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Abstract
We present a numerical study of the evolution of a semi-infinite layer of salt water over
a sedimenting fresh-water suspension. Depending on a proposed ratio between the excess
densities of the two layers, we observe the development of Rayleigh-Taylor like instabilities
or upwelling fresh water plumes. When Rayleigh-Taylor like instabilities occurr, sediment
particles are suspended onto the top layer as well as deep penetration of salt into the
bottom layer. When fresh water plumes are observed, a controlled mixing process occurs
in which fresh water rises as the particles sediment and there is limited penetration of
salt on the bottom layer. Dimensional analysis and an analogy with the mechanism of
thermal plume ejection in Rayleigh-Bénard convection are used to propose relevant time
and length scales.

1 Introduction

Hyperpycnal flows are defined as subaqueous sediment-transporting density flows where
the solid-liquid ensemble is heavier than the ambient where the discharge takes place.
They have been first reported in the late 19th century, and are commonly found in lakes
and the ocean (Mulder et al., 2003).

A special class, and comparatively less studied related flow, are lofting gravity flows
(also referred to herein as lofting flows). They are particle-laden gravity currents, where
a density inversion by interstitial fluid lower in density than the ambient occurs, enabling
the possibility of a flow separation via plume detachment. The conditions and evolution of
the plume detachment mechanism is not fully understood. In particular, in an otherwise
quiescent two-horizontal-layer system, the separation mechanism occurring when the bulk
of the suspension is denser than the upper layer but the fluid in the upper layer is heavier
that the fluid in the bottom suspension is not quiescent, and may feature a Rayleigh-
Taylor instability or mixing in the upper layer via plume formation. This particular
configuration has been recently studied by Schulte et al. (2016) when both particles and
salt are dissolved in the bottom and top layers, respectively. In the present paper, this
restriction is relaxed and a mixture model, suitable for higher concentrations and to
account for the effect of particle drag by the fluid flow, has been adapted. The onset of
mixing in two identified flow regimes is discussed in light of a characteristic time scale.
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2 Governing Equations

We consider a semi-infinite layer of salt water on top of a semi-infinite layer of a fresh
water suspension. The suspension is modeled as a continuum with solid velocity, density
and volume fraction fields us, ρs and φs ≡ φ, respectively, superimposed to the liquid
with velocity ul, density ρl and volume fraction φl = 1− φ. The momentum conservation
equations are:

∂(φiρiui)

∂t
+∇ · (φiρiuiui) +∇ · (φiτ i) = −φi∇p+ φiρig + fi, (1)

where the subindex i stands for solid (s) or liquid (l). The presure p, assumed common
to both phases, imposes the conservation of volume by enforcing incompressibility of the
mean velocity

∇ · (φlul + φsus) = 0. (2)

An additional solid pressure contribution ps(φ), which sharply increases around the max-
imum packing fraction φmax, is added on the momentum equation for the solid in order
to bound the volume fraction of solid φ below φmax = 0.65. This extra pressure term is
negligible for the small and moderate φ present around the interface. The shear stress
tensor for each phase is given by

τ i = µi

(
∇ui + (∇ui)T

2
− 2

3
(∇ · ui)I

)
(3)

where the effective viscosity of the solid µs is obtained from

µmix = φµs + (1− φ)µl = µl

(
1− φ

φmax

)−η[φmax]

(4)

which is the expression for the viscosity of suspensions given by Enwald et al. (1996).
The remaining interaction between the liquid and solid phases is given by the drag

force per unit volume fD = fs = −fl that the fluid applies on the solid, which is given by

fD = K(ul − us), (5)

where we use the drag function K given by Gidaspow (1986),

K =
3

4d
CDφρl|ul − us|(1− φ)−1.65, (6)

with d the diameter of the sediment’s particles and the drag coefficient CD given by
Schiller and Naumann (1935) as

CD = 24(1 + 0.15(Rep)
0.687)/Rep, (7)

where Rep = ρl|ul − us|d/µl is the particle’s Reynolds number.
The density of the liquid is assumed to depend linearly on the salt concentration S as

ρl = ρl0(1 + αS) (8)

where ρl0 is the density of fresh water and α is an expansion coefficient. The salt concen-
tration satisfies the advection diffusion equation

∂S

∂t
+∇ · (Su) = D∇2S, (9)
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where D is the diffusion coefficient of salt in water. Finally, the mass transport equation
for the solid phase is

∂(φρs)

∂t
+∇ · (φρsu) = κ∇2φρs, (10)

wherein the diffusivity κ accounts for brownian motion and is taken equal to D/25.
In the initial condition, the salt concentration of the top layer is S0 such that αS0 =

0.0245, and the volume fraction of particles in the bottom layer is φ0.

3 Dimensional analysis

From the system of equations defined above, we consider as independent variables the
particle settling velocity within the Stokes regime (ws at small particle Reynolds num-
ber), ν, D, the initial density excess due to salt in the upper layer (αS0), the solid phase
and clear water phase densities, ρs and ρl0, respectively, and the initial particle volume
fraction in the lower layer, φ0. Noting that the problem also depends explicitly on the
magnitude of gravity, g, by virtue of the Buckingham theorem, there must be 5 indepen-
dent dimensionless numbers. Both φ0 and αS0 are dimensionless. On the other hand, the
relative thickness of between the momentum and the salt diffusion boundary layers in the
liquid phase is expressed as the Schmidt number, Sc = ν/D.

It is hypothesized that a relevant dimensionless number is the ratio between the excess
density of the upper layer (8) (initially clear, salt water) and the excess bulk density of the
lower layer (initially particle laden fresh water), which yields the dimensionless number

ρl(S=S0)−ρl0
ρm(φ=φ0,S=0)−ρl0

, with ρm = φ0ρs + (1− φ0)ρl:

Rρ =
αS0

φ0(G− 1)
, (11)

where G = ρs/ρl0. From the relative difference between the slurry and the clear water
density, the dimensionless number Λ is written as Λ = (ρm − ρl0)/ρl0 = αS0(1 − φ0) +
(G− 1)φ0. In terms of Rρ,

Λ =
αS0

Rρ

[Rρ(1− φ0) + 1] . (12)

It is noted that when φ0 � 1, Λ ≈ αS0, whereas for φ0 / 1 or αS0 � 1, Λ ≈ φ0(G− 1).
Eq. (12) exposes that smaller values of Rρ imply higher values of the Λ, and thus higher
values of the reduced gravity g′ = gΛ. When Rρ < 1 the suspension is initially stable
from a bulk density perspective, whereas Rρ > 1 implies the onset of a Rayleigh Taylor
instability. When Rρ < 1, in spite of the apparent stability of the system, plumes form in
the upper layer, with little mixing in the lower layer (Schulte et al., 2016), a result that
we confirm with our numerical simulations, as shown below. The present problem has
only one external length scale, given by the characteristic size of the settling particles,

d. In Stokes regime, for spherical particles, d =
√

18wsF (φ0)ν
g(G−1)

, where it is assumed that

αS0 � 1. Here, F (φ0) is a hindrance function (0 < F ≤ 1) that accounts for the effect of
particle concentration in the settling process (Davis and Acrivos, 1985). A second length
scale may be obtained from salt water density inversion responsible for the plume release,
by analogy to the plume release mechanism from thermal boundary layers in Rayleigh-
Bénard convection. In this mechanism, at the onset of plume eruption there is a mass
boundary layer whose thickness is given by a critical Rayleigh number: Rabl

c = gΛ0δ3

νD
,
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where the critical parameter Rabl
c has been measured between 100 and 1000 in thermal

convection (Castaing et al., 1989; Zocchi et al., 1990), where Λ0 is the relevant density
difference that is commonly expressed in terms of a thermal or mass expansion coefficient.
In the present case, Λ0 ≡ Λ(S0, φ0 = 0) = αS0. Assuming that Rabl

c is a constant that can
be measured in this case (Ra0), a second, Bénard-like length scale δ is obtained. Scaling
by the particle length scale, we write

δ

d
= θ(ScΛ0)−1/3(G− 1)1/2R−1/2

w , (13)

with θ =
Ra

1/3
0√
18
∼ 1 and

Rw =
wsF (φ0)

(gν)1/3
. (14)

The velocity ratio Rw is independent on the salt concentration, but is implicitly dependent
on the gravity. As in Stokes flow ws ∝ g, Rw ∝ g2/3, implying that Rw is actually a
version of a particle buoyancy-viscous dissipation ratio. The problem can be thus defined
in dimensionless terms by G, Sc, Λ (or Λ0), Rρ and Rw. Both Λ and Rρ are implicit
functions of φ0 and αS0.

From the definition of the length scale δ and the particle front velocity, wsF (φ), a time
scale is written as τ = δ/wsF . In terms of the present choice of dimensionless variables,

τ =
1

Rw

(
DRa0

Λ0g2

)1/3

. (15)

4 Numerical Simulations

The model equations described in section 2 are implemented in the solver twoPhaseEuler-
Foam of the open source software OpenFOAM. The domain is two dimensional with peri-
odic boundary conditions in the horizontal direction, solid wall in the bottom and stress
free at the top. The dimensionless parameter Rρ has been set between 0.058 and 2.88,
while Rw is between 2.4× 10−6 and 0.46. For all the simulations, G− 1 = 1.7, Sc = 700
and Λ0 = 0.0245.

5 Results and discussion

The present numerical simulations show that the excess density parameter Rρ marks a
transition from a Rayleigh-Taylor mode of mixing, including the upper and lower layers
and a convective mode featuring the release of plumes and subsequent mixing in the upper
layer. An example of the Rayeigh-Taylor mechanism, corresponding to Rρ > 1 is shown
in Figures 1 for the salt concentration field. A characteristic of the Rayleigh-Taylor mode
of convection is the symmetry of the mixing layer with the middle plane. A summary of
the two observed flow regimes in the present set of simulations is depicted in Figure 4.

The salt and particle transfer process is significantly different when Rρ < 1. This is
exemplified in Figure 2, for Rρ = 0.29 and Rw = 0.36. In both cases, the excess density
of the upper layer has been kept constant. Although mixing does occur, it is confined to
the plane above the sediment layer, located at a distance equal wst below the horizontal
centerline. The effect of particle diffusivity is slight and, in the present set of numerical
simulations it has been found that particle diffusion became irrelevant shortly after the
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Figure 1: Salt concentration for simulation with Rρ = 2.88 and Rw = 0.46. In this case, the particle
concentration field is very similar to the salt conentration at the specified values of time.

onset of mixing. However, although there is not enough potential energy in the system
to cause a complete overturning of the particle layer, there may be a significant particle
interface erosion due to vorticity near the interface. This is depicted on Figure 3, where for
dimensionless times in excess of about 1000 the particle interface is no longer horizontal
and some resuspension to the upper layer occurs. This process resembles the mixing of
strongly stratified density interfaces in front of grid-induced turbulence (Fernando, 1991).
An additional comparison between both flow modes is depicted on the horizontal rms of
the salt concentration fluctuations in Figures 6 and 7 for Rρ > 1 and Rρ < 1, respectively.
A large difference in the penetration depth of the salt layer into the bottom half can be
observed. In the case with Rρ < 1, the interface of salt fluctuations closely follows the
interface of the sedimenting particles at wst.

Figure 5 shows the dimensionless critical time in terms of the dimensionless parameter
δ/d (Eq. 13). Admittedly, the dynamics is not purely explained by the Bénard instability
mechanism as in all the cases the plumes depart above the initial density inversion layer of
time-dependent thickness wst. However, a comparison between the dimensionless critical
time and δ/d shows a clear correlation, which gives a strong suggestion of this mechanism
being dominant in the onset of mixing.

When Rρ < 1, the dimensionless parameter Rw controls the mixing in the upper
layer. At constant particle concentration, the mean vertical flow velocity at any particular
vertical coordinate can be written as ū = φ0ūs+(1−φ0)ūl, where ūs and ūl are the absolute
velocities of the solid and liquid phases, respectively. Noting that the settling velocity,
corresponding to the relative velocity between the solid and liquid phase can be related to
us as ūs = ws + ūl and that in the present system there is no vertical mean flow (ū = 0),
then ūl/(gν)1/3 = −φ0Rw. This implies that at equal concentration and fluid viscosity,
the higher the value of Rw, the higher the upwards flow of fresh (light) water into the
salt (heavy) water layer. An example of this effect is shown in Figure 8. An additional
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Figure 2: Salt concentration for simulation with Rρ = 0.29 and Rw = 0.36.

Figure 3: Particle concentration for simulation with Rρ = 0.29 and Rw = 0.36.

consequence of high values of Rw is that in the computational domain particles smother
the bottom of the reservoir faster. From a mass balance, it is obtained that in the absence
of mixing in the bottom layer, the sediment height growth rate is ḣs ≈ wsφ0

φm−φ0 , with φm
the value of the loose packing concentration at the bottom.
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Figure 4: Summary of simulations in the
space of parameters (Rρ, Rw). Symbols indi-
cate whether the mixing is controlled by the
Rayleigh-Taylor instability or by plumes.
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Figure 5: Dimensionless critical time in terms
of the dimensionless parameter δ/d

Figure 6: rms fluctuations of salt concentration
as a function of the vertical coordinate and the
dimensionless time for the case Rρ = 2.88 and
Rw = 1.46 (Rayleigh-Taylor).

Figure 7: rms fluctuations of salt concentration
as a function of the vertical coordinate and the
dimensionless time for the case Rρ = 0.29 and
Rw = 9.8× 10−1.

6 Conclusions

The present numerical simulations reveal that the excess density parameter, Rρ, explains
the transition from a Rayleigh-Taylor flow to a plume detachment regime in the upper
layer. In the present set of non-dilute runs the existence of strong stratification induced
by non-dilute particle concentrations gives way to a comparatively weaker, albeit non-
diffusive, mixing process. The present simulations suggest that the onset of mixing is
strongly dependent of the thickness of the (unstable) mixing layer induced by the particle
layer settling relative to the characteristic size of sediments. It is left to interpret from
high resolution numerical simulations and experiments the intriguing and certainly more
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Figure 8: Snapshots of Salt concentration for simulation in t/τ = 2500 for three Rw with Rρ = 0.1.

complex nature of the subsequent mixing processes.
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