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Abstract

Accurately determining pain levels in children is difficult, even for trained professionals and 

parents. Facial activity provides sensitive and specific information about pain, and computer vision 

algorithms have been developed to automatically detect Facial Action Units (AUs) defined by the 

Facial Action Coding System (FACS). Our prior work utilized information from computer vision, 

i.e., automatically detected facial AUs, to develop classifiers to distinguish between pain and no-

pain conditions. However, application of pain/no-pain classifiers based on automated AU codings 

across different environmental domains results in diminished performance. In contrast, classifiers 

based on manually coded AUs demonstrate reduced environmentally-based variability in 

performance. In this paper, we train a machine learning model to recognize pain using AUs coded 

by a computer vision system embedded in a software package called iMotions. We also study the 

relationship between iMotions (automatically) and human (manually) coded AUs. We find that 

AUs coded automatically are different from those coded by a human trained in the FACS system, 

and that the human coder is less sensitive to environmental changes. To improve classification 

performance in the current work, we applied transfer learning by training another machine 

learning model to map automated AU codings to a subspace of manual AU codings to enable more 

robust pain recognition performance when only automatically coded AUs are available for the test 

data. With this transfer learning method, we improved the Area Under the ROC Curve (AUC) on 

independent data from new participants in our target domain from 0.67 to 0.72.
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1 Introduction

In the classic model of machine learning, scientists train models on a collected dataset to 

accurately predict a desired outcome and then apply learned models to new data measured 

under identical circumstances to validate performance. Given the notable variation in real 

world data, it is tempting to apply learned models to data collected under similar but non-

identical circumstances. However, performance in such circumstances often deteriorates due 

to unmeasured factors not accounted for between the original and new datasets. 

Nevertheless, knowledge can be extracted in these scenarios. Transfer learning, or inductive 

transfer in machine learning parlance, focuses on using knowledge gained from solving one 

problem to improve performance on a different but related problem [1]. The present paper 

describes application of transfer learning to the important clinical problem of automated 

pain detection in children.

Accurate measurement of pain severity in children is difficult, even for trained professionals 

and parents. This is a critical problem as over-medication can result in adverse side-effects, 

including opioid addiction, and under-medication can lead to unnecessary suffering [2].

The current clinical gold standard and most widely employed method of assessing clinical 

pain is patient self-report [3]. However, this subjective method is vulnerable to self-

presentation bias. Consequently, clinicians often distrust pain self-reports, and find them 

more useful for comparisons over time within individuals, rather than comparisons between 

individuals [4]. Further, infants, young children, and others with communication/

neurological disabilities do not have the ability or capacity to self-report pain levels [3,5,6]. 

As a result, to evaluate pain in populations with communication limitations, observational 

tools based on nonverbal indicators associated with pain have been developed [7].

Of the various modalities of nonverbal expression (e.g., bodily movement, vocal qualities of 

speech), it has been suggested that facial activity provides the most sensitive, specific, and 

accessible information about the presence, nature, and severity of pain across the life span, 

from infancy [8] to advanced age [9]. Moreover, observers largely consider facial activity 

during painful events to be a relatively spontaneous reaction [7].

Evaluation of pain based on facial indicators requires two steps: (1) Extraction of facial pain 

features and (2) pain recognition based on these features. For step (1), researchers have 

searched for reliable facial indicators of pain, such as anatomically-based, objectively coded 

Facial Action Units (AUs) defined by the Facial Action Coding System (FACS) [10,11]. 

(Visualizations of facial activation units can also be found at https://imotions.com/blog/

facial-action-coding-system/). However, identifying AUs traditionally requires time 

intensive offline coding by trained human coders, limiting application in real-time clinical 

settings. Recently, algorithms to automatically detect AUs [11] have been developed and 

implemented in software such as iMotions (imotions.com) allowing automatic output of AU 
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probabilities in real-time based on direct recording of face video. In step (2), machine 

learning algorithms such as linear models [5], SVM [12], and Neural Networks [13] have 

been used to automatically recognize pain based on facial features.

Although a simple machine learning model based on features extracted by a well-designed 

algorithm can perform well when training and test data have similar statistical properties, 

problems arise when the data follow different distributions, as happens, for example, when 

videos are recorded in two different environments. We discovered this issue when training 

videos were recorded in an outpatient setting and test videos in the hospital. One way to deal 

with this problem is to use transfer learning, which discovers “common knowledge” across 

domains and uses this knowledge to complete tasks in a new domain with a model learned in 

the old domain [14]. In this work, we show that features extracted from human-coded 

(manual) AUs are less sensitive to domain changes than features extracted from iMotions 

(automated) AU codings, and thus develop a simple method that learns a projection from 

automated features onto a subspace of manual features. Once this mapping is learned, future 

automatically coded data can be transformed to a representation that is more robust between 

domains. In this work, we use a neural network model to learn a mapping from automated 

features to manual features, and another neural network model to recognize pain using the 

mapped facial features.

To summarize, our contributions of this work include demonstrating that:

• Manually/automatically coded AUs can be used to successfully recognize 

clinical pain in videos with machine learning.

• Environmental factors modulate the ability of automatically coded AUs to 

recognize clinical pain in videos.

• Manually coded AUs (especially previously established “pain-related” ones) can 

be used to successfully recognize pain in videos with machine learning across 

different environmental domains.

• Automatically coded AUs from iMotions do not directly represent or correlate 

with AUs defined in FACS.

• Transfering automated features to the manual feature space improves automatic 

recognition of clinical pain across different environmental domains.

This work was presented at the Joint Workshop on Artificial Intelligence in Health and a 

shorter version of this paper appeared in the proceedings [15].

2 Methods

2.1 Participants

One hundred and forty-three pediatric research participants (94 males, 49 females) aged 12 

[10, 15] (median [25%, 75%]) years old and primarily Hispanic (78%) who had undergone 

medically necessary laparoscopic appendectomy were videotaped for facial expressions 

during surgical recovery. Videos were subsequently categorized into two conditions: pain 

and no-pain. Participating children had been hospitalized following surgery for post-surgical 
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recovery and were recruited for participation within 24 hours of surgery at a pediatric 

tertiary care center. Exclusion criteria included regular opioid use within the past six months, 

documented mental or neurological deficits preventing study protocol compliance, and any 

facial anomaly that might alter computer vision facial expression analysis. Parents provided 

written informed consent and youth gave written assent [16]. The local institutional review 

board approved the research protocol.

2.2 Experimental Design and Data Collection

Data were collected over three visits (V): V1 within 24 hours after appendectomy; V2 within 

the calendar day after the first visit; and V3 at a follow-up visit 25 [19, 28] (median [25%, 

75%]) days postoperatively when pain was expected to have fully subsided. Data were 

collected in two environmental conditions: V1 and V2 in hospital and V3 in the outpatient 

setting. At every visit, two 10-second videos (60 frames per second at 853 × 480 pixel 

resolution) of the face were recorded while manual pressure was exerted at the surgical site 

for 10 seconds (equivalent of a clinical examination). During hospital visits (V1, V2), 

participants were lying in the hospital bed with the head of the bed raised. In the outpatient 

lab in V3, they were seated in a reclined chair. Participants rated their pain level during 

manual pressure using a 0–10 Numerical Rating Scale, where 0 = no-pain and 10 = worst 

pain ever. For classification purposes, and following convention used by clinicians for rating 

clinically significant pain [17], videos with pain ratings of 0–3 were labeled as no-pain, and 

videos with pain ratings of 4–10 were labeled as pain. Two hundred and fifty-one pain 

videos were collected from V1/2, 160 no-pain videos were collected from V1/2, and 187 no-

pain videos were collected from V3. The numbers of samples collected for different pain 

levels and visits are shown in Table 1. Note that all V3 data are labeled as no-pain and there 

are only 4 pain ratings over 1 in V3. In contrast, the majority of no-pain data in V1 and V2 

are ratings of 2 and 3. Figure 1 “All Data” demonstrates the distribution of pain and no-pain 

videos across environmental conditions.

2.3 Feature Extraction

For each 10-second video sample we extracted AU codings per frame to obtain a sequence 

of AUs. This was done both automatically by iMotions software (www.imotions.com) and 

manually by a FACS trained human in a limited subset. A second trained human 

independently coded a subset of the videos coded by the first human. We then extracted 

features from the sequence of AUs.

Automated Facial Action Unit Detection: The iMotions software integrates 

Emotient’s FACET technology (www.imotions.com/emotient), formally known as CERT 

[18]. In the described work, iMotions software was used to process videos to automatically 

extract 20 AUs as listed in Figure 2 and three head pose indicators (yaw, pitch and roll) from 

each frame. The values of these codings represent estimated log probabilities of AUs, 

ranging from −4 to 4.

Manual Facial Action Unit Detection: A trained human FACS AU coder manually 

coded 64 AUs (AU1–64) for each frame of a subset (54%) of videos and labeled AU 
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intensities (0–5, 0 = absence). In order to evaluate the reliability of the manual codings, we 

had another trained human coder code a subset (15%) of videos coded by the first human.

Feature Dimension Reduction: The number of frames in our videos was too large to 

use full sequences of frame-coded AUs. To reduce dimensionality, we applied 11 statistics 

(mean, max, min, standard deviation, 95th, 85th, 75th, 50th, 25th percentiles, half-rectified 

mean, and max-min) to each AU over all frames as in [5] to obtain 11 × 23 features for 

automatically coded AUs, and 11×64 features for manually coded AUs. We call these 

automated features and manual features, respectively. The range of each feature was rescaled 

to [0,1] to normalize features over the training data.

2.4 Machine Learning Models

Neural Network Model to Recognize Pain with Extracted Features: A neural 

network with one hidden layer was used to recognize pain with extracted automated or 

manual features. The number of neurons in the hidden layer was twice the number of 

neurons in the input layer, and the Sigmoid activation function σ(x) = 1/(1 + exp(−x)) was 

used with batch normalization for the hidden layer. The output layer used Softmax activation 

and cross-entropy error.

Neural Network Model to Predict Manual Features with Automated Features: A 

neural network with the same structure was used to predict manual features from automated 

features, except that the output layer was linear and mean squared error was used as the loss 

function.

Model Training and Testing: Experiments were conducted in a participant-based (each 

participant restricted to one fold) 10-fold cross-validation fashion. Participants were divided 

into 10 folds, and each time 1 fold was used as the test set, and the other 9 folds together 

were used as the training set. We balanced classes for each participant in each training set by 

randomly duplicating samples from the under-represented class. One out of nine participants 

in the training sets were picked randomly as a nested-validation set for early stopping in the 

neural network training. A batch size of 1/8 the size of training set was used.

We then examined the receiver operating characteristic curve (ROC curve) which plots True 

Positive Rate against False Positive Rate as the discrimination threshold varies. We used 

Area under the Curve (AUC) to evaluate classification performance. We considered data 

from three domains (D) as shown in Figure 1: (1) D1 with pain and no-pain both from V1/2 

in hospital; (2) D2 with pain from V1/2 in hospital and no-pain from V3 from outpatient lab; 

and (3) All data, i.e., pain from V1/2 and no-pain from V1/2/3. The clinical goal was to be 

able to discriminate pain levels in the hospital; thus evaluation on D1 (where all samples 

were from the hospital bed) was the most clinically relevant evaluation.

3 Analysis and Discussion

Data from 73 participants labeled by both human and iMotions were used through section 

3.1 to 3.5, and data from the remaining 70 participants using only automated (iMotions) AU 

codings were included for independent test set evaluation in the results section.
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3.1 Automated Classifier Performance Varies by Environment

Using automated features, we first combined all visit data and trained a classifier to 

distinguish pain from no-pain. This classifier performed well in general (AUC= 0.77±0.011 

on All data), but when we looked at different domains, the performance of D1 (the most 

clinically relevant in-hospital environment) was inferior to that on D2, as shown in data rows 

1 and 4 under the “Automated” column in Table 2.

There were two main differences between D1 and D2, i.e., between V1/2 and V3 no-pain 

samples. The first was that in V1/2, participants still had some pain and their self-ratings 

were greater than 0, while in V3, no-pain ratings were usually 0 reflecting a “purer” no-pain 

signal. The second difference was that V1/2 occurred in the hospital with patients in beds 

and V3 videos were recorded in an outpatient setting with the participant sitting in a reclined 

chair. Lighting was also inherently different between hospital and outpatient environments. 

Since automated recognition of AUs is known to be sensitive to facial pose and lighting 

differences, we hypothesized that added discrepancy in classification performance between 

D1 and D2 was mainly due to the model classifying on environmental differences between 

V1/2 and V3. In other words, when trained and tested on D2, the classifier might distinguish 

“lying in hospital bed” vs “more upright in outpatient chair” as much as pain vs no-pain (this 

is similar to a computer vision algorithm doing well at recognizing cows by recognizing a 

green background).

In order to investigate this hypothesis and attempt to improve classification on the clinically 

relevant D1, we trained a classifier using only videos from D1. Within the “Automated” 

column, row 2 in Table 2 shows that performance on automated D1 classification does not 

drop much when D2 samples are removed from the training set. At the same time, training 

using only D2 data results in the worst classification on D1 (row 3), but the best 

classification on D2 (last row) as the network is able to exploit environmental differences 

(no-pain+more upright from V3, pain+lying-down from V1/2).

Figure 3 (b) (LEFT) shows ROC curves of within and across domain tests for models trained 

on automated features in D2. The dotted (red) curve corresponds to testing on D2 (within 

domain) and the solid (blue) curve corresponds to testing on D1 (across domain). The model 

performed well on within domain classification, but failed on across domain tasks.

3.2 Classification Based on Manual AUs Are Less Sensitive to Environmental Changes

We also trained a classifier on manual AUs labeled by a human coder. Interestingly, results 

from the classifier trained on manual AUs showed less of a difference in AUCs between 

domains, with a higher AUC for D1 and a lower AUC for D2 relative to those with 

automated AUs (see Table 2 “Manual” and “Automated” columns). Overall, manual AUs 

appeared to be less sensitive to changes in the environment, reflecting the ability of human 

labelers to consistently code AUs without being affected by lighting and pose variations.

When we restricted training data from All to only D1 or only D2 data, classification 

performance using manual AUs went down, likely due to the reduction in training data, and 

training with D2 always gave better performance than training with D1 on both D1 and D2 

test data, which should be the case since pain and no-pain samples in D2 are more discrepant 
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in average pain rating. These results appear consistent with our hypothesis that human 

coding of AUs is not as sensitive as machine coding of AUs to environmental differences 

between V1/2 and V3.

Figure 3 (b) (MIDDLE) displays ROC curves for manual features. As discussed above, in 

contrast to the plot on the left for automated features, manual coding performance 

outperformed automated coding performance in the clinically relevant test in D1. The dotted 

(red) curve representing within-domain performance is only slightly higher than the solid 

(blue) curve, likely due in part to the quality difference in no-pain samples in V1/2 and V3, 

and also possibly any small amount of environmental information that the human labeler 

was affected by. Note that ignoring the correlated environmental information in D2 (i.e., 

pain faces were more reclined and no-pain faces were more upright) resulted in a lower 

numerical performance on D2 but does not likely reflect worse classification of pain but 

instead the failure to “cheat” by using features affected by pose angle to classify all upright 

faces as “no-pain.”

3.3 Restricting Manual AUs to Those Associated with Pain Improves Classification

In an attempt to reduce the influence of environmental conditions to further improve 

performance on D1, we restricted the classifier to the eight AUs consistently associated with 

pain: 4 (Brow Lowerer), 6 (Cheek Raiser), 7 (Lid Tightener), 9 (Nose Wrinkler), 10 (Upper 

Lip Raiser), 12 (Lip Corner Puller), 20 (Lip Stretcher), and 43 (Eyes Closed) [19,20] as 

illustrated in Figure 4 to obtain 11 (statistics) ×8 (AUs) features. Pain prediction results 

using these “pain” features are shown in the last two columns in Table 2. Results show that 

using only pain-related AUs improved classification performance of manual features. 

However, it did not seem to help as much for automated features.

Similarly, Figure 3 (b) (RIGHT) shows that limiting manual features to use only pain-related 

AUs further improved D1 performance when training with D2. We also employed PCA on 

pain-related features and found that performance in the hospital domain was similar if using 

four or more principal components.

In Figure 3 (a) and (c) we show ROC curves similar to Figure 3 (b) except with different 

training data. These curves correspond to row 2 and 5 (a), or 1 and 4 (c), under 

“Automated,” “Manual,” and “Manual ‘Pain’ Features” in Table 2.

3.4 iMotions AUs Are Different Than Manual FACS AUs

Computer Vision AU automatic detection algorithms have been programmed/trained on 

manual FACS data. However, we demonstrate differential performance of AUs encoded 

automatically versus manually. To understand the relationship between automatically 

encoded v. manually coded AUs, we computed correlations between binarized automatically 

coded AUs and manually coded AUs at the frame level as depicted in Figure 5. The FACS 

names corresponding to AU numbers are listed in Figure 2, in which AUs 1, 2, 4, 5, 6, 7, 43 

are upper face AUs and all others are lower face AUs. If two sets of AUs were identical, the 

diagonal of the matrix (marked with small centered dots) should yield the highest 

correlations, which was not the case. For example, manual AU 6 was highly correlated with 

automated AU 12 and 14, but had relatively low correlation with automated AU 6.
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The correlation matrix shows that not only is our first human coder less affected by 

environmental changes, the AUs she coded are not in agreement with the automated AUs. 

Our second trained human coder (human 2) shows a better correlation with the coding of 

human 1 than between each human and iMotions, shown in Figure 6 (LEFT). The 

correlation between each of the humans and the software on the same subset is shown in 

Figure 6 (MIDDLE, RIGHT). This likely explains the reduced improvement by restricting 

the automated features model to “pain-related AUs” as these have been determined based on 

human FACS coded AUs.

The self-correlation matrices between AUs in iMotions and the human coder are shown in 

Figure 7. AUs coded by iMotions show higher correlations (between different iMotions 

coded AUs) than AUs coded by humans. Some human AU codings were also correlated, 

which is expected since specific AUs often occur together (e.g., AU 1 and 2 for inner and 

outer brow raiser and AU 25 and 26 for lips part and jaw drop) and other AUs tend to occur 

together in pain. This latter correlation of pain AUs is more evident in Figure 4 which shows 

the same content as Figure 7 except that in Figure 4 the eight pain-related AUs are put 

together at the upper left corner to highlight their higher correlations. Interestingly, higher 

correlations within the pain AUs for iMotions coding was observed but the pattern is 

different.

3.5 Transfer Learning via Mapping to Manual Features Improves Performance

We have shown that manual codings are not as sensitive to domain change. However, 

manual coding of AUs is very time-consuming and not amenable to an automated real-time 

system. In an attempt to leverage manual coding to achieve similar robustness with 

automatic AUs, we utilized transfer learning and mapped automated features to the space of 

manual features. Specifically, we trained a neural network model to estimate manual features 

from automated features using data coded by both iMotions and a human. Separate models 

were trained to predict: manual features of 64 AUs, manual features of the eight pain-related 

AUs, and principal components (PCs) of the manual features of the eight pain-related AUs. 

PCA dimensionality reduction was used due to insufficient data for learning an accurate 

mapping from all automated AUs to all manual AUs.

Once the mapping network was trained, we used it to transform the automated features and 

trained a new network on these transformed data for pain/no-pain classification. The 10-fold 

cross-validation was done consistently so that the same training data was used to train the 

mapping network and the pain-classification network.

In Table 3, we show classification AUCs when the classification model was trained and 

tested with outputs from the prediction network. We observed that when using All data to 

train (which performed best), with the transfer learning prediction network, automated 

features performed much better in classification on D1 (0.68−0.69 compared to 0.61−0.63 in 

Table 2). Predicting four principal components of manual pain-related features yielded the 

best performance in our data. Overall, the prediction network helped in domain adaptation of 

a pain recognition model using automatically extracted AUs.
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Figure 9 (LEFT) plots the ROC curves on two domains using the transfer learning classifier 

trained and tested using four predicted features. The model performed well in across-domain 

classification. Compared to Figure 3 (c) (LEFT), the transferred automated features showed 

properties more similar to manual features (Figure 3 (c) (RIGHT)), with smaller differences 

between performance on the two domains and higher AUC on the clinically relevant D1. 

Table 3 shows numerically how transfer learning helped automated features ignore 

environmental information in D2 like humans, and learn pure pain information that can be 

used in classification on D1.

Within-domain classification performance for D1 was also improved with the prediction 

network. These results show that by mapping to the manual feature space, automated 

features can be promoted to perform better in pain classification.

Figure 9 (RIGHT) plots output pain scores of our model tested on D1 versus 0–10 self-

reported pain levels. The model output pain score increases with true pain level, indicating 

that our model indeed reflects pain levels.

4 Results

In the previous section we showed that in Figure 10 classification with pain-related pain 

features (2) performed better than automated features (1) on D1, which was the clinically 

relevant classification. We also found that applying PCA to manual features (3–4) does not 

change performance on D1 much. Thus, we introduced a transfer learning model to map 

automated features first to manual pain-related features (or the top few principal components 

of them), and then used the transferred features for classification (6–2 or 5–4). We obtained 

similar results to manual features on D1 with the transfer learning model (5–4) mapping to 

four principal components of manual features.

Table 2 shows that without our transfer learning method, training on all data and restricting 

to pain-related AUs results in the best performance using automated features for D1. And 

cross-validation results in Table 3 shows that with our method, using all data and predicting 

four PCs yielded the best performance for D1. With these optimal choices of model structure 

and training domain before and after transfer learning, we show the benefits of transfer 

learning in two experiments.

4.1 Test on New Subjects with Only iMotions AU Codings

In this section we report on the results from testing our transfer learning method on a new 

separate dataset (new participants), which contained only automated features. We trained 

two models, with and without transfer learning, using all the data in section 3 labeled by 

both iMotions and humans, and tested the model on this new dataset only labeled by 

iMotions D1, D2. (We use italicized domain names to indicate that this is independent test 

data D1, D2.) Our model with transfer learning (AUC= 0.72 ± 0.002) performed better than 

the model without it (AUC= 0.67±0.002) on D1 with a p-value= 1.33e−45 in a one-tailed 

two-sample t-test.
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Similar to Figure 9, in Figure 11 we plot ROC curves for classification on the NEW test 

dataset (LEFT) and output pain scores at 0–10 pain levels (RIGHT) using our transfer 

learning model.

In Figure 12, we show a scatter plot of neural network output pain scores using transferred 

automated features versus those using original automated features, as well as pain score 

distributions, separately for training (All Data from section 3) and test (D1 from NEW test 

data in the current section), pain and no-pain. We can see for original automated features 

scores, no-pain samples from D1 are distributed very differently from no-pain in All data 

domain used for training and fall mostly in the range of the pain class. Results using transfer 

learning do not appear to have this problem.

4.2 Test with Masked Pain and Faked Pain

As another test of the effect of our transfer learning model, we looked at results of 

classifying whether participants are in pain or not from videos where children were asked to 

fake pain when they were not really in pain as well as when they were asked to suppress 

visual expressions of pain when they were in pain.

Although facial expressions convey rich and objective information about pain, they can be 

deceptive because people can inhibit or exaggerate their pain displays when under 

observation [21]. It has been shown that human observers discriminate real expressions of 

pain from faked expressions only marginally better than chance [21,22]. Children can also 

be very good at suppressing pain, but not fully successful in faking expressions of pain [23]. 

In this section we discuss performance of masked and faked pain in machine learning 

models trained to distinguish genuine pain and no-pain.

In addition to the data described in section 2.2, we recorded videos of “masked pain” in V1 

and V2 by asking participants to suppress pain during the 10-second manual pressure, and 

videos of “faked pain” during V3 by asking participants to fake the worst pain ever during 

manual pressure. As in section 2.2, we asked participants to rate their true pain level during 

manual pressure with a number from 0 to 10. We then labeled masked-pain videos with pain 

ratings of 4–10 as masked-pain and faked-pain videos with pain ratings of 0–3 as faked-pain, 

and discarded other samples. This ensured that in masked-pain videos participants actually 

experienced pain and in faked-pain videos participants in fact felt no pain. One hundred and 

seventeen masked-pain samples and 116 faked-pain samples were collected. The distribution 

of the four classes within the three visits is shown in Figure 13.

Using the best models before and after transfer learning trained to distinguish between 

genuine pain and no-pain described above, the masked and faked pain samples were 

processed to obtain pain labels. The results are shown in Figure 14. We can see that without 

transfer learning (LEFT), most masked-pain data were classified as real-pain and most 

faked-pain as no-pain. This appeared to be the case because the AU features coded 

automatically were sensitive to environmental factors, and during training the machine 

learned to discriminate between genuine pain and no-pain by recognizing environmental 

differences between them. At test time, since masked-pain is in the same environmental 

domain as real-pain and faked-pain is in the similar environment as no-pain, they are 
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assigned to the corresponding classes. In contrast, with transfer learning (Figure 14 

(RIGHT)), masked-pain was mostly classified as no-pain and faked-pain as real-pain. This 

might be because automated features were transferred to ignore the difference between the 

two classes caused by environmental change, and the machine can only use differences in 

facial actions to complete the classification task. Humans’ attempts to mask pain are to 

mimic no-pain faces and, similarly, humans’ attempts to fake pain are to mimic pain faces. 

The machine in this way classifies pain and no-pain according to expressed facial actions.

5 Conclusion

In the present work we recognized differences in classifier model performance (pain vs no-

pain) across domains that reflect environmental differences as well as differences reflecting 

how the data were encoded (automatically v. manually). We demonstrate that manually 

coded facial features are more robust than automatically coded facial features to 

environmental changes which allow us to obtain the best performance on our target data 

domain. We then introduced a transfer learning model to map automated features first to 

manual pain-related features (or principal components of them), and then used the 

transferred features for classification (6–2 or 5–4 in Figure 10). This allowed us to leverage 

data from another domain to improve classifier performance on the clinically relevant task of 

automatically distinguishing pain levels in the hospital. Further, we were able to demonstrate 

improved classifier performance on a separate, new data set.

6 Future Work

Planned future work:

1. Classification of real-pain, masked-pain, faked-pain, and no-pain using machine 

learning, and comparison to human judgments.

2. Classification of genuine expression and non-genuine expression using machine 

learning, and comparison to human judgments.

3. Using transfer learning to improve fusion analysis of video features and 

peripheral physiological features in [24].

4. Multidimensional pain assessment such as pain catastrophizing and anxiety 

based on facial activities.
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Fig. 1: 
Data Domain Illustration. The area of category is not proportional to the number of samples.
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Fig. 2: 
FACS names (descriptions) of 20 AUs coded by iMotions. AUs 1–7 and 43 are upper face 

AUs, and the others are lower face AUs.
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Fig. 3: 
ROC Curves for classification on D1 and D2 using automated features (left), manual 

features (middle) and pain-related manual features (right), when the model is trained on (a) 

D1, (b) D2 and (c) All data. The dotted (red) lines are ROCs when the machine is able to use 

environment information to differentiate pain and no-pain conditions, and the solid (blue) 

lines show the machine’s ability to discriminate between pain and no-pain based on AU 

information alone. The straight (yellow) line graphs the performance of random chance.
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Fig. 4: 
Illustration of eight “pain-related” facial AUs.
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Fig. 5: 
Correlation matrix of AU pairs from automated and manual codings using All data.
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Fig. 6: 
Correlations of AU pairs from two of (1)iMotions; (2)human 1; and (3) human 2 on a subset 

of the data.
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Fig. 7: 
Self-correlation Matrices of AU pairs from iMotions or humans.
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Fig. 8: 
Self-correlation Matrices of AU pairs from iMotions or humans with “pain” AUs arranged 

together at the top left corner.
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Fig. 9: 
ROC Curves for classification on two domains using our transfer learning model (left) and 

plot of average model output pain score (with error bars indicating standard deviation) over 

true pain level (right).
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Fig. 10: 
Illustration of Machine Learning Models. 1/2 are classifications using automated/manual 

pain features, in which 2 does better than 1. 3–4 can be done to reduce feature dimensions 

while maintaining performance. 6–2 and 5–4 are our transfer learning models, training a 

regression network to map automated features to a subspace of manual pain features before 

classification.
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Fig. 11: 
ROC Curves for classification on NEW test domains D1 and D2 using our transfer learning 

model (left) and plot of average model output pain score (with error bars indicating standard 

deviation) over true pain level (right).
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Fig. 12: 
Scatter plot and distributions of pain scores (transfer learning vs original) using original 

iMotions features (on the x-axis) and transferred iMotions features (on the y-axis).
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Fig. 13: 
Distribution of four classes in three visits. The area of category is not proportional to the 

number of samples.
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Fig. 14: 
Bar graph showing classification of real-pain, masked-pain, faked-pain and no-pain. The 

area of bars shows the distribution of predicting pain and no-pain.
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Table 1:

Numbers of Samples at Different Pain Levels in Each Visit.

Pain Level 0 1 2 3 4 5 6 7 8 9 10

V1 16 12 18 28 31 26 26 19 24 15 11

V2 4 18 24 40 21 23 16 13 14 8 4

V3 166 17 3 1 0 0 0 0 0 0 0

CEUR Workshop Proc. Author manuscript; available in PMC 2019 January 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 29

Table 2:

AUC for Classification with SEM (Standard Error of The Mean).

Train on Test on Automated Manual Automated “Pain” Features Manual “Pain” Features

All D1 0.61 ± 0.006 0.66 ± 0.006 0.63 ± 0.007 0.69 ± 0.006

D1 D1 0.58 ± 0.014 0.62 ± 0.008 0.61 ± 0.008 0.65 ± 0.008

D2 D1 0.57 ± 0.005 0.67 ± 0.007 0.62 ± 0.004 0.7 ± 0.006

All D2 0.9 ± 0.005 0.79 ± 0.007 0.88 ± 0.005 0.8 ± 0.003

D1 D2 0.69 ± 0.011 0.68 ± 0.008 0.73 ± 0.012 0.73 ± 0.01

D2 D2 0.92 ± 0.01 0.79 ± 0.009 0.9 ± 0.007 0.8 ± 0.005
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Table 3:

AUC (and SEM) with Transferred Automated Features.

Train on Test on All Features “Pain” Features 7 PCs 4 PCs 1 PC

All D1 0.61 ± 0.009 0.63 ± 0.009 0.68 ± 0.006 0.69 ± 0.008 0.65 ± 0.009

D1 D1 0.62 ± 0.009 0.64 ± 0.014 0.66 ± 0.012 0.67 ± 0.011 0.65 ± 0.009

D2 D1 0.58 ± 0.011 0.59 ± 0.01 0.66 ± 0.008 0.68 ± 0.006 0.66 ± 0.009

All D2 0.82 ± 0.009 0.82 ± 0.009 0.76 ± 0.009 0.75 ± 0.012 0.7 ± 0.01

D1 D2 0.69 ± 0.009 0.71 ± 0.013 0.7 ± 0.015 0.71 ± 0.015 0.69 ± 0.011

D2 D2 0.88 ± 0.011 0.86 ± 0.006 0.76 ± 0.013 0.74 ± 0.01 0.7 ± 0.009
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