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Abstract

We thank Dr. Karp for his interest [1] in our paper [2]. We agree on some points, but our 

theoretical description differs from his in ways leading to important divergences for teaching and 

practice. We also see a danger of overextending abstract theory (with its inevitable and extensive 

simplifications) into practice [3], especially when the practical questions are causal but the theory 

applied lacks an explicit, sound longitudinal causal model to address these questions. As we will 

explain, a defect in the “study base” theory Dr. Karp adopts as a foundational belief system is that 

it takes as a foundation a parameter affected by baseline risk factors—including exposure when 

that has effects on follow-up or disease. It consequently leads to biases and misconceptions of the 

sort documented elsewhere [4, 5] and below, which require a coherent theory of longitudinal 

causality to address. Our divergence from Dr. Karp thus raises the issue of the role of theory and 

methods in research, although matching serves to illustrate our points in a familiar epidemiologic 

context.
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Moving on from old theories to eradicate misconceptions

Dr. Karp discusses the “trohoc fallacy,” which involves thinking that case–control studies are 

based on comparing cases to noncases, rather than recognizing that as with cohort studies 

they compare exposure groups. We are not sure why he raised that issue; we didn’t discuss it 

since that fallacy, while common in the 1970s, was thoroughly discredited by the 1980s. 
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True, the fallacy still appears occasionally in methods papers [e.g., 6] and is embedded in the 

archaic view of case–control studies as inherently retrospective (which confuses the order of 

etiologic and selection events with order of data recording). But credible methodologic 

writings have long taken pains to emphasize that the causally relevant target comparisons are 

across exposures, not outcome groups (regardless of whether there is oversampling of cases 

relative to noncases) [7, 8]. In fact, the idea that the case–control design is best viewed as an 

efficient sampling strategy for study of uncommon outcomes has been around for 

generations and remains part of standard theory [9, Ch. 8]. This conceptualization includes 

dynamic sampling of both cases and time at risk (risk-set or density control sampling) to 

permit direct estimation of hazard (incidence-rate) ratios under a proportional-hazards 

model, an idea that dates back at least to the early 1960s [10]. So we see no disagreement 

here between Dr. Karp’s position and ours.

Unlike Dr. Karp, however, we long ago discarded the idea that person-time and hazard rates 

(“incidence densities”) are fundamental or provide a sound foundation for design or analysis 

of studies of causality [11]. Rather than being modern in the sense of informed by recent 

developments, we find the “study base”/“person moments” view (which was in vogue in the 

1980s) to be dated and potentially misleading for both teaching and practice. The underlying 

issue has long been recognized in warnings to not adjust for post-randomization covariates 

[12] (now modified to: adjust using only proper longitudinal causal models [13, 14]). The 

problem is that person-time denominators are in fact po0st-treatment covariates affected by 

variables that affect follow-up or risk (i.e., disease, censoring, and competing-risk 

processes). Those variables will usually include the very exposures under study, even if 

those have no effect on the study disease (e.g., if they have an effect on follow-up or on 

general mortality).

As a consequence, contrasts of person-time rates or ‘incidence densities’ are subject to 

artefacts such as non-collapsibility and time-varying confounding by fixed covariates (such 

as biological sex)—even under randomization [14–17]; those artefacts can be severe enough 

to produce associations in the opposite direction of effects (“crossing hazards”). Because of 

these and related defects in person-time “study-base” theory, modern longitudinal causality 

theory is instead founded on concepts of risk and survival times in cohorts, with rates and 

open (dynamic) populations serving as important statistical concepts to be used with due 

caution [9, Ch. 3; 14, 18].

Matching has varying rationales, forms, costs, and benefits

On the practical side, matching of cohorts at baseline is an effective tool in the control of 

confounding by variables fully determined at baseline; and, with the spread of propensity-

score matching, it has become more common than ever for the formation of study cohorts. 

Variables whose values or trajectories known at baseline include several of high concern in 

typical studies, notably genetic factors (which are fixed) and age (time-varying but 

exogenous, being fully determined by date of birth). Dr. Karp seems to overlook that, even if 

a variable is time varying and thus a trajectory, matching on its baseline value can help 

reduce trajectory imbalances among the matched subcohorts, and thus improve efficiency of 

subsequent longitudinal analyses (although, as with simple matching [19], improvement is 
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not guaranteed). For example, baseline matching on the category “vegetarian yes/no” will 

not control much of the complex and time-varying confounding by diet, but may well reduce 

bias and aid analytic control to the extent such partial matching brings the compared cohorts 

closer in dietary distributions.

The framework of partial matching [9, p. 182; 20] is more nuanced than that of all-or-none 

matching (which most matching discussions presume is the only choice). No practical 

account of matching is complete without this framework—especially since partial matching 

is often the most efficient strategy in both practical and statistical terms [21]. It is also 

ubiquitous in practice: Most matching on continuous variables uses categories or calipers 

and is thus partial, leaving some imbalance (and thus potential confounding) within the 

categories. This is a common problem for age matching in broad categories, and requires 

special analytic adjustments to address [9, pp. 434–435]; e.g., simply tossing age in a model 

will not remove the residual confounding [20, 22].

Matching and research reality

Most discussions of matching including ours [2], and indeed most mathematical analyses of 

epidemiologic methods, can be criticized as oversimplified relative to the actual options and 

realities of epidemiologic research. It is thus important to understand that, like all theoretical 

analyses, they serve as warnings about what can go wrong even in simple cases, but going 

beyond such warnings requires caution in view of the hazards of extrapolation. Also 

essential is some attention to likely magnitudes of problems in light of real-data experience 

[23]. We thus regard as potentially misleading Dr. Karp’s comment that

regardless of which type of ‘controls’ is used, and regardless of whether case–

control matching is used, adjustment for “confounding by variables that are difficult 

to measure” can only be done in the statistical ‘analysis’—by conditioning on such 

‘variables,’ possibly operationally represented by their nominal-scale proxies (such 

as sibship status or neighborhood).

This comment (especially the “only”) ignores the multiplicity of bias sources, their 

interactions, and their net consequences. For example, when the association of exposure with 

the matching factors is modest, we have noticed that the unmatched (unadjusted) estimator 

from the matched data usually suffers only a minor amount of bias toward the null from 

breaking the matches. Then too, if the matching factors are strong confounders by virtue of a 

strong effect on risk (as is age, typically) there can be much less bias in that estimator than 

would be found in the unadjusted estimator from an unmatched version of the study. In that 

setting we again have noticed that case–control matching results in much smaller net bias 

than the original confounding by the matching factors, and so accomplishes a partial 

adjustment without an analytic step. Thus, while adjustment for matching factors is 

completed by their analytic control, and we have always recommended that be done [2, 9, p. 

176], in our experience the net impact of skipping that adjustment has usually been small 

unless the age categories are too broad.

We also think important qualifications are needed for Dr. Karp’s statement that “In the 

context of the need for such an adjustment for confounding control, matching may merely 
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help enhance the efficiency of the analysis (and possibly reduce the risk/extent of the 

‘sparse-data bias.’).” For example, common adjustments (e.g., conditioning on the matched 

sets) may generate or aggravate sparse-data bias [24–26], a bias that is away from the null 

that may exceed the bias in the unmatched estimator from either a matched or unmatched 

design. And to the extent matching forces us to control factors that could have been ignored 

without it, is can increase sparse-data bias. In either case, simple adjustments for sparse-data 

bias are available in standard software [26–29] and should be deployed more often.

Regarding general cost efficiency, neighborhood matching may drastically reduce the time 

and cost of locating and visiting population controls; in contrast, demanding close matches 

on personal factors may drastically increase time and cost. And if efficiency is the only 

concern, modified matching (e.g., partial matching, marginal matching, countermatching) 

may be superior to traditional all-or-none matching for both statistical and practical reasons 

[20, 30, 31], although we again caution that propensity-score matching may introduce 

artefacts [32]. Finally, there is a continuum of partial-adjustment options between full and no 

adjustment, with full adjustment not always the best option for estimation accuracy [33].

Conclusion

Health and social sciences are intractable in full complexity; as a consequence, theory and 

methodology provide only guidelines and heuristics [3, 23, 34]. Sometimes these guidelines 

may always benefit practice, and so no harm is done by taking them as natural laws; but 

more often, transformation of methodologic theory from a toolkit into a metaphysical belief 

system can blind us to its important exceptions and failings (as will inevitably arise as 

research expands). The only safe general advice would then seem to be: For every guideline 

offered or followed, understand the assumptions and simplifications in the theory used to 

derive that guideline, so that its limits and breakdowns can be recognized. And be prepared 

to revise or replace established methodologic theories when they are superseded by theories 

that handle old problems just as well and also solve problems with the old theories. This is 

precisely what has happened as causal (structural) models and causal diagrams have 

replaced traditional population models as core concepts for causal inference [14, 35–37], in 

the process demoting rates and population-time to an intermediate (although still vital) 

statistical role in linking observed associations to causal effects [9].

References

1. Karp I Toward eradicating misconceptions on matching in etiological studies. Eur J Epidemiol. 2018 
10.1007/s10654-018-0376-x.

2. Mansournia MA, Jewell NP, Greenland S. Case–control matching: effects, misconceptions, and 
recommendations. Eur J Epidemiol. 2018;33:5–14. [PubMed: 29101596] 

3. Greenland SFor and against methodology: some perspectives on recent causal and statistical 
inference debates. Eur J Epidemiol. 2017;32(1):3–20. [PubMed: 28220361] 

4. Greenland S Confounding of incidence density ratio in case–control studies. Epidemiology. 
2013;24:624–5. [PubMed: 23732742] 

5. Pang M, Schuster T. Confounding of incidence density ratio in case–control studies. Epidemiology. 
2013;24:625–7. [PubMed: 23732743] 

Greenland et al. Page 4

Eur J Epidemiol. Author manuscript; available in PMC 2020 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Allen AS, Glen A, Satten GA. Control for confounding in case–control studies using the 
stratification score, a retrospective balancing score. Am J Epidemiol. 2011;173:752–60. [PubMed: 
21402731] 

7. Breslow NE, Day NE. Statistical methods in cancer research. Vol I: the analysis of case–control 
data. Lyon: IARC; 1980.

8. Rothman KJ. Modern epidemiology. Boston: Little, Brown; 1986.

9. Rothman KJ, Greenland S, Lash TL, editors. Modern epidemiology. 3rd ed. Philadelphia: Lippincott 
Williams and Wilkins; 2008.

10. Sheehe PR. Dynamic risk analysis in retrospective matched-pair-studies of disease. Biometrics. 
1962;18:323–41.

11. Greenland S Cohorts versus dynamic populations: a dissenting view. J Chronic Dis. 1986;39:565–
6. [PubMed: 3722320] 

12. Cox DR. The planning of experiments. New York: Wiley; 1958.

13. Mansournia MA, Etminan M, Danaei G, Kaufman JS, Collins G. Handling time varying 
confounding in observational research. BMJ. 2017;359:j4587. [PubMed: 29038130] 

14. Hernán MA, Robins JM. Causal inference. New York: Chapman and Hall; 2018.

15. Greenland S Absence of confounding does not correspond to collapsibility of the rate ratio or rate 
difference. Epidemiology. 1996;7:498–501. [PubMed: 8862980] 

16. Hernán MA. The hazards of hazard ratios. Epidemiology. 2009;20:13–5.

17. Mansournia MA, Hernán MA, Greenland S. Matched designs and causal diagrams. Int J 
Epidemiol. 2013;42:860–9. [PubMed: 23918854] 

18. Cole SR, Hudgens MG, Brookhart MA, Westreich D. Risk. Am J Epidemiol. 2015;181:246–50. 
[PubMed: 25660080] 

19. Greenland S, Morgenstern H. Matching and efficiency in cohort studies. Am J Epidemiol. 
1990;131:151–9. [PubMed: 2293747] 

20. Partial Greenland S. and marginal matching in case–control studies In: Moolgavkar SH, Prentice 
RL, editors. Modern statistical methods in chronic disease epidemiology. New York: Wiley; 1986 
p. 35–49.

21. Stürmer T, Brenner H. Degree of matching and gain in power and efficiency in case–control 
studies. Epidemiology. 2001;12:101–8. [PubMed: 11138803] 

22. Greenland S Re: “Estimating relative risk functions in case–control studies using a nonparametric 
logistic regression”. Am J Epidemiol. 1997;146:883–4. [PubMed: 9384210] 

23. Intuitions Greenland S., simulations, theorems: the role and limits of methodology (invited 
commentary). Epidemiology. 2012;23:440–2. [PubMed: 22475828] 

24. Greenland S Small-sample bias and corrections for conditional maximum-likelihood odds-ratio 
estimators. Biostatistics. 2000;1:113–22. [PubMed: 12933529] 

25. Greenland S, Mansournia MA. Penalization, bias reduction, and default priors in logistic and 
related categorical and survival regressions. Stat Med. 2015;34:3133–43. [PubMed: 26011599] 

26. Greenland S, Mansournia MA, Altman DG. Sparse data bias: a problem hiding in plain sight. BMJ. 
2016;352:i1981. [PubMed: 27121591] 

27. Sullivan S, Greenland S. Bayesian regression in SAS software. Int J Epidemiol. 2013;42:308–17. 
[PubMed: 23230299] 

28. Discacciati A, Orsini N, Greenland S. Approximate Bayesian logistic regression via penalized 
likelihood by data augmentation. Stata J. 2015;15(3):712–36.

29. Mansournia MA, Geroldinger A, Greenland S, Heinze G. Separation in logistic regression—
causes, consequences, and control. Am J Epidemiol. 2018;187:864–70. 10.1093/aje/kwx299. 
[PubMed: 29020135] 

30. Stürmer T, Brenner H. Flexible matching strategies to increase power and efficiency to detect and 
estimate gene-environment interactions in case–control studies. Am J Epidemiol. 2002;155:593–
602. [PubMed: 11914186] 

31. Langholz B, Clayton D. Sampling strategies in nested case–control studies. Environ Health 
Perspect. 1994;102(Suppl 8):47–51.

Greenland et al. Page 5

Eur J Epidemiol. Author manuscript; available in PMC 2020 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



32. Mansson R, Joffe MM, Sun W, Hennessy S. On the estimation and use of propensity scores in 
case–control and case–cohort studies. Am J Epidemiol. 2007;166:332–9. [PubMed: 17504780] 

33. Kalish LA. Reducing mean squared error in the analysis of pair-matched case–control studies. 
Biometrics. 1990;46:493–9. [PubMed: 2364134] 

34. Vandenbroucke JP, Broadbent A, Pearce N. Causality and causal inference in epidemiology: the 
need for a pluralistic approach. Int J Epidemiol. 2016;45:1776–86. [PubMed: 26800751] 

35. Pearl J Causality: models, reasoning and inference. 2nd ed. Cambridge: Cambridge University 
Press; 2009.

36. VanderWeele TJ. Explanation in causal inference: methods for mediation and interaction. New 
York: Oxford University Press; 2015.

37. Pearl J, Glymour M, Jewell NP. Causal inference in statistics: a primer. New York: Wiley; 2017.

Greenland et al. Page 6

Eur J Epidemiol. Author manuscript; available in PMC 2020 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Moving on from old theories to eradicate misconceptions
	Matching has varying rationales, forms, costs, and benefits
	Matching and research reality
	Conclusion
	References



