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ARTICLE

Network curvature as a hallmark of brain structural
connectivity
Hamza Farooq1*, Yongxin Chen2, Tryphon T. Georgiou 3, Allen Tannenbaum4 & Christophe Lenglet 5

Although brain functionality is often remarkably robust to lesions and other insults, it may be

fragile when these take place in specific locations. Previous attempts to quantify robust-

ness and fragility sought to understand how the functional connectivity of brain networks is

affected by structural changes, using either model-based predictions or empirical studies of

the effects of lesions. We advance a geometric viewpoint relying on a notion of net-

work curvature, the so-called Ollivier-Ricci curvature. This approach has been proposed to

assess financial market robustness and to differentiate biological networks of cancer cells

from healthy ones. Here, we apply curvature-based measures to brain structural networks to

identify robust and fragile brain regions in healthy subjects. We show that curvature can also

be used to track changes in brain connectivity related to age and autism spectrum disorder

(ASD), and we obtain results that are in agreement with previous MRI studies.
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This paper describes a novel geometric network-theoretic
approach to study brain structural connectivity. Data for
our study is provided by imaging techniques, such as dif-

fusion MRI (dMRI), that are used to map the structural con-
nectivity between different brain regions1–3. At a macroscopic
scale, brain regions are delineated and perceived as nodes of a
network with edges describing connectivity (structural or func-
tional) between them. The overall structure of the brain, at that
scale, may be mathematically represented as a graph4,5.
Depending on the method used to identify edges and determine
their relative strengths, brain networks can be divided into three
types4–6: (i) structural networks with edge weights based on the
strength of anatomical links between nodes; (ii) functional net-
works in which the edges are given by statistical inter-dependence
of signals at each node; and (iii) functional networks whose edges
are based on the causal influence of nodes. The method employed
to spatially parcellate the brain and consequently construct nodes
will also affect the network parameters7,8. A salient feature of our
approach is that it relies on a certain inherently persistent char-
acteristic of nodes, their potential role as hubs within the overall
structure, and thereby reflects on a newly introduced notion of
robustness of the network as a whole.

In general, robustness of a (brain) network is defined as the
“degree to which the topological properties of a network are
resilient to lesions such as the removal of nodes or edges9.” In
particular, robustness quantifies to what extent the brain can
withstand damage from, or be affected by, lesions arising, e.g.
from tumors, trauma, or stroke. Reduced robustness not only
suggests potential for dysfunction due to the lesion, but may also
point to candidate target locations for treatment.

Brain resilience has been studied previously by considering the
effects of deleting nodes or edges from structural and functional
networks, both computationally and empirically (see ref. 10 for a
comprehensive review). Brain robustness studies can broadly be
divided into two categories. In the first category, one attempts to
predict the lesion effects by computational models, i.e., virtually
removing or modifying nodes and edges of the structural con-
nectivity matrix and applying computational models to predict
functional connectivity changes11–13. Subsequently, the predicted
functional connectivity matrix can be compared with the
empirical one and the lesion effects can be quantified using
various graph measures. In the second category, one employs the
empirical effects from brain lesions due to injury or disease.
Studies using this approach focus on examining brain networks of
patients with, e.g. traumatic brain injury (TBI), stroke or tumors,
and quantify the effect of lesion location on the brain14,15, by
comparison with data from age-matched and gender-matched
healthy control subjects. Regardless of the approach, the
structure-to-function network relation is utilized to predict the
amount of damage which the brain can withstand due to lesions
in a given location.

We apply the geometric notion of graph curvature to brain
structural networks, and leverage this novel concept to analyze
brain robustness. Previous studies have shown that network
curvature can be used to differentiate cancer from normal tissue
using gene co-expression networks16, and to indicate market
fragility in economic or financial networks17. It is important to
note that, since network robustness can be viewed as the rate
function at which a network returns to its original state after a
perturbation, it has a positive correlation with entropy18. Con-
sequently, network robustness and curvature are positively cor-
related through entropy19. A detailed mathematical
characterization of the concept of graph curvature is provided in
the “Methods” section.

In this paper, we introduce the concept of graph curvature for
studying brain structural connectivity networks. More specifically,

we use the Ricci curvature and its contraction, the scalar curva-
ture, on brain networks so as to assign curvature at each indivi-
dual node. Thus, by introducing such a notion of nodal measure,
we make two distinct contributions to brain structural con-
nectivity analysis: First, we identify areas of the brain that sig-
nificantly contribute to the overall brain robustness, and hence we
identify “important” nodes in brain networks. Previous studies
have shown that hub nodes are critical for brain networks, but
identifying such nodes is not straightforward. Node measures
such as degree or strength do not identify all the hub nodes, and
typically a combination of those measures, with centrality mea-
sures, is required10,20. We show that node curvature not only
corroborates findings based on strength and centrality measures,
but additionally finds other key areas (e.g., inferior-frontal gyrus,
middle-frontal gyrus, and inferior-temporal gyrus), which are not
identified by any other node measure, and are important parts of
the brain network. Second, by looking at differences in node
curvature, one can identify brain areas with changes due to age, or
abnormal neurodevelopment disorders such as autism spectrum
disorders (ASD). In particular, we show that node curvature
uniquely enables the identification of certain brain areas, with
significantly affected structural connectivity in people with ASD.

Results
Curvature as a hallmark of brain areas robustness. Individual
node curvature (defined in “Methods” section, Eq. (11)) of brain
areas contributes to the overall (average) curvature of the brain
network. This measure not only helps identify alterations in the
network, but also can help identify key (i.e. important) parts of
the brain structural network. As explained in the “Methods”
“section, Eq. (12), curvature is directly correlated with network
robustness. Therefore, nodes with higher curvature contribute
more to the overall structural robustness of the network.

To demonstrate this, we performed experiments using two
different diffusion spectrum imaging (DSI) datasets: First, the DSI
data for five participants, as presented in refs. 11,20, was
considered, to enable comparison of our results with previous
studies. High-resolution connectivity matrices (998 ´ 998) were
obtained from the USC Multimodal Connectivity Database21.
Second, the DSI data for 33 participants from the MGH-USC
HCP Consortium was also employed, and lower resolution
connectivity matrices (116 ´ 116) were generated (as described in
the “Methods” section, DSI Datasets from the MGH-USC HCP
Consortium)22.

As previously described, we emphasize here that comparing
properties across brain networks with different resolutions (i.e.
number of nodes) should be done only with great care7, as brain
network properties can differ significantly with nodal parcella-
tions7,8. Nonetheless, it is worth studying curvature as a measure
which may provide information across different network
resolutions: high-resolution parcellations, also known as dense
connectomes23 will ultimately provide greater insights into the
structure of brain networks, while lower resolution parcellations
are more easily manageable, since they requires less computa-
tional resources.

First, we present results based on the high-resolution
connectivity matrices21 in Fig. 1. Here, we show the top 25% of
nodes with the highest node curvature, strength and betweenness
centrality, appearing consistently across the five participants.
Figures in panels b and c of Fig. 1 follow the same convention as
Figs. 2C and 7A of Hagmann et al.20, respectively, and are
presented here for comparison purposes. The details of the areas
identified by all three measures can be found in Supplementary
Note 1. In the previous study20, using several network analysis
methods, eight anatomical regions were identified as belonging to
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the so-called structural core network of the human brain. These
regions include the posterior cingulate cortex, precuneus, cuneus,
paracentral lobule, isthmus of the cingulate, banks of the superior
temporal sulcus, and inferior/superior parietal cortex, all of them
in both hemispheres.

Additionally, Alstott et al.11 showed that lesions in the
temporo-parietal junction, cortical midline and frontal cortex
have the most extensive effects on brain functionality. Also, we
note that the medial prefrontal cortex forms part of the default
mode network of the human brain24. Panel a of Fig. 1 shows that
curvature identifies areas in the inferior-frontal gyrus, middle-
frontal gyrus and inferior-temporal gyrus, consistent with11,20,
and thus providing very interesting information based on
network structure, which is not captured by strength or
betweenness centrality.

Second, following the same organization as Fig. 1, Fig. 2 shows
results for the lower resolution matrices generated from the
MGH-USC HCP Consortium datasets. As expected, distinct areas
are identified with all three measures (since cortical parcellation is
different from the one used in Fig. 1)7. We should also note that
the high-resolution data did not include the cerebellum. Nodes
with high strength and betweenness centrality are found more
towards the frontal, precentral, superior parietal areas, and in the
cerebellum. Once again, curvature supplements the information
provided by other measures and identifies areas in the inferior-
frontal gyrus and transverse temporal gyrus (Heschl’s gyrus) in
both hemispheres, where lesions are known to induce pro-
nounced effects in loss of brain functionality11 (see the list of
areas in Supplementary Note 2).

Curvature changes in different age groups. We used datasets
from the WU-Minn HCP Consortium Lifespan Pilot Project to
study structural changes in brain networks related to aging in
groups of independent participants. Details about the data and
construction of connectivity matrices, using a set of 333 areas25,
are given in the “Methods” section (HARDI datasets from the
WU-Minn HCP Consortium Lifespan Pilot Project https://www.
humanconnectome.org/study-hcp-lifespan-pilot). In Fig. 3, we
show areas with statistically significant differences in nodal
measures, related to aging between the Lifespan group 2 (age 8–9)
and group 6 (age 65–75). For the results shown, family-wise error

rate was controlled using the Holm–Sidak26 method, details given
in the “Methods” section (family-wise error correction). Results
are also shown in tabular form in Supplementary Note 3.

Node measures such as strength, betweenness centrality, and
clustering coefficient can provide useful information about areas
involved in aging. That is, consistent with the previous studies,
these measures collectively find significant bilateral differences in
the visual areas27,28, dorsal parietal lobe29, cingulo-opercular
network regions30, and temporal areas31,32. Focusing on informa-
tion uniquely provided by the node curvature, we see that the
measure identifies significant structural changes in the areas
known to change with age from previous literature, while not
identified by other measures like the cingulo-parietal network33,
right visual cortex34,35, and lateral occipital areas36. Thus, node
curvature provides information complementary to other node
measures revealing structural changes due to age with more
details.

Curvature differences in ASD. The aim of this analysis is to test
whether various measures of node importance or robustness
(curvature, strength, centrality, and clustering) can detect differ-
ences in structural connectivity between individuals with ASD and
typically developing (TD) subjects. We utilized diffusion tensor
imaging (DTI) data from San Diego State University (SDSU) and
Trinity Center for Health Sciences (TC) available from the Autism
Brain Imaging Data Exchange II (ABIDE-II)37 http://fcon_1000.
projects.nitrc.org/indi/abide/abide_II.html). Details about the
data are given in the “Methods” section (DTI datasets from
ABIDE-II37). We used 29 ASD and 24 TD subjects from SDSU
data, and 20 ASD and 20 TD data from TC. DTI connectivity
matrices capturing the brain structural connectivity of each par-
ticipant were generated using a set of 333 areas25 in MNI space
(see in the “Methods” section, section “Generation of connectivity
matrices”, ABIDE-II Datasets)

Figure 4 shows areas with statistically significant differences
between the ASD and TD groups, identified by node measures
using both datasets. For the results shown, family-wise error rate
(e.g. type I error) was controlled using the Holm–Sidak26 method,
and details are provided in the “Methods” section (Family-wise
error correction). Results are also shown in tabular form in
Supplementary Note 4.

a

c

4 or 5 participants

3
2
0 or 1

b

Fig. 1 Brain areas with the highest nodal measures appearing consistently across the participants, using high-resolution connectivity matrices (998 ´998)
from Hagmann et al. 20. The top 25% nodes are shown for curvature (a), strength (b), and betweenness centrality (c). For instance, the largest spheres
indicate nodes with high values in 4 or 5 out of the five subjects
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Left-lateralized patterns of abnormalities in the brain micro-
structure and connectivity are known from previous studies38,39.
The same pattern can be seen in Fig. 4 as collectively, node
measures find more differences in the left hemisphere. Mostly,
affected nodes were identified in the temporal lobe, visual and
auditory cortices, default mode areas, and the somatomotor hand
areas of the left hemisphere. While in the right hemisphere,
changes were found in the dorsal attention network areas, visual,
somatomotor hand, and retrosplenial temporal areas.

The left temporal pole is related to semantic memory40 and
previous studies41,42 present evidence of changes of the temporal
pole in ASD. Node curvature, strength, and betweenness
centrality all identify significant changes in this area. However,
the right temporal lobe is only identified by node curvature, in
agreement with a recent study43 identifying microstructural
changes in that area, due to ASD and relating the changes with

communication impairment. Also, the right temporal pole is
associated with emotions and socially relevant memories40, which
are affected in ASD.

Studies have shown a difference in visual perception in patients
with ASD, compared to TD. For example, patients with ASD
perform better in detecting visual targets in a large field of view,
and are also more detail oriented44–46. Structural connectivity
changes due to ASD in the right occipital lobe (right visual areas)
were also reported in voxel-based morphometry study47. Here in
our analysis, node curvature finds changes in both hemispheres,
while other node measures find changes only in the left visual
area. Curvature also identifies dorsal attention network areas
which, from previous literature, are known to be affected in
ASD48. To summarize, curvature may provide new information
about brain connectivity patterns in ASD, which is complemen-
tary to previous studies using morphometric and weighed-graph

Curvature

Lateral

Left Right

Medial

Strength
Clustering coefficient
Betweenness centrality

Fig. 3 Nodes with statistically significant changes (corrected for multiple comparisons using the Holm–Sidak method) in structural connectivity due to age.
Brain parcellation with 333 cortical areas was done using the Gordon atlas25 and labeled using the Brain Analysis Library of Spatial maps and Atlases
database https://balsa.wustl.edu/WK71. Adapted from Fig. 10 of Supplementary data from Gordon et al.25

a

c

b

18 or more
≥10 and <18

≥5 and <10
≥1 and <5
<1

Fig. 2 Brain areas with the highest nodal measures appearing consistently across the participants, using lower resolution connectivity matrices (116 ´ 116)
generated using the AAL atlas and MGH-USC DSI datasets. The top 25% nodes are shown for curvature (a), strength (b), and betweenness centrality (c).
Here, the largest spheres indicate nodes with high values in 18 out of the 33 subjects
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node measures49,50. Therefore, curvature may provide new
information about brain connectivity patterns in ASD, which is
complementary to previously shown morphometric alterations of
specific brain areas.

In order to gain further insights into structural connectivity
disruptions in ASD, we performed a univariate analysis to study
the relationships between nodal measures with significant
differences related to ASD, and affected phenotypic measures
from the ABIDE-II database37. Curvature of the right temporal
lobe and Social Responsiveness Scale51 (SRS) sub-factor Motiva-
tion (both Raw and converted T-scores), and Repetitive Behavior
Scale-Revised (RBSR), are found to be negatively correlated. The
left orbito-frontal cortex curvature was also uniquely identified to
correlate positively with the Autism Diagnostic Observation
Schedule (ADOS-2) Restricted and Repetitive behavior scale.
Additionally, curvature of the anterior division of the temporal
fusiform cortex positively correlates with several Child Behavior
Checklist (CBCL) scores (e.g. Attention, Aggressive behavior) and
RBSR sub-factor Self-injurious behavior. This is in line with prior
studies52,53 and supplement the information provided by other
node measures. Correlation plots and additional details are
provided in Supplementary Note 5.

Brain networks properties and robustness characterization. In
this section, we discuss how brain network properties (robustness
in particular) can be assessed using graph measures. We have
shown that curvature can detect brain areas that are critical,
although not identified by other measures, as well as areas related
to age or abnormal neurodevelopment in ASD. Here, we further
examine how curvature might provide a novel method to study
brain robustness, complementary to other graph measures.

In order to quantify the robustness of a given node in a brain
network, the effect of node(s) deletion on graph measures can be
considered11. Based on nodal “importance” measures such as
strength, betweenness centrality, or curvature, specific node(s)
and all related edges can be chosen for deletion (i.e., by removing
the corresponding row(s) and the column(s)) from the con-
nectivity matrix. Independent graph measures such as connect-
edness, global efficiency, or entropy can then be computed on the
new (“altered”) connectivity matrix. This process is typically

performed using decreasing nodal measures (e.g. strength), so
that important nodes are deleted first. Those measures are
recomputed after each iteration, the nodes are re-ordered
accordingly, and the whole process is repeated until all nodes
have been deleted.

Traditionally, integration and centrality graph metrics like
global efficiency, betweenness centrality, degree centrality,
characteristic path length, and clustering coefficient have been
used to study the robustness of brain networks10. While these
measures certainly provide very useful information about the
networks, we argue, based on the mathematical properties further
detailed in sub-section “Ollivier–Ricci curvature and graph
robustness” of the Methods section, that graph curvature and
entropy may provide complementary metrics for robustness
assessment. To explore this, Fig. 5 displays the changes in the size
of the largest component, global efficiency, and topological
entropy (see Supplementary Note 6), when nodes are deleted
based on decreasing strength, betweenness centrality, or curva-
ture. For this experiment, the average of the 33 MGH-USC HCP
Consortium DSI connectivity matrices was used (as described in
the “Methods” section). These graphs enable to better understand
how each nodal robustness measure (e.g. curvature) relate to and
impact global graph metrics. They do not necessarily indicate
whether a nodal measure is “better” than another, but rather
characterize their (dis)similarities with respect to a particular
global metric. For the original connectivity matrix (Fig. 5, top
row), we observe that curvature and betweenness centrality show
similar behaviors for global efficiency and entropy, while strength
leads to a faster decay of these two graph metrics. We could
therefore conclude that strength is a “better” measure of
robustness. However, looking at the size of the largest graph
component, strength, centrality, and curvature all behave
differently—with centrality leading to a faster decay of the largest
component size—thereby illustrating that curvature provides
information that is complementary to the other nodal measures.

We note that Alstott et al.11 used a Gaussian transformation of
the connectivity weights for this type of robustness analysis (see
discussion below). We therefore present results using the same
transformation in Fig. 5 (bottom row). Additionally, Supplemen-
tary Note 7 reproduces the results presented in Fig. 3 from Alstott
et al.11, to support the correctness of our analysis. With this

TC
data

SDSU
data

Node measures

Curvature

Strength

Clustering coefficient

Betweenness centrality

Medial

Lateral

Left Right

Fig. 4 Nodes with statistically significant differences (corrected for multiple comparisons using the Holm–Sidak method) in structural connectivity between
individuals with ASD and TD subjects. Nodes identified using either the San Diego State University (SDSU) or the Trinity Center for Health Sciences (TC)
data are shown in different colors (blue and orange, respectively). Brain parcellation with 333 cortical areas was done using the Gordon atlas25 and labeled
using the Brain Analysis Library of Spatial maps and Atlases database https://balsa.wustl.edu/WK71. Adapted from Fig. 10 of Supplementary data from
Gordon et al.25
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approach, results stay consistent to those obtained without
Gaussian transformation, except for global efficiency. In this case,
all three nodal measures behave differently with centrality leading
to the fastest decay in global efficiency. We also note that, for each
step of such a robustness analysis, as presented in Fig. 5, a new
node is deleted and the size of the network is reduced. Thus, we
end up comparing parameters across brain networks with
different parcellations (i.e. different number of nodes). It is
important to remember that network topological measures show
strong dependence on the nodal scale7, therefore, differences
between nodal measures may also be attributed, to some extent,
to different nodal scales.

In order to further assess the role and unique contribution of
curvature, in comparison with other measures, we also computed
the Pearson correlation between node measures using all 33 DSI
datasets from the MGH-USC HCP Consortium3,22 (116 nodes
using AAL atlas). Correlations were obtained, for each dataset,
across the 116 nodal values and their empirical distributions were
obtained by repeating this across the 33 datasets (see Supple-
mentary Note 8, where the mean and variance of the histograms
are shown on top). Curvature does not present a different
behavior than the other node measures. Most importantly, the
nodal measures can be seen as only weakly to moderately
correlated with each other, with curvature positively correlated to
strength and (to a much lesser extent) betweenness centrality,
while strength and betweenness centrality also show positive
correlation. This result further supports our claim that curvature
provides information about brain networks, which is comple-
mentary to other graph measures.

Note on Gaussian transformation of connectivity matrices.
Streamlines numbers (i.e., the weights of structural connectivity
graphs) produced by tractography algorithms are exponentially
distributed7,20. Without altering the rank-ordering of pathways,
those distributions can be transformed to follow Gaussian

distributions11, for ease of analysis (e.g. see entropy decay in
Fig. 5, bottom row). However, we would like to emphasize that
such a transformation may lead to changes in edges weights (and
consequently node strengths) that may affect graph measures
differently (see results for global efficiency in Fig. 5), and thereby
possibly biasing the definition of important nodes, as well as the
identification of graph measures that are adequate to quantify
robustness. For instance, the weights, while preserving order, can
be mapped to a completely different range of values, thereby
increasing or diminishing the relative importance of nodes (e.g.
mapping weights in the range [1,1000] to [10,11]). We therefore
recommend to apply such transformation(s) with care.

Discussion
We have introduced the concept of graph curvature to quantify
the importance of nodes (meaning that their disruption leads to
large changes in the overall graph) in brain networks. We have
shown that curvature can indeed help identify important areas
(nodes) and points to changes in the brain network structure that
may be attributed to age or diseases. The close relation between
curvature and network robustness points to the significance of the
detected nodes in supporting robust brain functions. Thus, this
study lays the foundation for a new approach to assess brain
network robustness at the nodal level. We argue that the infor-
mation provided by curvature may be used in combination with
other nodal measures for studying global changes in the brain.

Curvature (averaged across the network) can also provide a
global graph measure for the quantification of brain network
robustness. A similar viewpoint has recently been proposed in the
context of financial networks and of gene-regulatory net-
works16,17,54. It is indeed quite interesting that the connection
between curvature and the ability of a dynamical process on a
network to return to equilibrium after a perturbation (robustness)
is observed in such disparate problems (economy, thermo-
dynamics gene regulation, cancer, and now: brain networks).
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Fig. 5 Robustness analysis using node deletion for the lower resolution connectivity matrices (116 ´ 116) generated using the AAL atlas and MGH-USC DSI
datasets. The size of the largest component, global efficiency and entropy are computed (with or without transformation of the connectivity matrix
weights) after targeted removal of nodes with decreasing strength, betweenness centrality, or curvature. The top row shows results for the original
connectivity matrix while the bottom row shows results after Gaussian transformation of its weights as done in Alstott et al.11
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Several other directions may be worthy of investigation along the
same lines. In particular, studying curvature changes between
nodes at the edge level may prove particularly effective as, in that
case, critical changes in interactions between areas in the brain
may be easier to detect. We propose these future directions with
the caveat that curvature is sensitive to the way connectivity
matrices are generated, i.e., curvature is affected by the choice of
parcellation scale, tractography algorithms, as well as the parti-
cular type of diffusion data, e.g., DTI, HARDI, DSI, etc. There-
fore, care must be exercised to minimize such possible effects. The
present work focused mainly on exploring the concept of node
curvature as a measure of robustness of brain structural networks,
in comparison with existing measures.

Methods
Overview. First, we describe generic notions of distance and curvature on metric
spaces (i.e., Riemannian manifolds). These concepts are needed to understand how
brain networks (e.g., graphs) curvature and robustness can be characterized. Next,
we describe how curvature can be defined and computed on discrete spaces, such as
brain networks with finite (and usually low) number of nodes. Finally, we relate
curvature to robustness, and explain how it can be efficiently computed and used to
assess the ability of a graph to withstand perturbations.

Wasserstein distance and optimal mass transport. Let p and q be two prob-
ability distributions on the discrete metric space X equipped with metric dð�; �Þ.
The transportation cost of a unit mass from point xi 2 X to xj 2 X is denoted as
ci;j � 0. Denote by πi;j � 0 the transference plan, i.e., the (probability) measure of
the amount of mass transferred from xi to xj .

The optimal mass transportation (OMT) problem seeks an optimal transference
plan (π) that minimizes the total cost of moving p to q. This can be formulated as
the following optimization problem55–57:

min
π

X

i;j

ci;jπi;j ð1Þ

subject to
X

j

πi;j ¼ pi; 8i
X

i

πi;j ¼ qj; 8j

πi;j � 0 8i; j:
The problem in Eq. (1) may be expressed in the matrix form:

min
Π2Mðp;qÞ

traceðCTΠÞ ð2Þ
with

Mðp;qÞ :¼ ΠjΠ1 ¼ p;ΠT1 ¼ q;Π � 0
� �

;

C ¼ ½ci;j�;Π ¼ ½πi;j�:
Here 1 is the column matrix of ones with the appropriate dimension.

When the cost c is defined as ci;j ¼ dðxi; yjÞr , for any positive integer r, we can
define the r-Wasserstein distance56,58 as

Wrðp; qÞ: ¼ min
Π2Mðp;qÞ

traceðCTΠÞ
� �1=r

: ð3Þ

When r ¼ 1 this is also known as the earth mover’s distance (EMD). We will use
this version of OMT in the present work.

Generalities on curvature. In this section, we introduce the key notion of cur-
vature from Riemannian geometry. For X an n-dimensional Riemannian manifold,
x 2 X, let Tx denote the tangent space at x, and v1; v2 2 Tx orthonormal tangent
vectors. Then, for geodesics (local curves of shortest length) αiðtÞ :¼ expðtviÞ,
i ¼ 1; 2, the sectional curvature Kðv1; v2Þ measures the deviation of geodesics
relative to Euclidean geometry, i.e.,

dðα1ðtÞ; α2ðtÞÞ ¼
ffiffiffi
2

p
t 1� Kðv1; v2Þ

12
t2 þ Oðt4Þ

� �
: ð4Þ

The Ricci curvature is the average sectional curvature. In other words, given a
(unit) vector v 2 Tx , we complete an orthonormal basis v1; v2; ¼ ; vn , and define
RicðvÞ :¼ 1

n�1

Pn
i¼2Kðv; viÞ. The Ricci curvature may be extended to a quadratic

form known as the Ricci curvature tensor59. The scalar curvature is then defined to
be the trace of this quadratic form.

There are a number of alternative characterizations of Ricci curvature59. In this
paper, we employ the following definition: referring to Fig. 6, consider two very
close points x and y in X and associated tangent vectors w and w0; where w0 is
obtained by parallel transport of w along a geodesic (in the direction v) connecting
the two points. Now, geodesics drawn from x; y along w;w0 will get closer when the
curvature is positive (positively curved space). This is also reflected in the fact that
the distance between two small (geodesic balls) is less than the distance of their
centers. The Ricci curvature RicðvÞ along the direction v connecting x; y quantifies
this contraction. Similar considerations apply to negative and zero curvature.

Curvature and entropy. In this section, following the previous studies16,17, we
establish the relationship between curvature and robustness. We consider X to be a
complete, smooth Riemannian manifold. The relations may then be extrapolated to
discrete spaces.

We denote the space of probability densities by PðXÞ. Then, one defines the
Boltzmann entropy of ρ 2 PðXÞ as

SðρÞ :¼ �
Z

X
ρ log ρ dm ; ð5Þ

where dm denotes the volume measure on X. (There are several technical
assumptions that should be made to ensure the existence of S, see refs. 19,60.)

We can then express the following remarkable result from Lott and Villani19

and Sturm60: Let Ric denote the Ricci curvature defined on X, and suppose the
Ric � k for any tangent vector on X. Then, for every ρ0; ρ1 2 PðXÞ; the constant
speed geodesic ρt with respect to the Wasserstein 2-metric connecting ρ0 and ρ1
satisfies

SðρtÞ � ð1� tÞSðρ0Þ þ tSðρ1Þ þ
ktð1� tÞ

2
W2ðρ0; ρ1Þ2; 0 � t � 1: ð6Þ

In fact, relation (6) implies that Ric � k61 (see Theorem 1.1).

d (x,y ) (1 – �2 ric/2n) on average

Euclidean ‘flat’ space

Positively curved space

d (x,y )

w

x

w ′

w w ′

y
v

x yv

w w ′

x yv

Fig. 6 In a space with positive Ricci curvature, parallel geodesics emanating from points x and y, e.g., in directions along tangent vectors w (at x) and w0 (at
y), are drawn closer. In a Euclidean space, the distance between points moving along parallel geodesics at constant speed remains constant
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In the works19,60, Eq. (6) is used as a definition for defining curvature on more
general metric measure spaces. It will also motivate an interesting analog of
curvature based on the following result61 (see Theorem 1.5, property (xii)). We
now take X to be compact of dimension n, and let A denote any measurable subset
of X. Let BrðxÞ denoted the ball of radius r, centered around x. Then one can define
the normalized Riemannian uniform distribution as follows:

mr;xðAÞ ¼
mðA \ BrðxÞÞ
mðBrðxÞÞ

:

Then61, we have that Ric � k if and only if

W1ðmr;x ;mr;yÞ � 1� k
2ðnþ 2Þ r

2 þ oðr2Þ
� �

dðx; yÞ: ð7Þ

Here W1 denotes the Wasserstein 1-metric or EMD. As we will see, Eq. (7) is the
basis of the definition due to Ollivier62–64 of curvature on a weighted graph. But the
basic idea is that on a compact, smooth Riemannian manifold conditions (6)
and (7) are equivalent, and Eq. (6) indicates the correlation of changes in
entropy (defined along geodesic paths) and Ricci curvature. We will express
this as

ΔS ´ΔRic � 0: ð8Þ
This is of course restricted to the smooth (Riemannian) case. But the point is

that the results just quoted from ref. 61 indicate a deep relationship between
changes in entropy and the Ricci curvature as characterized by Eq. (7).

Ollivier–Ricci curvature. Ollivier–Ricci curvature or coarse Ricci curvature is
the discrete analog of the Ricci curvature62–64. Let ðX; dÞ be a geodesic metric space
equipped with a family of probability measures fpx : x 2 Xg. We define the
Ollivier–Ricci curvature κðx; yÞ along the geodesic connecting x and y as

W1ðpx ; pyÞ ¼ ð1� κðx; yÞÞdðx; yÞ; ð9Þ
where W1 denotes the earth mover’s distance (Wasserstein 1-metric), and d the
geodesic distance on the space. Note the similarity to Eq. (7).

For the case of an undirected weighted graph (e.g. a brain structural
connectivity network) G ¼ ðV ; E;WÞ, where V is the set of vertices (nodes), E the
set of edges, and W the set of edge weights, we let

dx ¼
X

y2N ðxÞ
wxy

pxðyÞ :¼
wxy

dx
;

where NðxÞ denotes the set of nodes that are adjacent to x; throughout, we assume
that all the edge weights wxy ¼ wyx � 0 and that wxy ¼ 0 if dðx; yÞ � 2, or
equivalently, if y =2NðxÞ. Note here that the geodesic distance dðx; yÞ is taken to be
the hop distance between node x and y, i.e., the minimum number of steps it takes
to go from x to y.

Node curvature. The (scalar) node curvature for node x (κx) in the graph is
computed by summing the curvature between node x and all its neighboring nodes,
i.e.,

κx :¼
X

y2NðxÞ
κðx; yÞ: ð10Þ

We also note that an alternative “weighted” version of the node curvature may be
defined as

~κx :¼
X

y

pxðyÞκðx; yÞ: ð11Þ

Robustness and the Fluctuation Theorem. We now turn to the notion of
robustness, which we employ in this paper, and subsequently make the link
between robustness and curvature. It is based on ideas from statistical mechanics
and, in particular, the Fluctuation Theorem formulated in Demetrius et al.18. The
Fluctuation Theorem measures the ability of a network to maintain its functionality
in the face of perturbations (internal or external).

Let pδðtÞ be the probability that the mean value of an observation (for a given
network) deviates from its original value, by more that δ at time t, due to some
perturbation. The rate R at which the system returns back to its original state is
defined as

R :¼ lim
t!1 � 1

t
log pδðtÞ

� �
: ð12Þ

Note that large R means not much deviation and small R implies a large
deviation. In statistical mechanics, it is well-known that entropy and rate functions
from large deviations are very closely related18,65. The Fluctuation Theorem is a
mathematical statement relating the positive correlation of changes in system

entropy ΔS to changes in robustness ΔR:

ΔS ´ΔR � 0: ð13Þ

Ollivier-Ricci curvature and graph robustness. Based on the equivalence of Eqs.
(6) and (7), in this paper we employ Olliver–Ricci curvature as a proxy for network
entropy and thus via the Fluctuation Theorem for network robustness as was pro-
posed in refs. 16,17. This is of course not a theorem, but a useful analogy. We express
this “positive correlation” of graph Ricci curvature and robustness as follows:

ΔR ´ΔRic � 0: ð14Þ
Once again, we emphasize that this is an extrapolation, not a theorem, based on

the results from continuous geometry. There are a number of other reasons to see
that curvature does indeed have a connection to network robustness which we
enumerate here:

1. Invariant triangles: The Ollivier–Ricci curvature can be viewed as feedback
measure, i.e., the number of triangles in a network (redundant pathways)
can be characterized by an explicit lower bound based on Ollivier–Ricci
curvature; see Theorem 2 of ref. 66. Feedback redundancy is a key measure
of system robustness.

2. Stochastic systems: Ollivier62 studied this notion of curvature for the
Ornstein–Uhlenbeck stochastic process; see Example 9. As noted in ref. 16,
this gives a direct correlation of changes in the rate function (12) and
Olliver–Ricci curvature (see pp. 10–11).

3. Convergence to equilibrium: Positive Ollivier–Ricci curvature controls the
rate of convergence to the invariant (equilibrium) distribution on a weighted
graph (Markov chain) and the larger the curvature the faster the rate; see
Corollary 21 of ref. 62. This is another indication of the connection of
curvature to robustness.

Since curvature can easily be computed via linear programming55,57, it provides
an attractive and novel tool to study the robustness of networks represented as
weighted graphs, such as brain connectivity networks. In the next section, we
briefly summarize existing measures to characterize complex brain networks and
provide information about the datasets which we used to demonstrate the benefits
of curvature.

Measures of brain networks characteristics. We hereafter briefly summarize
important graph-theoretical measures, which have been introduced to characterize
brain networks67, and are used in our experiments.

1. Node strength (si): The strength of a node i is the sum of the weights wij of
the node’s adjacent edges68, i.e.,

si ¼
X

j2NðiÞ
wi;j: ð15Þ

dMRI data may be employed, in combination with deterministic or
probabilistic propagation methods of vector fields (called tractography), to
assess the likelihood of connections between cortical and sub-cortical
areas69. Such likelihood can be obtained by the number of three-
dimensional curves generated by these integration or propagation methods
and used, in the context of brain structural networks, to define the weight
wi;j of an edge between two nodes i and j. This summarizes how strongly
connected those nodes are to each others, and to the rest of the brain.

2. Betweenness centrality (gi): The betweenness centrality of a given node i is
defined as the number of shortest paths between pairs of nodes that pass
through the node i70, i.e.,

gi ¼
X

i≠j≠k

σ j;kðiÞ
σ j;k

: ð16Þ

where σ j;k is the total number of shortest paths from node j to node k and
σ j;kðiÞ is the number of those paths that pass through node i.

3. Clustering coefficient (Ci): The clustering coefficient of node i is a measure of
the density of connections among the node’s topological neighbors71,72. This
is defined as follows: Take i 2 V , the vertex set of a graph G ¼ ðV ;E;WÞ,
and assume unit weights eij 2 W for all existing edges. Suppose that node i
has ki neighbors. For an undirected graph (which is usually the case for
brain structural connectivity networks), there can be at the most kiðki �
1Þ=2 edges in the local neighborhood. Then, Ci is defined as the fraction of
the edges that actually exist between the immediate neighbors of i over the
maximal number of edges, i.e.,

Ci ¼
2jNðiÞj
kiðki � 1Þ : ð17Þ

As before, NðiÞ ¼ fj : eij 2 Eg is the set of immediate neighbors of i, and
jN j denotes the cardinality of this set.

Family-wise error correction. For the results shown between age groups and in
ASD, related to structural changes, family-wise error rate (correction for multiple
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comparisons) was controlled using the Holm–Sidak26 method with α ¼ 0:05. The
correction was done in GraphPad Prism 8 (https://www.graphpad.com/scientific-
software/prism/), assuming data was sampled from normal distributions with
identical standard deviations (homoscedasticity assumption) when computing the
two-sided p values. The number of unpaired t-tests corrected for was equal to the
number of nodes i.e., 333 for Gordon atlas.

dMRI datasets. As briefly described in the section “Introduction”, we used five
different public open access datasets in our experiments, and we now provide more
details about this data. First, we analyze the high-resolution connectivity matrices
created and analyzed by Hagmann et al. 20, using DSI data from five healthy
subjects. These matrices are available from the USC Multimodal Connectivity
Database21,22, which enables the reproduction of the original results20 and eva-
luation of our method with the exact same datasets (more specifically the ability of
node curvature to capture novel information). We also analyze 33 new DSI datasets
obtained from the MGH-USC HCP Consortium3,22, to demonstrate the con-
sistency of our findings on critical brain areas. Next, our experiments use high
angular resolution diffusion imaging (HARDI) datasets obtained from the WU-
Minn HCP Consortium Lifespan Pilot Project1 (https://www.humanconnectome.
org/study-hcp-lifespan-pilot) to illustrate the ability of node measures to capture
changes in certain brain areas, which are related to age. Finally, our last experi-
ments are performed with DTI datasets from ABIDE-II37 (http://fcon_1000.
projects.nitrc.org/indi/abide/abide_II.html), to investigate differences in brain
structural connectivity in ASD.

1. DSI Datasets from Hagmann et al.: Data was acquired from five healthy
right-handed male subjects, on a Philips Achieva 3T scanner with voxel size
2 ´ 2 ´ 3mm3, TR/TE= 4200/89 ms and 129 diffusion gradients with a
maximum b-value of 9000 smm�2, for a total acquisition time of 18 min.
After segmentation of the white and gray matter, 998 cortical regions-of-
interest were created, with an average size of 1:5 cm2. Tractography was then
performed, and structural connectivity matrices created by defining the
weight of each edge as the number of streamlines per unit surface (i.e.
density). Additional details can be found in the original paper20.

2. DSI datasets from the MGH-USC HCP consortium: Data was acquired from 35
healthy adults (age range 20–59) scanned on the customized Siemens 3T
Connectom scanner and are available at https://db.humanconnectome.org.
Two of the datasets were not included in our experiments because of pre-
processing errors in our analysis pipeline. Acquisition parameters included
voxel size of 1:5 ´ 1:5 ´ 1:5mm3, TR/TE= 8800/57ms and four b-values
(with corresponding number of diffusion gradients in parenthesis):
1000 smm�2 (64), 3000 smm�2 (64), 5000 smm�2 (128), 10; 000 smm�2

(256), for a total acquisition time of about 89min. Connectivity matrices were
generated using DSI Studio (http://dsi-studio.labsolver.org) as described below.

3. HARDI Datasets from the WU-Minn HCP Consortium: Lifespan data was
acquired from healthy subjects across the lifespan in six age groups: 4–6,
8–9, 14–15, 25–35, 45–55, and 65–75 years and are available at: https://db.
humanconnectome.org. We analyzed the data acquired on the UMinn
Siemens 3T Prisma scanner (Phase 1a), which include five participants per
age group (ages 25–35, 45–55, and 65–75) or six participants per age group
(ages 8–9 and 14–15). Acquisition parameters included voxel size of
1:5 ´ 1:5 ´ 1:5mm3, TR/TE= 3222/89 ms and two b-values, 1000 smm�2

and 2500 smm�2, each with 75 diffusion gradients acquired twice with
opposite phase-encoding polarity, for a total acquisition time of about 22
min. Connectivity matrices were also generated using DSI Studio (http://dsi-
studio.labsolver.org) as described below.

4. DTI datasets from ABIDE-II

a. Trinity Center for Health Sciences ASD Data: Data was acquired from 20
typically developing control subjects (15–20 years) and 20 subjects with
ASD (10–20 years) using a Philips Intera Achieva 3T system.
Acquisition parameters included voxel size of 2 ´ 2 ´ 2mm3, TR/TE=
20244/79 ms and b-value 1500 smm�2 with 61 diffusion gradients, for a
total acquisition time of about 24:21 min. Connectivity matrices were
also generated using DSI Studio (http://dsi-studio.labsolver.org) as
described below. Additional details can be found in the original paper73.

b. San Diego State University ASD data: Data was acquired from 24
typically developing control subjects (8–18 years) and 29 subjects with
ASD (7–18 years) using a GE 3T MR750 system. Acquisition parameters
included voxel size of 1:875 ´ 1:875 ´ 2mm3, TR/TE= 8500/84.9 ms
and b-value 1000 smm�2 with 61 diffusion gradients. Connectivity
matrices were also generated using DSI Studio (http://dsi-studio.
labsolver.org) as described below. Details can be found at the ABIDE-
II website http://fcon_1000.projects.nitrc.org/indi/abide/scan_params/
ABIDEII-SDSU_1_scantable.pdf.

Generation of connectivity matrices. We used DSI Studio (http://dsi-studio.
labsolver.org)74 to process the HCP DSI, HCP HARDI, and ABIDE-II37 DTI
datasets, as follows:

1. HCP-DSI dataset: To run tractography and generate connectivity matrices
for the DSI data, seeds were placed randomly in the whole brain with the
following settings: normalized quantitative anisotropy (NQA) threshold:
0:08, angular threshold: 60� , tractography method: Runge–Kutta75, total
number of streamlines: 5 million. (Although similar results were obtained
with 500; 000 streamlines, we used 5 millions to ensure consistency with
previous work20.) 116 cortical areas (nodes) were automatically segmented
via non-linear registration of the automated anatomical labeling (AAL)
template available in DSI Studio. Connectivity matrices were constructed
with weights defined as the number of streamlines connecting each pair of
cortical areas (nodes).

2. HCP-HARDI dataset: For the HARDI data, diffusion tensors were estimated
to perform deterministic tractography. Seeds were also placed randomly in
the whole brain with the following settings: fractional anisotropy (FA)
threshold: 0:1, angular threshold: 60� , tractography method: Runge–Kutta75,
total number of streamlines: 500; 000. 333 cortical areas (nodes) were
automatically segmented via non-linear registration of the Gordon cortical
template25 available in DSI Studio. Connectivity matrices were constructed
with weights defined as the number of streamlines connecting each pair of
cortical areas (nodes). Node numbers (IDs), centroid and community
(group) of each node/area parcellation of 333 cortical parcellations from
resting-state fMRI can also be downloaded from https://sites.wustl.edu/
petersenschlaggarlab/parcels-19cwpgu/25.

3. ABIDE-II datasets (SDSU and TC ASD data): Settings for the generation of
connectivity matrices for both datasets were identical to those used for the
HCP-HARDI dataset, including the use of 333 cortical areas (nodes) which
were segmented via non-linear registration of the Gordon template25

available in DSI Studio. Node numbers (IDs), centroid and community
(group) of each node from the 333 cortical parcellations from resting-state
fMRI can also be downloaded from https://sites.wustl.edu/
petersenschlaggarlab/parcels-19cwpgu/25.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The diffusion MRI datasets used in this study are publicly available in the following
repositories: DSI Datsets from Hagmann et al [https://doi.org/10.1371/journal.
pbio.0060159]20, USC Multimodal Connectivity Database (http://umcd.
humanconnectomeproject.org/), HARDI Datasets WU-Minn HCP Consortium Lifespan
(https://www.humanconnectome.org/study-hcp-lifespan-pilot1) and ABIDE-II ASD
Datasets (http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html37).

Code availability
The code written in MATLAB is available upon request.
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