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S U M M A R Y
We investigate whether the coupling of normal mode (NM) multiplets can help us constrain
mantle anisotropy. We first derive explicit expressions of the generalized structure coefficients
of coupled modes in terms of elastic coefficients, including the Love parameters describing
radial anisotropy and the parameters describing azimuthal anisotropy (J c, J s , K c, K s , M c, M s ,
Bc, Bs , Gc, Gs , E c, E s , H c, H s , Dc and Ds). We detail the selection rules that describe which
modes can couple together and which elastic parameters govern their coupling. We then focus
on modes of type 0Sl − 0T l+1 and determine whether they can be used to constrain mantle
anisotropy. We show that they are sensitive to six elastic parameters describing azimuthal
anisotropy, in addition to the two shear-wave elastic parameters L and N (i.e. VSV and VSH ).
We find that neither isotropic nor radially anisotropic mantle models can fully explain the
observed degree two signal. We show that the NM signal that remains after correction for the
effect of the crust and mantle radial anisotropy can be explained by the presence of azimuthal
anisotropy in the upper mantle. Although the data favour locating azimuthal anisotropy below
400 km, its depth extent and distribution is still not well constrained by the data. Consideration
of NM coupling can thus help constrain azimuthal anisotropy in the mantle, but joint analyses
with surface-wave phase velocities is needed to reduce the parameter trade-offs and improve
our constraints on the individual elastic parameters and the depth location of the azimuthal
anisotropy.

Key words: Probability distributions; Surface waves and free oscillations; Seismic
anisotropy.

1 I N T RO D U C T I O N

Seismic anisotropy, that is, the dependence of seismic wave veloci-
ties on the direction of propagation or polarization of the waves, has
been found in several regions and at different depths inside the Earth.
In many places, it is believed to be due to the preferred alignment
of intrinsically anisotropic minerals (Karato 1988), but it could also
be due to the layering of isotropic materials with contrasting elastic
properties (Kendall & Silver 1996). Large-scale deformation pro-
cesses have to be involved in the alignment or layering of minerals
to observe seismic anisotropy at scales as large as several hundreds
to thousands of kilometres. Accurate localization and characteriza-
tion of seismic anisotropy can therefore improve our understanding
of dynamic processes inside our planet.

Radial anisotropy (which is a case of transverse isotropy with the
symmetry axis pointing in the radial direction) is required in the
uppermost mantle to reconcile Love and Rayleigh wave dispersion
(Anderson 1961), but its depth extent and how it varies in different
tectonic settings is still somewhat unclear (Montagner & Tanimoto
1991; Gung et al. 2003; Beghein & Trampert 2004a; Panning &
Romanowicz 2006). Radial anisotropy has also been reported for

the transition zone, but the results are highly variable among the dif-
ferent studies (Beghein & Trampert 2004b; Panning & Romanow-
icz 2006). Azimuthal anisotropy occurs when seismic wave velocity
changes with the azimuth of propagation. It was first observed by
Hess (1964) in the Pacific ocean through the azimuthal dependence
of propagation of P n waves. Since then, it has been found at various
places in the uppermost mantle and in the D′′ layer, using various
data such as shear wave splitting (e.g. Mitchell & Helmberger 1973;
Silver & Chan 1991; Vinnik et al. 1992) and surface waves (Forsyth
1975; Montagner & Tanimoto 1990). It could also be present in-
side or just below the transition zone, as shown by mineral physics
experiments (Kavner & Duffy 2001) and seismology (Fouch &
Fischer 1996; Wookey et al. 2002, for shear-wave splitting analy-
ses; Trampert & van Heijst 2002, for inversions of overtone Love
wave phase velocity maps) .

Mantle seismic anisotropy is commonly inferred from shear-
wave splitting or surface-wave dispersion measurements. On the one
hand, body waves have a much lower radial than lateral resolution,
which makes it difficult to locate the depth of origin of seismic
anisotropy from shear-wave splitting measurements alone. On the
other hand, surface wave dispersion is more sensitive to the depth
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distribution of anisotropy. The normal modes (NMs) of Earth’s
free oscillations are sensitive to mantle structure as well, and their
frequencies can be used to constrain anisotropy at greater depths
than surface waves and with higher depth resolution than body
waves. NM oscillations are degenerate in the case of a spherically
symmetric non-rotating, elastic and isotropic Earth, but in the real
Earth, the degeneracy is lifted and the modes ‘split’ due to the
presence of 3-D heterogeneities, anisotropy, ellipticity and rotation.
The frequencies of the modes can be measured and used to constrain
the 3-D (anisotropic) structure of the Earth (see Dahlen & Tromp
1998, for details, and Section 2).

Most NM splitting measurements are performed in the self-
coupling approximation, also called quasi-degenerate theory, where
each multiplet is treated as isolated in the spectrum. Because of sym-
metry considerations, this approximation puts constraints only on
even degrees of aspherical structure (Woodhouse & Dahlen 1978).
Resovsky & Ritzwoller (1998) showed that isotropic mantle models
can explain structure coefficients measured in the self-coupling ap-
proximation relatively well, and several mantle models have since
been derived from such data (Resovsky & Ritzwoller 1999; Ishii &
Tromp 1999; Masters et al. 2000; Beghein et al. 2002). Even though
isolated mode structure coefficients can be explained by isotropic
mantle models, Earth’s free oscillations are compatible with the
presence of radial anisotropy in the upper mantle and can provide
constraints on large-scale radial anisotropy in the mantle (Panning
& Romanowicz 2006).

Only a few researchers have investigated the effect of anisotropy
on the coupling of NMs or surface waves. The signal of inner core
anisotropy on coupling of core-sensitive NMs was recently analysed
(Irving et al. 2008) using the wide-band coupling method of Deuss
& Woodhouse (2001) and was found to have a potentially large
effect. With a simple zonally symmetric and transversely isotropic
uppermost mantle model, Park (1993) showed that as opposed to
the coupling interaction between two long-period Rayleigh waves,
long-period Love–Rayleigh coupling is stronger with azimuthal
anisotropy than with radial anisotropy. In addition, using a simi-
lar synthetic model of anisotropy, Yu & Park (1993) demonstrated
that smooth (that is at low spherical harmonic order) anisotropic
structures are much more ‘efficient’ than isotropic structures in
generating cross-type (Rayleigh–Love or spheroidal–toroidal) cou-
pling of long-period surface waves. More recently, using synthetic
tests and a spectral inversion, Oda (2005) showed that the cou-
pling of Earth’s NMs can be used to constrain the isotropic and
anisotropic lateral structure of the Earth. However, no model of
mantle anisotropy (radial or azimuthal) has ever been derived us-
ing ‘real’ (as opposed to synthetic) NM coupling data alone. The
effect of inner core anisotropy, however, Resovsky & Ritzwoller
(1995) incorporated intermultiplet coupling into splitting analy-
ses by generalizing the spectral fitting technique previously em-
ployed for isolated mode multiplets (Ritzwoller et al. 1986). In
addition to odd-degree structure coefficients, they measured a few
spheroidal–toroidal (n Sl − n T l+1) multiplets, which are sensitive to
even-degree structure (see Appendix B for details on the sensitivity
of those modes). The odd-degree structure coefficients of their cat-
alogue were used to derive an isotropic model of the whole mantle
(Resovsky & Ritzwoller 1998), hereafter referred to as RR98, but
the n Sl − n T l+1 modes have not yet been used. These specific mul-
tiplets are sensitive to isotropic and anisotropic structure through-
out most of the mantle (down to a depth of 2000 km), but most
of the energy is situated above approximately 1200 km depth, and
therefore, these data have the potential to constrain transition zone
anisotropy.

In the first part of this paper, we show, through theoretical devel-
opment, which type of structure can cause coupling between modes,
and we give the selection rules that determine which modes couple.
We then focus on the degree two splitting measurements of cou-
pled modes n Sl − n T l+1 made by Resovsky & Ritzwoller (1998).
Besides rotation and ellipticity, such cross-type coupling between
modes with angular orders l differing by 1 can occur due to the
presence of (1) topography at internal discontinuities; (2) density
anomalies; (3) isotropic or radially anisotropic shear-wave velocity
anomalies and (4) azimuthally anisotropic structure (see Section 2
for details). We demonstrate that current isotropic models of the
crust and the mantle (with topography at uppermost-mantle discon-
tinuities) cannot explain the splitting measurements (which are cor-
rected for the effect of rotation and ellipticity). To examine whether
shear-wave radial anisotropy can explain the data, we test several
models of upper-mantle radial anisotropy, inferred previously from
either surface-wave overtone data (Beghein & Trampert 2004a,b)
or from surface and body waveform data (Panning & Romanowicz
2006). This analysis shows that not all the NM generalized structure
coefficients determined by Resovsky & Ritzwoller (1998) can be
explained with radially anisotropic structure alone. Furthermore,
we tried to fit part of the splitting measurements that remains after
correcting for the effect of crustal structure and upper-mantle ra-
dial anisotropy with azimuthal anisotropy and to determine if any
robust constraint on this type of anisotropy can be obtained from
NM coupling data.

Using a singular value decomposition method (Matsu’ura &
Hirata 1982), we then show that the problem of modelling az-
imuthal anisotropy with the available corrected NM data is highly
ill-posed, which implies that the solution can strongly depend on
initial model assumptions, even if the problem is linear (see Taran-
tola 1987; Matsu’ura & Hirata 1982, and Appendix A for more
details). We used a model space search technique, based on forward
modelling, to obtain insight into the class of acceptable solutions.
The Neighbourhood Algorithm (NA; Sambridge 1999a,b) enables
us to determine the entire family of models that satisfy the data and
considerably reduces the risk of converging to a solution that is dic-
tated by the initial model assumptions. This statistical approach to
seismic tomography enables us to determine the most likely model
and to test hypotheses (e.g. determine the likelihood of having az-
imuthal anisotropy below 400 km depth). In addition, the sampling
of the whole model space (within selected boundaries), including
the model null-space (i.e. the part of the model space not constrained
by the data), yields more reliable estimate of model uncertainties
and therefore of the robustness of the features observed than a
least-squares inversion. Parameter trade-offs are directly available,
making model resolution assessments more straightforward.

2 N O R M A L M O D E C O U P L I N G
E Q UAT I O N S

The NMs of the Earth, or free oscillation multiplets, vibrate at
frequencies that are specific to each mode and that depend on the
internal structure of our planet. These modes are identified by the
radial and angular orders (n, l) of their eigenfunctions, and each
of the 2l + 1 singlets composing the multiplet is characterized
by an azimuthal index m. The free oscillations of a spherically
symmetric, non-rotating, elastic and (transversely) isotropic earth
have degenerate frequencies, that is, all singlets within one multiplet
vibrate with the same eigenfrequency. Rotation, ellipticity and the
presence of heterogeneities or anisotropy generate the splitting of
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these multiplets. In this case, each singlet is characterized by a its
own eigenfrequency. These singlet frequencies can be observed and
measured on the seismic spectrum.

The splitting of two coupled mode multiplets K = (n, l) and K ′ =
(n′, l ′) is usually determined by a splitting matrix H KK′

mm′ (Woodhouse
1980), which can be obtained by inversion of the spectrum. This
splitting matrix is given by

H K K ′
mm′ = Dnn′l

m δll ′δmm′ +
∑
s,t

�ll ′
s ct

s(K K ′), (1)

where structural degree s varies between |l − l ′| and l + l ′, and
where t = − s, . . . , + s. Furthermore, δ is the Kroneker symbol and
D includes the effect of multiplet spacing, rotation and ellipticity.
Specific selection rules determine which type of multiplets can
couple through rotation or ellipticity (see Dahlen & Tromp 1998,
for a review). Finally, � is a factor including geometric selection
rules that determine which aspherical structure can cause modal
coupling, and ct

s(KK′) are the generalized structure coefficients that
are linearly related to Earth’s 3-D structure at spherical harmonic
degree s and order t (Edmonds 1960). A general expression of the
dependence of ct

s(KK′) to perturbations of the fourth-order elastic
tensor � is given by

ct
s(K K ′) =

∑
αβγ δ

∫ a

0
K αβγ δ

s (r )δ�αβγ δ
st (r ) dr, (2)

where α, β, γ and δ are defined in the generalized spherical har-
monics formulation of Phinney & Burridge (1973) and can be equal
to 0, + 1 or −1. Because of the symmetry properties of the elastic
tensor, only 21 terms corresponding N = α + β + γ + δ = 0, ±1,
±2 or ±4 appear in eq. (2) (see Appendix C).

In the particular case of radial anisotropy, the contribution of
the elastic parameters to the structure coefficients are given by
the N = 0 terms of eq. (2) (Mochizuki 1986; Dahlen & Tromp
1998):

ct
s(K K ′) =

∫ a

0

[
δAt

s(r )K (K K ′)
A (r ) + δCt

s (r )K (K K ′)
C (r )

+ δN t
s (r )K (K K ′)

N (r ) + δLt
s(r )K (K K ′)

L (r )

+ δFt
s (r )K (K K ′)

F (r )
]

dr, (3)

with a is the radius of the Earth. Parameters A, C , N , L and F are the
five independent elastic constants necessary to fully describe a radi-
ally anisotropic medium (Love 1927). Functions K (KK′)

α (α = A, C ,
N , L , F) are partial derivatives, or sensitivity kernels, which charac-
terize how each pair of modes averages Earth’s structure. A general
expression of these sensitivity kernels can be found in Mochizuki
(1986) and Appendix B. Selection rules (see Appendices B and C
for details) imply that degree s radially anisotropic (or isotropic)
structure can couple two modes of the same type (two spheroidal
modes n Sl − n′ Sl ′ or two toroidal modes n T l − n′ T l ′ ) only if l +
l ′ + s is even and can cause n Sl − n′ T l ′ (cross-type) coupling if
l + l ′ + s is odd. When a toroidal mode is coupled to another mode
(n T l − n′ T l ′ or n Sl − n′ T l ′ ), the coupling can be caused by the two
shear-wave related elastic parameters L and N but not by P-wave
anisotropy or P-wave velocity. In the case of spheroidal–spheroidal
coupling, all five elastic parameters describing radial anisotropy are
involved. Note that the same selection rules apply if we consider
isotropic velocity anomalies since isotropy is a particular case of
radial anisotropy with A = C , L = N and F = A − 2L . Density
anomalies δρ t

s and topography at internal discontinuities can also

influence mode coupling (Woodhouse 1980), in which case eq. (3)
becomes

ct
s(K K ′) =

∫ a

0

[
δAt

s(r )K (K K ′)
A (r ) + δCt

s (r )K (K K ′)
C (r )

+ δN t
s (r )K (K K ′)

N (r ) + δLt
s(r )K (K K ′)

L (r ) + δFt
s (r )K (K K ′)

F (r )

+ δρ t
s (r )K (K K ′)

ρ (r )
]

dr +
∑

d

ht
sd Bsd(K K ′)r

2
d , (4)

where the so-called boundary factors B d are known functions of
radial eigenfunctions and hd is the relative amplitude of the topog-
raphy at the boundary d located at radius r d .

In a more general case of anisotropy, the selection rules become
more complicated, and 16 terms must be added to eq. (3). In Ap-
pendix C we demonstrate that the total splitting of the coupled
modes can be divided into two main contributions: splitting due to
lateral variations in radial anisotropy (N = 0) and splitting due to
azimuthal anisotropy (N �= 0). The contribution of radial anisotropy
to structure coefficients is given by eq. (3). The contribution of az-
imuthal anisotropy takes different forms depending on the parity of
l + l ′ + s and on whether the coupling occurs between modes of
the same type or between a spheroidal mode and a toroidal mode.
At degree s, the contribution of azimuthal anisotropy follows these
rules:

(1) n Sl − n′ Sl ′ and n T l − n′ T l ′ coupling occurs through param-
eters (G c)st , (B c)st , (H c)st , (E c)st , i (E s)st , i (J s)st , i (M s)st , i
(K s)st and i (Ds)st if l + l ′ + s is even,

(2) n Sl − n′ Sl ′ and n T l − n′ T l ′ coupling occurs through param-
eters i (G s)st , i (B s)st , i (H s)st , (J c)st , (M c)st , (K c)st and (Dc)st if
l + l ′ + s is odd,

(3) n Sl − n′ T l ′ coupling occurs through parameters (G s)st ,
(B s)st , (H s)st , i (J c)st , i (M c)st , i (K c)st and i (Dc)st if l + l ′

+ s is even,
(4) n Sl − n′ T l ′ coupling occurs through parameters i (G c)st , i

(B c)st , i (H c)st , (E s)st , i (E c)st , (J s)st , (M s)st , (K s)st and (Ds)st

if l + l ′ + s is odd,

where the 16 elastic coefficients J c, J s , K c, K s , M c, M s , B c,
B s , G c, G s , E c, E s , H c, H s , Dc and Ds are defined in Chen &
Tromp (2007) in terms of the elastic tensor (see also appendix C for
details). We see that, for a given type of coupling (like-type or cross-
type), selection rules are governed by a set of elastic parameters that
depends on the parity of l + l ′ + s. As shown by Park (1997), in
a particular case of azimuthal anisotropy, these selection rules are
a generalization of the familiar odd/even-parity selection rules for
isotropic (or radially anisotropic) structures.

It is interesting to note the similarity between the dependence
of NM coupling and surface- and body-wave phase speed propaga-
tion in terms of elastic parameters. For instance, the 2ψ azimuthal
variation of surface- and body-wave phase speed is controlled by
B c, B s , G c, G s , H c and H s , and their 4ψ variation is controlled
by E c and E s . These elastic coefficients also appear in the |N | =
2 and |N | = 4 parts of eq. (2), respectively. In addition to the
2ψ and 4ψ terms, body-wave phase speed is also determined by
a ψ term, dependent on J c, J s , K c, K s , M c and M s , and a 3ψ

term, dependent on Dc and Ds . There is thus a correspondence
between the ψ terms of body wave propagation and the |N | = 1
terms of mode coupling and between the 3ψ terms of body wave
propagation and the |N | = 3 terms of mode coupling. Table 1
compares and summarizes which of the 21 elastic coefficients
affects surface-wave phase speed, body wave speed and NM

C© 2008 The Authors, GJI, 175, 1209–1234

Journal compilation C© 2008 RAS



1212 C. Beghein, J. Resovsky and R. D. van der Hilst

Table 1. Comparison of the effect of the 21 elastic coefficients on the propagation of body waves, the phase speed of surface waves and the coupling of normal
modes. A cross ‘X’ indicates coefficients that affect mode coupling or wave propagation speed. A ‘0’ indicates no effect. The conditions required for normal
mode coupling are also given. For body wave speed, the notation of Chen & Tromp (2007) is used, with B33 governing compressional-wave phase speed and
B 11, B 22 and B12 governing shear-wave phase speed.

B33 B11 B22 B12 Rayleigh Love n Sl − n′ Sl ′ n T l − n′ T l ′ n Sl − n′ T l ′

δA x x 0 0 x 0 l + l ′ + s even 0 0
δC x x 0 0 x 0 l + l ′ + s even 0 0
δL x x x 0 x x l + l ′ + s even l + l ′ + s even l + l ′ + s odd
δN 0 0 x 0 x x l + l ′ + s even l + l ′ + s even l + l ′ + s odd
δF x x 0 0 x 0 l + l ′ + s even 0 0

J c x 0 0 0 0 0 l + l ′ + s odd 0 l + l ′ + s even
J s x 0 0 0 0 0 l + l ′ + s even 0 l + l ′ + s odd
K c x x 0 x 0 0 l + l ′ + s odd 0 l + l ′ + s even
K s x x 0 x 0 0 l + l ′ + s even 0 l + l ′ + s odd
M c 0 0 x x 0 0 l + l ′ + s odd l + l ′ + s odd l + l ′ + s even
M s 0 0 x x 0 0 l + l ′ + s even l + l ′ + s even l + l ′ + s odd

G c x x x x x x l + l ′ + s even l + l ′ + s even l + l ′ + s odd
G s x x x x x x l + l ′ + s odd l + l ′ + s odd l + l ′ + s even
B c x x 0 x x 0 l + l ′ + s even 0 l + l ′ + s odd
B s x x 0 x x 0 l + l ′ + s odd 0 l + l ′ + s even
H c x x 0 x x 0 l + l ′ + s even 0 l + l ′ + s odd
H s x x 0 x x 0 l + l ′ + s odd 0 l + l ′ + s even

Dc x x x x 0 0 l + l ′ + s odd l + l ′ + s odd l + l ′ + s even
Ds x x x x 0 0 l + l ′ + s even l + l ′ + s even l + l ′ + s odd

E c x x x x x x l + l ′ + s even 0 l + l ′ + s odd
E s x x x x x x l + l ′ + s even 0 l + l ′ + s odd
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Figure 1. Sensitivity of coupled modes n Sl − n T l+1 to relative shear wave and density anomalies. Those kernels are computed for structure coefficients
expressed in μHz.

coupling structure coefficients, similarly to table 1 of Chen & Tromp
(2007).

3 DATA

In this paper, we employ the degree two structure coefficients
that were determined by Resovsky & Ritzwoller (1998) for modes

0 Sl − 0T l+1. These structure coefficients have never been included

in modelling of Earth’s interior for reasons explained below, but
they have the potential of constraining structure at least as deep as
the transition zone. As demonstrated in Section 2, they are sensitive
to the two shear wave related elastic parameters (L and N), density
and six of the 21 elastic parameters describing azimuthal anisotropy:
G c, B c, H c, K s , M s and J s . The partial derivatives of these modes
to density and isotropic shear-wave velocity anomalies are shown
in Fig. 1. Fig. 2 displays the sensitivity to perturbations in elastic
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Figure 2. Sensitivity of coupled modes n Sl − n T l+1 to elastic parameters L and N and to density anomalies. Those kernels are computed for structure
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Figure 3. Sensitivity of coupled modes n Sl − n T l+1 to six elastic parameters describing azimuthal anisotropy. The 11 different curves in each panel correspond
to the 11 n Sl − n T l+1 modes measured by Resovsky & Ritzwoller (1998) and analysed in this paper.

parameters L and N and in density, and Fig. 3 represents the sensitiv-
ity kernels for azimuthal anisotropy. We can see that the sensitivity
of 0 Sl − 0T l+1 multiplets is most pronounced in the upper mantle,
and that in the case of azimuthal anisotropy, the sensitivity is high in
the crust for parameters B c and H c but almost inexistant for other
parameters. Overal, NMs are more sensitive to isotropic or radially
anisotropic structure, but their sensitivity to azimuthal anisotropy is
not negligible.

The structure coefficients that are employed in this paper were
determined by Resovsky & Ritzwoller (1998) as part of a detailed
characterization of the free oscillation spectrum below 3 mHz. The

spectrum was divided into windows around groups of closely spaced
multiplets. Within such a group, the spacing between multiplet de-
generate frequencies is less than 25 μHz, whereas spacing between
groups is greater than 25 μHz, unless the groups could be separated
using attenuation. Within each window, the splitting and coupling
coefficients that describe the observed mode frequencies and at-
tenuations were estimated using iterative least-squares regressions.
The coefficients retrieved from such regressions were subjected to
rigorous error control and assessment, designed to enhance their re-
liability as constraints on mantle structure. As possible data biases
are of particular relevance to the analysis of a signal such as that of
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mantle anisotropy, these procedures for error and bias control are
worth reviewing.

First, all original seismic data were hand-edited and culled to op-
timize signal-to-noise ratios. Second, regressions were performed
for the highest structural degrees that produced notable improve-
ments in data fit, but the results for these highest degrees were
consistently discarded because both the nature of the regression
covariance matrices and synthetic experiments indicated that the
signal of unmodelled coupling (from degrees too high to be esti-
mated with the limited data set available at the time) is most likely
to be absorbed by these high-degree coefficients. It seems reason-
able to assume that this procedure also minimizes the impact of
unmodelled broad-band coupling (Deuss & Woodhouse 2001).

Third, uncertainties were assigned to each structure coefficient
using Monte-Carlo simulations, based on observations of the error
processes expressed in the data themselves. Seismic noise in the
frequency domain was measured in the gaps between multiplets
for each seismogram and random perturbations were added to the
synthetic seismograms to quantify the impact of these errors on the
structure coefficient estimates.

Lastly, all coefficients and their associated uncertainty estimates
were checked for a reasonable degree of consistency along overtone
branches and with existing models. The differences between cor-
responding structure coefficients of multiplets with similar depth
sensitivity, and the differences between the new coefficients and
the predictions of some of the best-established mantle models at
the time, were expected to be comparable to the differences be-
tween those models. Therefore, when differences that were not ex-
plained by the original uncertainty estimates were observed, those
estimates were enlarged. In most cases, the uncertainties were al-
ready consistent (neither too small nor unreasonably large) with the
observed differences, which increased confidence in the error mod-
elling process described above. Measurements associated with large
differences were omitted from the original catalogue (Resovsky &
Ritzwoller 1998).

The spheroidal–toroidal structural coupling coefficients (0 Sl −
0T l+1) under consideration in this paper were almost excluded from
the published catalogue. The degree 2 coefficients differed greatly
from the predictions of existing isotropic mantle models, as de-
scribed in Section 5.1, and (at the time) it was not believed that
anisotropic structure in the upper mantle below the crust could be
strong enough to explain such a signal. In the end, the coefficients
were included in the catalogue because (1) they were retrieved
using the same procedure that had yielded spheroidal–toroidal cou-
pling coefficients with good model fit at odd degrees (e.g. 5 S4 −
2T 4); (2) the degree 4 and 6 coupling coefficients from the multi-
plet pairs were not unusual; (3) they displayed strong along-branch
consistency; (4) their inclusion in regressions and synthetics pro-
vided significant improvements in data fit and (5) it was expected
that crustal corrections would account for much of the unexplained
signal from these multiplets. The latter did not prove to be the
case.

4 A P P ROA C H A N D M O T I VAT I O N

Modelling seismic anisotropy accurately can be a challenge. For
instance, it is difficult to locate the depth of origin of seismic
anisotropy from shear-wave splitting measurements because body
waves lack vertical resolution. Surface waves and Earth’s free os-
cillations have better depth resolution, but trade-offs exist between
the different elastic parameters they are sensitive to. In addition,

the uneven data coverage on Earth implies that seismic anisotropy
cannot be constrained uniquely by seismology. This ill-posedness,
or non-uniqueness of the solution, is inherent to most geophysical
inverse problems. As pointed by Matsu’ura & Hirata (1982), in
highly underdetermined cases the solution depends strongly on the
initial assumptions made about the model parameters (parametriza-
tion, regularization, physical a priori constraints, distribution of
data noise, a priori model uncertainties, etc.), and this does not
happen only in non-linear problems.

In theory, one can transform an ill-posed problem into a well-
posed problem by introducing sufficient a priori information and
then solve the equations using a least-squares inversion (Jackson
1979). In seismology this can be done by combining different data
sets (Masters et al. 2000; Marone & Romanowicz 2007a) or by im-
posing a priori relationships between elastic parameters (Montagner
& Tanimoto 1991; Gung et al. 2003; Panning & Romanowicz 2006).
The remaining parameters can be determined with a least-squares
inversion, but the solution is still not unique and has to be regular-
ized to choose one solution among all the models that can satisfy the
data (see Appendix A). The choice of the regularization is, however,
subjective and not based on true physical information. Moreover,
a regularization compromises between improving the data fit and
staying relatively close to an a priori reference model (Trampert
1998). When combined with the presence of strong trade-offs, the
choice of the regularization can lead to a biased interpretation of
the model if the true resolution of the model is not known (e.g. the
problem of modelling inner core anisotropy from NM data Beghein
& Trampert 2003). This can be avoided with model space search
techniques based on forward modelling.

Forward modelling constitutes an alternative to a least-squares
inversion. A common misconception in geophysics is that this sort
of model space search approach is unnecessary in linear inverse
problems, and that the robustness of the results of a least-squares
inversion can be tested simply by slightly changing the regular-
ization or the parametrization. This is, however, not always true
(Sambridge et al. 2006). Model space searches based on forward
modelling are designed to address problems with multiple misfit
minima. Geophysicists often associate linear problems with a sin-
gle global minimum in the cost function, but many linear inverse
problems are ill-posed with non-Gaussian cost functions. As pointed
out by Tarantola (1987), in such cases multiple minima are not only
possible but also likely. An extended discussion of this aspect of the
inverse problem is provided in Appendix A.

We thus adopted the NA due to Sambridge (1999a,b), which is
a forward modelling technique that enables the exploration of the
family of models that satisfy the data. Sampling the model space,
including the model null-space (i.e. the part of the model space not
constrained by the data) reduces considerably the risk of converging
to a solution that is strongly dependent on the initial assumptions.
A posterior probability density function (PPDF), also called 1-D
marginal or likelihood, is associated with each model parameter
and enables us to get a more reliable estimate of model uncertain-
ties and therefore of the robustness of the observed features. In
addition, parameter trade-offs are directly available, which makes
model resolution assessments more straightforward.

The model space search is governed by the misfit of the models
generated. We estimated the goodness of fit using a χ -misfit defined
as follows.

χ =

√√√√√ 1

N

N∑
k=1

(
dpred

k − dobs
k

)2

σk
2

, (5)
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where N is the total number of data, dpred
k represents the kth data

prediction and dobs
k is the kth observed data with associated uncer-

tainty σ k . Values of χ of 1 or less correspond to model predictions
that fall within one standard deviation of the data.

5 R E S U LT S

5.1 Isotropic models

In Section 2, eq. (4), we showed that structure coefficients describ-
ing coupling of the type n Sl − n T l+1 can be due to 3-D density
and isotropic shear-wave velocity anomalies and to topography at
internal discontinuities. We decided to test the data first against pre-
dictions calculated from several isotropic d V S mantle models: (1)
MM2L12D8 (Resovsky & Ritzwoller 1998), which was obtained
from isolated NM measurements made with the same method as the
data analysed here; (2) S20RTS (Ritsema et al. 1999), which was
derived from Rayleigh wave dispersion data, body-wave traveltimes
and normal-mode splitting data; (3) S16B30 (Masters et al. 1996)
that was obtained with surface-wave phase velocity maps, free os-
cillation structure coefficients and long-period body-wave absolute
and differential traveltimes; (4) S12WM13 (Su et al. 1994), which
used traveltimes of ScS–S, SS–S and other absolute traveltime data
and waveform data; and (5) SAW24B16 (Mégnin & Romanowicz
2000), a VSH model derived from body, surface and higher modes
waveforms. Density anomalies were assumed to be proportional
to shear-wave velocity anomalies using d ln ρ = 0.4 d ln VS .
This assumption, which implies that thermal anomalies are dom-
inant in the mantle, is likely invalid in the deep mantle (Su &
Dziewonski 1997; Kennett et al. 1998; Ishii & Tromp 1999;
Resovsky & Trampert 2003), but our data are not sensitive to den-
sity anomalies at these depths. To predictions obtained with these
bulk mantle models, we added predictions calculated from the de-
gree two component of isotropic crustal model Crust5.1 (Mooney
et al. 1998), including bathymetry and topography at discontinu-
ities inside the crust and at the Moho. In the case of SAW24B16, we
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Figure 4. Observed splitting and splitting predicted by various isotropic mantle V S and crustal models.

replaced the Crust5.1 Moho and seafloor topography with values
given in SAW24B16.

We can see in Fig. 4 that most of the structure coefficients for the

n Sl − n T l+1 modes cannot be explained by bulk isotropic velocity
anomalies alone. Predictions differ very little from one model to the
other, but in most cases, the predicted values fall far outside the data
uncertainties, especially for c20. The highest c20 misfit calculated
is χ = 10 and is obtained with model MM2L12D8. The lowest
c20 misfit is obtained with the SH-based model SAW24B16 but is
still very high with a value of 8.4. Table 2 gives the misfit values
obtained using these isotropic models for the five degree 2 spherical
harmonic coefficients. Only predictions for Im (c22) are consistent
with the observed values. The χ -misfit for this spherical harmonic
coefficient is close to 1, which shows that almost all the data are
explained within uncertainties or close to it.

5.2 Radial anisotropy

As explained in Section 2, an alternative to isotropic V S anomalies
to generate coupling between modes is shear-wave radial anisotropy.
We can see in Fig. 2 that the sensitivity of these modes to pertur-
bations in the two shear wave related elastic coefficients L and N is
mostly concentrated above the bottom of the transition zone. Radial
anisotropy is therefore a possible candidate to explain the data.

We tested this possibility with models of radial anisotropy ob-
tained by Beghein & Trampert (2004a,b), hereafter referred to as
BT04, and Panning & Romanowicz (2006)— SAW642an. The way
these two models were obtained differs in several ways, including
the parametrization, the data used and the method employed to solve
the problem. SAW642an was obtained using three component sur-
face and body waveform data and an inversion for structure and
source parameters based on non-linear asymptotic coupling the-
ory (Li & Romanowicz 1995). In addition, a priori proportionality
factors were imposed between the best-resolved (S-wave related)
parameters and the least well resolved parameters (density anoma-
lies, P-wave velocity and anisotropy anomalies and anisotropic pa-
rameter η). The data used in BT04 were fundamental mode and
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Table 2. χ -misfit obtained for various isotropic and anisotropic mantle models. The ‘mean BT04’ corresponds to predictions from the mean of the PPDFs
associated with the BT04 models, that is, from the mean model. The most likely BT04 corresponds to the peak of the distributions of the BT04 models. The
last column gives the misfit averaged over all five spherical harmonic coefficients.

c20 Re (c21) Im (c21) Re (c22) Im (c22) Average for all coefficients

MM2L12D8 10.0 5.4 4.1 4.5 1.17 5.0
S20RTS 9.3 5.1 3.8 4.7 1.16 4.8
S16B30 10.3 4.16 4.2 4.5 1.18 4.9
S12WM13 8.8 5.5 4.0 4.3 1.17 4.75
SAW24B16 8.4 5.3 3.5 4.65 1.3 4.6

Mean BT04 6.8 4.25 4.2 5.65 1.17 4.4
Most likely BT04 5.2 4.7 3.7 6.7 1.2 4.3
SAW642an 6.7 2.1 3.4 4.2 1.75 3.6
BT04 and azimuthal anisotropy 1.0 0.7 2.40 0.93 0.96 1.2

overtone surface-wave phase velocity maps at periods ranging from
50 to 150 s, with sensitivity down to the top of the lower mantle.
No a priori scaling relationship was imposed between the model
parameters, and the NA was employed to produce distributions of
models for the five elastic parameters describing radial anisotropy
and density anomalies instead of one single ‘best-fitting’ model.

Here, we used the degree two shear-wave velocity and anisotropy
anomalies of SAW642an to predict the generalized structure coef-
ficients ct

s(KK′) of modes n Sl − n T l+1, using the same prior rela-
tionship between d ρ and d V S as used by Panning & Romanowicz
(2006). We also calculated predictions for the ct

s(KK ′) using the family
of BT04 models. We took advantage of the fact that a likelihood (or
PPDF) is associated with the BT04 model parameters to obtain dis-
tributions of ct

s(KK′) predictions, from which a mean prediction and
standard deviation were extracted. In both cases, we included con-
tributions from the crust using predictions calculated with Crust5.1.
The predictions calculated with SAW642an and BT04 are plotted
in Fig. 5 and misfit values are given in Table 2.

We find that the c20 structure coefficients are better explained
with radial anisotropy than with isotropic models, and that the most
likely BT04 model gives a better fit than SAW642an (Fig. 5 and
Table 2). Nevertheless, the misfit is still high both with SAW642an
and with BT04. Predictions for Re(c21) improve quite significantly
compared with predictions from isotropic models, especially with
SAW642an, which fit the data better than any of the BT04 models.
Im(c21) and Re(c22) remain largely unexplained with either model
of radial anisotropy, and the fit stays close to the one obtained
with isotropic structure. It is thus clear that we need to invoke an
additional source of mode coupling to explain c20, Re(c21), Im(c21)
and Re(c22) structure coefficients. Im(c22) structure coefficients do
not necessarily require any other source of mode coupling as their
χ -misfit is close to 1 with radial anisotropy.

As explained above, SAW642an and BT04 were obtained using
different methods. One of the differences is the use of prior con-
straints between the two S-wave related parameters and the least
well-resolved parameters. To test what effect this has on the NM
predictions, we applied the NA to the same degree two surface wave
data used by Beghein & Trampert (2004a), and we imposed prior
scaling relationships such as those used in SAW642an to find new
distributions of shear-wave velocity and anisotropy models. New
structure coefficients were then calculated (Fig. 6). The new range
of predicted values generally overlaps with the BT04 predictions,
but we found differences in the mean predicted ct

s(KK′) compared
with the mean predictions (Fig. 5a) and in their uncertainty. This
uncertainty in the predicted data is larger with the BT04 models
because model uncertainties are lower when a priori constraints are
applied (Jackson & Matsu’ura 1985; Beghein 2008). Despite these

small differences, the a priori proportionality factors cannot solely
be responsible for discrepancies between predictions from the BT04
most likely model and from SAW642an since SAW642an predicted
structure coefficients fall outside of the new model prediction range
obtained with NA and a priori constraints.

5.3 Azimuthal anisotropy

5.3.1 Azimuthal anisotropy models

So far, we have neglected azimuthal anisotropy, but it is clear from
currently available models that upper-mantle radial anisotropy alone
cannot explain all the degree 2 n Sl − n T l+1 mode data (Fig. 5).
In this section, we examine whether azimuthal anisotropy can ex-
plain the remaining signal, after correction with predictions from an
upper-mantle radial anisotropy model and a crustal isotropic model.

We seek to determine (1) a statistically robust ensemble of models
of azimuthal anisotropy that could explain the remaining signal and
(2) the likelihood that all this azimuthal anisotropy is located above
the transition or that part of it lies deeper than 400 km depth. Because
we have measurements for only 11 pairs of modes for each spherical
harmonic coefficients and six elastic parameters to determine, this
problem is ill-posed even if we employ a basic depth parametrization
with only two layers. We opted for a two-layer parametrization
with the following depth limits: 0–400 and 400–2000 km, 400 km
delimiting the top of the transition zone. We cannot increase the
number of layers any further and get results with meaningful misfit
reduction because of the ill-posedness of the problem. A simple
singular value decomposition, based on the method of Matsu’ura
& Hirata (1982), showed that with these layers only 4 of the 12
unknown model parameters have significant singular values. This
problem is thus clearly ill-conditionned and we decided to apply
the NA to explore the ensemble of possible solutions and avoid
converging to a solution strongly affected by the initial assumptions
(Matsu’ura & Hirata 1982).

A first series of model space searches were performed on the
mode data corrected with Crust5.1 and with the most likely BT04
model. We performed broad model space searches to reduce the risk
of being trapped in a local minimum using well-chosen NA tuning
parameters (see Sambridge 1999a, for details). For instance, for c20

at each iteration, 200 new models were generated within the 200
best-fitting Voronoi cells paving the model space; a total of 240 000
models were generated. We tested that the general features of these
distributions are independent of the tuning parameters used, another
sign that we are unlikely trapped in a local minimum. The 1-D
marginal model distributions obtained for each spherical harmonic
coefficient are shown in Fig. 7.
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Figure 5. Observed data and range of data predictions computed using radially anisotropic models. Predictions from the distributions of BT04 radial anisotropy
models are shown in (a). To obtain these predictions, we drew random values of dLt

s, dN t
s , and dρt

s from their PPDFs, and for each set of values we computed
ct

s(KK′) predictions. Thus, from the distributions of model parameters, we obtained a distribution of predictions, from which a mean and standard deviation
were extracted. The mean and standard error are represented in red. Predictions from the mean radial anisotropic BT04 model and from the most likely radial
anisotropic BT04 model are also displayed. Predictions from SAW642an and BT04 are shown in (b).

For c20, the best fitting azimuthal anisotropy models explain the
corrected data within uncertainties, with a χ -misfit of 1. In Fig. 7,
we see that several elastic parameters are likely to depart from
zero: in the top layer B c, K s and H c have well-defined peaks,
showing that B c and K s are most likely negative, and H c is
most likely positive. The PPDFs for the bottom layer imply that
the corrected data favour the presence of azimuthal anisotropy
deeper than 400 km: distributions for parameters G c, J s and M s

display clear peaks toward positive values, and K s is most likely
negative.

From Re(c21), we find model distributions with most likely posi-
tive G c and J s and a likely negative K s below depths of 400 km. In
the top layer, however, the parameters do not show any clear signal:
the width of their distributions is large, which could mean that either
large trade-offs are present between the elastic parameters and/or
that the elastic parameters vary vertically within our broad 400 km
wide layer. The lowest χ misfit achieved for this spherical harmonic
coefficient is 0.7.

For Im(c21) peaks in the model distributions are clearly visible
for a few elastic parameters, but none of the models generated can
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Figure 6. Observed data and range of data predictions computed using the distribution of models of radial anisotropy BT04 obtained by Beghein & Trampert
(2004a,b) and using models obtained by forward modelling such as in BT04, but imposing a priori scaling relationships between anisotropic parameters as
in SAW642an (Panning & Romanowicz 2006) . The distributions of models provides distributions of predictions from which a mean prediction and standard
error were computed. Predictions from SAW642an are shown for comparison.

explain the corrected data better than within two standard deviations
(χ = 2). This is an improvement compared with the misfit obtained
with radial anisotropy alone, but it is not sufficient to explain all the
measurements. This could be due to contradictions among the mea-
sured mode structure coefficients or to more rapid depth variations
of the anisotropy than accounted for with our depth parametrization,
but we do not have enough data yet to test this.

NA applied to the Re(c22) structure coefficients yielded best fit-
ting models with χ = 0.93. The PPDFs do not show clear peaks
above 400 km, but H c, J s and K s below 400 km display a likely
departure from zero. We also applied NA to Im(c22) even though
radial anisotropy can already explain the measurements with χ =
1.2. We found a slight improvement in the data fit by including
azimuthal anisotropy, with a misfit going down to 0.96. The PPDFs
are wide but display a peak toward positive values for M s above
400 km and negative values for J s and K s below 400 km. Since the
initial Im(c22) misfit was already quite good, we do not rule out that
this slight fit improvement is insignificant. If the measurement un-
certainties were slightly underestimated by Resovsky & Ritzwoller
(1998), we would be able fit the data within error with radial
anisotropy alone.

5.3.2 Effect of data corrections

It is important to determine how the corrections applied to the data
affect the azimuthal anisotropy model distributions. As demon-
strated in Fig. 5, NM predictions from SAW642an can differ from
the most likely BT04 model predictions. The choice of the model
of radial anisotropy used to correct the data will therefore af-
fect the residual data, which can affect the model of azimuthal
anisotropy obtained with a traditional inverse technique. By us-
ing a statistical approach such as NA, however, we can determine
whether there are any robust features in the azimuthal anisotropy,
independent of the choice of the radial anisotropy correction. We
thus applied the NA to the NM data corrected using Crust5.1

and SAW642an and compared the new distributions of azimuthal
anisotropy models with those obtained with the Crust5.1 and BT04
corrections.

We find that the new models display similarities with, and can fit
the data as well as, the models obtained using the BT04 corrections
(Fig. 8). For instance, from c20 we obtain models for which B c, H c

and K s in the top layer and G c, K S and J s in the bottom layer dis-
play clear peaks and the sign of these peaks is the same as in Fig. 7.
On the contrary, some parameters that were not well constrained
using the BT04 corrections now appear to display a better-defined
peak (e.g. G c in the top layer), and others that appeared well con-
strained with the BT04 corrections are now undetermined (e.g. M s

in the bottom layer). For Re(c21), we see that G c and J s at depths
larger than 400 km have the same PPDFs in both cases. Conclu-
sions are less easy to draw for the elastic parameters obtained from
Im(c21). Like what we found using the BT04 corrections, however,
no model can explain the Im(c21) data better than within two stan-
dard deviations. For Re(c22), K s below 400 km is consistently more
likely negative with either model of radial anisotropy. For Im(c22),
we can draw the same conclusions as when using the BT04 correc-
tion: we obtain similar model distributions but the fit improvement
is very small and probably not significant since the initial misfit was
already as low as 1.2.

5.3.3 Depth dependence of the anisotropy

Our results show that NM coupling data favour the presence of
azimuthal anisotropy at depths greater than 400 km, independent of
the upper-mantle radial anisotropy correction applied. A scenario
where no azimuthal anisotropy is required by the data below that
depth would be represented by PPDFs with peaks around zero for all
six elastic parameters in the bottom layer or by PPDFs that are close
to being flat if no clear signal was contained in the data (because of
large data errors, large parameter trade-offs, contradictions in the
data, etc). This is not the case here: we see (Figs 7 and 8) that the
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Figure 7. 1-D marginal distributions or likelihoods obtained by applying NA to the residual data, after correction for the effect of the crust and the most
likely model of radial anisotropy BT04. We delimited the bounds of our model space to relative perturbations in elastic coefficients up to 5 per cent. We
based our choice on the facts that (1) we should satisfy the conditions of application of perturbation theory, on which normal mode splitting equations are
based, and that (2) if large-scale mantle azimuthal seismic anisotropy was much stronger, it would likely be more easily observable. The 1-D marginals
represent the distributions of values for six elastic parameters describing azimuthal anisotropy in two layers: above 400 km depth and below 400 km depth.
Parameters that have wide and close to flat distributions are not constrained by the data. Parameters for which the distribution has a clearly visible peak are
much better constrained by the normal mode data. The vertical lines correspond to a model with no azimuthal anisotropy. The models obtained from the c20

measurements are shown in the top two rows, the results obtained from the Re (c21) data are shown in the third and fourth rows, etc. For each SH coefficient,
the top row displays the six elastic parameters in the top layer (d < 400 km), and the bottom row displays the six parameters averaged over our bottom layer
(d > 400 km).

data are statistically better fitted with some amount of azimuthal
anisotropy deeper than 400 km. Therefore, from the point of view
of the data fit alone the likelihood of not having any azimuthal
anisotropy below that depth is small. We need, however, to determine
whether the data fit would change a lot if we did not allow for any
azimuthal anisotropy below 400 km.

We thus performed another set of NA runs where we forced all the
azimuthal anisotropy to reside in the upper 400 km of the mantle. To
compare the new model misfits fairly with the misfits of the models
shown in Fig. 7, we divided the upper 400 km in two layers, one

from 0 to 200 and one from 200 to 400 km. We thus have 12 model
parameters in both cases.

The c20 model distributions obtained for the upper 400 km are
displayed in Fig. 9. These distributions are very wide, which means
that the models are not well constrained due to a combination of
data uncertainties, model parameter trade-offs, and possibly vertical
variations within the layer chosen for our parametrization. Despite
the large uncertainties, we see that G c above 200 km has a distribu-
tion pointing toward negative values and the B c likelihood in that
same layer points toward a positive value. The lowest misfit obtained
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Figure 8. 1-D marginal distributions or likelihoods obtained by applying NA to the residual data, after correction for the effect of the crust and radial anisotropy
using model SAW642an. See caption of Fig. 7 for details.
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Figure 9. 1-D marginal distributions or likelihoods obtained by applying NA to the residual c20 data, after correction for the effect of the crust and radial
anisotropy using most likely model BT04 and imposing the azimuthal anisotropy to be above a depth of 400 km.

was 1.3. It is a large improvement compared with the values ob-
tained with radial anisotropy alone (χ around 7), and it is only
slightly higher than what we obtained when we let the azimuthal
anisotropy go below 400 km, in which case the lowest misfit reached

was 1. From a statistical point of view, χ = 1.0 is a better fit than
χ = 1.3, which explains why NA favours models with azimuthal
anisotropy deeper than 400 km. From a practical point of view, we
need to decide how much less likely are models that explain the
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data within 1.3 times the standard deviation compared with mod-
els that explain the data within 1 standard deviation, but this is
not a trivial decision to make. On the one hand, the data appear to
contain a signal that lead to better-resolved model when we allow
for deep anisotropy as the PPDFs present with better defined peaks
than when we force the anisotropy to lie in the top 400 km of the
mantle. On the other, we need to keep in mind that the normal data
used and their error bars are coming from the inversion of seismic
spectra, which itself involves some level of a priori information that
might have influenced the structure coefficient estimates.

6 C O N C LU S I O N S

We showed that the degree two coupled mode structure coeffi-
cients, which were determined by Resovsky & Ritzwoller (1998) for
11 0 Sl − 0 T l+1 multiplets, cannot be explained by crustal struc-
ture and isotropic or radially anisotropic mantle models alone. Both
model SAW642an and the radial anisotropy models obtained by
Beghein & Trampert (2004a,b) were tested and none of them can
explain the data. Analysis of the general equations relating coupled
mode structure coefficients to anisotropy (Mochizuki 1986) shows
that this type of coupled modes, at degree 2, is not only sensitive
to shear-wave radial anisotropy but also to six elastic parameters
describing azimuthal anisotropy. After correcting the data for the
effect of structure in the crust and upper-mantle radial anisotropy, we
showed that the remaining signal can be explained with azimuthal
anisotropy.

Using a forward modelling technique, we established the prob-
ability that azimuthal anisotropy exists above and below depths of
400 km in the mantle. This conclusion is independent of the way the
model space is sampled and of the radial anisotropy model used to
correct the data. Not all the corrected NM structure coefficients can
be explained by azimuthal anisotropy within error bars, but some
show a large decrease in data misfit when azimuthal anisotropy is
included.

The depth extent of the azimuthal anisotropy is, however, not
yet well constrained. We tested the possibility of having all the az-
imuthal anisotropy confined within the top 400 km of the mantle.
The models found after imposing such constraint have a slightly
higher misfit than when anisotropy is allowed deeper than 400 km,
and the likelihoods obtained do not display clear peaks. There-
fore, from a purely statistical point of view, the data fit is better
if the anisotropy goes below 400 km and the data seem to contain
a robust signal at these depths. However, we cannot rule out yet,
the possibility of azimuthal anisotropy confined above the transi-
tion zone. In addition, it should be noted that we cannot exclude
that the crustal corrections applied in our analyses could affect
the results as crustal corrections can have highly non-linear ef-
fects on NM and surface waves (Montagner & Jobert 1988; Boschi
& Ekström 2002; Kustowski et al. 2007; Marone & Romanowicz
2007b; Bozdag & Trampert 2008). The way crustal corrections
are made can be important, and 3-D variations in Moho depth
affect not only the amount by which the measurements are cor-
rected but also the partial derivatives used to retrieve structure
at depth (e.g. Boschi & Ekström 2002; Marone & Romanowicz
2007b).

Our findings demonstrate that, like surface waves (Trampert &
van Heijst 2002), coupled NM measurements require the pres-
ence of azimuthal anisotropy in the upper mantle. It is clear that
NM coupling has the potential to constrain upper-mantle azimuthal

anisotropy, but more data of that type are needed for future work
if we want to better constrain the depth extent of the anisotropy.
This could mean employing a full spectral coupling method such
as the one developed by Deuss & Woodhouse (2001). In addition,
since surface-wave phase velocities are sensitive to a subset of the
elastic parameters controlling mode coupling, joint analyses of the
two types of data will help break some of the parameter trade-offs
and improve our constraints on the individual elastic parameters
and the location at depth of the azimuthal anisotropy. This, in turn,
could help us put new constraints on upper-mantle mineralogy and
improve our understanding of mantle deformation.
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A P P E N D I X A : I N V E R S E T H E O RY A N D F O RWA R D M O D E L L I N G

The main advantage of using a forward modelling technique lies in the fact that we can determine the entire family of models that satisfy
the data, without having to choose one model with a regularization. Interpretation of one model can be misleading and obtaining the entire
family of models that satisfy a data set is a more robust and meaningful way of analysing and interpreting model features.
An inversion minimizes a cost function (e.g. a χ 2 misfit and/or a model norm term) to simultaneously optimize the data fit and use some prior
information on the model space. A general form of the cost function is Tarantola (1987):

Cλ = �D(d, G(m)) + λ�M(m, m0), (A1)

where �D and �M are measures of the distance between observation d and prediction G(m) in the data space and between the solution m
and a reference starting model m0 in the model space, respectively. A compromise between these two properties is reached by choosing an
arbitrary value for the trade-off parameter λ. The choice of λ, of the a priori model m0, and of the model space and data space norms is
arbitrary and constitutes some sort of a priori information.

It is well known that the cost function of non-linear inverse problems can have multiple minima, hence the solution can strongly depend
on the prior information imposed. In that case, using a direct search approach is preferable to an inversion since it offers a way to obtain
robust information on Earth’s properties without having to introduce explicit a priori information on the model parameters for a given
parametrization (i.e. λ = 0 and no explicit equation for �M is used). Forward modelling offers also a way to obtain reliable estimate of
model resolution (that is parameter uncertainties and trade-offs). A common misconception in geophysics is that only non-linear problems
have multiple minima and that the cost function of a linear inverse problem has only one global minimum. If it were true, identical solutions
could be obtained with either a forward modelling technique or a traditional inverse method when the problem is linear. This is, however, not
necessarily the case. When the problem is ill-posed, the cost function can be non-Gaussian, and as pointed out by Tarantola (1987), in such
cases multiple minima are likely, even if the problem is linear.

Let us consider a linear inverse problem defined by d = Gm, where d represents the data, m represents the set of model parameters to
determine and G represents a physical linear relation, relating model parameters and observables. The information we have on the observations
can be represented by a volumetric probability ρD and the prior information we have on the model parameters is ρM. Using the formulation
of Tarantola (1987), the posterior information in the model space is given by the product of the a priori probability density in the model space
ρM(m) by the probability density ρD(d) describing the result of the measurements:

σM(m) = ρM(m)ρD(Gm) = ρM(m)ρD(d). (A2)

In many cases, data uncertainties are described by a Gaussian distribution

ρD(d) = const × exp

[
−1

2
(d − dobs)

†C−1
D (d − dobs)

]
, (A3)

where † stands for the transpose of a matrix, const is a constant, dobs represents the observations, and CD is the covariance matrix representing
measurement uncertainties, which is often reduced to a diagonal matrix. We can further assume that the model parameters follow a Gaussian
distribution centred on an a priori model m0 and with a model covariance matrix CM :

ρM(m) = const × exp

[
−1

2
(m − m0)†C−1

M(m − m0)

]
. (A4)

In that case, the posterior model probability density function, or likelihood function, is given by

σM(m) = k × exp[−S(m)], (A5)

where k is a constant and the misfit function S(m) is

S(m) = −1

2
[(Gm − dobs)

†C−1
D (Gm − dobs) + (m − m0)†C−1

M(m − m0)]. (A6)

Tarantola (1987) shows that S(m) as given in eq. (A6) is Gaussian as well, with a mean given by

m̃ = m0 + CMG† (
GCMG† + CD

)−1
(dobs − Gm0), (A7)

and a resulting covariance matrix given by

C̃M = (
G†C−1

D G + C−1
M

)−1
, (A8)

S(m) is Gaussian because the relationship d = G(m) between data and model parameters is linear and because both the model parameter
and the data error distributions are assumed to be Gaussian. If one of those three conditions is not met, the posterior model distribution is
not necessarily Gaussian and the cost function can have multiple minima. As stated by Tarantola (1987), the further the relation d = G(m)
is from being linear, the further the posterior probability density σM(m) is from being a Gaussian. This is also true if either the data error
or the model parameter distribution cannot be described by a Gaussian. Although in some cases it is possible to verify whether the data
distribution is Gaussian (e.g. via numerous experiments), the probability distribution for the model parameters is usually not known a priori.
It can be quite complex, especially in a high-dimensional model space, and the parameters may have non-standard (that is non-Gaussian)
probability densities. By performing a model space exploration, one can determine model parameter distributions and find the whole ensemble
of solutions that can explain the data, independent of prior explicit regularization and without assuming a prior Gaussian model distribution.
Adopting a forward modelling approach can thus be advantageous when solving linear problems, as well as non-linear problems
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A P P E N D I X B : G E N E R A L E Q UAT I O N S

The splitting of two coupled mode multiplets K = (n, l) and K ′ = (n′, l ′) is determined by a splitting matrix H KK′
mm′ (e.g. Woodhouse 1980;

Mochizuki 1986):

H K K ′
mm′ = 1

2ωI

∫ ∫ ∫
δ�i jkl (E∗

i j )K (Ekl )K ′ dV, (B1)

where a sum over i , j , k, l is implicit. δ�ijkl is a perturbation in an elastic constant, E is the strain tensor and E i j is the strain tensor ij
component. ω is the eigenfrequency of a particular multiplet for the zeroth-order isotropic Earth and I is a normalization factor. Integration
is done over the volume of the Earth. The use of generalized spherical harmonics (Phinney & Burridge 1973) to express δ�ijkl and the
components of the strain tensor allows us to rewrite the last equation

H K K ′
mm′ = 1

2ωI

∑
s,t

(−1)m4πγlγl ′

⎛
⎝ l s l ′

−m t m ′

⎞
⎠ ∑

αβγ δ

∫ a

0
K αβγ δ

s (r )δ�αβγ δ
st (r ) dr, (B2)

with γ = √
2l + 1/4π , and where α, β, γ and δ are defined in the generalized spherical harmonics formulation and can be equal to 0, +1 or

−1. We can divide the sum over α, β, γ , δ in different subsums. In the next sets of equations, we will write δ�
αβγ δ
st instead of δ�

αβγ δ
st (r ), and

we will be using �l
0 = √

l(l + 1)/2 and �l
2 = √

(l + 2)(l + 1)/2. We will also be using Woodhouse’s notation (Woodhouse 1980)

B N±
lsl ′ = 1

2

[
1 ± (−1)l+l ′+s

]√
(l ′ + N )!(l + N )!

(l ′ − N )!(l − N )!
(−1)N

(
l s l ′

−N 0 N

)
. (B3)

If N = α + β + γ + δ = 0, we have five terms for K αβγ δ
s (r )δ�αβγ δ

st (r ):

K 0000
s (r )δ�0000

st = r 2U̇U̇ ′ B0+
lsl ′δ�

0000
st , (B4)

K ++−−
s (r )δ�++−−

st = 1

2

[
(V V ′ + W W ′)B2+

lsl ′ + (V W ′ − W V ′)iB2−
lsl ′

]
δ�++−−

st , (B5)

K +−+−
s (r )δ�+−+−

st = r 2 F F ′ B0+
lsl ′δ�

+−+−
st , (B6)

K +−00
s (r )δ�+−00

st = −r 2(FU̇ ′ + F ′U̇ )B0+
lsl ′δ�

+−00
st , (B7)

K +0−0
s (r )δ�+0−0

st = −r 2
[
(X X ′ + Z Z ′)B1+

lsl ′ + (X Z ′ − X ′ Z )iB1−
lsl ′

]
δ�+0−0

st . (B8)

U , V and W are the scalar eigenfunctions of multiplet (l, m) and F, Z and X are combinations of those eigenfunctions (see Woodhouse 1980,
eq. A15). W and Z are non-zero for toroidal modes and F, V, U and X are non-zero for spheroidal modes. The dot represents the derivative
with respect to radius r.

The case where N = α + β + γ + δ = ±1, we have six terms in total:

K +000
s (r )δ�+000

st = −r 2

⎡
⎣�l

0

⎛
⎝ l s l ′

−1 1 0

⎞
⎠ (X − iZ )U̇ ′ + �l ′

0

⎛
⎝ l s l ′

0 1 −1

⎞
⎠ (X ′ − iZ ′)U̇

⎤
⎦ δ�+000

st , (B9)

K −000
s (r )δ�−000

st = −r 2

⎡
⎣�l

0

⎛
⎝ l s l ′

1 −1 0

⎞
⎠ (X + iZ )U̇ ′ + �l ′

0

⎛
⎝ l s l ′

0 −1 1

⎞
⎠ (X ′ + iZ ′)U̇

⎤
⎦ δ�−000

st , (B10)

K ++−0
s (r )δ�++−0

st = −r�l
0�

l ′
0

⎡
⎣�l

2

⎛
⎝ l s l ′

−2 1 1

⎞
⎠ (V − iW )(X ′ + iZ ′) + �l ′

2

⎛
⎝ l s l ′

1 1 −2

⎞
⎠ (V ′ − iW ′)(X + iZ )

⎤
⎦ δ�++−0

st , (B11)

K −−+0
s (r )δ�−−+0

st = −r�l
0�

l ′
0

⎡
⎣�l

2

⎛
⎝ l s l ′

2 −1 −1

⎞
⎠ (V + iW )(X ′ − iZ ′) + �l ′

2

⎛
⎝ l s l ′

−1 −1 2

⎞
⎠ (V ′ + iW ′)(X − iZ )

⎤
⎦ δ�−−+0

st , (B12)

K +−+0
s (r )δ�+−+0

st = r 2

⎡
⎣�l ′

0

⎛
⎝ l s l ′

0 1 −1

⎞
⎠ F(X ′ − iZ ′) + �l

0

⎛
⎝ l s l ′

−1 1 0

⎞
⎠ F ′(X − iZ )

⎤
⎦ δ�+−+0

st , (B13)

K −+−0
s (r )δ�−+−0

st = r 2

⎡
⎣�l ′

0

⎛
⎝ l s l ′

0 −1 1

⎞
⎠ F(X ′ + iZ ′) + �l

0

⎛
⎝ l s l ′

1 −1 0

⎞
⎠ F ′(X + iZ )

⎤
⎦ δ�−+−0

st . (B14)
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The case where N = ± 2, we have six terms as well.

K ++00
s (r )δ�++00

st = r

⎡
⎣�l

0�
l
2

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ (V − iW )U̇ ′ + �l ′

0 �l ′
2

⎛
⎝ l s l ′

0 2 −2

⎞
⎠ U̇ (V ′ − iW ′)

⎤
⎦ δ�++00

st , (B15)

K −−00
s (r )δ�−−00

st = r

⎡
⎣�l

0�
l
2

⎛
⎝ l s l ′

2 −2 0

⎞
⎠ (V + iW )U̇ ′ + �l ′

0 �l ′
2

⎛
⎝ l s l ′

0 −2 2

⎞
⎠ U̇ (V ′ + iW ′)

⎤
⎦ δ�−−00

st , (B16)

K +0+0
s (r )δ�+0+0

st = r 2�l
0�

l ′
0

⎛
⎝ l s l ′

−1 2 −1

⎞
⎠ [

X X ′ − Z Z ′ − i(Z X ′ + X Z ′)
]
δ�+0+0

st , (B17)

K −0−0
s (r )δ�−0−0

st = r 2�l
0�

l ′
0

⎛
⎝ l s l ′

1 −2 1

⎞
⎠ [

X X ′ − Z Z ′ + i(Z X ′ + X Z ′)
]
δ�−0−0

st . (B18)

K +++−
s (r )δ�+++−

st = −r

⎡
⎣�l

0�
l
2

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ F ′(V − iW ) + �l ′

0 �l ′
2

⎛
⎝ l s l ′

0 2 −2

⎞
⎠ F(V ′ − iW ′)

⎤
⎦ δ�+++−

st , (B19)

K −−−+
s (r )δ�−−−+

st = −r

⎡
⎣�l

0�
l
2

⎛
⎝ l s l ′

2 −2 0

⎞
⎠ F ′(V + iW ) + �l ′

0 �l ′
2

⎛
⎝ l s l ′

0 −2 2

⎞
⎠ F(V ′ + iW ′)

⎤
⎦ δ�−−−+

st . (B20)

There are two terms corresponding to N = ±3 and two terms for N = ± 4.

K +++0
s (r )δ�+++0

st = −r�l
0�

l ′
0

⎡
⎣�l

2

⎛
⎝ l s l ′

−2 3 −1

⎞
⎠ [V X ′ − W Z ′ − i(W X ′ + V Z ′)

⎤
⎦ + �l ′

2

⎛
⎝ l s l ′

−1 3 −2

⎞
⎠

× [V ′ X − W ′ Z − i(W ′ X + V ′ Z )]δ�+++0
st , (B21)

K −−−0
s (r )δ�−−−0

st = −r�l
0�

l ′
0

⎡
⎣�l

2

⎛
⎝ l s l ′

2 −3 1

⎞
⎠ [V X ′ − W Z ′ + i(W X ′ + V Z ′)

⎤
⎦ + �l ′

2

⎛
⎝ l s l ′

1 −3 2

⎞
⎠

× [V ′ X − W ′ Z + i(W ′ X + V ′ Z )]δ�−−−0
st , (B22)

K ++++
s (r )δ�++++

st = �l
0�

l ′
0 �l

2�
l ′
2

⎛
⎝ l s l ′

−2 4 −2

⎞
⎠ × [V V ′ − W W ′ − i(W V ′ + V W ′)]δ�++++

st , (B23)

K −−−−
s (r )δ�−−−−

st = �l
0�

l ′
0 �l

2�
l ′
2

⎛
⎝ l s l ′

2 −4 2

⎞
⎠ × [V V ′ − W W ′ + i(W V ′ + V W ′)]δ�−−−−

st . (B24)

Eqs (B9)–(B24) can be found in Mochizuki (1986).

B1 Like-type coupling

Here we give the equations for the coupling between two modes of the same type (spheroidal–spheroidal and toroidal–toroidal), and we make
use of the symmetry properties of the 3j-Wigner symbols and of eq. (B3).

If N = 0, we have

K 0000
s (r )δ�0000

st = r 2U̇U̇ ′ B0+
lsl ′δ�

0000
st , (B25)

K ++−−
s (r )δ�++−−

st = 1

2
(V V ′ + W W ′)B2+

lsl ′δ�
++−−
st , (B26)

K +−+−
s (r )δ�+−+−

st = r 2 F F ′ B0+
lsl ′δ�

+−+−
st , (B27)

K +−00
s (r )δ�+−00

st = −r 2(FU̇ ′ + F ′U̇ )B0+
lsl ′δ�

+−00
st , (B28)
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K +0−0
s (r )δ�+0−0

st = −r 2(X X ′ + Z Z ′)B1+
lsl ′δ�

+0−0
st . (B29)

For |N | = 1, we have the following terms

K +000
s (r )δ�+000

st + K −000
s (r )δ�−000

st = −r 2
(
δ�+000

st + (−1)l+l ′+sδ�−000
st

) ⎡
⎣�l

0 XU̇ ′

⎛
⎝ l s l ′

−1 1 0

⎞
⎠ + �l ′

0 X ′U̇

⎛
⎝ l s l ′

0 1 −1

⎞
⎠

⎤
⎦ , (B30)

K ++−0
s (r )δ�++−0

st + K −+0
s (r )δ�−+0

st = −r�l
0�

l ′
0

(
δ�++−0

st + (−1)l+l ′+sδ�−+0
st

) ⎡
⎣�l

2(V X ′ + W Z ′)

⎛
⎝ l s l ′

−2 1 1

⎞
⎠

+�l ′
2 (V ′ X + W ′ Z )

⎛
⎝ l s l ′

1 1 −2

⎞
⎠

⎤
⎦ , (B31)

K +−+0
s (r )δ�+−+0

st + K −+−0
s (r )δ�−+−0

st = r 2
(
δ�+−+0

st + (−1)l+l ′+sδ�−+−0
st

) ⎡
⎣�l ′

0 F X ′

⎛
⎝ l s l ′

0 1 −1

⎞
⎠ + �l

0 F ′ X

⎛
⎝ l s l ′

−1 1 0

⎞
⎠

⎤
⎦ . (B32)

For |N | = 2:

δ�++00
st K ++00

s + δ�−00
st K −00

s = r
(
δ�++00

st + (−1)l+l ′+sδ�−00
st

) ⎡
⎣�l

0�
l
2V U̇ ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ + �l ′

2 �l ′
0 V ′U̇

⎛
⎝ l s l ′

0 2 −2

⎞
⎠

⎤
⎦ , (B33)

δ�0+0+
st K 0+0+

s + δ�0−0−
st K 0−0−

s = r 2�l
0�

l ′
0 (X X ′ − Z Z ′)

(
δ�0+0+

st + (−1)l+l ′+sδ�0−0−
st

)⎛
⎝ l s l ′

−1 2 −1

⎞
⎠ , (B34)

δ�+++−
st K +++−

s + δ�−−−+
st K −−−+

s = −r (δ�+++−
st + (−1)l+l ′+sδ�−−−+

st )

⎡
⎣�l

0�
l
2V F ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ + �l ′

2 �l ′
0 V ′ F

⎛
⎝ l s l ′

0 2 −2

⎞
⎠

⎤
⎦ .(B35)

For |N | = 3:

δ�+++0
st K +++0

s + δ�−−−0
st K −−−0

s = −r�l ′
0 �l

0

(
δ�+++0

st + (−1)l+l ′+sδ�−−−0
st

)⎡
⎣�l

2(V X ′ − W Z ′)

⎛
⎝ l s l ′

−2 3 −1

⎞
⎠

+�l ′
2 (V ′ X − W ′ Z )

⎛
⎝ l s l ′

−1 3 −2

⎞
⎠

⎤
⎦ . (B36)

Finally, for |N | = 4,

δ�++++
st K ++++

s + δ�−−−−
st K −−−−

s = (
δ�++++

st + (−1)l+l ′+sδ�−−−−
st

)
�l ′

2 �l ′
0 �l

2�
l
0(V V ′ − W W ′)

⎛
⎝ l s l ′

−2 4 −2

⎞
⎠ . (B37)

B2 Cross-type coupling

Here we give the equations for the coupling between a spheroidal mode and a toroidal mode.
If N = 0, we have:

K 0000
s (r )δ�0000

st = 0, (B38)

K ++−−
s (r )δ�++−−

st = 1

2
i(V W ′ − W V ′)B2−

lsl ′δ�
++−−
st , (B39)

K +−+−
s (r )δ�+−+−

st = 0, (B40)

K +−00
s (r )δ�+−00

st = 0, (B41)

K +0−0
s (r )δ�+0−0

st = −r 2i(X Z ′ − X ′ Z )B1−
lsl ′δ�

+0−0
st , (B42)
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If |N | = 1, we have

δ�+000
st K +000

s + δ�−000
st K −000

s = ir 2
(
δ�+000

st − (−1)l+l ′+sδ�−000
st

) ⎡
⎣�l

0 ZU̇ ′

⎛
⎝ l s l ′

−1 1 0

⎞
⎠ + �l ′

0 Z ′U̇

⎛
⎝ l s l ′

0 1 −1

⎞
⎠

⎤
⎦ , (B43)

δ�++−0
st K ++−0

s + δ�−−+0
st K −−+0

s = −ir�l
0�

l ′
0

(
δ�++−0

st − (−1)l+l ′+sδ�−−+0
st

)⎡
⎣�l

2(V Z ′ − W X ′)

⎛
⎝ l s l ′

−2 1 1

⎞
⎠

+�l ′
2 (V ′ Z − W ′ X )

⎛
⎝ l s l ′

1 1 −2

⎞
⎠

⎤
⎦ ,

δ�+−+0
st K +−+0

s + δ�−+−0
st K −+−0

s = −ir 2
(
δ�+−+0

st − (−1)l+l ′+sδ�−+−0
st

)⎡
⎣�l ′

0 F Z ′

⎛
⎝ l s l ′

0 1 −1

⎞
⎠ + �l

0 F ′ Z

⎛
⎝ l s l ′

−1 1 0

⎞
⎠

⎤
⎦ . (B44)

For |N | = 2,

δ�++00
st K ++00

s + δ�−00
st K −00

s = −ir
(
δ�++00

st − (−1)l+l ′+sδ�−00
st

) ⎡
⎣�l

0�
l
2WU̇ ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ − �l ′

0 �l ′
2 W ′U̇

⎛
⎝ l s l ′

0 2 −2

⎞
⎠

⎤
⎦ , (B45)

δ�+0+0
st K +0+0

s + δ�−0−0
st K −0−0

s = −ir 2�l
0�

l ′
0 (Z X ′ + X Z ′)

(
δ�+0+0

st − (−1)l+l ′+sδ�−0−0
st

)⎛
⎝ l s l ′

−1 2 −1

⎞
⎠ , (B46)

δ�+++−
st K +++−

s + δ�−−−+
st K −−−+

s = ir
(
δ�+++−

st − (−1)l+l ′+sδ�−−−+
st

) ⎡
⎣�l

0�
l
2W F ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠

+�l ′
0 �l ′

2 iW ′ F

⎛
⎝ l s l ′

0 2 −2

⎞
⎠

⎤
⎦ . (B47)

For |N | = 3,

δ�+++0
st K +++0

s + δ�−−−0
st K −−−0

s = ir�l ′
0 �l

0

(
δ�+++0

st − (−1)l+l ′+sδ�−−−0
st

)⎡
⎣�l

2(W X ′ + V ′ Z )

⎛
⎝ l s l ′

−2 3 −1

⎞
⎠

+�l ′
2 (W ′ X + V Z ′)

⎛
⎝ l s l ′

−1 3 −2

⎞
⎠

⎤
⎦ . (B48)

And for |N | = 4, we have

δ�++++
st K ++++

s + δ�−−−−
st K −−−−

s = −i(W V ′ + V W ′)�l ′
0 �l ′

2 �l
0�

l
2

(
δ�++++

st − (−1)l+l ′+sδ�−−−−
st

)⎛
⎝ l s l ′

−2 4 −2

⎞
⎠ . (B49)

A P P E N D I X C : PA RT I C U L A R C A S E S

In the following subsections, we examinate different cases of coupling. We make use of the following relations (Montagner 1996; Montagner
& Guillot 2000; Chen & Tromp 2007):

δ�+000 + δ�−000 = i4(Js − Ks)/
√

2, (C1)

δ�+000 − δ�−000 = −4(Jc − Kc)/
√

2, (C2)

δ�++−0 + δ�−+0 = iMs/
√

2, (C3)

δ�++−0 − δ�−+0 = Mc/
√

2, (C4)

δ�+−+0 + δ�−+−0 = −i2(Ms + 2Js)/
√

2, (C5)
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δ�+−+0 − δ�−+−0 = 2(2Jc − Mc)/
√

2, (C6)

δ�0+0+ + δ�0−0− = 2Gc, (C7)

δ�0+0+ − δ�0−0− = −i2Gs, (C8)

δ�−−−+ + δ�+++− = −Bc, (C9)

δ�−−−+ − δ�+++− = −iBs, (C10)

δ�−−00 + δ�++00 = 2Hc, (C11)

δ�−−00 − δ�++00 = −i2Hs, (C12)

δ�+++0 + δ�−−−0 = i4Ds/
√

2, (C13)

δ�+++0 − δ�−−−0 = −4Dc/
√

2, (C14)

δ�++++ = �−−−− = 2Ec + 2iEs, (C15)

and we employ Love’s notation (Love 1927) to describe radial anisotropy. The Love coefficients A, C , N , L and F are related to the �αβγ δ

through the following relationships (Mochizuki 1986).

�0000 = C, (C16)

�++−− = 2N , (C17)

�+−+− = A − N , (C18)

�+−00 = −F, (C19)

�+0−0 = −L . (C20)

C1 Like-type coupling with l + l ′ + s even

Here, we make use of the symmetry properties of the 3j-Wigner symbols (e.g. Dahlen & Tromp 1998) and eq. (B3).

C1.1 Radial anisotropy

δ�0000
st K 0000

s (r ) = r 2U̇U̇ ′

⎛
⎝ l s l ′

0 0 0

⎞
⎠ δCst , (C21)

δ�+−+−
st K +−+−

s (r ) = r 2 F F ′

⎛
⎝ l s l ′

0 0 0

⎞
⎠ (δAst − δNst ), (C22)

δ�+−00
st K +−00

s (r ) = r 2(FU̇ ′ + U̇ F ′)

⎛
⎝ l s l ′

0 0 0

⎞
⎠ δFst , (C23)

δ�++−−
st K ++−−

s (r ) = 2�l
0�

l
2�

l ′
0 �l ′

2 (V V ′ + W W ′)

⎛
⎝ l s l ′

2 0 −2

⎞
⎠ 2δNst , (C24)
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δ�+0−0
st K +0−0

s (r ) = −�l
0�

l ′
0 r 2(X X + Z Z ′)

⎛
⎝ l s l ′

−1 0 1

⎞
⎠ δLst . (C25)

We can rewrite those last equations to have an expression of the type K A(r )δAst + K C (r )δC st + K N (r )δN st + K L (r )δL st + K F (r )δFst . In
that case, we have

K A = r 2 F F ′

⎛
⎝ l s l ′

0 0 0

⎞
⎠ , (C26)

KC = r 2U̇U̇ ′

⎛
⎝ l s l ′

0 0 0

⎞
⎠ , (C27)

KN = −K A + 4�l
0�

l
2�

l ′
0 �l ′

2 (V V ′ + W W ′)

⎛
⎝ l s l ′

2 0 −2

⎞
⎠ , (C28)

KL = �l
0�

l ′
0 r 2(X X ′ + Z Z ′)

⎛
⎝ l s l ′

−1 0 1

⎞
⎠ , (C29)

KF = r 2(FU̇ ′ + F ′U̇ )

⎛
⎝ l s l ′

0 0 0

⎞
⎠ . (C30)

C1.2 Azimuthal anisotropy

K +000
s δ�+000

st + K −000
s δ�−000

st = − (
δ�+000

st + δ�−000
st

)
r 2

⎡
⎣�l

0 XU̇ ′

⎛
⎝ l s l ′

−1 1 0

⎞
⎠ + �l ′

0 X ′U̇

⎛
⎝ l s l ′

0 1 −1

⎞
⎠

⎤
⎦ , (C31)

K ++−0
s δ�++−0

st + K −+0
s δ�−+0

st = −�l
0�

l ′
0

(
δ�++−0

st + δ�−+0
st

)
r

⎡
⎣�l

2(V X ′ + W Z ′)

⎛
⎝ l s l ′

−2 1 1

⎞
⎠

+�l ′
2 (V ′ X + W ′ Z )

⎛
⎝ l s l ′

1 1 −2

⎞
⎠

⎤
⎦ , (C32)

K +−+0
s δ�+−+0

st + K −+−0
s δ�−+−0

st = (
δ�+−+0

st + δ�−+−0
st

)
r 2

⎡
⎣�l ′

0 F X ′

⎛
⎝ l s l ′

0 1 −1

⎞
⎠ + �l

0 F ′ X

⎛
⎝ l s l ′

−1 1 0

⎞
⎠

⎤
⎦ , (C33)

δ�++00
st K ++00

s + δ�−00
st K −00

s = (
δ�++00

st + δ�−00
st

)
r

⎡
⎣�l

0�
l
2V U̇ ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ + �l ′

2 �l ′
0 V ′U̇

⎛
⎝ l s l ′

0 2 −2

⎞
⎠

⎤
⎦ , (C34)

δ�0+0+
st K 0+0+

s + δ�0−0−
st K 0−0−

s = �l
0�

l ′
0

(
δ�0+0+

st + δ�0−0−
st

)
r 2(X X ′ − Z Z ′)

⎛
⎝ l s l ′

−1 2 −1

⎞
⎠ , (C35)

δ�+++−
st K +++−

s + δ�−−−+
st K −−−+

s = − (
δ�+++−

st + δ�−−−+
st

)
r

⎡
⎣�l

0�
l
2V F ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ + �l ′

2 �l ′
0 V ′ F

⎛
⎝ l s l ′

0 2 −2

⎞
⎠

⎤
⎦ , (C36)
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δ�+++0
st K +++0

s + δ�−−−0
st K −−−0

s = −�l ′
0 �0

l

(
δ�+++0

st + δ�−−−0
st

)
r

⎡
⎣�l

2(V X ′ − W Z ′)

⎛
⎝ l s l ′

−2 3 −1

⎞
⎠

+�l ′
2 (V ′ X − W ′ Z )

⎛
⎝ l s l ′

−1 3 −2

⎞
⎠

⎤
⎦ , (C37)

δ�++++
st K ++++

s + δ�−−−−
st K −−−−

s = 2�l ′
2 �l ′

0 �l
2�

0
l (δ�++++

st + δ�−−−−
st )(V V ′ − W W ′)

⎛
⎝ l s l ′

−2 4 −2

⎞
⎠ . (C38)

These equations can be written in terms of elastic parameters iJ s , iM s , iDs , iK s , G c, B c, H c and E c + iE s

Elastic coefficient Kernel

i (K s )st
4√
2

r2

⎡
⎣�l

0 XU̇ ′

⎛
⎝ l s l ′

−1 1 0

⎞
⎠ + �l ′

0 X ′U̇

⎛
⎝ l s l ′

0 1 − 1

⎞
⎠

⎤
⎦

i (M s )st − 1√
2
�l

0�
l ′
0 r

⎡
⎣�l

2(V X ′ + W Z ′)

⎛
⎝ l s l ′

−2 1 1

⎞
⎠ + �l ′

2 (V ′ X + W ′ Z )

⎛
⎝ l s l ′

1 1 − 2

⎞
⎠

⎤
⎦

− 2√
2

r2

⎡
⎣�l ′

0 F X ′

⎛
⎝ l s l ′

0 1 − 1

⎞
⎠ + �l

0 F ′ X

⎛
⎝ l s l ′

−1 1 0

⎞
⎠

⎤
⎦

i (J s )st − 4√
2

r2

⎡
⎣�l ′

0 (F + U̇ )X ′

⎛
⎝ l s l ′

0 1 − 1

⎞
⎠ + �l

0(F ′ + U̇ ′)X

⎛
⎝ l s l ′

−1 1 0

⎞
⎠

⎤
⎦

(H c)st 2�l
0�

l
2r V U̇ ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ + 2�l ′

2 �l ′
0 r V ′U̇

⎛
⎝ l s l ′

0 2 − 2

⎞
⎠

(G c)st 2�l
0�

l ′
0 r2(X X ′ − Z Z ′)

⎛
⎝ l s l ′

−1 2 − 1

⎞
⎠

(B c)st �l
0�

l
2r V F ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ + �l ′

2 �l ′
0 r V ′ F

⎛
⎝ l s l ′

0 2 − 2

⎞
⎠

i (Ds )st − 4√
2
�l ′

0 �l
0r

⎡
⎣�l

2(V X ′ − W Z ′)

⎛
⎝ l s l ′

−2 3 − 1

⎞
⎠ + �l ′

2 (V ′ X − W ′ Z )

⎛
⎝ l s l ′

−1 3 − 2

⎞
⎠

⎤
⎦

(E c)st + i (E s )st 4�l ′
2 �l ′

0 �l
2�

l
0(V V ′ − W W ′)

⎛
⎝ l s l ′

−2 4 − 2

⎞
⎠

C2 Like-type coupling with l + l ′ + s odd

When l + l ′ + s takes odd values, the sensitivity kernels for radial anisotropy are zero. Like-type coupled modes are therefore not sensitive
to radial anisotropy when l + l ′ + s is odd, and we are left with equations for azimuthal anisotropy only.

K +000
s �+000

st + K −000
s �−000

st = − (
�+000

st − �−000
st

)
r 2

⎡
⎣�l

0 XU̇ ′

⎛
⎝ l s l ′

−1 1 0

⎞
⎠ + �l ′

0 X ′U̇

⎛
⎝ l s l ′

0 1 −1

⎞
⎠

⎤
⎦ , (C39)

K ++−0
s �++−0

st + K −+0
s �−+0

st = −�l
0�

l ′
0

(
�++−0

st − �−+0
st

)
r

⎡
⎣�l

2(V X ′ + W Z ′)

⎛
⎝ l s l ′

−2 1 1

⎞
⎠ + �l ′

2 (V ′ X + W ′ Z )

⎛
⎝ l s l ′

1 1 −2

⎞
⎠

⎤
⎦ , (C40)

K +−+0
s (r )�+−+0

st + K −+−0
s (r )�−+−0

st = (
�+−+0

st − �−+−0
st

)
r 2

⎡
⎣�l ′

0 F X ′

⎛
⎝ l s l ′

0 1 −1

⎞
⎠ + �l

0 F ′ X

⎛
⎝ l s l ′

−1 1 0

⎞
⎠

⎤
⎦ , (C41)
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δ�++00
st K ++00

s + δ�−00
st K −00

s = − (
δ�++00

st − δ�−00
st

)
r

⎡
⎣�l

0�
l
2V U̇ ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ − �l ′

0 �l ′
2 V ′U̇

⎛
⎝ l s l ′

0 2 −2

⎞
⎠

⎤
⎦ , (C42)

δ�0+0+
st K 0+0+

s + δ�0−0−
st K 0−0−

s = �l
0�

l ′
0

(
δ�0+0+

st − δ�0−0−
st

)
r 2(X X ′ − Z Z ′)

⎛
⎝ l s l ′

−1 2 −1

⎞
⎠ , (C43)

δ�+++−
st K +++−

s + δ�−−−+
st K −−−+

s = − (
δ�+++−

st − δ�−−−+
st

)
r

⎡
⎣�l

0�
l
2V F ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ + �l ′

0 �l ′
2 V ′ F

⎛
⎝ l s l ′

0 2 −2

⎞
⎠

⎤
⎦ , (C44)

δ�+++0
st K +++0

s + δ�−−−0
st K −−−0

s = −�l ′
0 �0

l

(
δ�+++0

st − δ�−−−0
st

)
r

⎡
⎣�l

2(V X ′ − W Z ′)

⎛
⎝ l s l ′

−2 3 −1

⎞
⎠

+�l ′
2 (V ′ X − W ′ Z )

⎛
⎝ l s l ′

−1 3 −2

⎞
⎠

⎤
⎦ , (C45)

δ�−−−−
st K −−−−

s + δ�++++
st K ++++

s = 0. (C46)

These equations can be written in terms of elastic parameters J c, M c, Dc, K c, iG s , iB s and iH s

Elastic coefficient Kernel

(K c)st − 4√
2

r2

⎡
⎣�l

0 XU̇ ′

⎛
⎝ l s l ′

−1 1 0

⎞
⎠ + �l ′

0 X ′U̇

⎛
⎝ l s l ′

0 1 − 1

⎞
⎠

⎤
⎦

(M c)st − 1√
2
�l

0�
l ′
0 r

⎡
⎣�l

2(V X ′ + W Z ′)

⎛
⎝ l s l ′

−2 1 1

⎞
⎠ + �l ′

2 (V ′ X + W ′ Z )

⎛
⎝ l s l ′

1 1 − 2

⎞
⎠

⎤
⎦

− 2√
2

r2

⎡
⎣�l ′

0 F X ′

⎛
⎝ l s l ′

0 1 − 1

⎞
⎠ + �l

0 F ′ X

⎛
⎝ l s l ′

−1 1 0

⎞
⎠

⎤
⎦

(J c)st
4√
2

r2

⎡
⎣�l ′

0

(
F + U̇

)
X ′

⎛
⎝ l s l ′

0 1 − 1

⎞
⎠ + �l

0

(
F ′ + U̇ ′) X

⎛
⎝ l s l ′

−1 1 0

⎞
⎠

⎤
⎦

i (H s )st −2�l
0�

l
2r V U̇ ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ − 2�l ′

0 �l ′
2 r V ′U̇

⎛
⎝ l s l ′

0 2 − 2

⎞
⎠

i (G s )st −2�l
0�

l ′
0 r2(X X ′ − Z Z ′)

⎛
⎝ l s l ′

−1 2 − 1

⎞
⎠

i (B s )st −�l
0�

l
2r V F ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ − �l ′

0 �l ′
2 r V ′ F

⎛
⎝ l s l ′

0 2 − 2

⎞
⎠

(Dc)st �l ′
0 �0

l
4√
2

r

⎡
⎣�l

2(V X ′ − W Z ′)

⎛
⎝ l s l ′

−2 3 − 1

⎞
⎠ + �l ′

2 (V ′ X − W ′ Z )

⎛
⎝ l s l ′

−1 3 − 2

⎞
⎠

⎤
⎦

C3 Cross-type coupling with l + l ′ + s even

In this case, coupled modes are not sensitive to radial anisotropy. The sensitivity to azimuthal anisotropy is described by the following
equations:

δ�+000
st K +000

s + δ�−000
st K −000

s ,= i
(
δ�+000

st − δ�−000
st

)
r 2

⎡
⎣�l

0 ZU̇ ′

⎛
⎝ l s l ′

−1 1 0

⎞
⎠ + �l ′

0 Z ′U̇

⎛
⎝ l s l ′

0 −1 1

⎞
⎠

⎤
⎦ , (C47)
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δ�++−0
st K ++−0

s + δ�−+0
st K −+0

s = −i�l
0�

l ′
0

(
δ�++−0

st − δ�−+0
st

)
r

⎡
⎣�l

2(V Z ′ − W X ′)

⎛
⎝ l s l ′

−2 1 1

⎞
⎠

+�l ′
2 (V ′ Z − W ′ X )

⎛
⎝ l s l ′

1 1 −2

⎞
⎠

⎤
⎦ , (C48)

δ�+−+0
st K +−+0

s + δ�−+−0
st K −+−0

s = −i
(
δ�+−+0

st − δ�−+−0
st

)
r 2

⎡
⎣�l ′

0 F Z ′

⎛
⎝ l s l ′

0 1 −1

⎞
⎠ + �l

0 F ′ Z

⎛
⎝ l s l ′

−1 1 0

⎞
⎠

⎤
⎦ , (C49)

δ�++00
st K ++00

s + δ�−00
st K −00

s = −i
(
δ�++00

st − δ�−00
st

)
r

⎡
⎣�l

0�
l
2WU̇ ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ − �l ′

0 �l ′
2 W ′U̇

⎛
⎝ l s l ′

0 2 −2

⎞
⎠

⎤
⎦ , (C50)

δ�+0+0
st K +0+0

s + δ�−0−0
st K −0−0

s = −i�l
0�

l ′
0

(
δ�+0+0

st − δ�−0−0
st

)
r 2(Z X ′ + X Z ′)

⎛
⎝ l s l ′

−1 2 −1

⎞
⎠ , (C51)

δ�+++−
st K +++−

s + δ�−−−+
st K −−−+

s = i
(
δ�+++−

st − δ�−−−+
st

)
r

⎡
⎣�l

0�
l
2iW F ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ + �l ′

0 �l ′
2 iW ′ F

⎛
⎝ l s l ′

0 2 −2

⎞
⎠

⎤
⎦ , (C52)

δ�+++0
st K +++0

s + δ�−−−0
st K −−−0

s = i�l ′
0 �l

0

(
δ�+++0

st − δ�−−−0
st

)
r

⎡
⎣�l

2(W X ′ + V ′ Z )

⎛
⎝ l s l ′

−2 3 −1

⎞
⎠

+�l ′
2 (W ′ X + V Z ′)

⎛
⎝ l s l ′

−1 3 −2

⎞
⎠

⎤
⎦ , (C53)

δ�++++
st K ++++

s + δ�−−−−
st K −−−−

s = −i(W V ′ + V W ′)�l ′
0 �l ′

2 �l
0�

l
2

(
δ�++++

st − δ�−−−−
st

) ⎛
⎝ l s l ′

−2 4 −2

⎞
⎠ = 0. (C54)

In terms of elastic parameters iJ c, iM c, iDc, iK c, G s , B s and H s , these equations become

Elastic coefficient Kernel

i (K c)st
4√
2

r2

⎡
⎣�l

0 ZU̇ ′

⎛
⎝ l s l ′

−1 1 0

⎞
⎠ + �l ′

0 Z ′U̇

⎛
⎝ l s l ′

0 − 1 1

⎞
⎠

⎤
⎦

i (M c)st − 1√
2
�l

0�
l ′
0 r

⎡
⎣�l

2(V Z ′ − W X ′)

⎛
⎝ l s l ′

−2 1 1

⎞
⎠ + �l ′

2 (V ′ Z − W ′ X )

⎛
⎝ l s l ′

1 1 − 2

⎞
⎠

⎤
⎦

+ 2√
2

r2

⎡
⎣�l ′

0 F Z ′

⎛
⎝ l s l ′

0 1 − 1

⎞
⎠ + �l

0 F ′ Z

⎛
⎝ l s l ′

−1 1 0

⎞
⎠

⎤
⎦

i (J c)st − 4√
2

r2

⎡
⎣�l ′

0

(
F + U̇

)
Z ′

⎛
⎝ l s l ′

0 1 − 1

⎞
⎠ + �l

0

(
F ′ + U̇ ′) Z

⎛
⎝ l s l ′

−1 1 0

⎞
⎠

⎤
⎦

(H s )st −2�l
0�

l
2r WU̇ ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ − 2�l ′

0 �l ′
2 r W ′U̇

⎛
⎝ l s l ′

0 2 − 2

⎞
⎠

(G s )st −2�l
0�

l ′
0 r2(Z X ′ + X Z ′)

⎛
⎝ l s l ′

−1 2 − 1

⎞
⎠

(B s )st −�l
0�

l
2r W F ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ − �l ′

0 �l ′
2 r W ′ F

⎛
⎝ l s l ′

0 2 − 2

⎞
⎠

i (Dc) st 4
√

2�l ′
0 �l

0r

⎡
⎣�l

2(W X ′ + V ′ Z )

⎛
⎝ l s l ′

−2 3 − 1

⎞
⎠ + �l ′

2 (W ′ X + V Z ′)

⎛
⎝ l s l ′

−1 3 − 2

⎞
⎠

⎤
⎦
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C4 Cross-type coupling with l + l ′ + s odd

C4.1 Radial anisotropy

Eqs (B38)–(B42) become

δ�0000
st K 0000

s = 0, (C55)

δ�+−00
st K +−00

s = 0, (C56)

δ�+−+−
st K +−+−

s = 0, (C57)

δ�++−
st K ++−

s = i(V W ′ − V ′W )B2−
lsl ′δNst , (C58)

δ�+0−0
st K +0−0

s = iδLstr
2(X Z ′ − X ′ Z )B1−

lsl ′ . (C59)

Therefore,

K A = 0, (C60)

KC = 0, (C61)

KN = i(V W ′ − W V ′)B2−
lsl ′ , (C62)

KL = ir 2(X Z ′ − Z X ′)B1−
lsl ′ , (C63)

KF = 0. (C64)

This shows that the coupling between spheroidal and toroidal modes are sensitive to shear wave anisotropy but not to P-wave anisotropy,
when l + l ′ + s is odd.

C4.2 Azimuthal anisotropy

δ�+000
st K +000

s + δ�−000
st K −000

s = i
(
δ�+000

st + δ�−000
st

)
r 2

⎡
⎣�l

0 ZU̇ ′

⎛
⎝ l s l ′

−1 1 0

⎞
⎠ + �l ′

0 Z ′U̇

⎛
⎝ l s l ′

0 −1 1

⎞
⎠

⎤
⎦ , (C65)

δ�++−0
st K ++−0

s + δ�−+0
st K −+0

s = −i�l
0�

l ′
0

(
δ�++−0

st + δ�−+0
st

)
r

⎡
⎣�l

2(V Z ′ − W X ′)

⎛
⎝ l s l ′

−2 1 1

⎞
⎠

+�l ′
2 (V ′ Z − W ′ X )

⎛
⎝ l s l ′

1 1 −2

⎞
⎠

⎤
⎦ , (C66)

δ�+−+0
st K +−+0

s + δ�−+−0
st K −+−0

s = −i(δ�+−+0
st + δ�−+−0

st )r 2

⎡
⎣�l ′

0 F Z ′

⎛
⎝ l s l ′

0 1 −1

⎞
⎠ + �l

0 F ′ Z

⎛
⎝ l s l ′

−1 1 0

⎞
⎠

⎤
⎦ , (C67)

δ�++00
st K ++00

s + δ�−00
st K −00

s = −i
(
δ�++00

st + δ�−00
st

)
r

⎡
⎣�l

0�
l
2WU̇ ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ − �l ′

0 �l ′
2 W ′U̇

⎛
⎝ l s l ′

0 2 −2

⎞
⎠

⎤
⎦ , (C68)

δ�+0+0
st K +0+0

s + δ�−0−0
st K −0−0

s = −i�l ′
0 �l

0

(
δ�+0+0

st + δ�−0−0
st

)
r 2(X ′ Z + X Z ′)

⎛
⎝ l s l ′

−1 2 −1

⎞
⎠ , (C69)

δ�+++−
st K +++−

s + δ�−−−+
st K −−−+

s = i
(
δ�+++−

st + δ�−−−+
st

)
r

⎡
⎣�l

0�
l
2W F ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ + �l ′

0 �l ′
2 W ′ F

⎛
⎝ l s l ′

0 2 −2

⎞
⎠

⎤
⎦ , (C70)
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δ�+++0
st K +++0

s + δ�−−−0
st K −−−0

s = i�l ′
0 �l

0

(
δ�+++0

st + δ�−−−0
st

)
r

⎡
⎣�l

2(W X ′ + V ′ Z )

⎛
⎝ l s l ′

−2 3 −1

⎞
⎠

+�l ′
2 (W ′ X + V Z ′)

⎛
⎝ l s l ′

−1 3 −2

⎞
⎠

⎤
⎦ , (C71)

δ�++++
st K ++++

s + δ�−−−−
st K −−−−

s = −i�l ′
0 �l ′

2 �l
0�

l
2

(
δ�++++

st + δ�−−−−
st

)
(W V ′ + W ′V )

⎛
⎝ l s l ′

−2 4 −2

⎞
⎠ . (C72)

In terms of elastic parameters J S , M s , Ds , K s , iG c, iB c, iH c and i E c − E s , these equations become

Elastic coefficient kernel

(K s )st
4√
2

r2

⎡
⎣�l

0 ZU̇ ′

⎛
⎝ l s l ′

−1 1 0

⎞
⎠ + �l ′

0 Z ′U̇

⎛
⎝ l s l ′

0 − 1 1

⎞
⎠

⎤
⎦

(M s )st
1√
2
�l

0�
l ′
0 r

⎡
⎣�l

2(V Z ′ − W X ′)

⎛
⎝ l s l ′

−2 1 1

⎞
⎠ + �l ′

2 (V ′ Z − W ′ X )

⎛
⎝ l s l ′

1 1 − 2

⎞
⎠

⎤
⎦

− 2√
2

r2

⎡
⎣�l ′

0 F Z ′

⎛
⎝ l s l ′

0 1 − 1

⎞
⎠ + �l

0 F ′ Z

⎛
⎝ l s l ′

−1 1 0

⎞
⎠

⎤
⎦

(J s )st − 4√
2

r2

⎡
⎣�l ′

0

(
F + U̇

)
Z ′

⎛
⎝ l s l ′

0 1 − 1

⎞
⎠ + �l

0

(
F ′ + U̇ ′) Z

⎛
⎝ l s l ′

−1 1 0

⎞
⎠

⎤
⎦

i (H c)st −2�l
0�

l
2r WU̇ ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ − 2�l ′

0 �l ′
2 r W ′U̇

⎛
⎝ l s l ′

0 2 − 2

⎞
⎠

i (G c)st −2�l ′
0 �l

0r2(X ′ Z + X Z ′)

⎛
⎝ l s l ′

−1 2 − 1

⎞
⎠

i (B c)st −�l
0�

l
2r W F ′

⎛
⎝ l s l ′

−2 2 0

⎞
⎠ − �l ′

0 �l ′
2 r W ′ F

⎛
⎝ l s l ′

0 2 − 2

⎞
⎠

(Ds )st − 4√
2
�l ′

0 �l
0r

⎡
⎣�l

2(W X ′ + V ′ Z )

⎛
⎝ l s l ′

−2 3 − 1

⎞
⎠ + �l ′

2 (W ′ X + V Z ′)

⎛
⎝ l s l ′

−1 3 − 2

⎞
⎠

⎤
⎦

i (E c)st − (E s )st −4�l ′
0 �l ′

2 �l
0�

l
2(W V ′ + W ′V )

⎛
⎝ l s l ′

−2 4 − 2

⎞
⎠
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