detector array designs
using source-object attribution are compared to performing source localization using a 3D
image space that is discretized into cubic voxels and reconstructing the spatial distribution
of the radiological source utilizing the ML-EM algorithm. In addition, source localization
performance is compared to a gamma-ray reconstruction algorithm that assumes sparsity in
the voxelized space [22]. All of the analyses were performed using SLAM.
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(a) (b) (c)

Figure 4.36: Different detector array configurations generated from the 6 NaI(Tl) detector
array of LEMURS. In (a), a left-right detector array is shown and was generated by combin-
ing the radiation data from the red-highlighted detectors together to form the left detector,
and the right detector was created by summing the response of the remaining three detec-
tors. The 3 NaI(Tl) detector array (b) was generated by summing the detector response
for each highlighted detector pair together producing three individual detectors. In (c),
the monolithic detector was formed by summing the response from all 6 NaI(Tl) detectors
together.

4.6.1 Source-object Attribution using Different Detector Array
Configurations

4.6.1.1 Degenerate Scenario

Figure 4.37 shows the results of performing source-object attribution in the degenerate sce-
nario described in Section 4.2.1 using the different detector array configurations. The spectra
data in these scenarios has been down-sampled by a factor of 25% of the highest count rate
within the alarm window. Similar to the results in Figure 4.4, the variation in the Kalman
filter positions and the position-source offset cause the best-fit models to underestimate the
magnitude of the source activity in Figure 4.37a – Figure 4.37d. The result of fitting all
6 NaI(Tl) detectors is shown in Figure 4.37a and is similar to Figure 4.4. In this case,
the source is correctly attributed and localized to the source carrier (Track 39) while all
the other trajectories can be rejected from the analysis. With the 3 detector array (Fig-
ure 4.37b) or left-right array (Figure 4.37c) the radiological source is correctly attributed to
the source carrier while Track 44 and Track 45 can be rejected from the analysis. The result
of performing source-object attributing with a monolithic detector is shown in Figure 4.37d.
In this case, the degeneracy that exists between Track 39 and Track 45 cannot be broken.
Track 45 is assigned a lower exclusion metric, which indicates that some modulation in the
detector array is necessary to break degeneracies that exist in the LEMURS vehicle.

The above degenerate scenario was replicated 20 times. The results from all the source
encounters are shown in Figure 4.38 using the different detector array configurations. In
these alarm encounters, the count rates in the detectors were quite high due to the source
activity and the proximity of LEMURS to the source. To better understand the importance
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(a) (b)

(c) (d)

Figure 4.37: Performing source-object attribution using different detector array configura-
tions generated from the 6 NaI(Tl) detector array of LEMURS. The trajectories are from
Figure 4.3 and the color coding of the objects is consistent. The count-rate data (black line)
in (a) – (d) has been binomial down-sampled by a factor of 1.3. In (a), the count-rate data
from the full 6 NaI(Tl) detector array and the best-fit models to the count-rate data are
displayed. The three detector array is shown in (b). The dashed lines are separating the
count rates from the different detectors, and the annotation signifies the detectors summed
together to create the response. In (c) and (d), the results of performing source-object at-
tribution using the left-right detector array and monolithic detector are shown, respectively.
Again, the annotation in (c) signifies the detectors that were summed together to generate
the response.

of the angular response on source localization when tracking information is available, the
spectra data was binomial down-sampled by a factor 25% or 75% of the highest count rate
within the time of closest approach to investigate localization performance in the presence
of weaker sources. Localization performance between the different array configurations was
determined by using the lowest exclusion metric. The results show that using either a left-
right or 3 NaI(Tl) detector array produces similar localization performance when compared
to the full 6 NaI(Tl) detector array. Even in the presence of weaker source encounters,
localization performance between the left-right, 3 NaI(Tl), or full 6 NaI(Tl) detector array

95



is similar. For each configuration, the left-right degeneracy that exists between the source
carrier and the vehicle across the street from the source carrier is broken. The incorrect
attributions are between the source carrier and the vehicle adjacent to the source carrier.
In these trials, the vehicle adjacent to the source carrier was assigned the lowest exclusion
metric. Similar to the result shown in Figure 4.37d, the monolithic detector cannot break
the degeneracies present, and only correctly identifies the source carrier in a few of the trials.
In these cases, the vehicle directly across the street from the source carrier was assigned the
lowest exclusion metric.

The findings from this degeneracy study suggest that when tracking information is avail-
able a simpler detector array design could provide similar radiological source localization
compared to a detector array with a more complex angular response in low and high count-
rate environments. However, with simpler array designs (i.e., less detectors), the count rate
in the detector(s) will be less compared to the full 6 NaI(Tl) detector array. This study did
not investigate how this reduction in detection efficiency will impact detection.

Figure 4.38: Comparing the source-object attribution performance using different detector
array configurations and binomial down-sampled data. The alarm encounters correspond
with Figure 4.3 for LiDAR. In total 20 alarm encounters were performed. The annotation in
each square represents the number of trials the source carrier had the lowest exclusion metric.
The x-axis shows the percentage of the highest count rate within a particular alarm encounter
the spectra data was binomial down-sampled, and the y-axis represents the different detector
array configurations generated by combining the radiation data from the individual detectors
of the 6 NaI(Tl) detector array.

In the above analysis, only LiDAR-based trajectories were used to explore the importance
of the angular response in source localization when tracking information is available. The
inherent depth information from LiDAR enables more reliant tracking and consistent object
position. With video, the source position varies greatly in these source encounters leading
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to incorrect associations between detections and tracks. This limits the ability to properly
investigate the importance of the angular response in source localization when tracking
information is available with video data. However, with a more reliable depth estimation,
the findings should be similar to LiDAR-based trajectories.

4.6.1.2 Complex Scenario in a Mock Urban Environment

This topic was also extended to the complex scenario shown in Figure 4.8 and Figure 4.9.
Source-object attribution was performed using either the full NaI(Tl) bar array, the left-
right detector, the 3 detector NaI(Tl) array, or the monolithic detector and the attribution
performance between these different configurations was compared. In addition, binomial
down-sampling was performed to investigate attribution performance in weaker source inter-
actions. The spectra data was down-sampled by a factor of 25%, 75%, or 90% of the highest
count-rate within a given alarm encounter. The metric for attribution performance was the
number of trials the source carrier was assigned the lowest exclusion.

The results shown in Figure 4.39a and Figure 4.39b compare the attribution performance
of the different array configurations across different source strengths. The findings in Fig-
ure 4.39b suggest that a simpler array configuration could be used when tracking information
is available to achieve similar localization performance to a more complex array design. The
decreased localization performance at 75% and 90% down-sampled is driven by a reduced
ability reject trajectories that are more than 95% outside of the alarm window. At 75%
or 90% down-sampled, the alarm windows are about 0.75 seconds or less in duration. This
results in trajectories that would otherwise be excluded from the analysis being included,
which diminishes localization performance, but a clear correlation still existed and an oper-
ator would be able to make the correct attribution in real time.

In Figure 4.39b, the full 6 NaI(Tl) detector array offers the most consistent localiza-
tion performance across the different down-sample percentages. However, the simpler array
configurations – 3 NaI(Tl) detector array, left-right detector array, and monolithic detector
– have similar localization capabilities. In this case, there is decreased localization perfor-
mance at 75% down-sampled but only for the 3 NaI(Tl) and left-right detector array. Given
the probabilistic nature of binomial down-sampling and the further reduction in counts at
90%, most of the trajectories that could not be excluded at 75% down-sampling were ex-
cluded because the trajectories were better described by a background-only model. This
improved localization performance at 90% for both the 3 NaI(Tl) and left-right detector ar-
ray. The alarm encounters considered here do not capture the degeneracies that are present
in LEMURS, which explains the localization performance of the monolithic detector; how-
ever, the results for the monolithic detector demonstrate the ability of the source-object
attribution analysis to improve the localization performance of a nondirectional detector.

Comparing Figure 4.39a and Figure 4.39b, LiDAR has improved localization performance
in weaker source strength scenarios. This demonstrates the advantage of the inherent depth
information with LiDAR. This allows for more consistent tracking, which enables more ef-
fective attribution performance.

Overall, the findings from this analysis for both video and LiDAR suggest that a simpler
array configuration could be used when tracking information is available.

Another aspect in this analysis is the relative speed between LEMURS and other objects
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(a) (b)

Figure 4.39: Comparing the source-object attribution performance using different detector
array configurations and binomial down-sampled data. The alarm encounters correspond
with Figure 4.11 for both video and LiDAR. In total 19 alarm encounters were performed.
The annotation in each square represents the number of trials the source carrier had the
lowest exclusion metric. The x-axis shows the percentage of the highest count rate within
a particular alarm encounter the spectra data was binomial down-sampled, and the y-axis
represents the different detector array configurations generated by combining the radiation
data from the individual detectors of the 6 NaI(Tl) detector array.

in the scene. As seen in Section 4.3.2, the track length of objects was reduced with a
LEMURS speed of 20 mph compared to the results shown in Section 4.3.1. It is important to
understand how a decreased track length could potentially impact localization performance
across different array configurations and source strengths.

In Figure 4.40, the localization performance using different array configurations is shown
for both video (Figure 4.40a) and LiDAR (Figure 4.40b). The results in Figure 4.40a show
similar localization performance across the full NaI(Tl), 3 NaI(Tl), and left-right detector
array configurations for the different source strength encounters, and a reduction in local-
ization performance for the monolithic detector compared to the other three configurations.
In Figure 4.40b, the results are similar; however, the monolithic localization performance is
comparable to the other detector array configurations. This analysis further suggests that
when tracking information is available a simpler detector array configuration (i.e., left-right
or 3 NaI(Tl) detector array) offers similar localization performance when compared to a more
complex array design (i.e. 6 NaI(Tl) bars arranged in a hexagonal arrangement).
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(a) (b)

Figure 4.40: Comparing the source-object attribution performance using different detector
array configurations and binomial down-sampled data. The alarm encounters correspond
with Figure 4.17 for both (a) and (b). In total 23 alarm encounters were performed. The
annotation in each square represents the number of trials the source carrier had the lowest
exclusion metric. The x-axis shows the percentage of the highest count rate within a partic-
ular alarm encounter the spectra data was binomial down-sampled, and the y-axis represents
the different detector array configurations generated by combining the radiation data from
the individual detectors of the 6 NaI(Tl) detector array.

4.7 Comparison of Source Localization Performance

With source-object attribution, the source is inherently localized to a particular object.
The purpose of this section is to explore how this might improve localization performance
compared to using different reconstruction algorithms – ML-EM or Gridded Point-Source
Likelihood (GPSL). Unlike APSL described in Section 2.9, GPSL is a discrete Point-Source
Likelihood (PSL) approach that only looks for a single radiological source. The discrete PSL
approach is described in [23, 22]. Localization performance using different array configura-
tions and binomial down-sampling will also be explored. Additionally, the reconstructions
were performed using the photopeak ROI (617 keV - 707 keV) for 137Cs.

For the analysis, the degenerate case described in Section 4.2.1 was used. The static
scenario provided an exact true source location for every trial; whereas, with the mobile
scenarios, the source location relative to LEMURS varied from trial-to-trial. The LiDAR
point cloud was discretized into cubic 60 cm voxels, and the localization of the highest source
weight voxel for the ML-EM algorithm or lowest z-score voxel for the GPSL algorithm was
used as a metric to compare the localization performance of the different reconstruction
algorithms to the source-object attribution analysis. The z-score in GPSL represents the
confidence interval around the minimum loss voxel. If the localization of the voxel was
located within an area defined around the source carrier, then the reconstruction algorithm
correctly localized the source to the source carrier. In the cases where the voxel was located
outside the defined area, a euclidean distance was used to determine the distance of the voxel
from the ground truth voxel.

Figure 4.41a and Figure 4.41b show two different projections of the image reconstruction
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using GPSL. The defined area around the source carrier is marked in red. In this case, all
6 NaI(Tl) detectors were used in the reconstruction and the spectra data was not down-
sampled. The image reconstruction correctly localizes the source intensity to the source
carrier with the lowest z-score being both contained within the defined area of the source
carrier and near the true source location. With ML-EM, the image reconstruction is more
dispersed and the reconstructed source intensity is biased towards the vehicle (Figure 4.41c).
Also, the reconstruction is more dispersed in the Z-axis (Figure 4.41d) compared to Fig-
ure 4.41b. ML-EM is unconstrained unlike GPSL and the algorithm assigns source intensity
to voxels in order to explain the radiological data in the detectors. This causes the biasing
towards the LEMURS vehicle. In this case, the highest source intensity voxel is located
1.95 m from the true source location.

The above analysis was extended to all alarm encounters in the degenerate scenario. The
localization performance of the GPSL reconstructions for all the alarm encounters using
varying levels of detector array information and binomial down-sampling amounts is shown
in Figure 4.42. Results for the ML-EM reconstructions are not shown because the highest
intensity voxel was not placed within the defined area for any of the alarm encounters.
Comparing these results with the source-object attribution findings from Figure 4.38, GPSL
provides similar localization performance. Across the different detector array configurations
and source strengths, GPSL was able to correctly localize the source to the source carrier
in a majority of the alarm encounters even with the monolithic detector. However, the
localization performance of source-object attribution is significantly improved compared to
ML-EM. With ML-EM, the source intensity was biased towards the vehicle. In the non-
binomial down-sampled encounters, the highest source intensity voxel was on average about
2.8 m from the source carrier. In these cases, an operator would be able to determine the
object responsible for the radiological alarm in real-time because the highest intensity voxel
is near the source carrier. However, with the weaker source encounters, in particular 75% and
90% down-sampling, the average distance of the highest voxel from the true source location
was 22.6 m, and no alarm adjudication could be performed in these cases. These scenarios
have the most real world relevance since radiological search involves finding weakly-emitting
sources.

The findings of this analysis demonstrate that source-object attribution does improve
localization performance compared to using the ML-EM reconstruction algorithm and re-
constructing to occupied voxels in the scene. In addition, if the level of localization offered
by source-object attribution is sufficient (i.e., localization to an entire object), then source-
object attribution has similar localization performance to GPSL. However, it should be noted
explicitly, when analyzing source localization to particular voxels, GPSL enables superior lo-
calization compared to source-object attribution.
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(a) (b)

(c) (d)

Figure 4.41: Image reconstruction using Gridded Point-Source Likelihood (a-b) or Maximum
Likelihood Estimation Maximization (c-d) as LEMURS drives past a static 137Cs source.
The reconstructions were performed using all 6 NaI(Tl) detectors independently. In (a), a
x-y projection of the image reconstruction is shown. The z-score represents the confidence
interval around the minimum loss voxel. The ∗ indicates the true location of the source. The
scene is discretized into 60 cm cubic voxels, and the red rectangle is the defined area around
the source carrier. In (b), a x-z projection of the same scene as (a) is shown. In (c) [(d)],
a x-y [x-z] projection using a 100 iterations of ML-EM is shown. The voxels are in units of
source intensity.
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Figure 4.42: Results from all 20 alarm encounters using GPSL to perform reconstructions.
The annotation in each square represents the number of trials the lowest Z-score was in the
predefined area around the object responsible for the radiological alarm. The x-axis shows
the percentage of the highest count rate within a particular alarm encounter the spectra
data was binomial down-sampled, and the y-axis represents the different response functions
used to perform the reconstructions.
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4.8 Conclusions & Future Directions

On mobile platform systems, alarm encounters are transient and localization has to be per-
formed quickly and efficiently. Source-object attribution enables new capabilities on a mobile
platform by providing automatic associations between objects in the scene and the radiolog-
ical data.

This work demonstrated that situational awareness could be improved in a mock urban
environment in the presence of dynamic sources using SLAM to generate pose estimates in
a world-fixed frame and video or LiDAR-based trajectories. The findings show that video
or LiDAR offer similar tracking performance which enabled effective rejection of tracks that
were inconsistent with the radiological data. This performance was seen for various LEMURS
and source carrier vehicle speeds. In addition, situational awareness was improved using
INS data along with video or LiDAR-based trajectories except for video in the case of
increased LEMURS and vehicle speeds. The findings from the INS study demonstrated that
if satellite interference is low using INS pose estimates to perform tracking and attribution
offers similar capabilities to using SLAM with LiDAR-based trajectories. Furthermore, when
source attenuation is present in a scene, situational awareness can be improved with video
and LiDAR. This was demonstrated by tracking a dynamic pedestrian carrying a radiological
source through temporary occlusions caused by mobile vehicles in a mock urban environment.

Additionally, the findings from this work suggests that detection sensitivity can be im-
proved using track-informed integration windows compared to fixed integration windows.
The track-informed integration windows from video and LiDAR trajectories were able to
adapt to the dynamics of the scene and improved the anomaly value, proxy for detection sen-
sitivity, in two different transient alarm encounter scenarios. Furthermore, an improvement
in the anomaly value was seen in low SNR environments using track-informed integration
windows.

Furthermore, the results showed that when tracking information is available a detector
array with less angular resolution could be used to achieve similar localization performance as
a detector array with more angular resolution. These findings have the potential to influence
future detector system development where typically the detector array is configured without
considering the contextual information. The findings also demonstrated that using a high
fidelity detector response model enables more effective source-object attribution particularly
in scenarios where degeneracies are present.

Finally, the results demonstrated that localizing the radiological source to objects in
the scene improves localization performance compared to using a ML-EM reconstruction
algorithm.

Future work is needed to fully explore using an INS in urban environments to produce
pose estimates in a world-fixed frame and the effect this would have on tracking and at-
tribution. While the pose estimates generated using the INS did not impact attribution
performance using LiDAR, it is thought in a true urban environment with buildings there
will be potentially degraded tracking and attribution performance. Urban environments are
full of buildings, which will interfere with satellite signals more than the trees in the mock
urban environment considered in this work. When surveying Broadway Street in Downtown
Oakland between 8th Street and 14th Street – an area with multiple buildings that are higher
than 5 floors – with LEMURS, VDOP and HDOP values that ranged from 5–50, respectively,
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were present, and during a 5.5 second interval within this survey, where LEMURS averaged
8 ± 1 mph, the INS had mean VDOP and HDOP values of 28 ± 17 and 41 ± 31, respectively.
The prolonged satellite interference in this type of urban environment, where many building
are present, should reduce the accuracy of the pose estimate, which could reduce tracking
performance. Additionally, since the angular pose information will be degraded, performing
attribution using all 6 detector independently will potentially have worse results than the
findings in Section 4.3.1 and Section 4.3.2.

While situational awareness was improved by accounting for attenuation in the physics
model, the S-values were quite large. In the current implementation, attenuation through an
object in the scene is only calculated when an object is fully occluded. This work neglects
how the fraction of the solid angle covered by an occluding object between the detector and
radiological source changes with time, which influences the expected counts in the detector.
While this is a reasonable assumption for the occlusion that occurs between two pedestrians,
for objects with larger extents, such as vehicles or trucks, this assumption is not valid. To
better account for how the expected time-dependent count-rate in the physics model changes
as two objects pass by each other, how the fraction of the solid angle between the detector and
radiological source changes as a function of time needs to be determined. This will require
more complex experimental data and simulations to better understand both the attenuation
effect of objects in the scene as well as the attenuation effect of the environment.

Also, attenuation from untracked objects is not accounted for in the model generation for
a track. The object detection CNNs for video and LiDAR provide identification labels for a
myriad of objects in a sensors FOV. This information could be utilized to determine source
attenuation from untracked objects in the scene. This should further improve attribution
performance but needs to be characterized in more detail.
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Chapter 5

Conclusion

5.1 Summary

A key challenge in nuclear security is the detection and localization of radiological and/or
nuclear material in urban environments, which is difficult due to the highly cluttered and dy-
namic nature of these environments. In urban environments, often weakly emitting gamma-
ray sources need to be distinguished from a constantly fluctuating gamma-ray background.
Once a radiological and/or nuclear alarm is triggered, operators monitoring systems in real-
time need to be able to correctly attribute the detected source to the object responsible for
the alarm quickly and efficiently. However, this becomes more difficult as both the number
and speed of objects in a scene increases. By using contextual information, such as stream-
ing video or LiDAR, object detection and tracking can augment the radiological data from
detectors to improve the situational awareness of the scene and provide inherent localization.
The aim of this work was to fuse contextual information (streaming video and LiDAR) with
radiological data to provide automatic associations between physical objects in a scene and
the radiological data to improve both situational awareness and detection sensitivity.

The results in Section 3 demonstrated a static system that is capable of performing object
detection, tracking, and source-object attribution in real-time using either LiDAR or visual
cameras. Using this system to perform source-object attribution, source localization could be
performed quickly and efficiently in a challenging mock environment by creating associations
between objects in a scene and the radiological data, and improved situational awareness
was demonstrated using both video and LiDAR. Source-object attribution enabled a non-
directional NaI(Tl) detector to provide localization information. Furthermore, by applying
a track-informed integration window, the findings suggested that detection sensitivity can
be improved compared to different fixed integration windows.

The work in Section 3 was extended in Section 4 to a mobile platform system. Source-
object attribution capabilities were tested and demonstrated in the presence of static and
mobile sources. In a mock urban environment, source-object attribution was successfully
performed using video and LiDAR across different SNR scenarios. The findings from this
work demonstrated improved situational awareness in transient alarm encounters using both
video and LiDAR. Moreover, this work showed that contextual information enables a new
paradigm for source localization and has the potential to influence detector array design when
tracking information is available. Using the inherent localization provided by source-object
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attribution, detector array configurations with less angular resolution had similar localiza-
tion performance compared to a hexagonal arrangement of NaI(Tl) detectors. Additionally,
source-object attribution enabled better source localization across different detector array
configurations with varying levels of complexity compared to a traditional ML-EM recon-
struction algorithm. The work further suggested that track-informed optimal integration
windows can improve detection sensitivity relative to fixed integration windows by better
adapting to the dynamics of the scene and relative motion of objects in a scene. Finally,
spectroscopic analysis was performed using a summed response of the detector array and an
optimal configuration of detectors within the detector array. Improved detection sensitivity
using the optimal configuration of detectors was shown compared to the summed response
demonstrating an optimal configuration of detectors does exist that maximizes SNR.

5.2 Future Outlooks

This work demonstrated the capabilities of fusing contextual information with radiological
data to perform real-time source-object attribution on static and mobile platform systems.
Even though source-object attribution was correctly performed in this dissertation, the S-
values were often quite large and did not reflect realistic probabilities, particularly for situa-
tions, where, when inspected by eye, a clear association between tracks and radiological data
was obvious. Currently, the attribution analysis does not account for uncertainties related to
trajectories. Tracks are considered to be fixed and assumed to be the source of the radiation
signal resulting in large S-values. Furthermore, large S-values are often caused by an inade-
quate physics model. While some uncertainty, for example those originating from tracking,
could be incorporated into an improved attribution metric, many other uncertainties are of
systematic nature and are not known. In these cases, the S-value, providing a statistical
assessment of the situation, might not be the optimal metric and another description might
provide an answer closer to the system operator’s needs.

While this research focused on source-object attribution on static or vehicle-based sys-
tems, the methodology presented here is platform-agnostic and could be applied to any
type of contextual sensor system. Future work could explore applying source-object attri-
bution using unmanned aerial vehicles. This would enable exploration of less constrained
environments. One could imagine surveying a crowded parking lot to quickly identify any
clandestine material present.

The work presented here focused on source localization of gamma-ray emitting radio-
logical sources and did not explore neutron sources. Localization of spontaneous fission
and (α, n) neutron sources through thermal capture with free-moving detector systems has
been demonstrated [61]. Given that work, applying contextual-radiological data fusion with
a neutron-sensitive detector for neutron source attribution has potential. However, it is
highly dependent on the neutron source geometry, the scatter media, and sensitivity of the
detector. Exploring these topics in greater detail should enable neutron localization using
source-object attribution in future work.

Additionally, this work only explored point sources. In the case of a distributed source, if
the gamma-rays are fairly localized to the object, then the span of the captured gamma-rays
will be concentrated to the person/vehicle and nearby surface. It would be expected that
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the source-object attribution analysis would be able to localize the object responsible for the
radiological alarm. Future research should consider how to handle distributed sources and
the impact on source-object attribution performance.

The analyses presented in this dissertation suggest that object detection and tracking
with LiDAR is currently more robust than a video-based approach. This is mostly driven
by the direct availability of distance information. There are depth extractor CNNs that
produce depth maps for monocular cameras. They should provide better distance informa-
tion compared to the current implementation but are currently too GPU intensive to run
in parallel with object detection on a low-power system. Given the rate of improvement
of these depth-estimating algorithms, it is expected that a depth estimating CNN could be
run along with an object detection, tracking, and source-object attribution analysis in the
near future. Another approach to improving distance estimation for video data is to use a
stereoscopic camera, which provides a depth map. An additional method to improving the
distance estimate is fusing the information from LiDAR and video and using the inherent
depth from LiDAR for video.

Furthermore, by using additional object appearance descriptions (features) derived from
imagery, more reliable tracking could be achieved. Notably the issue of track switching could
be resolved. An implementation of such a method that can already run on a low power system
is described in [62]. This would also improve alarm adjudication for an operator because the
features from imagery could be provided along with the track ID (i.e., a red truck could be
more quickly identified compared to just track ID’s).

Finally, SECOND/PointPillar’s object detector doesn’t work reliably for people standing
near walls or large objects so the object may go undetected for LiDAR. It is believed this
is because spurious points interfere with its anchoring algorithm. This topic was not inves-
tigated in this dissertation; however, a training set including more data with pedestrians
nearby objects could potentially increase the networks sensitivity.
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