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Recovery of CD4+FoxP3+ regulatory T cells (Tregs) has
been associated with protection from graft versus host dis-
ease (GVHD) in adult hematopoietic stem cell transplanta-
tion (HSCT), though significant debate exists as to the
extent of this influence [1–7]. The lack of a clearly defined
relationship between Tregs and GVHD may be related to
heterogeneity of Treg populations, which can differ sig-
nificantly in their functional responses, proliferative cap-
abilities, tissue homing, and antigenic reactivity [4, 8].
Mechanisms regulating Treg compartment regeneration and
function after HSCT are not well-defined, though studies in
adult HSCT patients posited that post-transplant Tregs were
primarily derived from peripheral expansion of circulating
Tregs with minimal contribution from thymopoiesis. The
ability of the thymus to reconstitute a functionally self-
tolerant T cell compartment is compromised by age-related
thymic involution, thymic GVHD, and radiation and che-
motherapy. We hypothesized that post-transplant thymo-
poiesis may be an important factor in restoration of Treg-
mediated protection from chronic GVHD (cGVHD), and
may be a potential mechanistic explanation for disparate
observations of the relationship between Tregs and
cGVHD.

As thymus-dependent restoration of T lymphocyte
compartments has a larger role in pediatric HSCT owing to
lower-thymic function in adults due to age-related thymic
involution [9], we examined pediatric HSCT recipients. We
examined longitudinal peripheral blood samples and clinical
data from 19 pediatric allogeneic HSCT patients (Table S1)
collected at 14, 30, 60, 90, 180, 270, and 360 days post
transplant. Patients were followed clinically for a mean
duration of 16 months post transplant (range 3–24 months),
with three patients excluded from analysis due to disease
relapse leading to re-transplantation or death within
100 days of HSCT. Patients were divided into two groups,
patients that developed cGVHD (n= 7) (Table S2) and
patients that remained cGVHD-free for the study duration
of at least 12 months (n= 12). Mean time to first diagnosis
of cGVHD was 133 days post-transplant (range 101–
189 days post-transplant). T cell reconstitution after HSCT
was initially assessed by absolute lymphocyte count, and
measurement of naive (CD45RA+) and memory (CD45RO
+) helper CD4+ and cytotoxic CD8+ T cells by flow cyto-
metry (Fig. S1). These parameters did not differ sig-
nificantly between patients developing cGVHD and those
remaining cGVHD-free.

Based on the hypothesis that the defect in T cell repo-
pulation associated with cGVHD was specific for Tregs, we
examined Tregs in peripheral blood by flow cytometry.
Tregs were identified among CD4+ T cells by expression of
the transcription factor FoxP3 (Fig. 1a-c), the lineage
determining transcription factor, for Treg development and
function. Longitudinal measurement of patients after HSCT
identified differences in repopulation of Tregs associated
with development of cGVHD. Interestingly, the dynamics
of Treg repopulation appeared to occur in two phases;
during the first 60 days post-transplant Tregs increased in
all patients. However, only patients that remained cGVHD-
free demonstrated continued increases in Tregs, while
patients that subsequently developed cGVHD did not.
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Fig. 1 Associations between Tregs and thymopoiesis and cGVHD in
pediatric HSCT patients. a Tregs were identified by flow cytometry for
CD4+FoxP3+ T cells. Representative example shown. b Enumeration
of Tregs in peripheral blood samples, calculated from frequency of
CD4+FoxP3+ Tregs and ALC, for patients developing cGVHD (n=
7) and patients remaining cGVHD-free for the study duration (n= 12).
c Comparison of mean ± sem Tregs at each timepoint for patients
developing cGVHD and patients remaining cGVHD-free. Groups
compared by 2-way ANOVA. d RTEs were identified among CD4+

T cells as CD45RA+CD31+PTK7+ cells. e Enumeration of RTEs in
peripheral blood samples from patients developing cGVHD (n= 7)
and patients remaining cGVHD-free for the study duration (n= 9). f
Comparison of mean ± sem RTE frequencies at each timepoint for

patients developing cGVHD and patients remaining cGVHD-free.
Groups compared by 2-way ANOVA. g Multivariate analysis of
measured factors for T lymphocyte reconstitution as predictors of
cGVHD. Mean ± sd values for each variable shown. h Treg and RTE
frequencies in peripheral blood samples from patients ≥60 days post-
HSCT were correlated for patients developing cGVHD (n= 7) and
patients remaining cGVHD-free (n= 9). Correlations for each group
were analyzed by linear regression. Linear regression model slopes
were compared by sum-of-squares analysis. i Peripheral blood samples
from day 60 post-transplant were grouped based upon the presence (n
= 7) or absence (n= 9) of ≥200 RTEs/104 CD4+ T cells and ≥1 Treg/
μl blood and subsequent cGVHD development was monitored. Data
presented as Kaplan–Meier survival curve with log-rank analysis
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The emergence of differences in Treg frequencies
between 60 and 90 days post-transplant suggested that this
may be related to thymopoiesis, which begins in a similar
time period after HSCT [9, 10]. To examine whether Tregs
were of thymic origin, we measured expression of Helios, a
transcription factor associated with Tregs generated by
thymopoiesis [11], in Tregs present after 60 days post
transplant. The percentage of Tregs expressing Helios in
patients with cGVHD and cGVHD-free patients was similar
and consistent with reported frequencies in healthy adults
[11] (Figure S2). However, it is established that Helios
expression is not limited to thymically-derived Tregs, and
thus may not adequately define the relationship between
thymopoiesis and Tregs [11].

To examine thymopoiesis, we measured frequencies of
CD4+CD45RA+CD31+PTK7+ recent thymic emigrant
(RTE) T cells in peripheral blood. Several markers,
including CD45RA, CD31, and PTK7 have been implicated
as identifying human RTEs [12–14]. To ensure accurate
identification of RTEs, we first validated the flow cytometry
strategy by quantifying T cell receptor excision circles
(TRECs), small extrachromosomal circular DNA fragments
generated by T cell receptor gene rearrangement during
thymic development [15] in putative RTEs defined by
expression of CD45RA, CD31, and PTK7. Using a real-
time PCR assay, we observed the absence of TRECs in CD4
+CD45RO+ cells and confirmed the highest-TREC con-
centrations among CD4+CD45RA+ cells in CD31+PTK7+

cells (Figure S3).
Using this flow cytometry-based strategy, we enumerated

RTEs in longitudinal samples beginning 30 days after
transplantation (Fig. 1d-f). Patients that subsequently
developed cGVHD demonstrated persistently low fre-
quencies of RTEs as compared to patients that remained
cGVHD-free. RTE production in cGVHD-free patients
began to increase at 60 days post transplant, with continuing
increases throughout the study duration. Multivariate ana-
lysis of all measured parameters of T cell reconstitution
(ALC, peripheral numbers of CD4+ cells, CD8+ cells, and
Tregs, and RTE frequency) indicated that RTE frequency
was independently predictive of freedom from cGVHD
(Fig. 1g). These data support the hypothesis that restoration
of a functionally self-tolerant T lymphocyte compartment
after HSCT requires effective thymopoiesis.

Given data indicating that both Tregs and thymic activity
correlated with freedom from cGVHD, we examined their
correlation. Among all patients, peripheral-blood Treg
numbers did not correlate strongly with thymic function as
evidenced by RTE frequency (Fig. 1h-i). However, patients
that remained cGVHD-free for the study duration demon-
strated a significantly different relationship between Treg
numbers and RTE frequency compared to patients that
developed cGVHD (comparison of slopes of linear-

regression models, P= 0.008). Patients who did not
develop cGVHD demonstrated positive correlation between
thymic function and increased numbers of Tregs, unlike
patients developing cGVHD. This further indicated that the
presence of relatively high numbers of Tregs in the absence
of thymic function, or conversely high frequencies of RTEs
without restoration of the Treg compartment was insuffi-
cient to restore a self-tolerant immune system and protect
from cGVHD development. Demonstration of a relationship
between Treg restoration and RTE frequency among
patients remaining free from cGVHD, prompted us to
evaluate whether either RTE frequency (≥200 RTEs/104

CD4+ T cells), Treg abundance ( ≥ 1 Treg/μl blood), or both
were predictive of cGVHD development. While not reach-
ing statistical significance (P= 0.070), patients with
restoration of the Treg compartment and increased thymic
function by 60 days post-transplant (n= 7) were more
likely to remain cGVHD-free compared to patients who did
not (n= 10).

Our data indicate that both Treg numbers and effective
thymopoiesis are important factors related to protection
from cGVHD. The distinct correlations between Tregs and
RTEs in patients with and without cGVHD, as well as
multivariate analysis indicating that Treg frequency in the
absence of effective thymopoiesis is not sufficient to protect
from cGVHD, provides an important clue of a potential
mechanistic explanation for the conflicting descriptions of
the associations between Treg frequency and cGVHD [1, 3,
5, 7]. Naive phenotype CD45RA+ Tregs have been speci-
fically identified as associated with freedom from GVHD
[4], supporting the concept that donor-derived Tregs and
Tregs generated de novo after HSCT may provide differ-
ential contribution of self-tolerance.

While our data indicate that Tregs and RTEs are poten-
tially useful biomarkers for prediction of cGVHD, limita-
tions in the study bear consideration. Foremost, our study is
of a relatively small number (n= 19) of patients. Study
inclusion was limited by the number of pediatric transplants
performed at our center, as well as the need for extended
clinical follow-up. Additionally, our small sample size
precluded precise definition of optimal diagnostic cutoff
values for potential clinical assays. Validation of the utility
of Treg and RTE enumeration in cGVHD prognosis will
require a larger-validation cohort. Additionally, while our
data demonstrate correlation between Treg reconstitution,
post-transplant thymopoiesis, and protection from cGVHD,
they do not necessarily prove causality. The low frequencies
of Tregs and RTEs, as well as the limited utility of markers
such as CD31 and Helios in identifying thymic-derived
Tregs, prevented us from directly assessing this question.
Additionally, it is not possible to fully disentangle the
efficacy of post-HSCT thymopoiesis from the effects of
GVHD, particularly thymic GVHD, which likely has
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significant consequences for subsequent thymopoiesis.
Future studies utilizing methods such as single-cell RNA
sequencing and animal models of HSCT will be necessary
to understand the mechanistic relationship between post-
transplant thymopoiesis, Treg reconstitution, and immuno-
logic self-tolerance protecting against cGVHD.
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