
UCSF
UC San Francisco Previously Published Works

Title
Predicting ideal outcome after pediatric liver transplantation: An exploratory study using 
machine learning analyses to leverage Studies of Pediatric Liver Transplantation Data

Permalink
https://escholarship.org/uc/item/8d47575n

Journal
Pediatric Transplantation, 23(7)

ISSN
1397-3142

Authors
Wadhwani, Sharad Indur
Hsu, Evelyn K
Shaffer, Michele L
et al.

Publication Date
2019-11-01

DOI
10.1111/petr.13554
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8d47575n
https://escholarship.org/uc/item/8d47575n#author
https://escholarship.org
http://www.cdlib.org/


Predicting ideal outcome after pediatric liver transplantation: An 
exploratory study using machine learning analyses to leverage 
Studies of Pediatric Liver Transplantation (SPLIT) data

Sharad Indur Wadhwani, M.D. M.P.H.,
Cincinnati Children’s Hospital Medical Center, Cincinnati, OH

Evelyn K. Hsu, M.D.,
University of Washington School of Medicine, Seattle Children’s Hospital, Seattle, WA

Michele L. Shaffer, Ph.D.,
University of Washington, Seattle, WA

Ravinder Anand, Ph.D.,
EMMES Corporation, Rockville, MD

Vicky Lee Ng, M.D.,
Hospital for Sick Children, Transplant and Regenerative Medicine Center, University of Toronto, 
Toronto, Canada

John C. Bucuvalas, M.D.
Icahn School of Medicine at Mount Sinai, Kravis Children’s Hospital New York, NY

Abstract

Machine learning analyses allow for the consideration of numerous variables in order to 

accommodate complex relationships that would not otherwise be apparent in traditional statistical 

methods to better classify patient risk. The Studies of Pediatric Liver Transplantation (SPLIT) 

registry data was analyzed to determine whether baseline demographic factors and clinical/

biochemical factors in the first year post-transplant could predict ideal outcome at 3 years (IO-3) 
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after liver transplantation (LT). Participants who received their first, isolated LT between 2002–

2006 and had follow-up data 3 years post-LT were included. IO-3 was defined as alive at 3 years, 

normal ALT (<50) or GGT (<50), normal glomerular filtration rate (GFR), no non-liver 

transplants, no cytopenias and no post-transplant lymphoproliferative disease (PTLD). Heat map 

and random forests analyses (RFA) were used to characterize the impact of baseline and 1 year 

factors on IO-3. 887/1482 SPLIT participants met inclusion criteria; 334 had IO-3. Demographic, 

biochemical and clinical variables did not elucidate a visual signal on heat map analysis. RFA 

identified non-white race (vs. white race), increased length of operation, vascular and biliary 

complications within 30 days, and duct-to-duct biliary anastomosis to be negatively associated 

with IO-3. UNOS regions 2 and 5 were also identified as important factors. RFA had an accuracy 

rate of 0.71 (95% CI: 0.68–0.74); PPV= 0.83, NPV = 0.70. RFA identified participant variables 

that predicted IO-3. These findings may allow for better risk stratification and personalization of 

care following pediatric liver transplantation.

Keywords

machine learning; pediatric liver transplant; ideal outcome

1. Introduction

Pediatric recipients of liver transplantation have the potential to live full and productive 

lives. Transplant data agencies primarily monitor patient and graft survival1 and one- and 

five-year patient survival are upwards of 90% and 85%, respectively.1 However, especially in 

pediatric patients, sustained allograft health without comorbidities or sequelae from long-

term immunosuppression remains the ultimate goal.2 Attaining over 7 decades of 

comorbidity-free survival in pediatric liver transplant recipients will require directed 

research priorities.3 Based on this premise, Ng, et al.4 published the first comprehensive 

description of health status in the long-term follow-up of pediatric liver transplant recipients 

using the Studies in Pediatric Liver Transplantation (SPLIT) database. This publication 

proposed the “ideal” long-term outcome as a composite concept; broadly defined as normal 

graft function and avoidance of immune and non-immune complications of 

immunosuppression. The authors found that only 32% of children met these criteria 10 years 

after transplant. However, this estimate is likely optimistic because it does not account for 

silent, immune-mediated allograft injury.3

After the first year of transplant, patients move into a chronic management phase5 in which 

the goals shift from survival to sustained health without complications of therapy. Being able 

to stratify those at one year who are likely to have long term complications could inform 

research and intervention efforts and allow for more direct personalization of care. The 

critical first step is to determine if it is possible to predict those likely to attain the ideal 

outcome and conversely, those who are unlikely to achieve the ideal outcome. This 

approach, in line with the idea of precision medicine6, could allow for risk stratification and 

the more appropriate allocation of resources to those at highest risk for morbidity. A 

dynamic examination of many variables could identify targeted areas of focus for future 
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research priorities, yet using traditional modeling techniques to study a multitude of 

variables simultaneously can lead to overfitting of the data.

In the quest to leverage the richness of registry data to define critical questions for research 

and targets for improvement, advanced analytics and intelligent techniques have emerged.7,8 

The application of these methodologies to transplant databases are emerging yet limited.
7,9,10 The SPLIT registry enrolls and prospectively follows patients under 18 years of age 

who were listed and received a liver transplant at over 40 institutions in the United States 

and Canada—making it the largest, international database of pediatric liver transplant 

recipients. The rich longitudinal data in the SPLIT registry offers the unique opportunity to 

utilize advanced analytics to define distinct phenotypes of survivors of pediatric LT. Previous 

work has identified variables that predict 6 month patient and graft survival.11 However, 

using a data-driven approach to evaluate a multitude of variables to identify patients at risk 

for long term morbidity could aid clinicians in minimizing their bias and in uncovering 

complex interactions among myriad variables.12

Random forests analysis (RFA)13–16 is a machine learning classifier that can uncover 

complex relationships amongst predictor variables to classify an observation (i.e. 

participant) to an outcome while minimizing bias. Our objective was to use RFA to examine 

factors available at one year (the start of the chronic management phase of care) that predict 

“ideal outcome” (IO) of pediatric liver transplant recipients at 3 years. Our rationale is that 

machine learning could be a useful tool to identify those at risk for long-term complications 

following liver transplantation and move the field closer towards personalized care 

algorithms. Multiple predictor variables were used to identify novel predictors that may not 

have emerged with traditional statistical techniques. We hypothesized that novel predictors 

of IO would be identified using machine learning techniques.

2. Participants & Methods

2.1 Participants

This project was reviewed and approved by the Seattle Children’s Hospital Institutional 

Review Board (15444 NHS).

All centers obtained local institutional review board (IRB) approval and informed consent 

prior to participant data collection and submission to SPLIT. De-identified data, including 

clinical, laboratory, operative, medical treatment, complications and outcomes were 

submitted to the SPLIT data coordinating center starting at the time of LT. The specific data 

collected are described elsewhere.17

Participants who received a liver transplant between February 2002 and 2006 were eligible 

for inclusion (n = 1482). This time period was chosen because it encompassed the period 

when pediatric end-stage liver disease (PELD) was implemented and when the registry was 

supported by the National Institutes of Health (2004–2009) and allowed for robust 3-year 

follow up data. Specifically, centers were being compensated for participation, therefore, 

data were more in depth and of higher quality. Eligible participants included subjects who 

had not received combined organ transplants, had not had a second transplant prior to the 
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study period and were within the study period. Of those, participants were excluded if they 

did not have complete data for the components of the “ideal outcome” at 3 years following 

transplant. Of 1482 eligible participants, 887 met inclusion criteria for the study. Figure 1 

depicts participant inclusion/exclusion.

2.2 Study design

This was a prospective cohort study using registry data from the SPLIT database. The 

predictor variables used were available at 1 year post-transplant. Predictor variables included 

demographic characteristics, allocation characteristics (i.e. United Network for Organ 

Sharing (UNOS) region, waitlist priority and donor type), pre-transplant health 

characteristics, peri-operative characteristics and post-operative characteristics. All 

categorical variables were recoded to binary indicator variables with meaningful reference 

categories with the exception of recipient and donor blood type match which was recoded to 

a trinary variable (identical, compatible, mismatch). For 6-month and 12-month 

complications, visits could have occurred within a window of ± 3 months. A total of 76 

variables were included in the descriptive analysis, and 69 predictor variables were included 

in the random forests analysis.

The primary outcome was an Ideal Outcome (IO) at 3 years post-transplant (IO-3). IO-3 was 

modified from the original IO as defined by Ng, et al.4 due to data availability. For this 

study, the IO-3 composite was defined as: 1) alive with first allograft, with 2) “normal” liver 

tests (ALT < 50 IU/L and GGT < 50 IU/L), 3) no post-transplant lymphoproliferative 

disorder (PTLD) 4) no non-liver transplants 5) no cytopenias and 6) normal glomerular 

filtration rate (GFR) ascertained by Schwartz formula.18 Data were obtained from follow-up 

visits occurring within a window of ± 6 months of the 3-year anniversary from LT surgery. 

Participants were classified as having (IO-3) or not having (non-IO-3) IO at 3 years post-

transplant.

Two transplant hepatologists (VN, EH) reviewed and categorized open text fields for 

diagnosis categories and complication categories. Discrepancies were adjudicated to arrive 

at a final classification.

2.3 Heat Map Analysis

We first sorted participants by attaining IO-3 or not attaining IO-3. Predictor variables were 

added in a stepwise fashion and were categorized into demographic, allocation-related, pre-

transplant health status related, peri-operative and post-operative to generate a descriptive 

heat map stratified by IO-3 to determine if there were discernible patterns of variables 

(phenotypes) associated with IO-3.

2.4 Random Forests Analysis

Random forests,13–15 using ensembles of conditional inference trees, were used to determine 

the importance of candidate variables in classifying participants as attaining or not attaining 

IO-3. Performance was measured via out-of-bag accuracy rate, positive predictive value, and 

negative predictive value. RFA uses multiple decision trees to generate a prediction (Figure 

2). Decision trees have low bias; however, they tend to over fit the data provided, making 
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them relatively unstable. In RFA, each decision tree utilizes a subset of the data and a subset 

of the variables to generate a prediction. The ensemble of decision trees reduce the noise that 

is present within each tree and identifies complex interactions amongst the predictor 

variables, which further strengthens predictive ability. The accuracy was calculated using the 

out-of-bag method15 by testing the classifier on about a third of the data. Importantly, these 

data were not used in generating specific decision trees. As a result, the accuracy rate 

reflects the predictive ability based on data the classifier has not encountered.

2.5 Statistical Analysis

Descriptive statistics were prepared for all variables including quartiles, means, standard 

deviations, and ranges for quantitative variables and frequencies and percentages for 

categorical variables to characterize the sample and assess for completeness. Participants 

were excluded if there was insufficient information to determine ideal outcome at 3 years. 

We compared demographic characteristics of the included and excluded participants to 

determine whether and how these participants differed using chi-square tests for categorical 

variables, and t-test or Wilcoxon rank sum tests for quantitative variables. Similar analyses 

were conducted to determine whether and how participants who achieved IO-3 differed from 

those who did not. Participants with missing predictor information were maintained in the 

study as all analytic methods accommodate missing predictor data. Specifically, the random 

forests used handle missing data via surrogate variables. If a predictor variable is selected for 

the next split in a tree, observations that have a missing value in this variable are processed 

further down the tree using a surrogate variable that is not missing. The surrogate variable is 

selected such that it is the best predictor for the split in the originally chosen variable. 

Analyses were conducted using SAS Version 9.4 (SAS Institute Inc., Cary, NC, USA) and R 

Version 3.0.3 (The R Foundation for Statistical Computing, Vienna, Austria).

3. Results

3.1 Participants

Table 1 displays demographic characteristics of the included and excluded participants and 

the included participants are further stratified by achievement or failure to achieve IO-3. 

Comparative analyses were done to compare included/excluded participants and those with/

without IO-3.

Included participants were more likely to have chronic liver disease/cholestasis as an 

indication for transplant, be below school age, be white race, and have received a partial 

organ transplant. Additionally, there was geographic variation in the participants who were 

included versus excluded with a higher proportion of participants from regions 2, 3, 4, 5, 6, 9 

and 11 excluded. Of note, diagnosis, participant education level and whether recipient 

received a whole organ have the same relative proportion of participants across included/

excluded participant groups.

Of the participants included in the analysis, 553/887 (62%) failed to achieve IO-3. 

Participants with IO-3 were more likely to be from 2 parent households, white race, from 

UNOS regions 4, 5, 7, 10 and 12, and have a lower calculated PELD score at listing.
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3.2 Subgroup Analysis of non-IO-3 Participants

Participants who did not achieve IO were further analyzed to better understand the IO 

components that were not met at 3 years (Figure 3). The majority of participants who did not 

attain IO-3 had only one abnormal IO-3 component. The most likely components to be 

abnormal were elevated alanine aminotransferase (ALT) or gamma-glutamyl transferase 

(GGT) and decreased GFR. Risk factors for each component are described elsewhere.4

3.3 Heat map analysis

Figure 4 depicts the heat map and predictor variables included in the analysis. The 76 

resulting variables are listed in Figure 4. No obvious visual signal was evident to any of the 

authors. In order to better uncover any complex relationships between the predictors and the 

outcome measure, machine learning techniques were used to attempt to predict IO-3.

3.4 Random Forests Analysis (RFA)

RFA was used to develop a classifier for IO-3. The classifier had a predictive accuracy of 

0.71 (95%CI: 0.68 −0.74). The positive predictive value (PPV) was 0.83 (95%CI: 0.76–0.89) 

and the negative predictive value (NPV) was 0.70 (95%CI: 0.68–0.71). The naïve prediction 

classifier is 0.62 (i.e. the prevalence of not attaining IO-3 is 0.62 so if the classifier predicted 

everyone to not have IO-3, the classifier would be correct in 0.62 of the instances).

Figure 5 depicts the relative variable importance in the classifier. Variable importance is a 

ranking of variables in their relative importance in the model for predicting IO-3. They do 

not provide any indication on the magnitude of the effect. In order of highest to lowest 

importance, variables predicting achievement of IO-3 include:

1. White race: Participants designated as white as opposed to non-white was 

predictive of achieving IO-3.

2. Length of operation (in hours): Shorter duration of transplant surgery was 

predictive of achieving IO-3.

3. UNOS region 2: Being from region 2 was predictive of not achieving IO-3.

4. UNOS region 5: Being from region 5 was predictive of achieving IO-3.

5. Vascular complications within 30 days of transplant: Absence of vascular 

complications within 30 days of transplant was predictive of achieving IO-3.

6. Pre-transplant supplemental feedings: Absence of supplemental feedings pre-

transplant was predictive of achieving IO-3.

7. Biliary complications within 30 days of transplant: The absence of biliary 

complications within 30 days of transplant was predictive of achieving IO-3.

8. Biliary anastomosis: Roux limb was predictive of achieving IO-3.

4. Discussion

As the field of pediatric liver transplantation has evolved, we seek to personalize treatment 

strategies to optimize outcome and value. As patients move through the pathway of 
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selection, wait list management, peri-transplant and post-transplant, we asked if it was 

possible to predict who at 1 year will have the IO-3 at 3 years. As a proof of concept and to 

move the field closer to personalized medicine, we utilized intelligent techniques to leverage 

available data in the SPLIT database. RFA allows for a completely different evaluation of 

registry data that is not traditionally employed. While no obvious signal was evident on the 

heat map, RFA allowed us to identify several variables for predicting IO-3 at 3 years. The 

RFA classifier had an accuracy of 0.71 which exceeds that of the naïve prediction classifier. 

Furthermore, accuracy was assessed using the out-of-bag method which supports 

development of a robust classifier. This methodology, over traditional statistical approaches, 

allows for the flexible use of multiple variables to aid in classification as opposed to 

uncovering the specific relationship between predictor and outcome variables, while 

simultaneously minimizing the risk of overfitting the data.

Notably, non-white race was the variable of most importance and predictive of not attaining 

the IO-3. This was the variable of most importance despite including a variable for insurance 

(public or private; a marker of socio-economic status) in the RFA. The reasons for this are 

likely multi-factorial and may reflect systemic bias (both societal and health system) 

experienced by minorities across the phases of care. Previous studies in pediatric LT have 

suggested a disparity in access to care, presentation to care, and waitlist priority for patients 

of non-white race.19–22 Black adults who received kidney transplants were found to have 

increased prevalence of cardiac disease pre-transplant which could suggest that 

comorbidities may contribute to this racial gap.23 Furthermore, this finding could reflect 

differential socio-economic backgrounds and immunosuppressant adherence rates.24 Our 

findings support the case for continued attention in racial disparity and equity in access to 

care for children within our system.

Pre-transplant supplemental feedings and length of operation may reflect the severity of 

illness prior to transplant. Length of operation has not been previously implicated in 

affecting ideal outcomes. Increasing length of operation may reflect the stability and health 

of patient prior to transplantation, graft type, may be associated with previous operations, 

difficulty in explant hepatectomy, transplant center or likelihood of open abdomen and 

delayed closure. It is likely a surrogate marker for complexity of patient, but perhaps prior 

planning could decrease the importance of this variable. Its relationship to overall outcomes 

is intriguing and introduces the idea of establishing a time threshold or benchmark in order 

to improve overall outcomes.

Participant’s UNOS region was also found to be predictive of IO-3. UNOS divides the 

United States into 11 different regions for purposes of organ allocation. Notably, participants 

from region 2 (Delaware, Maryland, New Jersey, Pennsylvania, West Virginia and 

Washington DC) were less likely to have the IO and participants from region 5 (Arizona, 

California, Nevada, Utah and New Mexico) were more likely to have IO. Once again, the 

reasons for this are likely multifactorial and may reflect organ availability, institutional 

differences and patient-level characteristics. However, SPLIT does not have equal 

representation across UNOS regions, and; as highlighted in Table 1, there were differential 

inclusion/exclusion rates across UNOS regions. Therefore, definitive conclusions cannot be 

drawn due to selection bias.
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The majority of participants without IO-3 had abnormal liver enzymes. Our estimates were 

based on an ALT and GGT cut-off of 50, which likely under-estimates the incidence of 

patients with ongoing inflammation.25 This is further supported by data on patients 

ineligible for participation in a multi-center immunosuppression withdrawal trial due to 

silent immune-mediated liver injury despite appearing clinically stable.3,26 Kidney injury is 

the second most frequent complication and likely reflects, at least in part, pre-existing 

kidney disease, episodes of acute kidney injury and non-immune complications of 

immunosuppressive medications. These findings further support the need for research 

strategies that personalize immunosuppression and optimize allograft health without 

complications.

This study has several limitations. Notably, there were differences in the demographic 

characteristics of participants who had IO-3 data available and those who did not. This may 

bias findings from the analyses. Furthermore, there were baseline differences in those who 

had the IO-3 and those who did not. Specifically, participants without IO-3 were more likely 

to come from households without intact marriages, be of non-white race and have higher 

calculated PELD score. There are also limitations to RFA. Finally, limitations common to 

registry studies such as representative sample, missing data and quality of the data apply to 

this study. Specifically, the SPLIT registry is not a mandatory reporting database of all LT 

recipients (like UNOS) so it may not represent the entire population of transplanted U.S. 

children.

Long-term morbidity is significantly increased for LT recipients who survive the first year 

compared with age-matched controls in the general population. Pediatric recipients 

compared to adult recipients face increased risk of morbidity given their potential for longer 

life expectancy and thereby increased likelihood for longer cumulative exposure to 

immunosuppression. The challenge remains to ensure optimal allograft health and functional 

outcomes, while striving to minimize the complications of immunosuppression. 

Interestingly, in our cohort, only 38% attained IO-3 while Ng, et al4 found that 32% of 

participants attained IO at 10 years post-transplant. This suggests that patients are at highest 

risk of morbidity in the few years immediately following transplant. Being able to identify 

subgroups of pediatric LT recipients who require additional care could unlock targeted 

interventions for those at highest risk and prevent morbidity such as re-transplantation, given 

the significant cost estimates of re-transplantations being upwards of $300,000. Conversely, 

if we can predict from variables at 1 year who is likely to have long term success, it may 

allow resources to be targeted towards those at higher risk. However, future work is needed 

to identify what predictive variables are modifiable and whether that affects the long-term 

outcomes of pediatric LT survivors. This is aligned with the national push for precision 

medicine and a newer concept--precision public health.27,28 Precision public health “can be 

simply viewed as providing the right intervention to the right population at the right time”.27 

This study sought to use machine learning algorithms to better predict who is at risk for not 

attaining the IO-3. The authors hope this will catalyze future research that ultimately lead to 

greater personalization of care for pediatric transplant recipients.
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Figure 1. 
Participant inclusion/exclusion diagram
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Figure 2. 
Example schematic of random forests analysis. In this example schematic, the classifier is 

predicting success (Yes or No). A subset of participant variables from a subset of 

participants is used in each conditional inference tree to generate a prediction. The subsets of 

variables and participants can differ for each tree. Participants in the subset used to build a 

tree are in bag, and those outside of the subset are out-of-bag. Rather than splitting the data 

set once for training and then validation, as if often done with other methods, random forests 

incorporates training and testing within individual trees by always holding some participants 

out (i.e. out-of-bag). The number of variables used to build a tree is tuned because allowing 

use of all variables can limit generalizability due to overfitting. Each of the individual trees 

may have high bias for overfitting the data, yet in random forests analysis, the average of 

each of the individual trees is used to generate the classifier prediction. The classifier then 

uses out-of-bag error measurement to determine the accuracy rate by validating the classifier 

on participants (about a third of the total data) that were not used in building each tree.
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Figure 3. 
Reason(s) for failure to achieve IO-3 profile by a.) Number of abnormal IO-3 component 

variables for participants not achieving IO-3 and b.) Frequency of component variables for 

participants not achieving IO-3 ALT – alanine aminotransferase; GGT - gamma-glutamyl 

transferase; PTLD – post-transplant lymphoproliferative disease
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Figure 4. 
Descriptive heat map of predictor variables available at 1-year and ideal outcome Legend:

Ideal outcome at 3 years: Black indicates participants who did not meet definition of IO-3; 

Light gray indicates participants who did meet definition of IO-3.

Green/Red: Green – favorable; Red – unfavorable

Blue/Yellow: Blue – yes; Yellow – no

Purple – continuous variable; higher value is depicted with deeper purple

ALF – acute liver failure; UNOS – United Network for Organ Sharing; ICU – intensive care 

unit; GFR – glomerular filtration rate; hrs – hours; min – minutes; mos – months
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Figure 5. 
Random forests analysis ranking of variable importance Legend: < signifies that the variable 

predicts no ideal outcome; > signifies that the variable predicts ideal outcome hrs – hours; 

GFR – glomerular filtration rate; ALF – acute liver failure; UNOS – United Network for 

Organ Sharing; ICU – intensive care unit; min – minutes; yrs – years; mos – months; PELD 

– Pediatric end-stage liver disease; US – United States
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Table 1.

Demographic data by group (%, mean [SD] or median (IQR))

Included Excluded No IO IO

Variable n = 887 n = 595 p-value n = 553 n = 334 p-value

Diagnosis p < 0.01 p = 0.76

 Cholestasis/Chronic Liver Disease 64.3% 58.2% 62.9% 66.5%

 ALF 14.8% 21.3% 15.7% 13.2%

 Inborn error metabolism 9.1% 10.8% 9.0% 9.3%

 Dx Tumor 9.2% 6.4% 9.4% 9.0%

 Dx Other 2.6% 3.4% 2.9% 2.1%

 Missing 0.0% 0.0% 0.0% 0.0%

Patient Education Level p < 0.01 p = 0.23

 Above Grade Level 0.0% 0.7% 0.0% 0.0%

 At Grade Level 21.6% 27.2% 22.6% 20.1%

 Below Grade Level 4.1% 5.2% 4.0% 4.2%

 Homeschooling 2.7% 2.7% 3.4% 1.5%

 Not at school age 70.3% 64.2% 68.4% 73.7%

 Missing 1.2% 6.4% 1.6% 0.6%

Caretaker Marriage Status p = 0.32 p < 0.05

 Married/Intact household 76.3% 72.1% 73.6% 80.8%

 Single-parent/Non-intact household 22.3% 27.9% 25.1% 17.7%

 Missing 1.4% 3.9% 1.3% 1.5%

Race p < 0.001 p < 0.01

 White 63.5% 60.3% 61.3% 67.1%

 Non-white 15.2% 25.7% 18.4% 9.9%

 No Race Designated 21.3% 13.9% 20.3% 23.1%

 Missing 0.0% 0.0% 0.0% 0.0%

Insurance p = 0.36 p = 0.67

 Public insurance 39.9% 43.9% 40.9% 38.3%

 Non-public insurance 51.5% 56.1% 51.4% 51.8%

 Missing 8.6% 5.2% 7.8% 9.9%

UNOS Region p < 0.001 p < 0.001

 Region 1 2.3% 1.3% 2.5% 1.8%

 Region 2 11.3% 19.5% 13.7% 7.2%

 Region 3 9.5% 13.1% 11.6% 6.0%

 Region 4 8.1% 11.1% 6.5% 10.8%

 Region 5 12.0% 16.0% 9.8% 15.6%

 Region 6 0.3% 1.3% 0.5% 0.0%

 Region 7 12.5% 8.4% 11.8% 13.8%

 Region 8 14.1% 7.6% 14.8% 12.9%

 Region 9 3.5% 3.7% 4.2% 2.4%

 Region 10 14.9% 6.4% 13.6% 17.1%
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Included Excluded No IO IO

Variable n = 887 n = 595 p-value n = 553 n = 334 p-value

 Region 11 2.1% 2.2% 2.4% 1.8%

 Region 12 9.5% 9.4% 8.7% 10.8%

 Missing 0.0% 0.0% 0.0% 0.0%

Wait time (days) 54 (140.5) 65 (166.0) p = 0.10 52.0 (132.8) 57.5 (145.8) p = 0.36

Status 1a/1b

 Yes 29.8% 26.9% p = 0.28 31.6% 26.6% p = 0.16

 No 61.4% 74.3% 60.6% 62.9%

 Missing 12.5% 4.2% 11.4% 14.4%

PELD 12.7 [14.5] 14.1 [14.4] p=0.11 13.6 [14.8] 11.3 [14.0] p= 0.02

Donor age (years) 11 (18) 13 (22) p=0.21 12 (19) 10 (18) p=0.23

Organ Type p = 0.43 p = 0.92

 Cadaveric 87.9% 85.9% 88.2% 87.4%

 Living related donor 11.3% 12.4% 11.0% 11.7%

 Living unrelated donor 0.8% 1.7% 0.7% 0.9%

 Missing 0.0% 0.3% 0.0% 0.0%

Whole Organ p < 0.05 p = 0.22

 Yes 53.3% 58.3% 55.3% 50.0%

 No 44.4% 41.7% 43.0% 46.7%

 Missing 2.3% 4.7% 1.6% 3.3%

SD: standard deviation; IQR: interquartile range; IO: ideal outcome; ALF: acute liver failure; dx: diagnosis; PELD: pediatric end-stage liver disease

Missing data were not included in statistical comparisons across groups
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