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Abstract

This paper derives the dynamic programming equation (DPE) to a differentiable Markov
Perfect equilibrium in a problem with non-constant discounting and general functional

forms. Beginning with a discrete stage model and taking the limit as the length of the
stage goes to 0 leads to the DPE corresponding to the continuous time problem. The
note discusses the multiplicity of equilibria under non-constant discounting, calculates the

bounds of the set of candidate steady states, and Pareto ranks the equilibria.
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1 Introduction

This paper studies the set of differentiable Markov Perfect equilibria in a control problem with
declining discount rates. The basic model is a discrete stage infinite horizon problem in which
each stage lasts for ε units of time. The discount rate declines during the first n = T

ε
periods,

where n is an arbitrarily large but finite constant. After n periods the discount rate becomes
constant. I adapt the approach taken by Harris and Laibson (2001) (where n = 1) for the
general case where n ≥ 1, to obtain a dynamic programming equation (DPE). A solution to
this DPE, i.e. a value function and a control rule, is indexed by the parameter ε. Formally
taking the limit as ε −→ 0 yields a continuous time DPE that corresponds to the continuous
time limit of the discrete stage problem.

A Markov equilibrium to the problem under non-constant discounting can be obtained by
solving a control problem with constant discounting but a different objective function, jointly
with a “side condition”. The necessary condition to the DPE leads to a differential equation
that the equilibrium control must satisfy, an Euler equation. This problem has an “incomplete
transversality condition” (as in Tsutsui and Mino (1990)) leading to non-uniqueness of candi-
date equilibria (those satisfying the necessary conditions). This source of non-uniqueness is
different than in Krusell and Smith (2003), which relies on decision rules that are step func-
tions – and therefore not differentiable. The construction of an equilibrium here assumes
differentiability. The Markov assumption eliminates the type of non-uniqueness that arises
when strategies are supported by the use of threats, as in Laibson (1994). Under a plausible
restriction, more conservative decision rules (i.e. those that result in a higher steady state of the
resource) Pareto dominate less conservative rules.

2 The model and results

The instantaneous discount rate at time s is a non-increasing function r(s) for 0 ≤ s ≤ T , and
r(s) = r̄ (a constant) for s ≥ T . The discount factor at time t used to evaluate a payoff at time
τ + t, τ ≥ 0, is θ(τ) = exp

¡
−
R τ
0
r(s)ds

¢
. The state variable S evolves according to

Ṡ = f(S, x) (1)

where x is the control variable. The flow of payoff is the concave function U(S, x), which is
increasing in x. This problem has an infinite horizon, regardless of the value of T . The present
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discounted value of the steam of future payoffs evaluated at time t isZ ∞

0

θ(τ)U(St+τ , xt+τ )dτ. (2)

I study this problem by taking the limit of a discrete stage approximation in which each
period lasts for ε units of time, and all variables are constant within an interval. This approxi-
mation replaces equation (1) and the objective in (2) with

St+ε = f (St, xt) ε,
∞X
i=0

θ (iε)U (St+iε, xt+iε) ε. (3)

For fixed T < ∞ and ε > 0, the number of periods during which the discount rate is non-
constant is n = T

ε
< ∞ (ignoring the “integer problem”). The fact that n < ∞ makes it

possible to use an extension of a method described in Harris and Laibson (2001) to obtain a
rigorous and transparent derivation of the DPE. This DPE contains ε as an argument. Passing
to the continuous time limit of this DPE is “formal”, in the sense that the procedure assumes
that the endogenous functions are analytic in ε, so that the Taylor approximation is valid.

2.1 The dynamic programming equation

Let χ(S) be the equilibrium control rule (a function to be determined) for the continuous time
limit of the discrete stage problem. Define H(S) ≡ U(S, χ(S)), the flow of payoff under the
equilibrium rule. In equilibrium xτ = χ (Sτ ) , so the solution to equation (1) can be written as
St+τ = g(τ ;St). The function K (S) is defined as

K(St) ≡
Z T

0

θ (τ) (r(τ)− r̄)H(g(τ ;St))dτ. (4)

Define W (St) as the value function, i.e. as the equilibrium value of the payoff in expression
(2) when the control rule χ (S) is used and the initial condition is St. The first result is:

Proposition 1 The limit as ε → 0 of the dynamic programming equation to the discrete stage
equilibrium problem in (3) is

K(St) + r̄W (St) = max
x
{U(St, x) +W 0(St)f(St, x)} . (5)

The parameter T (the amount of time during which the discount rate is falling) appears in
the definition of the function K, in equation (4). Although a finite value of T is needed to
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begin the derivation that leads to the DPE, we can study the problem with T = ∞ by taking
limits with respect to T . The presence of the function K(St) in the DPE is due to non-constant
discounting. The solution to the continuous time problem consists of a function χ(S) that
maximizes U +W 0f , and satisfies K + r̄W = H +W 0f and equation (4).

The following is obvious from inspection of equation (5):

Remark 1 The MPE to the equilibrium problem with a non-constant discount rate is produced
by solving the necessary conditions to the “auxiliary control problem” given by:

max
R∞
0

e−r̄τ (U(St+τ , xt+τ)−K(St+τ)) dτ

subject to Ṡ = f(S, x).
(6)

In this problem, the decision-maker treats the function K (·) as exogenous, since this function is
determined by the behavior of “future decision-makers”, and the current decision-maker takes
that behavior as given. Equation (4) is the “side condition” alluded to in the Introduction.

I cannot appeal to any of the standard sufficiency conditions, because of the endogeneity of
K(S); therefore, the analysis relies on necessary conditions.1

To help interpret Remark 1, consider the case where S is wealth and x is consumption, with
US > 0. If the MPE flow of utility is positive and increasing in wealth (H > 0 and H 0 > 0) and
in addition ∂g(τ ;St)

∂St
> 0, then K > 0, and K 0 > 0. The presence of the negative stock amenity,

(−K) makes it less attractive to accumulate wealth.
A planner with commitment ability solves a non-stationary control problem with flow pay-

off U(S, x). Since limt→∞ r(s) = r̄, the necessary conditions to this nonstationary control
problem are asymptotically equivalent to those of a control problem with utility U(S, x) and
constant discount rate r̄ (Li and Lofgren 2000). Denote this as the “asymptotic control prob-
lem”. The asymptotic control problem and the auxiliary control problem differ only because of
the presence of−K(S) in the flow payoff in the latter. For K > 0 and K 0 > 0, under plausible
conditions the optimal wealth trajectory for the asymptotic control problem is greater than the
trajectory under the auxiliary control problem.2 Thus, for sufficiently large t the wealth and
consumption profiles are higher for the planner who is able to make binding commitments.

1However, when r(0)− r̄ is small, K(S) and all of its derivatives are also small. Therefore, U −K is concave
when r(0)− r̄ is sufficiently small and U is strictly concave in S. Given the other assumptions on U and f in the
text, the necessary conditions are then sufficient.

2Sufficient conditions are: USx ≡ 0, f(S, x) = F (S)− x and USS −K00 < 0.

3



A planner would like to drive the state to the first-best level (the steady state of the asymp-
totic control problem), but achieving this requires commitment ability. The planner also wants
to consume at a high rate in the short run (because r(0) is large). Behaving as if she uses the
long run (low) discount rate, but suffers a negative stock amenity, captures these conflicting
incentives.

The function K simplifies if θ (t) is a convex combination of exponential discount factors:

Remark 2 Let θ(t) = βe−γτ + (1− β) e−δτ , with 0 < γ < δ and 0 < β < 1, and let T =∞.
For this discount function, r̄ = γ < βγ + (1− β) δ = r(0) and

K(St) ≡ (δ − γ) (1− β)

Z ∞

0

e−δτH(g(τ ;St))dτ =⇒ (7)

δK(S) = (δ − γ) (1− β)H(St) +K 0(S)f(S, χ(S)). (8)

The MPE is a solution to the coupled equations (5) (with r̄ ≡ γ) and (8). The two differential
equations are based on discounting at the rates γ and δ, respectively.

The “transversality condition at infinity” for the problem in (6) is limt→∞ θ (t)W 0(St) = 0

(Kamihigashi 2001). I assume that this condition is satisfied by requiring that the state converge
to a steady state, a solution to f(S, χ(S)) = 0. Asymptotic stability of a steady state, S∞,
requires

z(S∞) ≡ fS + fxχ
0 < 0 where f (S∞, χ (S∞)) = 0. (9)

Standard manipulations of equation (5) lead to the Euler equation. A candidate steady state
S∞ is a value of S that satisfies both the Euler equation (not shown) evaluated at the steady
state, and the stability condition, equation (9). For a particular steady state S∞ that satisfies
both of these conditions, define χ̂ (S;S∞) as the function that solves the Euler equation and that
drives the state to S∞ (thereby satisfying the transversality condition at infinity). The function
χ̂ (S;S∞) is a “candidate” equilibrium, since – as noted above – it is constructed using only the
necessary conditions.

The problem with non-constant discounting has an “incomplete” transversality condition,
leading to multiplicity of equilibria, for essentially the same reason as in the differential game
studied by Tsutsui and Mino (1990). The equilibrium problem with non-constant discounting
is equivalent to a game amongst a succession of planners, each of whom chooses the control
variable for a short (or infinitesimal) amount of time. The equilibrium conditions, together
with the assumptions of Markov perfection and differentiability of the control rule, do not
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provide enough information to identify agents’ beliefs regarding the response of other agents to
a departure from the steady state. That is, the equilibrium conditions do not identify χ0 (S∞) ≡
χ̂1 (S∞;S∞). Consequently, these conditions do not identify a unique steady state. However,
the stability requirement puts bounds on χ0(S∞), as discussed in the next subsection.3

2.2 A specialization

The special case US ≡ 0 and f(S, x) = F (S) − x (i.e., fx ≡ −1) can be used to compare
the necessary condition under constant and non-constant discounting. This specialization is
appropriate in a resource problem where the flow of utility is independent of the stock, and
consumption reduces the stock linearly. In this special case, standard manipulations of the
DPE, equation (5), result in the Euler equation (a “modified Ramsey Rule”):

η(xt)
ẋ

x
= F 0 (St)−

µ
r̄ +

K 0(St)

U 0(xt)

¶
(10)

where η = −U 00

U 0 x is the elasticity of marginal utility, and r̄+ K0(St)
U 0(xt)

is the effective discount rate.
If the discount rate is constant (r (s) ≡ r̄ for all s) then K(S) ≡ K 0(S) ≡ 0 and equation (10)
reproduces the standard Ramsey Rule. With non-constant discounting (in a MPE), the “current
regulator” takes into account the effect of current consumption on future values of the state, and
the resulting changes in future consumption and in future marginal utility. The function K 0(S)

incorporates these reactions by “future regulators”.
In variations of this model, Barro (1999) and Cropper and Laibson (1999) note that the

(linear) Markov equilibrium is observationally equivalent to the equilibrium under constant
discounting. That is, there is a constant discount rate that gives rise to the same equilibrium
control rule as the linear Markov rule under non-constant discounting. It is well known that
observational equivalence (between constant and non-constant discounting) does not hold in
general. From equation (10), observational equivalence holds if and only if K0(St)

U 0(xt)
is a constant.

3The policy function χ̂ (S;S∞) may be defined only for a subset of state space. A similar circumstance arises
in differential games where the incomplete transversality condition leads to a continuum of candidate decision
rules. In a linear-quadratic setting, Tsutsui and Mino (1990) show that only the linear equilibrium is defined for
the entire real line. The requirement that the equilibrium be defined for all of state space is likely to substantially
reduce the multiplicity discussed in the next subsection. However, for some one-dimensional economic problems
it is reasonable to define the state space as a subset of the real line. In that case, the requirement that the equilibrium
be defined for the entire state space need not reduce the set of candidates to a singleton.
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The following proposition characterizes the set of candidate equilibria. To simplify nota-
tion, write r0 = r(0) and z = z (S∞), defined in equation (9) in addition, define g ≡ F 0 (S∞)

and λ =
¡R∞
0

e−λτdτ
¢−1 ≡ ¡R∞

0
θ (τ) dτ

¢−1, where r̄ < λ < r0.

Proposition 2 Let US ≡ 0 and f(S, x) = F (S) − x with F (S) strictly concave. Assume that
in equilibrium the state converges to an interior steady state. (i) Any value S∞ that satisfies

F 0 (S∞) = r̄ + χ0 (S∞)

Z T

0

θ (τ) (r(τ)− r̄) ezτ )dτ. (11)

and the stability condition, equation (9) is a candidate (interior) steady state. (ii) There exists
either no candidate interior steady states, or there exists a continuum of candidate steady states;
in the latter case, there exists a continuum of candidate equilibrium control rules χ̂ (S;S∞).
(iii) For T =∞, the steady state condition (11) simplifies to

Q(g, z) ≡ 1− (g − z)

µZ ∞

0

θ (τ) ezτ )dτ

¶
= 0. (12)

At every candidate state χ0 (S∞) > 0 and

r̄ < F 0 (S∞) < r0. (13)

(iv) Let q(z) be a root of Q(q(z), z) = 0, defined in equation (12). If dq
dz

< 0 for z < 0, then
any interior stable steady state must satisfy λ < F 0 (S∞) < r0.

With constant discounting, the second term on the right side of (11) vanishes, leaving the
standard steady state condition F 0 (S∞) = r̄. This equation determines a unique interior S∞
if F 0(0) > r̄. For concave U , the unique solution to the control problem is the consumption
rule that satisfies the Euler equation and drives the state to S∞. The transversality condition
provides the boundary condition to the Euler equation.

In contrast, with non-constant discounting, the steady state condition (11) does not iden-
tify a unique steady state. The right side of this equation contains the undetermined function
χ0(S∞). We do not have “outside” information that identifies the value of χ0(S∞). Conse-
quently, there exist a continuum of candidate equilibria.

Equation (13) is a necessary condition for the steady state. Proposition 2.iv tightens the
lower bound if the function q(z) is monotonic: in this case, any differentiable interior Markov
perfect stable steady state can be supported by a model with a constant discount rate that is
strictly greater than λ.
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The monotonicity of q(z) can be checked for specific discount functions. For example, if θ
is the convex combination of exponential discount factors given in Remark 2, then

λ =
δγ

(1− β) γ + βδ
and q(z) ≡ ((1− β) δ + βγ) z − δγ

z − (1− β) γ − βδ
=⇒ dq

dz
< 0.

If the regulator at an arbitrary time were able to make commitments, a positive steady state to
her problem satisfies F 0(S∞) = γ. Since γ < λ, all candidate MPE steady states are strictly
below the steady state chosen by the regulator who can make commitments.4

Proposition 2 requires that F (S) is strictly concave. If F is linear, i.e. if F 0(S) = g, a
constant, (and maintaining the restriction US ≡ 0) then the steady state condition (equation
(11)) involves a single unknown.5 With exponential discounting, the controlled system does
not converge to an interior steady state, except for the knife-edge case where g = r, the constant
discount rate.

The MPE with hyperbolic discounting can be obtained by solving a control problem with
constant discount rate and the stock amenity function −K(S). The inclusion of the function
K means that (even for linear F and Us ≡ 0) there are candidate interior stable steady states
for range of values of g. If the function q(z) is monotonic, there is at most one value of χ0 that
solves equation (11). For linear F (S), denote the root to equation (11) as χ0∗, assuming that
it exists, and denote z∗ = g − χ0∗. For the function θ (t) given in Remark 2, a straightforward
calculation establishes that z∗ < 0 ⇐⇒ λ < g < r0. For any g that satisfies this inequality,
there is a unique χ0∗. In this case, the steady state condition identifies the value of χ0∗, but not
the steady state S∞.

2.3 Pareto ranking the steady states

The equilibrium problem with non-constant discounting is equivalent to a game amongst a
succession of agents, each of whom wants to maximize the present discounted value of current
and future welfare. (Agents do not care about the past.) An agent is indexed by the time at

4If r0 > F 0(0) > λ the resource might be exhausted or preserved in the steady state. If F 0(0) < λ and
F (0) = 0, the unique steady state is S∞ = 0. In this case, the existence of a unique steady state implies a unique
solution to the Euler equation, i.e. a unique MPE. In this situation, the problem has a complete transversality
condition (i.e. it has a “natural boundary condition”).

5If S is an argument of the utility function and F (S) is linear, the steady state condition still involves two
unknowns. Karp (2005) discusses a discrete time quasi-hyperbolic example of this case. That paper also demon-
strates a special case of Proposition 3, below.
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which she makes the decision. The agent at time t discounts utility at time t+ τ , τ ≥ 0, using
the discount factor θ (τ). An equilibrium is Pareto Efficient, at time t, if no other decision
rule gives all current and future agents a higher payoff. In the setting here, an equilibrium is
Constrained Pareto Efficient if no other differentiable Markov Perfect decision rule gives all
current and future agents a higher payoff.

Given a (candidate) equilibrium control rule χ̂ (S;S∞), the equilibrium payoff of an agent
when the current state is S is the value function W (S; χ̂ (S;S∞)), the solution to equation (5).
Here I show explicitly the dependence of this value function on the equilibrium decision rule,
indexed by the steady state toward which this decision rule drives the state. The following
definitions simplify the discussion:

ω(S;S∞) ≡W (S; χ̂ (S;S∞)), ω2(S;S∞) =
∂ω(S;S∞)

∂S∞
.

Define Ψ as the open set of candidate steady states. If the monotonicity condition in
Proposition 2.iv holds, the supremum of Ψ is max {0, F 0−1 (λ)}. For the example where
θ(t) = βe−γτ+(1− β) e−δτ , we have Ψ = (F 0−1 (r0) , F 0−1 (λ)), provided that F 0−1 (r0) > 0.

An equilibrium rule χ̂ (S;S∗∞) is Constrained Pareto Superior to another rule χ̂
¡
S;S#∞

¢
if

and only if both S∗∞ and S#∞ are elements of Ψ and

ω(S;S∗∞) ≥ ω(S;S#∞) (14)

for all initial conditions S and strict inequality holds for some S.
Inequality (14) is difficult to check because it must hold for all S. A local condition that

is simple to check provides a necessary condition for Constrained Pareto Efficiency. The local
condition checks whether the current agent and all her successors would be willing to switch
from a reference decision rule χ̂ (S;S∞) to a neighboring rule, given that the current state is
S∞. If all agents (current and future decision-makers) would be willing to make the switch,
the reference decision rule is not Constrained Pareto Efficient

The state trajectory is monotonic in the neighborhood of the steady state (z < 0); if we
switch from one decision rule to a neighboring rule, the state adjusts monotonically to the
new steady state. Therefore, the local condition for Pareto ranking requires checking whether
inequality (14) holds for values of S between the steady states of the reference and the neigh-
boring decision rules, rather than for all possible values of S.

Clearly, a rule that is less conservative (i.e., that involves higher consumption for a given
value of the state variable) than the reference rule always harms agents sufficiently far in the
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future; those future agents consume at a lower steady state level (relative to consumption under
the reference rule). Therefore, a rule that is less conservative than an arbitrary candidate cannot
Pareto dominate that candidate.6

A perturbation to a more conservative rule benefits agents sufficiently far in the future, since
they consume at a higher level, as a result of the higher steady state. The current agent and
her nearby successors have lower consumption but they appreciate the higher welfare of their
successors, so it is not clear whether they benefit from the switch to the more conservative rule.
The decision rule χ̂ (S;S∞) is “locally Constrained Pareto dominated” by a more conservative
neighboring rule if and only if ω2(S∞;S∞) > 0. Using this definition, we have the following

Proposition 3 For US ≡ 0, f(S, x) ≡ F (S)− x, F 00 < 0 and T =∞

sign (ω2(S∞;S∞)) = sign (F 0(S∞)− λ) . (15)

Any equilibrium with a steady state that satisfies F 0(S∞) > λ is locally Constrained Pareto
dominated by an equilibrium with a higher steady state. If the monotonicity condition in
Proposition 2.iv holds, the Pareto ranking of the MPE is identical to the ranking of the steady
states of these equilibria: more conservative rules are always locally Pareto superior to less
conservative rules.

Proposition 2.iv and Proposition 3 provide conditions under which Pareto dominance selects
a conservative rule. We cannot speak of the “most conservative” MPE since Ψ is an open set.
Pareto dominant rules imply slower asymptotic convergence to the steady state. That is, a
lower value of | z | implies a lower value of the effective steady state discount rate (under the
monotonicity property of Proposition 2.iv) and this implies a higher steady state.

2.4 Relation to previous literature

Barro (1999) and Harris and Laibson (2004) study continuous time models of non-constant
discounting for the special case where US ≡ 0 (as in Section 2.2). Both of those papers assume
that the equation of motion is linear in the state (contrary to the assumption in Proposition 2).

6Caplin and Leahy (2004) point out that the solution to a time-consistent dynamic optimization problem is
one of a continuum of Pareto Efficient outcomes. With hyperbolic discounting, the MPE is not Pareto Efficient.
Nevertheless, we can Pareto-rank the MPE.
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In Barro (1999), the representative agent solves a nonstationary control problem, with Ṡ =

w(t) + g(t)S − x; w(t) is the equilibrium wage rate and g(t) is the equilibrium rental rate. In
Barro’s model, the functions w(t), g(t) depend on the economy-wide level of the stock, Se(t).
The representative agent takes Se(t) as exogenous and therefore takes w(t), g(t) as exogenous.
In equilibrium, S(t) ≡ Se(t). Thus, although the agent treats w(t), g(t) as exogenous, their
equilibrium values are endogenous to the model. The agent in my setting solves a stationary
problem, so the results in the two papers are not directly comparable. However, in the steady
state to Barro’s model, w and g are constants. Mutual consistency of the two models requires
that Barro’s steady state level of the stock must be supported as a steady state in my model,
when I use his steady state values of w and g.

Barro sets U(x) = lnx and he selects a linear equilibrium; T =∞ in his model. He shows
that the linear Markov equilibrium is observationally equivalent to the equilibrium in a model
with the constant discount rate λ. (See the definition of λ above and Barro’s equation (13); his
discount factor is e−ρτ+φ(τ) = θ (τ) in my notation.) Thus, the steady state for Barro’s linear
MPE is SBarro

∞ = F 0−1(λ).
In the stationary control problem with U(x) = lnx, Ṡ = w + gS − x and T = ∞, it is

straightforward to show (using equation (5)) that there exists a linear equilibrium control rule
if and only if g = λ. That is, my stationary model (with linear equation of motion) supports
Barro’s steady state if and only if g = λ = F 0 (SBarro

∞ ). The two models are mutually consistent.
When the growth equation is strictly concave (and in equilibrium the system converges

to a steady state) Proposition 2.iv shows (for monotonic q(z)) that SBarro
∞ is the supremum of

candidate steady states. Proposition 3 implies that a decision rule that drives the state to SBarro
∞

locally Pareto dominates all MPE candidates. That is, at least in the neighborhood of the steady
state, agents do better when they ignore the dependence (on the capital stock) of the wage and
rental rate.

This result has a familiar economic explanation. By equation (12), χ0 (S∞) > 0, so actions
are strategic substitutes near the steady state. Future consumption is too high, relative to the
full-commitment level (the steady state of which satisfies F (S) = r̄). Therefore, somewhat
perversely, an agent has an incentive to increase current consumption in order to reduce the
state and thereby restrain future consumption. An agent who treats the future wage and rental
rate as exogenous has less strategic incentive to try to manipulate future behavior (by changing
future values of the state variable). Since the strategic incentive is perverse, the diminished
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strategic incentive associated with price-taking behavior leads to a better outcome.
Harris and Laibson (2004) use a stationary model with a linear (stochastic) equation of mo-

tion. In their setting, the “current” decision-maker exercises control for τ units of time, where
τ is a random variable with exponential density. For the limiting case (an infinite hazard rate),
their Theorem 17 shows that there is a time-consistent control problem (i.e., one with exponen-
tial discounting) that has the same value function as the original (non-exponential discounting)
model. This time-consistent control problem is constructed using an “auxiliary” utility func-
tion that I denote as Û(S, x). This function (in general) has the state as an argument, even
though the primitive utility function does not. (US ≡ 0 in my notation.) Even for US ≡ 0,
the function K(S) defined in equation (4) is (in general) not a constant, so the utility function
U(x)−K(S) that appears in the control problem in (6) has the state variable as an argument.
Thus, my Remark 1 has some similarity to Theorem 17 in Harris and Laibson (2004).

However, there is an important difference between the two results. Harris and Laibson
are able to construct the auxiliary utility function from the primitives of the problem. My
analog to their auxiliary utility function (U − K), in contrast, involves the unknown function
K; this function must be calculated as part of the equilibrium. Harris and Laibson’s ability to
construct Û from primitives is critical to their uniqueness proof; their construction of Û uses
the limiting case where the “current” decision-maker’s tenure is arbitrarily short (the hazard
rate approaches infinity.) It appears to be an open question whether uniqueness holds in their
model if the hazard rate is finite.
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Appendix: Proof of Propositions
Proof of Proposition 1

I begin by finding the DPE for the discrete time model. I then take the formal limit to
obtain the DPE that corresponds to the continuous time model. The discrete stage problem
uses the payoff and the equation of motion defined in equation (3). Define θi = θ (εi) and
define Hi = H (St+iε) = U (St+iε, χ (St+iε)), where χ (·) is a function to be determined. Each
period lasts for ε units of time, so if the current calendar time is t, the calendar time j periods in
the future is t+jε. The discount rate decreases for the first n periods and is thereafter constant.
For i = 1, 2...n− 1, define

θn−iVi
¡
St+(n−i)ε

¢
= θn−iHn−iε+ θn−i+1Vi−1

¡
St+(n−i+1)ε

¢
(16)

and
θnV0 (St+nε) = θnHnε+ θn+1V0

¡
St+(n+1)ε

¢
. (17)

The function θn−iVi (·) is the present value discounted back to time t (the “current time”) of
the equilibrium continuation payoff from time t + (n− i) ε onwards. For periods n, n + 1...
the discount rate is constant, so the value function in equation (17) is stationary; the index 0
on the value function denotes that there are 0 periods to go before the value function becomes
stationary. At each of the stages 1, 2...n− 1 periods in the future, the subsequent discount rate
changes, so the value functions in these periods also change. The subscript on the functions Vi
in equation (16) denote the number of subsequent periods during which the discount rate will
be non-constant. Use these two equation to “solve backwards” to obtain the relation

θ1Vn−1 (St+ε) =
nX
i=1

θiHiε+ θn+1V0
¡
St+(n+1)ε

¢
. (18)

The DPE at period t is

W (St) = max
x
{U (St, x) ε+ θ1Vn−1 (St+ε)} (19)

and the maximized DPE is

W (St) = Hiε+ θ1Vn−1 (St+ε) . (20)

Some manipulations lead to the DPE for the discrete stage problem:

W (St) = max
x

(
U (St, x) ε+

nX
i=1

¡
θi − e−r̄εθi−1

¢
Hiε+ e−r̄εW (St+ε)

)
. (21)
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Taking the limit of the discrete time DPE as ε→ 0 leads to equation (5).
Proof of Proposition 2
Part (i) Evaluating equation (10) at a steady state (where ẋ = 0) gives the steady state

condition
F 0 (S∞) = r̄ + χ0 (S∞)

Z T

0

θ (τ) (r(τ)− r̄)
∂g(τ ;St)

∂St
)dτ. (22)

In the neighborhood of the steady state we have Ṡ ≈ z (St − S∞)⇒

g (τ ;St) ≈ ezτSt + S∞
¡
1− ezt

¢
=⇒ ∂g(τ ;St)

∂St
≈ ezτ , (23)

where z = F 0 (S∞)− χ0(S∞) < 0 because of stability. Substituting equation (23) into (22)
results in the steady state condition (11). Part (ii) Equation (11) is a single equation involving
two unknowns and therefore generally has no solutions or a continuum of solutions. In the
latter case, there are a continuum of candidate steady states. Associated with each steady state
S∞ is a function that satisfies the Euler equation, χ̂ (S;S∞), i.e. a candidate equilibrium. Part
(iii) For T =∞, we haveZ ∞

0

θ (τ) r (τ) ezτdτ = −
Z ∞

0

θ0 (τ) ezτdτ = 1 + z

Z ∞

0

θ (τ) ezτdτ (24)

Using the definition of z and equation (24) we can rewrite equation (11) as

z − r̄ = χ0
∙
(z − r̄)

Z ∞

0

θ (τ) ezτdτ

¸
(25)

Equation (25) implies equation (12). The fact that

1

r0 − z
<

Z ∞

0

θ (τ) ezτ)dτ <
1

r̄ − z
,

implies equation (13). Part (iv) follows from differentiation of equation (12).
Proof of Proposition 3
Define z = F 0 (S∞)− χ̂1(S;S∞). (Since here I show the steady state as an argument of χ,

I write χ1 instead of χ0.) Consider a perturbation of the control rule χ̂(S;S∞) to χ̂(S;S∞)− ε

for small ε > 0. This perturbation increases the steady state from S∞ to S∞− ε
z
. The function

g(τ ;S) is the solution to the equation of motion for S under a particular control rule. With
some abuse of notation, here I use g(τ ;S, ε) to denote the solution to the state equation under
the perturbation. Beginning at the steady state S∞ at time 0, the value of S at time τ ≥ 0 under

2



this perturbation is7

S (τ) = g(τ ;S∞, ε) ≈ S∞ −
ε

z
+

ε

z
ezτ . (26)

For arbitrary initial condition S, the value of the program under the control rule χ(S;S∞)
is ω(S;S∞) =

R∞
0

θ (τ)U (χ(τ)) dτ , with χ (τ) ≡ χ̂(g(τ ;S);S∞). At S = S∞ the value of
the program under the perturbation (i.e., replacing χ̂(S;S∞) by χ̂(S;S∞)− ε) is

ω(S∞;S∞ −
ε

z
) =

Z ∞

0

θ (τ)U (χ (τ , ε)− ε) dτ (27)

χ (τ , ε) ≡ χ̂ (g(τ ;S∞, ε);S∞) .

Taking derivatives (with respect to ε) of equation (27), and evaluating the result at ε = 0, gives

ω2(S∞;S∞) = −z
R∞
0

θ (τ)U 0 (χ∞)
³
∂χ
∂S

∂g(τ ;S∞,ε)
∂ε

− 1
´
dτ

= −zU 0 (χ∞)
R∞
0

θ (τ)
¡
∂χ
∂S

1
z
(ezτ − 1)− 1

¢
dτ

= −zU 0 (χ∞)
¡
1
z
−
¡
∂χ
∂S

1
z
+ 1
¢ R∞

0
θ (τ) dτ

¢
= −U 0 (χ∞)

¡
1− F 0(S∞)

R∞
0

θ (τ) dτ
¢

(28)

The second equality uses the approximation in equation (26); the third equality uses equation
(12), and the fourth equality used the definition of z. Since U 0(x) > 0 by assumption, the last
line of equation (28) implies equation (15).

7It is more precise to replace the function z in equation (26) by F 0
¡
S∞ − ε

z

¢
− χ1(S;S∞ − ε

z ) since I
am writing the approximation of the trajectory under the perturbed decision rule, not the approximation of the
trajectory under the original decision rule. This correction complicates the notation but does not change anything
of substance. When I evaluate derivatives at ε = 0 the formulation in equation (26) and the correction in this
footnote lead to the same result.
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