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Abstract

The mechanism of the aryl iodide-catalyzed asymmetric migratory geminal difluorination of β-

substituted styrenes (Banik et al. Science 2016, 353, 51) has been explored with density functional 

theory computations. The computed mechanism consists of (a) activation of iodoarene difluoride 

(ArIF2), (b) enantiodetermining 1, 2-fluoroiodination, (c) bridging phenonium ion formation via 

SN2 reductive displacement, and (d) regioselective fluoride addition. According to the 

computational model, the ArIF2 intermediate is stabilized through halogen-π interactions between 

the electron-deficient iodine(III) center and the benzylic substituents at the catalyst stereogenic 

centers. Interactions with the catalyst ester carbonyl groups (I(III)+⋯O) are not observed in the 

unactivated complex, but do occur upon activation of ArIF2 through hydrogen bonding 

interactions with external Brønsted acid (HF). The 1, 2-fluoroiodination occurs via alkene 

complexation to the electrophilic, cationic I(III) center followed by C−F bond formation anti to the 

forming C−I bond. The bound olefin and the C−I bond of catalyst adopt a spiro-arrangement in the 

favored transition structures but a nearly periplanar arrangement in the disfavored transition 

structures. Multiple attractive non-covalent interactions, including slipped π⋯π stacking, C–

H⋯O, and C–H⋯π interactions, are found to underlie the high asymmetric induction. The 

chemoselectivity for 1,1-difluorination versus 1,2-difluorination is controlled mainly by 1) the 

steric effect of the substituent on the olefinic double bond, and 2) the nucleophilicity of the 

carbonyl oxygen of substrate.
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INTRODUCTION

Hypervalent iodine compounds have in recent years evolved from chemical curiosities into 

mainstream reagents in organic synthesis.1 They possess reactivities similar to those of 

transition metals, but potentially practical advantages with respect to toxicity and cost. The 

discovery of enantioselective molecular catalysts based on iodine (I/III) redox chemistry has 

added a new dimension to hypervalent iodine chemistry.2 Many chiral hypervalent iodine 

reagents or catalysts (Figure 1) have been invented by the groups of Wirth,3 Kita,4 Ishihara,5 

Fujita,6 Muñiz,7 Legault8, and others,9 to effect asymmetric transformations that would be 

difficult to accomplish otherwise.2,10

One of our groups in 2016 reported a catalytic, asymmetric, migratory geminal 

difluorination of β-substituted styrenes to access a variety of products bearing 

difluoromethylated tertiary or quaternary stereocenters (Scheme 1a).11 The difluoromethyl 

group (CHF2) has received special attention12 because it serves as a bioisostere of hydroxyl 

and thiol groups13, and also as a lipophilic hydrogen bond donor.14 The simple C2-

symmetric aryl iodide catalyst plus m-chloroperbenzoic acid and hydrogen fluoride can 

generate chiral difluoromethyl groups from reaction with the double bond of styrene 

derivatives. The catalyst bearing benzyl substituents (ArI-1) induces higher 

enantioselectivity than its 3,4,5-trifluorophenyl (ArI-2) and aliphatic (ArI-3) analogs 

(Scheme 1b). It was hypothesized that cationic intermediates and/or transition structures are 

stabilized selectively through attractive cation-π interactions. A chemoselectivity switch was 

observed based on subtle changes in substrate structure, with the 1,1-difluorination product 

formed by difluorination of disubstituted cinnamamides or trisubstituted cinnamate ester 

derivatives (Scheme 1a-b), but the 1,2-difluorination product obtained in the difluorination 

of the trisubstituted cinnamamide derivative S3 (Scheme 1c). We report here a 

computational study of the mechanism and origins of chemo- and stereoselectivities in these 

systems, and advance a model of how these hypervalent catalysts achieve such remarkable 

selectivity.

COMPUTATIONAL METHODS

Quantum chemical calculations were performed using the Gaussian 09 suite of programs.15 

Geometry optimizations and frequencies were calculated with the M06–2X16 density 
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functional and a mixed basis set of LANL2DZ17 for I and 6–31G(d, p) for other atoms in 

conjunction with the SMD18 implicit solvation model to account for the solvation effects of 

dichloromethane. Optimized geometries were verified by frequency computations as minima 

(zero imaginary frequencies) or transition structures (a single imaginary frequency) at the 

same level of theory. More accurate electronic energies were obtained by single point energy 

calculations at the SMD-M06–2X/6–311++G(d, p)+SDD(I)19 level of theory.20 A number of 

previous computational studies of hypervalent iodine-mediated reactions have employed the 

M06–2X functional.21

Because of the flexibility of the hypervalent iodoarene catalyst,20b,22 a conformational study 

was performed on the active catalyst iodoarene difluoride, intermediates, and transition 

structures. The lowest energy conformers are discussed in the following sections, while 

other higher energy conformers are given in the Supporting Information. A factor of RT ln 

(24.46) was added to free energy for each species to account for the 1 atm to 1 M standard 

state change. All Gibbs energies in solution reported throughout the text are in kcal mol−1, 

and the bond lengths are in Å ngstroms (Å ). NCIPLOT23 and Multiwfn24 were employed 

for the visualization of noncovalent interactions and topology analysis, respectively. The 

structures were generated by CYLview25 and VMD26.

RESULTS AND DISCUSSION

Model Reaction and Proposed Catalytic Cycle.

In the original experimental studies, it was shown that the benzylic substituents at the 

catalyst stereogenic centers are essential for high enantioselectivity, while the alkyl ester 

groups on the stereocenter-bearing arms do not have a significant influence on 

enantioselectivity.11,27 We first explored the difluorination of cinnamamide S1 catalyzed by 

aryl iodide ArI-4 (Scheme 2a). Subsequently, the stereocontrolling TSs for ArI-1–ArI-3-

catalyzed geminal difluorination of cinnamate ester S2 (Scheme 2b) were studied to 

investigate effects of catalyst modification on enantioselectivities. Finally, ArI-4 catalyzed 

enantioselective 1,2-difluorination of cinnamamide S3 (Scheme 2c) was studied to 

determine the origin of chemoselectivity.

The mechanism proposed in the initial study for aryl iodide-catalyzed asymmetric migratory 

geminal difluorination is shown in Scheme 3.11 Oxidation and deoxyfluorination of aryl 

iodide precursor ArI-4 gives the iodoarene difluoride ArIF2-4. ArIF2-4 is further activated 

by HF, and undergoes an enantioselective 1,2-fluoroiodination of S1 to provide 3+, followed 

by the stereospecific formation of phenonium ion 4 and regeneration of ArI-4. The final 

regioselective fluoride attack on 4 affords the 1, 1-difluorination product. The computed 

reaction coordinate diagram shown in Figure 3 starts from ArIF2-4 described in Figure 

2.11,28 The relative energies are SMD-M06–2X/6–311++G(d,p)-SDD(I)//SMD-M06–2X/6–

31G(d,p)-LANL2DZ(I) computed Gibbs free energies, unless specifically noted.

Conformations of the Active Hypervalent Iodoarene Catalyst, ArIF2-4.

We first explored the conformation of the active catalyst ArIF2-4. Previous single crystal X-

ray structural analysis5c,7c,22b as well as Sunoj and co-worker’s computational studies22a on 
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(diacetoxyiodo)arene bearing lactic esters and amides have demonstrated the C2-symmetric 

helical chirality around the central iodine atom. The conformational space of the active 

catalyst ArIF2-4 was studied here. Figure 2 shows the lowest energy conformer of ArIF2-4 
(other high-energy conformers are presented in Figure S1). A helical C2-symmetric chirality 

around the central iodine atom is observed. The benzylic group at the stereogenic center was 

found to have a unique effect on conformation. In ArIF2-4, the center of the aromatic ring of 

the benzylic group points toward to the iodine(III) center, indicating the presence of 

attractive halogen bonding interactions29 between the electron-deficient iodine(III) center 

and the electron-rich aromatic rings.30 Other conformers without the halogen-π interactions 

are at least 1.7 kcal mol−1 less stable (Figure S1).

Mechanism of Aryl Iodide-Catalyzed Migratory Geminal Difluorination of Cinnamamide.

The computed potential energy profile for ArIF2-4 catalyzed asymmetric migratory geminal 

difluorination of cinnamamide S1 is summarized in Figure 3. Optimized geometries of some 

key transition structures and intermediates are presented in Figure 4. The first step is the 

activation of the iodoarene difluoride ArIF2-4 by HF to generate the active catalytic species 

1a+.4c,28b,28c,31 The formation of the hydrogen-bonded complex 1-HF is endergonic by 1.5 

kcal mol-1.32 The free energy of activation for the transformation of ArIF2-4 to 1a+ via 

TS1a-HF is 19.0 kcal mol−1. Although a single HF activation model for iodoarene 

difluorides has been proposed,4c,28b,31a,31e multiple HF molecules (or even pyridine•H+) 

likely participate because a large excess of pyridine•9HF is employed in these reactions. The 

activation barrier to ionization of ArIF2-4 is reduced to 13.7 kcal mol−1 (TS1a-2HF) when 

two molecules of HF engage in activation, and no further reduction in barrier was predicted 

computationally when three molecules of HF (or pyridine•H+) participate in activation 

(TS1a-3HF: ΔG‡= 15.3 kcal mol−1; TS1a-PyrH+: ΔG‡= 18.2 kcal mol−1; TS1a-HF-PyrH
+: ΔG‡= 17.2 kcal mol−1, See Figure S2). The transformation of ArIF2-4 to 1a+ is also 

assisted by the ester carbonyl group on the side chain through an I(III)+⋯O interaction that 

stabilizes the incipient cationic iodonium (Figure 3).33An I(III)+⋯O interaction was 

proposed and confirmed by X-ray structural analysis by Wirth and co-workers.3a,3b,34 More 

recently, Fujita and co-workers also reported that such a I(III)+⋯O interaction exists even in 

acetonitrile.6b The formation of the strong I(III)+⋯O interaction in 1a+ induces a 

conformational change of the benzylic group, resulting in disruption of halogen-π 
interactions and exposure of the highly electrophilic cationic I(III) center for subsequent 

substrate binding and activation.

In the following step, 1a+ coordinates to the Si-face of the olefin substrate S1 through an 

I(III)+⋯π interaction, leading to a catalyst-substrate adduct 2, which lies 1.4 kcal mol−1 

below 1a+ (Figure 3). The nucleophilic attack of fluoride on the exposed Re-face of the 

olefin of adduct 2 (Figure 5) leads to intermediate 3 with a barrier of 6.7 kcal mol−1 (via 

TS2a-S) with respect to 2. The syn 1,2- fluoroiodination (syn-TS2a-S) is 10.8 kcal mol−1 

less favorable than the anti 1,2-fluoroiodination (TS2a-S). Additionally, the barrier for 

nucleophilic attack of pyridine•HF (Olah’s reagent)35 to the alkene complex 2 is 9.6 kcal 

mol−1 (TS2a-S-pyrHF), which is 2.9 kcal mol−1 higher than that for nucleophilic attack of -

F(HF)2. The formation of the C−I bond significantly weakens the I−F bond in intermediate 3 
(I−F bond length 1.91 Å in 2 versus 2.09 Å in 3: Figure 4). Consequently, the I−F bond in 
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intermediate 3 is prone to dissociation under the activation of HF to provide a more stable 

intermediate 3+, which is also stabilized by an I(III)+⋯O interaction and is exergonic by 

20.7 kcal mol−1 from 3.

The aryliodonium moiety in 3+ is an excellent leaving group. It is displaced intramolecularly 

by nucleophilic attack of the phenyl ring in the cinnamamide, leading to the stereospecific 

formation of phenonium ion 4 and regeneration of ArI-4. The calculated barrier of the 

reductive displacement via an SN2-like transition state TS3a is 18.9 kcal mol−1 relative to 

3+ (Figure 3). The last step of the reaction mechanism is the regioselective fluoride addition 

to afford the chiral geminal difluorination product. The computations predict that the 

fluoride F-(HF)2 addition to the F-substituted carbon atom through TS4 is facile, with a 

barrier of only 0.3 kcal mol−1 relative to 4. Addition to the CONH2-bearing carbon atom 

(TS4–2) is 10.7 kcal mol−1 less favorable, which is in line with our previous findings.36 The 

formation of P1 is highly exergonic by 63.1 kcal mol−1.

Reviewing the computed energy profile of the overall reaction pathway,37 the 1,2-

fluoroiodination is the stereocontrolling step. This step generates the C*−F and C*−I 

stereocenters. The chirality of the former is preserved in the subsequent reductive 

displacement and fluoride addition.

Origin of Enantioselectivity.

The lowest-energy TSs leading to the major and minor enantiomers are shown in Figure 5. 

In TS2a-S, the Si-face of the olefinic double bond of cinnamamide coordinates to the I(III)+ 

center of catalyst, while the incoming fluoride attacks the exposed Re-face, giving rise to the 

experimentally observed major (S)-product after reductive displacement and fluoride 

addition. In TS2a-R, the Re-face of olefinic double bond coordinates to the I(III)+ center, 

and nucleophilic attack of fluoride takes place at the Si-face. The computed activation 

energy difference between TS2a-S and TS2a-R is 2.2 kcal mol-1.38 This corresponds to an 

enantiomeric excess of 95% in favor of the S enantiomer, which agrees qualitatively with the 

level and sense of enantioselectivity observed experimentally (86% S ee). Jacobsen and co-

workers have demonstrated experimentally that the benzylic substituents at the catalyst 

stereogenic centers are essential for high enantioselectivity in the geminal difluorination 

reaction, while the ester alkyl group on the chiral arms does not have a significant influence 

on enantioselectivity.11,27 Examination of the computed transition state structures leading to 

the major and minor enantiomers provides some insight into potential structural reasons for 

this observation.

As depicted in Figure 5, the phenyl group of cinnamamide adopts a similar binding 

arrangement in both transition structures. This causes the double bond to be oriented 

differently in the two TSs. The olefin (C12−C13) of cinnamamide and the C1−I2 bond of 

catalyst is in spiro-arrangement in TS2a-S, but it is nearly periplanar in TS2a-R (the 

dihedral angle θ1 between the Cl−I2 and C12−C13 bonds is 81.5º in TS2a-S vs −16.4º in 

TS2a-R, Figure 5). We define a spiro-arrangement as θ1 = 90 ± 30º and periplanar as θ1 = 0 

± 30º Thus, TS2a-R is destabilized by torsional strain.39 We calculated the corresponding 

TSs (TS2a-S-M and TS2a-R-M) with the catalyst stereogenic centers being replaced by 
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methyl groups (Figure 6a). TS2a-S-M and TS2a-R-M are enantiomeric, wherein the double 

bond and the C1−I2 bond is in spiro-arrangement with identical dihedral angle θ1 (θ1 = 

79.2º in TS2a-S-M vs –79.2º in TS2a-R-M). Comparing energy differences between TS2a-
R-M and TS2a-R-M-distorted indicates that the spiro-arrangement is more favorable than 

the periplanar-arrangement by roughly 6.6 kcal mol−1 (Figure 6a).

A closer inspection of the two transition structures (Figure 5) reveals that there is a 

stabilizing π⋯π stacking interaction40,41 between the phenyl of cinnamamide and the 

electron-deficient iodoaryl ring of the catalyst42 (optimized TSs without π⋯π stacking were 

at least 7 kcal mol−1 less stable see Figure S5). The π⋯π stacking interaction provides a 

driving force for the phenyl group of substrate to be deeply buried in the catalyst’s chiral 

pocket (Figure 6b). When the Si-face of the olefinic double bond coordinates to the I(III)+ 

center, the phenyl is well accommodated in a binding pocket, and the double bond and the 

C1−I2 bond can adopt an ideal spiro-arrangement (TS2a-S and TS2a-S-M have nearly 

identical dihedral θ1). However, when the Reface of substrate S1 coordinates in a similar 

manner to the I(III)+ center of catalyst, the phenyl group of cinnamamide will clash with the 

ester carbonyl group at the stereocenter-bearing arm of catalyst. Consequently, the chiral 

catalyst forces TS2a-R to be distorted away from the ideal spiro structure in order to 

accommodate the cinnamamide phenyl into the stabilizing pocket (Figure 6b). These results 

suggest that the π⋯π stacking interaction plays a crucial role in stereoinduction in this 

reaction. This model also accounts for the experimental observation that the reaction 

conducted with (Z)-methyl cinnamate proceeds with low enantioselectivity (Figure 7). This 

is mainly because of loss of stabilizing π⋯π stacking interactions due to improper spatial 

arrangement.43

It should be noted that other favorable noncovalent interactions44, including C–H⋯O45 and 

C−H⋯π interactions40a,46, are also developed between the substrate and the catalyst’s chiral 

pocket. However, these stabilizing interactions do not appear to contribute singificantly to 

enantiocontrol, as their strengths were estimated to be of approximately the same order of 

magnitude in TS2a-S and TS2a-R41c,47,48 (Figure S9).

Impact of Catalyst Modification on Enantioselectivity.

To understand the influence of catalyst modifications on enantioselectivity, the 

stereocontrolling TSs for ArI-1–ArI-3-promoted geminal difluorination of cinnamate ester 

S2 were studied. The calculated transition structures together with their relative free energies 

and ee values are given in Figure 8. The calculated ee values are 99% (ΔΔG‡:3.0 kcal mol
−1 ) for ArI-1, −84% (ΔΔG‡: −1.2 kcal mol−1 ) for ArI-2, and −68% (ΔΔG‡: −0.8 kcal mol
−1 ) for ArI-3, which are in reasonable agreement with the experimentally observed trend in 

these values: 94% for ArI-1, −77% for ArI-2 and −60% for ArI-3.11

The olefinic double bond of the cinnamate ester and the C1−I2 bond of catalyst adopt a 

nearly spiro-arrangement in all three favored TS structures but a periplanar-arrangement in 

disfavored TS structures (Figure 8). Replacing the phenyl with the more electron-deficient 

3,4,5-trifluorophenyl (a weaker π-donator) results in a longer C−H⋯π distance in TS2c-R 
(2.46 Å in TS2b-S vs 2.49 Å in TS2c-R). Thus, the C−H⋯π interaction would contribute a 
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lesser extent to the stabilization of the favored TS2c-R. Additionally, a more acidic C−H 

bond in 3,4,5-trifluorophenyl than in phenyl enables formation of a C−H⋯O interaction with 

the ester carbonyl group of substrate in TS2c-S with C−H⋯O distance of 2.67 Å. Thus, the 

observed lower selectivity of ArI-2 can be mainly attributed to two factors: 1) attenuation of 

the C−H⋯π interaction in the TS leading the major stereoisomer, and 2) strengthening of 

the C−H⋯O interaction in the TS leading the minor stereoisomer. Replacement of the 

phenyl with cyclohexyl results in disruption of C−H⋯π interactions and repulsion between 

the phenyl ring of the cinnamate ester and the cyclohexyl of catalyst (Figure 8). These 

results are consistent with the experimental observation that incorporation of poorly π-

donating substituents on the catalyst stereogenic center has a pronounced deleterious effect 

on enantioselectivity.22a

Origin of Chemoselectivity.

We also explored the origin of altered chemoselectivity in the α-isopropyl cinnamamide 

(Scheme 4). It was proposed that 1,1-difluorination proceeds via skeletal rearrangement with 

the phenyl as a nucleophile, while 1,2-difluorination occurs when the carbonyl of the 

cinnamamide acts as the nucleophilic group (Scheme 4).11 We have calculated the transition 

state structures that determine the chemoselectivity of aryl iodide-catalyzed enantioselective 

difluorination of substrates S1, S2, and S3. The results are presented in Figure 9. For S1 and 

S2, nucleophilic attack by the phenyl group (TS3a-S1 and TS3a-S2) was found to 3.5 kcal 

mol−1 and 6.4 kcal mol−1 more favorable than by the carbonyl group (TS3a’-S1 and TS3a’-
S2), respectively. This is consistent with the experimental observation that reactions of S1 
and S2 afford 1, 1-difluorination product with complete chemoselectivity. A greater energy 

difference between TS3a-S2 and TS3a’-S2 (ΔΔG‡: 6.4 vs. 3.5 kcal mol−1) can be attributed 

to a lower nucleophilicity of the carbonyl group in S2 as indicated by the calculated NPA 

charges (Figure 9).

For α-isopropyl cinnamamide S3, nucleophilic attack by the phenyl group TS3a-S3 
becomes 3.5 kcal mol−1 less favorable than by the carbonyl group TS3a’-S3, consistent with 

the experimental observation that only 1, 2-difluorination product is detected.11 A closer 

look into the structure of TS3a-S3 reveals that nucleophilic attack of C12 by the phenyl 

group suffers from steric repulsion between the phenyl and iPr groups. The steric effect of 

the iPr group is largely attenuated when the small carbonyl oxygen of the amide acts as 

nucleophile.

CONCLUSION

We have developed a computational model to account for the chemoselectivity and 

stereoselectivity of aryl iodidecatalyzed asymmetric difluorinations of β-substituted 

styrenes. In the transition structures leading to the major enantiomers, the styrenyl olefin and 

the C−I bond of catalyst adopt a spiro-arrangement, and the phenyl group of the substrate is 

accommodated in a binding pocket. Although the minor TS has similar binding of the 

phenyl, this forces a less favorable nearly periplanar-arrangement in the transition structures 

leading to the minor enantiomers. A slipped π⋯π stacking interaction between the phenyl 

group of substrate and the electron-deficient iodoaryl ring of catalyst plays a crucial role in 
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stereoinduction of these reactions. The model proposed here may serve as a useful starting 

point for future analyses of enantioselective alkene difunctionalization reactions catalyzed 

by C2-symmetric chiral aryl iodides.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Some recent chiral organoiodine reagents or catalysts.
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Figure 2. 
The lowest-energy conformation of the active catalyst iodoarene difluoride ArIF2-4.
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Figure 3. 
Calculated potential energy profile for ArIF2-4 catalyzed asymmetric migratory geminal 

difluorination of cinnamamide S1 (standard state, 1 mol L−1).
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Figure 4. 
Calculated geometries of transition structures and intermediates for ArIF2-4 catalyzed 

asymmetric migratory geminal difluorination of cinnamamide S1.
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Figure 5. 
Optimized enantiomeric TS geometries (some hydrogen atoms are not shown for clarity), 

main weak interactions, and their relative free energies (kcal mol−1).
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Figure 6. 
a) Optimized enantiomeric TS geometries for a model catalyst and the estimated energy 

requires for the deviation of the ideal dihedral angle θ1 of ± 79.2°; b) Space-filling model of 

Re-face versus Si-face coordination of styrenes to the I(III)+ center of catalyst.

Zhou et al. Page 20

J Am Chem Soc. Author manuscript; available in PMC 2019 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Optimized enantiomeric TS geometries of asymmetric migratory geminal difluorination of 

(Z)-methyl cinnamate and their relative free energies (kcal mol−1).
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Figure 8. 
Optimized stereoisomeric TS geometries and their relative free energies (kcal mol−1) for 

precatalysts ArI-1–3 promoted geminal difluorination of cinnamate ester S2.
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Figure 9. 
Transition states for the aryl migration pathway (TS3) and the anchimeric assistance 

pathway (TS3’) for reactions with different substrates.
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Scheme 1. 
(a) Catalytic asymmetric migratory geminal difluorination of β-substituted styrenes. (b) 

Catalyst substituent effects on enantioselectivity. (c) Substrate substituent effects on 

chemoselectivity.

Zhou et al. Page 24

J Am Chem Soc. Author manuscript; available in PMC 2019 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 2. 
Reactions and catalysts studied computationally.
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Scheme 3. 
Proposed mechanism for the aryl iodide-catalyzed asymmetric migratory geminal 

difluorination, S1 to P1 in Scheme 2a.
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Scheme 4. 
Proposed mechanism for the observed chemoselectivity.
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