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Summary
Background Alzheimer’s Disease (AD) is a complex clinical phenotype with unprecedented social and economic tolls
on an ageing global population. Real-world data (RWD) from electronic health records (EHRs) offer opportunities to
accelerate precision drug development and scale epidemiological research on AD. A precise characterization of AD
cohorts is needed to address the noise abundant in RWD.

Methods We conducted a retrospective cohort study to develop and test computational models for AD cohort iden-
tification using clinical data from 8 Massachusetts healthcare systems. We mined temporal representations from
EHR data using the transitive sequential pattern mining algorithm (tSPM) to train and validate our models. We then
tested our models against a held-out test set from a review of medical records to adjudicate the presence of AD. We
trained two classes of Machine Learning models, using Gradient Boosting Machine (GBM), to compare the utility of
AD diagnosis records versus the tSPM temporal representations (comprising sequences of diagnosis and medication
observations) from electronic medical records for characterizing AD cohorts.

Findings In a group of 4985 patients, we identified 219 tSPM temporal representations (i.e., transitive sequences) of
medical records for constructing the best classification models. The models with sequential features improved AD
classification by a magnitude of 3–16 percent over the use of AD diagnosis codes alone. The computed cohort
included 663 patients, 35 of whom had no record of AD. Six groups of tSPM sequences were identified for char-
acterizing the AD cohorts.

Interpretation We present sequential patterns of diagnosis and medication codes from electronic medical records, as
digital markers of Alzheimer’s Disease. Classification algorithms developed on sequential patterns can replace
standard features from EHRs to enrich phenotype modelling.

Funding National Institutes of Health: the National Institute on Aging (RF1AG074372) and the National Institute of
Allergy and Infectious Diseases (R01AI165535).

Copyright © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Accurate characterization of Alzheimer’s Disease (AD)
is complex, often requiring neuro-cognitive, genetic,
imaging markers and clinical judgment. These markers
are seldom routinely collected in clinical care, which
limits the scalability of models that rely on them and,
thus, their utility in general practice. Despite the use of
detailed biomarkers, current models of AD have pro-
duced variable and often moderate classification
*Corresponding author. 399 Revolution Drive, Suite 790, Somerville, MA, 0
E-mail address: hestiri@mgh.harvard.edu (H. Estiri).
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performance, with the area under the receiver operating
characteristic (ROC) curves ranging from 0.52 to under
0.86.1–5 Suboptimal characterization of AD cohorts can
lead to the introduction of unnecessary noise, by
including a slew of false positive patients to the cohort
and excluding from the cohort those who were falsely
identified as negatives. This can, for example, impede
the recruitment process for clinical trials aimed at
evaluating novel therapies. Further, problematic cohort
2145, USA.
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Research in context

Evidence before this study
We searched PubMed on February 16, 2023, using the search
terms (“Alzheimer’s Disease” “cohort classification”)
OR (“Alzheimer’s Disease” “cohort identification”) OR
(“Alzheimer’s Disease” “cohort characterization”) OR
(“Alzheimer’s Disease” “prediction”). This search returned 268
articles. Our synthesis of the previous efforts to create multi-
factorial models for Alzheimer’s Disease cohort identification
suggests that the evidence before this study either provided
incremental predictive value and external validity or resulted
in inconsistent disease prevalence estimates due to variable
case definitions. More importantly, most current models
require cognitive, genetic, and imaging markers data that are
seldom routinely collected in clinical care, limiting the utility
of such models in general practice.

Added value of this study
This study offers a cohort characterization model for
Alzheimer’s Disease (AD) built on medications and diagnoses
data that are widely available in a structured format in
electronic health records (EHR). To train and validate the
models in this study, we applied state-of-the-art sequential
representation mining and dimensionality reduction
algorithms that were customized for extracting signals from
noise in noisy clinical data stored in electronic health records.

In addition to the demonstrated improvements in
classification performance achieved by using sequences of
medication and diagnosis records, compared to stand-alone
diagnosis records, the models developed in this study for AD
are interpretable and enable clinical storytelling. Future
modelling efforts to model Alzheimer’s Disease should
consider utilizing EHR data to scale utility for patient
screening and early prediction and leverage sequential pairs of
clinical records to minimize noise and incorporate time.

Implications of all the available evidence
Our study, with its state-of-the-art classification performance
and interpretable results, suggests that a standard Machine
Learning applied to sequences of EHR data can produce
scalable computational characterization of Alzheimer’s Disease
cohorts. Digital health tools incorporating these models can
enable smart screening and targeted interventions. Scalable
computational cohort characterization models can also
facilitate identifying those who would benefit from effective
disease-modifying therapies (DMTs) as they become available.
Future work should focus on the validation of generalizability
in different population settings, the further exploration of the
utility of temporal sequences for identifying undiagnosed
cases and early prediction and deriving care/treatment
pathways for AD patients from a general baseline population.
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identification undermines the validity of outcomes
research, for instance, that are based on inaccurately
designed case and control groups.

Widely available structured real-world data (RWD)
stored in electronic health record (EHR) systems, which
include a longitudinal profile of symptoms, diagnoses,
medications, and clinical measurements recorded in
clinical care, offer possibilities to enrich cohort identi-
fication for AD for accurate outcomes research. Using
diagnosis records (mainly in International Classification
of Diseases [ICD] codes) in RWD is the prevalent
mechanism for defining cohorts of AD patients. How-
ever, cases of Alzheimer’s Disease are often poorly
documented and misclassified in the EHRs,6,7 as pro-
viders often assign a non-specific dementia code, and
patients sometimes receive conflicting diagnoses.
Further, many cases remain undiagnosed, especially at
the early stages of disease presentation, due to diffi-
culties in recognizing the signs and symptoms of
cognitive impairment during a brief visit.8 As a result,
the reliability of diagnosis codes for identifying Alz-
heimer’s Disease patients is suboptimal. The sensitivity
and positive predictive value (PPV) of AD diagnosis code
in clinical data range from (sensitivity: 60%–80%) and
(PPV: 57%–100%), depending on the clinical data type
and diagnosis code.9,10

In this study, we adopt a temporal approach for
modelling evolving phenotypes with EHR data by Estiri
et al.11–14 to develop and validate a computational cohort
identification algorithm for Alzheimer’s Disease. Our
temporal approach can be characterized as the data-
driven equivalent of a rule-based algorithm that re-
quires extensive input from clinical experts. The pro-
posed algorithm suggests modifications to the direct use
of ICD codes—e.g., a given ICD code is only useful if it
proceeds to or precedes a certain medication/diagnosis
pair. We demonstrate that classifying true AD cases can
be better achieved through computational models that
utilize transitive sequences of medications and diag-
nosis records—rather than AD diagnosis codes—from
EHRs. We compare models trained with sequential
features of medications and diagnoses to similar algo-
rithms trained using diagnosis codes for AD. Results
demonstrate that the models developed with EHR se-
quences achieve superior classification performances
and are consistent with interpretable stories of various
sequences of symptoms, recognition, evaluation, and
care that often occur. In addition to the hypothesis-
generating value of the sequential representations as
digital markers of disease, they enable temporal story-
telling capabilities and explainable Artificial Intelli-
gence (AI).

Digital health tools built with sequential representa-
tions of real-world clinical data stored in electronic
health records systems offer significant opportunities
for scaling cohort identification across the AD
www.thelancet.com Vol 92 June, 2023
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continuum at a lower cost than models needing hard-to-
collect information, and with higher precision than
models relying on diagnosis codes for the phenotype.
Methods
Ethics
The use of data for this study was approved by the Mass
General Brigham Institutional Review Board (protocol#
2017P000282) with a waiver of informed consent.

Statistics
Dataset
We utilized structured medication and diagnosis data
for patients who received care at eight healthcare facil-
ities, two tertiary medical centres and four community
hospitals, two speciality hospitals, and over 35 primary
care centres within the Mass General Brigham (MGB)
integrated healthcare system’s footprint in the New
England region. Our dataset included patients with
samples in the MGB Biobank15 until the end of 2020.

Study cohort and classification tasks
The study cohort comprised all patients with at least an
encounter with an Alzheimer’s Disease or a Dementia
diagnosis code. We used diagnosis codes from both the
9th, and 10th revision of International Classification of
Diseases (ICD) codes collected under AD and Dementia
Phecodes,16 which we augmented with historic local
codes—the list of ICD codes are available in Table S1 in
the Appendix. We identified two classification tasks.
First, the goal was to identify patients with a true AD
diagnosis, given any diagnosis code (AD, other
dementing illness, or nonspecific dementia)—hence-
forth, we call this task and the related study cohort the
“Dx AD/Dementia”. Looking at AD diagnosis codes
alone, we ran a second classification task on a subset of
the first cohort (those with at least one specific AD
diagnosis code) to identify patients with true AD diag-
nosis given a specific AD diagnosis code—henceforth,
we call this task and the subsequent cohort “Dx AD”.

Chart reviews for gold-standard labels
To evaluate classification models, we performed chart
reviews on 150 patients from our patient pool (i.e., Dx
AD/Dementia cohort). In the chart reviews, an expert
clinician performed a manual review of patients’ charts
to adjudicate the presence (or lack thereof) of Alz-
heimer’s Disease, regardless of the structured diagnosis
codes—chart review criteria for adjudicating cases is
available in Table S2 in the Appendix.

Semi-supervised learning
The data and modelling pipeline is illustrated in Fig. 1.
We curated silver-standard labels (see Appendix),
applied temporal representation mining and dimen-
sionality reduction to engineer features, and trained and
www.thelancet.com Vol 92 June, 2023
tested the two classification tasks through semi-
supervised learning with structured electronic health
records data. We describe each step below:

Feature engineering and modelling
We developed two sets of features. First, we applied the
transitive Sequential pattern Mining (tSPM)11,17 algo-
rithm to mine the sequential representation of medi-
cation and diagnosis records from the study cohort’s
electronic health records. To mine tSPM representa-
tions, the algorithm temporally sorts the medication and
diagnosis records from the EHR, selects the earliest
record for each clinical observation, and mines all pairs
of medication or diagnosis codes that are sequentially
related (Fig. 1). This results in a large vector of tSPM
sequential representation that is then fed into a high-
throughput dimensionality reduction algorithm. Sec-
ond, as the baseline model, we used a list of Alzheimer’s
Disease diagnosis ICD-9/10 codes defined in Phecodes.
We controlled for age and sex in all models. Sex was
self-reported by study participants.

Following Estiri, Vasey, and Murphy (2021), we
applied the Minimize Sparsity, Maximize Relevance
(MSMR) dimensionality reduction algorithm11 to select a
small subset of sequential temporal patterns that convey
useful information for classification tasks. The resulting
sequences were then fed into a Gradient Boosting Ma-
chine (GBM), using the R package gbm.18 GBM,
through boosting, applies a final step of feature selection
to the final modelling features. This model also provides
a relative tree-based feature importance metric, deter-
mined based on the cumulative use of a given sequential
feature in each decision tree step across all trees used in
the final boosted model. We used the feature impor-
tance score in each classification task to rank the final
sequential features.

Understanding the sequential features
To understand the meaning and functions of the ob-
tained sequences of EHR observations, we used visual-
ization techniques and clinical expertise. We leveraged
the final set of tSPM representations to develop a
dashboard that temporally connects the sequences for
creating pathway visualization. We also created
doughnut charts to understand the marginal benefit of
the sequential approach by comparing the positive pre-
dictive values of each element of a sequence and the full
sequence. The positive predictive values (PPVs) are
computed based on the true positive patients identified
by the feature in the computed AD cohort. For example,
in a feature sequentially entailing elements a and b,
a→b, we provided positive predictive values for a and b
individually and then a→b. We colour-coded sequences
in the dashboard to indicate whether a sequential
feature is positively or negatively associated with true
AD. To assess the contribution of the temporal direction
in the a→b, we also evaluate PPVs of a&b and b→a.
3
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Fig. 1: The data pipeline for developing and testing AD classification models through semi-supervised learning with electronic health
records data. The pipeline encompasses mining transitive sequential patterns from clinical data, curating silver-standard labels, performing
dimensionality reduction, modelling and model evaluations, and interpreting results in an interactive visualization dashboard.
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Model evaluations
To evaluate the models, we used metrics of discrimina-
tion, namely areas under the receiver operating charac-
teristics curves (ROC) and precision-recall curve receiver
(PR) and calibration error, namely the Brier score and
root mean square error RMSE. We computed these
metrics for each classification task and model on the
held-out test testing data curated through chart reviews.
www.thelancet.com Vol 92 June, 2023
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Role of funders
The funders had no role in study design, data collection,
analysis, interpretation, or report writing.

Data availability
Protected Health Information restrictions apply to the
availability of the clinical data here, which were used
under IRB approval for use only in the current study. As
a result, this dataset is not publicly available. Qualified
researchers affiliated with the Mass General Brigham
(MGB) may apply for access to this data through the
MGB Institutional Review Board.
Results
4985 patients met our inclusion criteria for the overall
cohort, based on having any diagnosis code (AD, other
dementia type, or nonspecific dementia)—therefore,
comprised our Dx AD/Dementia cohort for the first
classification task. Nested within this cohort of patients,
1093 had a specific AD diagnosis record, constituting
our Dx AD cohort for the second classification task.
Aggregated demographic and clinical characteristics of
these patients are provided in Table 1. In the gold-
standard data used for testing the algorithms, 33 pa-
tients (of the 150 chart-reviewed) were labelled positive
for AD. 56 (37.3%) of the chart-reviewed patients had a
specific diagnosis code for AD, of whom 32 were
labelled positive for AD—therefore, the positive pre-
dictive value (PPV) for AD diagnosis was 57.1 percent in
the Dx AD cohort.

We mined 162,245,302 transitive sequences from
97,222 unique EHR records from the overall study
population of 4985 patients. 12,501,934 of the sequences
passed the sparsity filter in MSMR. Feature engineering
resulted in a set of 219 features (Table S3 in the
Dx AD/Dementia cohort

Patients 4985

Mean age 72.58

Mean Charlson score 4.57

Mean data depth (years) 19.49

Mean phenotype record 3

percent inpatient visits 25

percent outpatient visits 35

Unique EHR records 97,222

percent Femalea 47

percent Male 53

percent African American 5

percent LatinX 3

percent White 88

aDx AD cohort is a subset of Dx AD/Dementia cohort who has at least a diagnosis record
who are likely to have AD based on the tSPM model’s predicted probabilities for AD.

Table 1: Demographic and clinical characteristics of the patient cohorts.

www.thelancet.com Vol 92 June, 2023
Appendix), which include age and sex as variables.
Percentages have been rounded.

Model performances
As demonstrated in Table 2 and Fig. 2, the model with
tSPM sequences outperformed the model using AD
diagnosis codes (Dx AD) in both discrimination and
calibration metrics. On the discrimination metrics, the
AUROCs and the precision-recall curves were between
2.88 and 9.84 percent improved in the sequential model.
The calibration error metrics also showed
improvement–between 3.24 and 30 percent in the
models with EHR sequences, compared with the model
with only AD diagnosis records (Dx AD).

Based on our trained tSPM model, 663 patients
would be included in the AD cohort. 35 patients in the
computed cohort did not have an AD diagnosis code,
which suggests that our model is, to some extent,
capable of detecting AD under coding. Compared to the
two diagnosis code-based cohorts, patients in this
computed cohort were slightly older, on average, had
more diagnosis codes for AD and outpatient encounters,
and had fewer inpatient encounters (Table 1). Among
the demographic variables included in the models, age
was the 30th and 10th important feature for classifica-
tion tasks 1 (classifying true AD patients from patients
with AD or Dementia diagnosis code) and 2 (classifying
true AD patients from patients with an AD diagnosis
code), respectively. Sex was not an important feature for
classification in task 1 and marginally important
(ranked 63) for task 2.

Do the identified sequential features make clinical
sense?
Among the 219 sequences we found for classifying
Alzheimer’s Disease, all diagnosis records that were the
Dx AD cohorta Computed AD cohortb

1093 663

77.93 79.94

4.75 4.59

21.58 22.23

12 17

13 11

46 49

54,882 43,360

52 52

48 48

3 3

3 2

90 90

for AD. bComputed AD cohort comprises patients from the Dx AD/Dementia cohort

5
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Classification task 1: Dx AD/Dementiaa 2: Dx ADb

Discrimination Calibration Discrimination Calibration

ROC PR Brier RMSE ROC PR Brier RMSE

Dx ADc 0.945 0.860 0.077 0.278 0.823 0.877 0.190 0.436
tSPMd 0.973 0.895 0.073 0.269 0.904 0.924 0.133 0.364
Improvement 2.88% 3.91% 5.19% 3.24% 9.84% 5.36% 30.0% 16.51%
aClassification task 1 classifies AD patients from patients with an AD or Dementia diagnosis code. bClassification task 2 classifies AD from patients with at least an AD
diagnosis code. cGBM model trained with diagnosis codes for AD. dGBM model trained with tSPM sequences.

Table 2: Model performance metrics.

Articles
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first element of the sequence (i.e., a in a→b) were ICD-9
codes, representing a possibly older record. Except for 2,
all diagnosis records that were the later sequence
element (i.e., b in a→b) were ICD-10 codes, represent-
ing a possibly newer record. We categorized the
important sequences under the following groups. Vi-
sualizations in this section are provided from an inter-
active dashboard we developed to visualize sequential
pathways and study positive predictive values for se-
quences and their elements (Fig. S1 and Appendix). The
positive predictive values are computed based on the
true positive patients identified by the feature in the
computed AD cohort.

A symptom in the past followed by an AD diagnosis
or medication
The top 2 important sequences shared between the two
classification tasks were sequences of an AD/Dementia
symptom followed by an AD diagnosis or medication.
Fig. 2: The ROC and PR curves grouped by the task and features. Clas
Dementia diagnosis code, whereas classification task 2 identified AD fro
diagnosis codes for AD (Supplementary Table). tSPM models use sequen
An example of such sequences is memory loss (78,093–
ICD 9 Diagnosis Code) followed by AD (late-onset G30.1
or unspecified G30.9) ICD-10 code. Memory loss is a
common symptom of Alzheimer’s Disease. Also, a past
record of memory loss ICD-9 code followed by AD
medications such as memantine and donepezil can
positively indicate true Alzheimer’s Disease. Our data
shows that memory loss alone has a relatively low pos-
itive predictive value (∼41%) for truly identifying AD
(Fig. 3). The PPV for memantine (5 mg) and donepezil
(10 mg) are 56% and 62%, respectively. However, when
sequentially paired with memory loss, the respective
positive predictive values increase to 71% and 72%.

A risk factor in the past followed by an AD
diagnosis
The 3rd most important sequential feature in classifying
AD encompassed a potential risk factor in the past fol-
lowed by an AD diagnosis. Notable in this category was
sification task 1 identified AD patients from patients with an AD or
m patients with at least an AD diagnosis code. Phecodes include all
tial patterns of medications and diagnoses from the EHR data.

www.thelancet.com Vol 92 June, 2023
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Fig. 3: Comparing positive predictive values of the elements of a sequential feature with memory loss for classifying AD.

Articles
unspecified essential hypertension (ICD-9 code 4019),
followed by AD ICD-10 diagnosis code for AD or De-
mentia. Hypertension in midlife is particularly associ-
ated with an increased risk of developing dementia and
Alzheimer’s Disease.19,20 Also in this category were past
records of unspecified hyperlipidemia (ICD-9 code
2724) or hypercholesterolemia (ICD-9 code 2720), fol-
lowed by AD diagnosis code (Fig. S2 and Appendix).

Sequences involving AD medications
Some of the important sequential features we found for
classifying AD included sequences of AD medications and
diagnosis codes for AD or dementia (Fig. 4). Among
medications, donepezil and memantine were primarily
www.thelancet.com Vol 92 June, 2023
included. For instance, sequences of donepezil with AD or
dementia diagnosis records and AD followed by mem-
antine carry positive signals for classifying AD (Fig. 5).

Other important sequences of AD medication re-
flected changes in medications or in dosage. A highly
important sequence, for example, indicated an increase
in dosage for donepezil from 5 mg to 10 mg. Another
sequence possibly reflected a change in the treatment
plan from donepezil to memantine. Donepezil is a
medication typically the first medication used to treat
Alzheimer’s Disease. In contrast, memantine is indi-
cated for moderate to severe Alzheimer’s Disease,
though is sometimes used earlier if the patient cannot
tolerate donepezil or requests it for other reasons.
7
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Fig. 4: Sequential pathways that indicate true AD compiled by connecting identified sequences of AD medications and diagnoses in the
EHR. The visualization dashboard compiles sequential pathways by connecting identified sequences of EHR observations. The pathways pre-
sented here involve donepezil and memantine.
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Indirect medication relations to AD diagnosis
We found that the sequence of Sodium Chloride IV
followed by Alzheimer’s Disease with early onset is an
important marker for classifying AD patients. The pos-
itive predictive value of the sequence is 96.72 percent,
whereas PPV for Alzheimer’s Disease with early onset
and Sodium chloride IV alone is 87.86 and 9 percent,
respectively. Sodium chloride IV solution is commonly
Fig. 5: Comparing positive predictive values of the elements of a
classification.
used to treat a variety of conditions, including dehy-
dration, electrolyte imbalances, and certain medical
emergencies, and is. Several factors can also lead to
dehydration in people with AD/dementia, including
decreased thirst (or difficulty recognizing thirst), diffi-
culty remembering to drink enough fluids or commu-
nicate their thirst, and due to AD or other medications
that can lead to dehydration. Some medications used to
sequential feature with AD medications that can improve AD

www.thelancet.com Vol 92 June, 2023
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treat AD, such as cholinesterase inhibitors, can cause
side effects such as diarrhoea and increased urination,
contributing to dehydration. Other AD medications,
such as memantine, can cause side effects such as
constipation, which can also contribute to dehydration if
it leads to infrequent bowel movements.

Comorbidities with shared roots or as side effects
We found that some sequences of comorbidities with a
possible shared cause with AD or AD side effects can
potentially indicate true AD. Examples included se-
quences of different joint pains followed by an AD
diagnosis or medication as important digital markers for
AD phenotyping (Fig. 6 and Fig. S3 in the Appendix).
Pain in a joint can have a number of causes, including
injuries, overuse, or underlying medical conditions,
such as Rheumatoid Arthritis (RA), Osteoarthritis (OA),
Peripheral arterial disease, and Compression fractures.
Both RA and AD diseases are associated with older
persons and genetic factors. Besides the inflammation
associated with RA, reduced blood flow to vital body
organs can increase the risk of developing dementia.
Fig. 6: Comparing positive predictive values of the elements o

www.thelancet.com Vol 92 June, 2023
Additionally, anti-rheumatic medications used by RA
patients may increase the risk of developing dementia.21

Another sequence in this category is Anemia un-
specified (ICD-9 code), followed by an AD or dementia
diagnosis code. Less than 14% of patients in our cohort
with an anaemia record are positive for AD. In this
setting, an unspecified AD ICD-10 code has a PPV of
77.3 percent. When sequentially paired, Anemia fol-
lowed by a non-specific AD has a PPV of 81.8 percent.
When paired with a late-onset AD diagnosis code, the
PPV goes up to 94.3. In both sequences, the positive
predictive value for AD increases by about 5 percent.
Several studies have found that older adults with
anaemia may have an increased risk of developing
Alzheimer’s Disease.22–24

Repeated AD diagnosis codes
Sequences that embody a temporal repetition of the
diagnosis codes are also important in confirming the
AD diagnosis. For example, one of the top features we
found shows that if a patient has the ICD-9 code 3310
(Alzheimer’s Disease) followed by an ICD-10 diagnosis
f a sequential feature with joint pain for classifying AD.

9
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code for AD, chances are higher that the patient truly
has AD.

Does the temporal direction of a sequence matter?
To assess the contribution of the temporal direction in
the a→b, we evaluated positive predictive values of a&b
(i.e., interactions or joint observations) and b→a (i.e.,
reverse sequences). Out of the 219 sequences mined in
this study, 107 reverse sequences were available in the
data. That is, for about half of the sequences, the reverse
sequence was not observed. As illustrated in Figs. 3, 5
and 6, we found that for all sequences identified by
the algorithm, the positive predictive values were larger
or equal to the PPVs obtained from the interactions or
joint observations of the sequence elements. In many
cases, the sequence reflected the interactions or joint
observations between the two elements of the sequence
(a&b), especially when the reverse sequence was too
sparse. Overall, the temporal direction mattered in
identifying a sequence that contained a signal boost. For
example, the sequence of donepezil 10 mg tablet pre-
ceding abnormal weight loss (Fig. 5) has a positive
predictive value of 79.41%. The reverse sequence (i.e.,
abnormal weight loss→ donepezil 10 mg tablet) and the
joint observation of donepezil 10 mg tablet and
abnormal weight loss had PPVs of 50% and 66.13%,
respectively. Similarly, Alzheimer’s Disease (ICD-9)
followed by an ICD-9 diagnosis code for Dementia,
unspecified, without behavioural disturbance had a PPV
equal to 88.12%, while the PPVs for reverse sequence
and the joint observation of the two records were
respectively 72.37% and 81.36%.
Discussion
Real-world clinical data stored in electronic health re-
cords systems offer significant opportunities for
developing powerful tools to improve epidemiologic
evidence on Alzheimer’s Disease at a lower cost than
face-to-face clinical studies. However, due to known
data reliability issues, study cohorts from EHR data
need to be carefully defined in order to minimize the
introduction of additional and unnecessary noise in the
study. This can be achieved through expert-driven al-
gorithms, which are often costly,25–27 or carefully
developed computational models that can scale into
digital health tools. Given the projected number of
older adults that will develop AD in the future (as they
age), scalable computational cohort characterization
models can facilitate identifying those who would
benefit from effective disease-modifying therapies
(DMTs) as they become available.

AI-based digital health tools—such as one built upon
the sequential models developed in this study—for
improving AD cohort identification with widely available
structured clinical data can accelerate precision drug
development (e.g., through accelerating clinical trial
recruitment) and improve outcomes research (e.g., via
reducing the noise in identifying cases and control).
However, prior research on the development of prog-
nostic/diagnostic models of AD has had limited incre-
mental predictive value and external validity or has
required cognitive, genetic, and imaging markers that
are not routinely collected in clinical care. Imprecise AD
cohort identification can impede the recruitment pro-
cess for clinical trials to evaluate novel therapies
undermining the validity of outcomes research.

EHR observations reflect a complex set of processes
that thwart their seamless translation into actionable
knowledge. Namely, the raw EHR observation data may
not be direct indicators of a patient’s “true” health states
at different time points but rather reflect the patients’
interactions with the system, the clinical processes, and
the recording processes. EHR observations are also
recorded asynchronously across time (i.e., measured at
different times and irregularly), which presents foun-
dational challenges for directly applying standard tem-
poral analysis methods. In this paper, we provided a way
of identifying digital markers, via transitive sequential
pattern mining (tSPM), to identify AD in EHR data. Our
results demonstrated that, given the limited reliability of
AD diagnosis codes, sequential pairs of clinical records
stored in the EHRs can augment cohort identification of
Alzheimer’s Disease cohorts by a magnitude of 3–16
percent on a net improvement, over the use of AD
diagnosis codes alone.

We categorized the sequences for identifying Alz-
heimer’s Disease patients into six groups. Most impor-
tant sequences represented (1) a symptom in the past
followed by an AD diagnosis or medication (notably
involving past records of memory loss and/or mild
cognitive impairment), or (2) a risk factor in the past
followed by an AD diagnosis, such as unspecified
essential hypertension, unspecified hyperlipidemia or
hypercholesterolemia. Another group of sequential pat-
terns involving (3) sequences of AD medications,
mainly donepezil and memantine, also carried positive
signals for identifying AD. These sequences likely rep-
resented changes in the agent(s) prescribed due to the
progression of AD or side effects. We also found se-
quences as (4) indirect digital markers for AD, such as
indirect medication relations to AD diagnosis (e.g.,
supply of Fluorodeoxyglucose F18, Sodium Chloride IV,
Midazolam followed by AD diagnosis). Sodium Chlo-
ride IV, PET scan (where Fluorodeoxyglucose F18 is
needed), and Midazolam are all typically administered
by a healthcare provider in a hospital or clinical setting.
A fifth group of sequential features (5) represented
comorbidities with possible shared roots or side effects.
Sequences of different joint pains followed by an AD
diagnosis or medication were important digital markers
for AD phenotyping in this group. The final group of
sequences was those that (6) represented two different
records of AD diagnosis codes.
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Similar to all other work based on observational
data from electronic health records, this study has
limitations. One of those limitations can be attributed
to the data quality. We hypothesize that mining tem-
poral representations from raw EHR data may alle-
viate some of the data quality issues, but we have not
rested this hypothesis thoroughly. In addition, data
quality issues, such as lack of longitudinal complete-
ness, can be reflected in the sequential patterns
mined. In addition, we used an already-enriched
population to build our study on, which included all
patients with at least a diagnosis record for either
Dementia or Alzheimer’s Disease. Therefore, the
generalizability of the models developed here to
the general population needs further study. Although
the data used in this study originate from multiple
institutions and care settings, the population distri-
bution is geographically limited. Further evaluation is
needed to understand possible fluctuations across
geographic regions (and thus demographic charac-
teristics) and care settings.

In addition to diagnosis and medication codes, EHR
data contain more valuable information and data ele-
ments that can be leveraged within the sequencing
framework. For instance, information about the context
where an observation was recorded (e.g., primary care
versus a new referral to speciality care, such as
neurology or psychiatry) and the timing and patterns
between clinical encounters. Additional data elements
that can be incorporated into the sequencing framework
include clinical notes, procedure codes, vitals, and lab-
oratory tests from the EHR data and genomics from the
biobank. Another limitation of this study is that per-
formance comparisons to a comprehensive set of avail-
able benchmark AD algorithms (e.g., CALIBER)28 are
lacking.

In addition to the superior classification performance
and the hypothesis-generating value of the sequential
representations as digital markers of disease, they
enable temporal storytelling and thus provide tools for
explainable Artificial Intelligence (AI). As the clinical
utility of complex AI algorithms has been under
scrutiny,29–31 explainability has become crucial for
elevating clinical utility and impacting patient lives. As
this method continues to develop, the classification
pipeline, with the story-telling capabilities added
through interpretive sequences, can be used in data-
driven tools that could facilitate diagnostics and cohort
characterization across the AD continuum and enhance
public health surveillance, targeted screening, and
individualize treatment, improve misdiagnosis rate, and
enable more precise planning for health care and care-
giving resources. Digital health tools built with tSPM
representations on real-world clinical data stored in the
EHRs offer significant opportunities for high-
throughput precision cohort characterization across
the AD continuum and at scale and at a lower cost.
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