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Significance

Most biopharmaceuticals 
traverse the eukaryotic secretory 
pathway during their production 
as either recombinant proteins 
or as mRNA-delivered products. 
As designed proteins more 
commonly form the basis of 
new medicines, methods for 
optimizing their secretion will 
become increasingly important. 
Here we present a general 
computational method for 
improving protein secretion that 
focuses on the elimination of 
cryptic transmembrane domains 
while maintaining overall protein 
stability. We show that the 
method can retrospectively and 
prospectively improve the 
secretion of computationally 
designed protein nanoparticles, 
a promising platform for the 
development of new vaccines 
and therapeutics.
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Improving the secretion of designed protein assemblies through 
negative design of cryptic transmembrane domains
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August 26, 2022; accepted February 3, 2023 by Editorial Board Member William F. DeGrado

Computationally designed protein nanoparticles have recently emerged as a promising 
platform for the development of new vaccines and biologics. For many applications, 
secretion of designed nanoparticles from eukaryotic cells would be advantageous, 
but in practice, they often secrete poorly. Here we show that designed hydropho-
bic interfaces that drive nanoparticle assembly are often predicted to form cryptic 
transmembrane domains, suggesting that interaction with the membrane insertion 
machinery could limit efficient secretion. We develop a general computational pro-
tocol, the Degreaser, to design away cryptic transmembrane domains without sac-
rificing protein stability. The retroactive application of the Degreaser to previously 
designed nanoparticle components and nanoparticles considerably improves secre-
tion, and modular integration of the Degreaser into design pipelines results in new 
nanoparticles that secrete as robustly as naturally occurring protein assemblies. Both 
the Degreaser protocol and the nanoparticles we describe may be broadly useful in 
biotechnological applications.

biochemistry | protein design | nanoparticles

Secreted proteins make up nearly 20% of the human proteome and are the primary 
medium for intercellular communication in animals (1, 2). Due to their potent and 
wide-ranging functions, many secreted proteins such as antibodies, hormones, cytokines, 
and growth factors are of great interest for therapeutic applications. Furthermore, secreted 
and membrane-anchored proteins from pathogens are common targets for prophylactic 
or therapeutic interventions in infectious disease. Secretion from eukaryotic cells is 
required for the recombinant production of many protein biologics, as they often feature 
secretory pathway-specific post-translational modifications such as proteolytic cleavage 
(3), glycosylation (4), or disulfide bond formation (5). Understanding and controlling 
the secretion of a protein of interest is thus mandatory for optimal development of secreted 
protein technologies.

Several strategies for increasing the yield of secreted proteins have been established. 
Most approaches have focused on engineering or adapting cell lines for secretion. Chinese 
hamster ovary (CHO) cells are by far the most widely used for the production of anti-
bodies and other secreted biologics, accounting for 84% of approved monoclonal biop-
harmaceuticals from 2015 to 2018 (6). Genomic, transcriptomic, and proteomic profiling 
of this cell line has yielded insights into the adaptations that confer its ability to grow at 
high density and robustly secrete target proteins and has also identified opportunities 
for intentional improvements through cell engineering (7–10). For example, overexpres-
sion of secretory chaperones or other secretory pathway factors can significantly increase 
the secreted yield of target proteins (11, 12). Engineering other eukaryotic expression 
hosts, such as S. cerevisiae or P. pastoris, has provided further avenues for recombinant 
expression (13). However, host-directed efforts like these are agnostic to the sequence of 
the target protein and therefore do not take into account sequence-specific factors that 
could affect secretion.

An alternative approach that is more customizable and amenable to downstream bio-
logical applications, in particular when the host cell cannot be modified, is engineering 
the sequences of protein biologics themselves. For example, computational or experimental 
evolution of signal peptides in both yeast and mammalian cells has yielded portable 
sequences that maximize secretion (14–16). The introduction (17, 18) or removal (19) 
of potential N-linked glycosylation sites has also been shown to substantially affect protein 
secretion. Importantly, sequence optimization via rational design or evolutionary methods 
can maximize production of a protein while still preserving its biological function, such 
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as immunogenicity or receptor binding (20, 21). Although pow-
erful, these methods tend to focus on the maximization of secreted 
yield for single proteins and can be laborious, underscoring the 
need for general methods applicable to broad classes of secreted 
proteins. To devise such general methods, it is necessary to under-
stand the effects of common sequence elements on protein secre-
tion and how they can be modulated through design.

Protein translocation across the endoplasmic reticulum (ER) 
membrane is a key step in the traversal of proteins through the 
eukaryotic secretory pathway. Transmembrane, secreted, and ER/
Golgi-resident proteins typically contain an N-terminal signal pep-
tide that is recognized by the signal recognition particle (SRP) 
(22–24). The SRP–polypeptide–ribosome complex is then targeted 
to the ER membrane, across which the nascent polypeptide is trans-
located in a mostly unfolded state through a protein channel, the 
Sec translocon. The translocon complex senses the hydrophobicity 
of segments within a polypeptide to determine its fate: highly 
hydrophobic segments are partitioned into the ER membrane, 
while segments of low hydrophobicity are translocated into the ER 
lumen (25). To predict this biological hydrophobicity sensing, 
Hessa et al. empirically determined the position-specific amino acid 
contribution of each residue in a model polypeptide segment to 
transmembrane insertion potential (dGins) and generated a theo-
retical model that can, using sequence alone,

predict the dGins of any given polypeptide segment, dGins,pred 
(26, 27). Unsurprisingly, the model predicts that transmembrane 
proteins contain segments of low dGins,pred, while secretory pro-
teins are generally devoid of such segments. Interestingly, many 
proteins that are typically expressed in the prokaryotic or eukar-
yotic cytoplasm also contain segments of low dGins,pred, as they 
have not evolved under selective pressure to avoid them. We 
hypothesize that, when expressed recombinantly, the Sec translo-
con may interpret segments of low dGins,pred within proteins tar-
geted for secretion as transmembrane domains, leading to 
inefficient secretion.

Protein nanoparticles, which in nature evolved to function as 
containers, reaction chambers, and multivalent display platforms 
(28–30), have long been a promising biotechnological platform 
(31–33). Virus-like particles (VLPs) and other naturally occur-
ring protein nanoparticles such as ferritin and lumazine synthase 
have been engineered or evolved to encapsulate a number of 
different cargoes, such as inorganic particles, polymers, micelles, 
enzymes, DNA, and small molecules (34–36). Self-assembling 
protein complexes have also been used as scaffolds for nanopar-
ticle vaccine design, an application that often requires secretion 
from eukaryotic cells to obtain natively folded antigens with 
appropriate post-translational modifications (20, 37, 38). In the 
last few years, new and accurate computational methods have 
made possible the design of self-assembling proteins with cus-
tomized structures (39–44). These methods allow rational explo-
ration of structural and functional space beyond the limited set 
of protein nanoparticle architectures sampled during evolution 
(45). Additionally, because they are explicitly designed to adopt 
low-energy states, designed protein nanoparticles are often hyper-
stable, a property that can enhance the stability of proteins fused 
to them (46–48). The recent entry of multiple vaccines based on 
computationally designed nanoparticles into clinical trials, and 
the regulatory approval of one of them for COVID-19 (49), 
highlights the potential technological impact of this promising 
class of proteins (47, 50, 51).

Naturally occurring and designed protein nanoparticles alike 
use hydrophobic interactions both in the folding of their subunits 
as well as in the interactions between subunits that drive supra-
molecular assembly (40, 52). One approach to protein 

nanoparticle design computationally docks symmetric protein 
building blocks into a desired geometry and then designs protein–
protein interfaces between them (39, 42). This design strategy has 
been previously shown to generate robust, well-expressed, stable 
protein nanoparticles constructed from subunits or pairs of sub-
units that are most often expressed in the cytoplasm of bacterial 
cells (39, 41–43, 53, 54). Nonetheless, only a small subset of the 
components of these designed nanoparticles have been robustly 
secreted from eukaryotic cells (47, 50, 51).

Here, we develop a method to improve the secretion of com-
putationally designed protein nanoparticles. First, we identify a 
correlation between the presence of cryptic transmembrane 
domains and low levels of secreted protein. We then develop a 
general computational protocol, named the Degreaser, that spe-
cifically designs away cryptic transmembrane domains without 
sacrificing overall structural stability. We demonstrate the ability 
of the Degreaser to not only retroactively improve the secreted 
yield of existing nanoparticles and nanoparticle components, but 
also to avoid the introduction of cryptic transmembrane domains 
during the design of a new set of robustly secreting designed pro-
tein nanoparticles.

Results

The Degreaser. During the course of our work designing self-
assembling protein nanomaterials and using them as scaffolds for 
heterologous antigen display, we have observed that many [but not 
all (50, 51)] designed nanoparticles and nanoparticle components 
secrete from eukaryotic cells at very low levels. We hypothesized 
that their inefficient secretion may derive from the introduction 
of long contiguous stretches of hydrophobic amino acids during 
nanoparticle interface design. These stretches could be interpreted 
by the Sec translocon as cryptic transmembrane domains, leading 
to inefficient translocation across the ER membrane and poor 
protein secretion. Using the model of Hessa et al. (26, 27) and a 
sliding window of 19 amino acids, we compared the distributions 
of lowest dGins,pred per sequence of 489 computationally designed 
two-component icosahedral nanoparticle scaffolds (53) to those 
of 309 transmembrane and 585 nontransmembrane proteins in 
the RCSB Protein Databank (Fig. 1A) (55, 56). We identified a 
dGins,pred threshold of +2.7 kcal/mol that maximally discriminated 
between natural transmembrane and nontransmembrane proteins 
(84.7% and 15.6% < +2.7 kcal/mol, respectively). 61.3% of the 
protein nanoparticle components contained segments below this 
threshold, indicating that the designed proteins differ substantially 
from naturally occurring nontransmembrane proteins in their 
likelihood to include hydrophobic segments. As a preliminary 
experimental test of whether cryptic transmembrane domains 
affect protein secretion, we analyzed the expression of a set of 
480 de novo-designed peptide-binding proteins by yeast surface 
display (57). To reach the cell surface, these proteins must be 
translocated across the ER membrane and into the lumen. We 
found that the presence of segments of low dGins,pred strongly 
hindered surface display, while proteins lacking such cryptic 
transmembrane domains were generally efficiently exported to 
the cell surface (SI Appendix, Fig. S1).

The inspection of individual designed nanoparticle components 
highlighted the impact that interface design can have on dGins,pred. 
For example, docking naturally occurring pentameric (PDB 2jfb) 
and computationally designed trimeric (PDB 5hrz) building blocks 
and designing them to form an icosahedral nanoparticle [I53_
dn5; (58)] resulted in two hydrophilic to hydrophobic substitutions 
in a single helix of the pentamer (Fig. 1B). As a result, the dGins,pred 
at index 14 (residues 14 to 32) of the pentamer (I53_dn5A) was 

http://www.pnas.org/lookup/doi/10.1073/pnas.2214556120#supplementary-materials


PNAS  2023  Vol. 120  No. 11  e2214556120 https://doi.org/10.1073/pnas.2214556120   3 of 11

reduced from +4.71 kcal/mol to +0.779 kcal/mol, suggesting that 
this region of the protein may be interpreted as a cryptic trans-
membrane domain during translocation. Quantification of secreted 
protein by western blot revealed a nearly 100-fold reduction in 
secretion of I53_dn5A relative to its naturally occurring counter-
part (Fig. 2A and SI Appendix, Fig. S2). The inspection of several 
other previously designed nanoparticle components that secrete 
with varying efficiency from eukaryotic cells supported the rela-
tionship between the presence of cryptic transmembrane domains 
and poor secretion (SI Appendix, Fig. S2). In each poorly secreted 
case, cryptic transmembrane domains resulted from the introduc-
tion of a few surface-exposed hydrophobic residues at the designed 
interface that, combined with existing hydrophobic residues 
involved in packing within the protein itself, form segments of low 
transmembrane insertion potential. Together, these observations 
suggest that the secretion of designed proteins from eukaryotic 
cells, a prerequisite for several biotechnological applications, may 
be limited by the presence of cryptic transmembrane domains 
introduced during design.

To address this issue, we developed the Degreaser, a new design 
protocol in the Rosetta macromolecular modeling software suite 
(59, 60) that detects and eliminates cryptic transmembrane 
domains without disrupting protein structure or stability. We had 
three primary goals for the protocol: 1) accurate identification of 
regions of low dGins,pred and their improvement through minimal 
sequence perturbations, 2) preservation of the overall integrity of 
the protein’s structure, and 3) compatibility with large-scale protein 
design protocols. The Degreaser uses an internal implementation 
of the model of Hessa et al. (26, 27) to identify 19-residue segments 
of input protein structures that have dGins,pred < 3.5 kcal/mol. Each 

residue in these segments is individually mutated to polar amino 
acids selected from a user-specified set, the mutated residue and 
nearby residues in three-dimensional space are repacked to attempt 
to accommodate the mutation, and the overall Rosetta score and 
dGins,pred are re-evaluated (Fig. 1C). All chains in the input structure 
are modeled throughout the process, including symmetry-related 
subunits when appropriate, to capture the potential energetic 
effects of each mutation in the correct structural context. Mutations 
are discarded if they fail to increase dGins,pred by a user-specified 
amount or are energetically unfavorable (i.e., result in an increase 
in Rosetta score beyond a user-specified threshold), usually due to 
steric clashes. Designs that pass these filters (for details, see 
SI Appendix, Materials and Methods) are output as potential can-
didates for experimental evaluation. Typically, the Degreaser iden-
tifies apolar to polar mutations that increase dGins,pred; however, 
some polar to polar mutations still increase dGins,pred due to, for 
example, favorable interactions of positively charged residues near 
segment boundaries with the lipid membrane. We found that a 
small number of mutations was often sufficient to substantially 
raise the dGins,pred of the segment of interest. For example, the 
dGins,pred of residues 14 to 32 in the I53_dn5 pentamer increased 
from +0.779 to +2.812 kcal/mol with only one mutation to a 
charged amino acid (Fig. 1D).

Improving the Secretion Yield of Existing Designed Protein 
Nanoparticle Components. As a first test of our protocol, several 
previously designed two-component nanoparticle proteins that 
were originally expressed in bacteria were screened for secretion 
from Expi293F cells (53, 58). Three had no predicted segments 
of low dGins,pred, needing no Degreaser application, and secreted 
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with yields between 3 and 34 µg/mL of cell culture supernatant 
(SI Appendix, Fig. S2). However, seven others yielded between 
0.6 and 3 µg/mL, precluding purification and in vitro assembly 
experiments. In two of the latter cases, the Degreaser was 
applied to create several single-residue variants intended to 
improve secretion of I53_dn5A, the pentameric component of 
the icosahedral nanoparticle I53_dn5 (58), and O43-38B, the 
tetrameric component of a designed octahedral nanoparticle, 
O43-38 (SI Appendix, Fig. S3A), respectively. The two naturally 

occurring proteins from which these nanoparticle components 
were derived (including an N29S mutation in 1e4c to knock 
out a potential N-linked glycosylation site) both secreted at high 
levels, around 100 µg/mL (Fig. 2A). The Degreased variants were 
predicted to have no significant effects on protein stability, as 
indicated by the <5% change in Rosetta score compared to the 
input structures (SI  Appendix, Fig.  S4). In each case, variants 
with significant improvements in secretion yield were obtained. 
For example, two of four I53_dn5A pentamer variants tested, 
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W16E and L26E, increased dGins,pred by more than 1.1 kcal/mol 
and improved secretion yield more than 20-fold (Fig. 2A; amino 
acid sequences of all proteins used in this study are provided in 
SI Appendix, Table S1). For the O43-38B tetramer, two single-
residue variants, A141E and R147N, boosted secretion eightfold 
and twofold, respectively.

To assess the orthogonality and compatibility of the Degreaser 
with unrelated mutations, some nanoparticle components were 
further redesigned for other purposes. Because existing methods 
for designing protein stability, solubility, or expression do not 
explicitly penalize the introduction of contiguous hydrophobic 
segments, the variants generated were generally orthogonal to 
those of the Degreaser. In the case of I53_dn5A, we mutated a 
pair of cysteine residues retained from the naturally occurring 
pentameric scaffold to alanine to prevent the formation of 
off-target disulfide bonds. Ten additional nearby mutations and 
a three-residue deletion were also included to maintain protein 
stability. These unrelated mutations were dGins,pred-agnostic and 
did not substantially change the hydrophobicity of already-hy-
drophobic segments within the protein (SI Appendix, Fig. S5). 
In these contexts, the Degreaser mutations again positively 
impacted protein secretion without negatively impacting pro-
tein assembly: the stabilized O43-38B variant DEO5 (which 
incorporated two Degreaser mutations: A141E and N146D) 
and the I53_dn5A.2 variant (incorporating the A23E Degreaser 
mutation) had higher secretion yield than their originally 
designed counterparts (8.2 and 234 µg/mL, respectively; Fig. 2 
A and B). To confirm that the secretion phenotype was depend-
ent on the Degreaser-identified mutations, we reverted these 
positions to their originally designed identities, which resulted 
in substantial decreases in dGins,pred and secretion yield as 
expected (1.8 and 2.3 µg/mL, respectively; orange data points 
and bars). Importantly, these nanoparticle components retained 
their ability to assemble in vitro (Fig. 2C), as validated by 
dynamic light scattering (DLS), size exclusion chromatography 
(SEC), and negative stain electron microscopy (nsEM) of 
in vitro assembly reactions containing their respective second 
components. Taken together, these results demonstrate that the 
Degreaser can be used to generate nanoparticle component var-
iants with improved secretion that retain their ability to assem-
ble to designed nanoparticle architectures.

Improving the Secretion Yield of Protein Nanoparticles by 
Degreasing Cryptic Transmembrane Domains. Encouraged by 
the ability of the Degreaser to improve secretion of the oligomeric 
components of designed two-component protein nanoparticles, 
we next evaluated whether it could also improve the secretion of 
one-component or homomeric nanoparticles that self-assemble 
during secretion. Several naturally occurring homomeric protein 
nanoparticles such as lumazine synthase and ferritin have been 
explored in biotechnological applications such as nanoparticle 
vaccine design and drug delivery (38, 61). We compared the 
secretion of these two naturally occurring protein nanoparticles 
to the computationally designed one-component icosahedral 
nanoparticle I3-01 (43) and found that they secrete at levels 
roughly tenfold and 100-fold higher, respectively (Fig. 3A). This 
observation is consistent with the lack of low dGins,pred segments 
in lumazine synthase and ferritin, whereas I3-01 has two segments 
of low dGins,pred, one near the N terminus and a second near the C 
terminus, both of which include polar to hydrophobic mutations 
at the designed nanoparticle interface (Fig. 3B).

We used the Degreaser to identify substitutions that could 
increase the dGins,pred of both the N- and C-terminal cryptic trans-
membrane domains of I3-01 (SI Appendix, Fig. S5). The single 

substitution that had the greatest effect on both dGins,pred and 
secretion was H35D in the N-terminal region, though K25D also 
substantially increased secretion yield (Fig. 3A). A triple mutation 
in the C-terminal region (L171Q/S177E/V180N) also increased 
secreted yield. Combining mutations in both regions resulted in a 
quadruple mutant (H35D/L171Q/S177E/V180N) that secreted 
at tenfold higher levels than any of the tested single-residue vari-
ants. We again evaluated the utility of Degreaser mutations in the 
context of orthogonal mutations by introducing the four 
Degreaser-identified substitutions into a negatively “supercharged” 
I3-01 variant, I3-01-neg. While the I3-01-neg mutations did not 
affect the predicted transmembrane insertion potential of I3-01 
(SI Appendix, Fig. S5), they did substantially improve overall pro-
tein expression (SI Appendix, Fig. S11B), which may explain our 
observation of improved secreted yield for this variant even in the 
absence of Degreaser mutations (Fig. 3A). Nevertheless, incorpo-
ration of the four Degreaser-identified mutations into I3-01-neg 
further improved its secretion, resulting in a 64-fold increase in 
secreted yield compared to I3-01 (Fig. 3C). This variant, I3-01NS, 
retained its ability to assemble to the known icosahedral architec-
ture of I3-01: SEC, DLS, and nsEM all indicated monodisperse 
particles that were indistinguishable from previously published 
I3-01 data [Fig. 3D; (43)]. These results establish that elimination 
of cryptic transmembrane domains through sequence redesign 
can be used to improve the secretion of homomeric self-assembling 
protein nanoparticles, including the I3-01 nanoparticle that has 
been used as a hyperstable scaffold in several biotechnological 
applications (46, 48, 62, 63).

De Novo Design of Secretion-Optimized One-Component Protein 
Assemblies. Given the success of the Degreaser in retroactively 
improving the secretion of several nanoparticle components 
and a computationally designed nanoparticle, we next tested 
its prospective use and compatibility with large-scale design 
protocols by incorporating it into the design of a set of new 
one-component nanoparticles intended to secrete robustly from 
mammalian cells. We used as building blocks a set of 1,094 models 
of trimeric proteins consisting of de novo helical bundles fused 
to designed helical repeat proteins as previously described (44). 
These building blocks were docked as rigid bodies into three target 
architectures containing three-fold symmetry axes: icosahedral 
(I3), octahedral (O3), and tetrahedral (T3) (Fig.  4A). After 
docking, residues at interfaces with adjacent building blocks were 
designed using Rosetta to enable spontaneous self-assembly to the 
target architecture. Three fully automated design protocols were 
compared: OG, ND, and DG (Fig. 4A). The OG protocol used a 
conventional, dGins,pred-agnostic protocol and therefore generated 
designs that had dGins,pred values both above and below +2.7 kcal/
mol. The ND protocol simply applied a post-design filter to 
the OG design set that rejected any designs with dGins,pred less 
than +2.7 kcal/mol. Finally, the DG protocol incorporated the 
Degreaser after the interface design step and also filtered out any 
designs with dGins,pred less than +2.7 kcal/mol. In this benchmark 
design set, we used the conservative approach of allowing the 
Degreaser to change at maximum one residue per design, focusing 
on decreasing the hydrophobicity of the lowest dGins,pred segment. 
It is important to note that not all DG designs harbor a Degreaser 
mutation, as designs that do not have segments of low dGins,pred 
pass the Degreaser step and are accepted without modification.

The incorporation of Degreaser-guided design into an other-
wise conventional design protocol did not substantially perturb 
the structural metrics typically used to gauge the quality of 
designed nanoparticle interfaces. Within the DG design set, 420 
of the 1,048 designs (40%) were actually mutated by the Degreaser, 
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while mutations meeting the Degreaser criteria were not identified 
for 18 designs which were therefore rejected. Notably, there was 
an increase in dGins,pred of the Degreaser-guided design models 
before any sequences were filtered on dGins,pred (47% > +2.7 kcal/
mol compared to 36% for the OG design models). After filtering, 
DG designs that were not mutated by the Degreaser had an aver-
age dGins,pred of +3.97 kcal/mol, while those bearing mutations 
had an average dGins,pred of +3.38 kcal/mol. Because sequences 
with originally high dGins,pred are not mutated, the lower average 
dGins,pred of sequences with mutations is due to the low original 
dGins,pred of those sequences. The Degreaser mutations led to 
an average increase in dGins,pred of 1.41 kcal/mol but no significant 
differences in other design metrics (SI Appendix, Fig. S6A). A 
slight shift in the distribution of ddG (the Rosetta-predicted 
energy of interface formation) was observed, which was expected 
due to Degreaser-introduced polar residues in what remained 
predominantly hydrophobic interfaces, accompanied by a small 
shift in the distribution of the interface shape complementarity 
[Sc; (64)]. On the other hand, the solvent-accessible surface area 
buried at the interface (sasa) showed a nearly identical distribution 
to that of conventional (OG) and dGins,pred-filtered (ND) designs. 
After filtering on several structural metrics and visual inspection 

of the top-scoring designs by ddG, we selected 99 KWOCAs 
(Khmelinskaia-Wang One-Component Assemblies) for experi-
mental characterization. These included 57 OG, 19 ND, and 23 
DG designs, which differed in dGins,pred but not other structural 
metrics (SI Appendix, Fig. S6B). Eight of the selected DG designs 
included mutations introduced by the Degreaser.

We first expressed the KWOCAs in the cytoplasm of E. coli to 
determine which ones successfully assembled to the intended struc-
tures regardless of secretion from mammalian cells. All KWOCAs 
but one yielded sufficient protein in the soluble fraction of clarified 
E. coli lysates for purification and characterization (Fig. 4B). 
During SEC purification, 22 of 99 KWOCAs yielded a peak with 
an elution volume corresponding to a protein complex larger than 
that expected for a trimer, but smaller than unbounded aggregates 
(SI Appendix, Fig. S7A). Most of these also showed peaks at elution 
volumes corresponding to unassembled trimeric protein. DLS of 
fractions from the early peaks indicated that the majority of these 
22 designs formed monodisperse assemblies (SI Appendix, 
Fig. S7B), and nsEM confirmed that 13 assembled to homogene-
ous nanoparticle structures (SI Appendix, Fig. S8). The proportion 
of designs confirmed to adopt homogeneous structures was iden-
tical between conventionally designed proteins (OG+ND) and 
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Fig. 3. Retroactive degreasing of a designed protein nanoparticle improves secretion yield. (A) I3-01 can be Degreased to boost secretion yield; square markers 
represent variants that incorporate mutations from orthogonal redesign for improvement of other phenotypes. (B) Comparison of the dGins,pred per segment of 
wild-type (gray) and best-secreted (green) variants of I3-01 with secreted natural protein assemblies (purple). The lowest regions of wild-type I3-01 are shaded in 
gray, and the horizontal dashed line denotes the +2.7 kcal/mol threshold. (C) Left, representative western blot of individual samples across I3-01 designs. Right, 
secreted yield quantification of the same series measured in triplicate. (D) Characterization of the Degreased I3-01NS purified from mammalian cell supernatants 
by DLS, SEC, and nsEM with 2D class averaging confirmed its structure is identical to that of I3-01 expressed in bacteria [Hsia et al. (43)].
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Degreaser-designed candidates [10/76 (13%) vs. 3/23 (13%), 
respectively; Fig. 4B]. Crystallization of several KWOCAs resulted 
in high-resolution structures of trimeric building blocks of one 
nonassembling KWOCA (KWOCA 39; SI Appendix, Fig. S9) and 
four assembling KWOCAS, including one confirmed by nsEM 
(KWOCAs 60, 65, 73, and 102) (SI Appendix, Fig. S10A). The 
crystal structures matched closely the monomeric subunit of the 
design models (1.0-2.2 A Ca rmsd), with larger deviations observed 
at the level of the trimers (2.2-4.0 A Ca rmsd). The differences 
suggest that multiple aspects of the designed proteins, such as the 
helical bundle interface, flexibility within the designed helical 
repeat domains, and flexibility at the junction of the helical repeat 
domains and trimeric helical bundles, contribute subtle structural 
deviations that propagate across the trimer, which may prevent 
formation of the target architecture in the crystal.

We next evaluated secretion of the KWOCAs from transfected 
Expi293F cells by measuring the levels of myc-tagged protein in 
clarified harvest fluid by western blot (SI Appendix, Methods). A 
majority of the KWOCAs (72%) secreted with greater yield than 
I3-01, our benchmark modestly secreted protein nanoparticle 
(Fig. 4 B and C). The apparent higher success in secretion within 
the DG KWOCA set (87% compared to 67% and 63% in the 
OG and ND sets, respectively) supports the utility of the 
Degreaser in predicting and improving protein secretion. For 
further analysis, we separated the experimentally characterized 
KWOCAs into two categories: nonassembling proteins 

(SI Appendix, Figs. S9 and S11) and confirmed assemblies 
(SI Appendix, Figs. S8, S10, and S11). The nonassembling pro-
teins show only a weak trend of higher secretion yield with higher 
dGins,pred (SI Appendix, Fig. S11A), though this is confounded by 
the varying overall expression levels of these proteins (SI Appendix, 
Fig. S11B). Although we did not observe consistent differences 
in secretion yield among the OG, ND, and DG sets of nonas-
sembling proteins, inline application of the Degreaser (DG) 
tended to provide a greater benefit to secreted yield than filtering 
on dGins,pred after conventional design (ND) (SI Appendix, 
Fig. S11A). Of the 13 EM-validated assembling designs 
(SI Appendix, Fig. S8), nine secrete at higher levels than the orig-
inal I3-01 design (Fig. 4C), and the highest secreted yield 
(KWOCA 101) was within twofold of the highest secreting rede-
signed variant of I3-01 (I3-01NS; Fig. 3C). The characterization 
of eight of these KWOCAs by SEC, DLS, and nsEM revealed 
that each was indistinguishable from its bacterially produced 
counterpart (Fig. 4D and SI Appendix, Figs. S7 and S8). Only 
two of the verified assemblies (KWOCAs 0 and 47, from the OG 
design set) have segments of low dGins,pred (<+2.7 kcal/mol; 
Fig. 4C). Those two assemblies were secreted at very low levels, 
while inline application of the Degreaser led to the highest yield 
of secreted nanoparticles (KWOCAs 100 and 101; Fig. 4E). 
Together, these data indicate that the Degreaser can be applied 
to improve secreted yield from mammalian cells while maintain-
ing a similar success rate in design outcome.
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Fig. 4. Incorporation of the degreaser prospectively during design to generate de novo designed secreted protein assemblies. (A) Trimeric building blocks 
were docked into a desired geometry: tetrahedral, octahedral, or icosahedral. For the KWOCAs, designs were run independently for DG and OG sets, while ND 
designs were selected from a filtered subset of all OG designs. (B) Expression and secretion characterization of KWOCAs shows the benefit of the Degreaser 
on secreted yield (positive expression in mammalian cells determined as greater secretion than I3-01). Assemblies validated by nsEM are highlighted in darker 
color. (C) nsEM-verified assembling (SI Appendix, Fig. S9) secreted proteins partitioned into OG, ND, and DG groups show the enhanced secreted yield of DG 
designs. (D) Constructs purified from mammalian material assembled into well-defined particles, indistinguishable from those expressed in bacteria (SI Appendix, 
Fig. S9). (Scale bar, 100 nm.) (E) Left, representative western blot of KWOCAs with lowest dGins,pred and secretion yield (K0 and K47) and highest secretion yield 
(K100 and K101). Right, quantification of secreted yield, measured in triplicate.
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Comparison of several pairs of closely related designs yielded 
additional insights into secretion determinants. For example, 
KWOCA 51 and 101, which form closely related tetrahedral 
assemblies, used the same input scaffold for design and differ by 
only two residues. However, KWOCA 101 has a higher lowest 
dGins,pred and

secreted with a roughly fourfold greater yield than KWOCA 
51 (Fig. 4C), highlighting how small changes in protein sequence 
can lead to considerable changes in secreted yield. Also related 
are the Degreased KWOCA 100 and the conventionally designed 
KWOCA 46, both confirmed assemblies (SI Appendix, Fig. S9), 
in which a one-residue difference led to a +1.13 kcal/mol change 
in dGins,pred and a fivefold increase in secretion. In both of these 
cases, the conventional design pipeline resulted in assemblies 
that secrete poorly and would require retrospective application 
of the Degreaser. Two other pairs of designs suggested that assem-
bly state may affect secreted yield. The nonassembling KWOCA 
88 differs from the octahedral KWOCA 4 by only two residues, 
but KWOCA 88 secretes with a roughly fourfold higher yield 
(Fig. 4C and SI Appendix, Fig. S11a). Finally, even though 
KWOCA 73 differs from KWOCA 41 by only two residues, the 
former showed higher-order material by SEC and DLS, whereas 
the latter did not (SI Appendix, Fig. S8), and KWOCA 73 
secretes at about half the yield of KWOCA 41 even though its 
lowest dGins,pred value is much higher. Thus, although there 
appears to be a general secretion penalty for self-assembling pro-
teins, these data further support that in-line use of the Degreaser 
during design can improve secreted nanoparticle yield.

We obtained single-particle cryo-EM density maps of two 
highly secreted assemblies, KWOCA 51 and KWOCA 4, to eval-
uate our design protocol in more detail. DLS and SEC indicated 

that both designs assemble into monodisperse nanoparticles, with 
KWOCA 51 forming a smaller particle than KWOCA 4 (~19 
and 26 nm hydrodynamic diameter, respectively) as expected by 
design (~17 and 32 nm, respectively) (Fig. 5A). Comparing cal-
culated to experimental SAXS profiles further revealed that 
KWOCA 51 homogeneously assembles into the intended tetra-
hedral geometry, while KWOCA 4 significantly deviates from 
the design model (Fig. 5B). Indeed, a single-particle cryo-EM 
density map of KWOCA 51 at 5.1 A resolution closely matched 
the design model, and relaxing the model into the density led to 
only minor deviations within each subunit that mainly reflect 
slight structural flexibility of the helical repeat domain (Fig. 5C 
and SI Appendix, Fig. S10B). In contrast, a cryo-EM map of 
KWOCA 4 at 6.6 A resolution revealed that the protein does not 
form the computationally designed icosahedral assembly, instead 
identifying an octahedral nanoparticle as the only species present 
in the assembly fraction from SEC (Fig. 5D and SI Appendix, 
Fig. S10 B and C). Accordingly, a SAXS profile calculated from 
a cryo-EM model obtained by fitting and relaxing trimeric build-
ing blocks into the density closely matched the experimental data 
(SI Appendix, Fig. S10D). Interestingly, only minor structural 
deviations within the trimeric building blocks were observed 
when comparing the computational design model to the relaxed 
cryo-EM model, indicating that the off-target assembly must be 
due to differences in the computationally designed interface 
between the trimers. Indeed, the angle between two contiguous 
subunits in the cryo-EM model is rotated by 27°, resulting in a 
deviation of 18 A of the contiguous subunit compared to the 
design model (Fig. 5E and SI Appendix, Fig. S10C). This rotation 
is further accompanied by a 3 A transverse translation of the 
center of mass of the designed interface past the C2 symmetry 
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axis, suggesting that the residues on the periphery of the originally 
designed interface were loosely packed and only weakly contrib-
uting to the interface energy. To our knowledge, this is the first 
report of a de novo computationally designed protein nanopar-
ticle that forms a well-defined architecture distinct from the one 
intended. Nevertheless, the two cryo-EM density maps together 
establish that KWOCAs 4 and 51, which secrete from mamma-
lian culture at higher levels than lumazine synthase and I3-01, 
form monodisperse de novo-designed nanoparticles with some 
conformational flexibility, as judged by the relatively low resolu-
tions of the reconstructed cryo-EM maps.

Discussion

Computational protein design methodologies are advancing rap-
idly, enabling access to previously unexplored spaces in protein 
structure and function (45, 65). In addition to increasing our 
fundamental understanding of proteins, these advances have made 
commercial application of computationally designed proteins a 
reality. For example, computationally designed cytokine mimetics 
(66), enzymes for gluten degradation (67), and nanoparticle vac-
cines (47, 51, 68) have recently advanced to clinical trials, and a 
designed nanoparticle vaccine for COVID-19 (50) was recently 
approved for use in South Korea. As designed proteins become 
increasingly useful, methods for optimizing various phenotypes 
other than structure and stability become more important. Recent 
examples include the ability to design heterodimers while main-
taining the solubility of the individual components (69) and meth-
ods for modulating the brightness and chromophore specificity 
of de novo mini fluorescent proteins (70, 71). To enable their 
modular implementation in a wide variety of design applications, 
design methods like these must be able to optimize such pheno-
types without sacrificing structural stability. The Degreaser was 
explicitly constructed to be modular-as showcased by our redesign 
of existing proteins as well as our application of the Degreaser 
in-line during the design of new secretable protein assemblies-while 
preserving structural stability and integrity. These features in prin-
ciple enable its application to any protein. Furthermore, applica-
tion of the Degreaser in-line during design is minimally invasive: 
It only mutates proteins that require elimination of cryptic trans-
membrane domains, and it identifies the minimal sufficient per-
turbation. As we showed during KWOCA design, this approach 
allows in-line implementation of the Degreaser that should elim-
inate the requirement for retroactive redesign of poorly secreting 
proteins.

More broadly, any method for improving the yield of recom-
binant biologics is valuable. For example, the decades of effort 
invested in optimizing and industrializing the production of 
monoclonal antibodies now underpins the biologics industry 
(72). Methods like the Degreaser that encode improved yield 
or performance in the sequence of the molecule itself are espe-
cially desirable, as they make the improvements “automatic”: 
They do not require other actions like the use of specialized cell 
culture media or co-transfection of chaperones. Numerous 
examples of enzyme and antigen redesign to improve yield high-
light the utility of this approach (19, 73–80). Methods that 
encode improvements genetically are of increasing importance 
now that genetic delivery of biologics has become clinical reality 
with the recent licensure of several AAV-based gene therapies 
and mRNA vaccines (81, 82). Furthermore, secreted protein 
nanoparticle immunogens are beginning to be explored as a 
strategy for improving the potency of mRNA vaccines (83–85). 
The Degreaser and the new highly secretable KWOCAs we 
describe here could pave the way towards the design of 

mRNA-launched nanoparticle vaccines with atomic level accu-
racy. This approach will enable structural and functional opti-
mization of the nanoparticle scaffolds in ways that are not 
possible when relying on naturally occurring scaffolds. For 
example, we previously showed that the de novo design of nan-
oparticle scaffolds enabled precise optimization of termini place-
ment for genetic fusion of functional domains (58).

Several features in our data suggest potential future directions 
for the Degreaser. First, to test the suitability of the Degreaser as 
part of a “set it and forget it” large-scale design protocol, we used 
the conservative strategy of only allowing one mutation maxi-
mum in the DG KWOCA designs. However, the results we 
obtained retroactively degreasing I3-01 and the individual scaf-
folds of two-component nanoparticles indicate that more aggres-
sive use of the Degreaser (i.e., enabling multiple mutations) could 
lead to larger improvements in the secretion of specific proteins, 
and could lead to a higher success rate in designing highly secreta-
ble proteins while still preserving the intended structure and 
function. Second, although we have shown the presence of cryp-
tic transmembrane domains significantly influences protein 
secretion, there are other factors that affect secretion and should 
be considered when designing secreted proteins (19, 73). For 
example, a recent high-throughput study of the secretion of pro-
tein fragments in yeast identified several sequence-based features 
that could be incorporated in future secretion models (86). 
Finally, here we applied the Degreaser to homomeric nanopar-
ticles and the oligomeric components of two-component nano-
particles due to the many potential applications of highly 
secretable designed protein nanoparticles. Future application of 
the Degreaser to two-component nanoparticles, other designed 
proteins, and naturally occurring proteins that have not evolved 
to secrete at high levels could be used to improve the secretion 
of many different potential biologics and enable new applications 
of designed proteins.

Methods Summary

Details for methods can be found in the Supporting Information 
Appendix. The Degreaser was written in Rosetta-compatible C++, 
and design protocols that incorporated it were written with 
RosettaScripts. Designed protein nanoparticles and their compo-
nents were expressed recombinantly as secreted constructs in HEK 
Expi293F cells to determine their secreted yields as well as for 
purification. For proteins with low secreted yields, constructs were 
also expressed with bacterial culture and subsequently purified. 
Biochemical characterization (DLS, nsEM) was carried out for 
constructs with assembly signal by preparative SEC. The charac-
terization by cryo-EM was carried out for selected secreted 
assemblies.

Data, Materials, and Software Availability. Data deposition, atomic coordi-
nates, and structure factors have been deposited in the Protein Data Bank, http://
www.rcsb.org (PDB ID 8FBI, 8FBJ, 8FBK, 8FBN and 8FBO). Cryo-EM maps were 
deposited in the Electron Microscopy Data Bank (EMD-28862 and EMD-28929). 
All study data are included in the article and/or SI Appendix.
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