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ABSTRACT OF THE DISSERTATION

Algorithms and Methods for Characterizing Genetic Variability in
Humans

by

Christine Lo

Doctor of Philosophy in Computer Science

University of California, San Diego, 2014

Professor Vineet Bafna, Chair

Characterizing genetic variation including point mutations and structural

variations, is key to understanding phenotypic variation in humans. The rapid

development of sequencing technology has fueled the development of computational

methods for elucidating genetic variation. In this dissertation, we develop novel

computational methods to mainly target two human genetic variation problems

using current and emerging sequencing technology.

Capturing variation on the haplotype level is challenging with current

sequencing technology as it involves linking together short sequenced fragments of

xiii



the genome that overlap at least two heterozygous sites. While there has been a lot

of research on correcting errors to achieve accurate haplotypes, relatively little work

has been done on designing sequencing experiments to get long haplotypes. With the

development of new sequencing technology and experimental haplotyping methods,

we parametrize the haplotyping problem in two contexts, strobe sequencing and

clone-based haplotyping, and provide theoretical and empirical assessment of the

impact of different parameters on haplotype length.

Variation in certain regions of the genome are harder to capture than

others. Reconstruction of the donor genome from whole genome sequence data

is either based on de novo assembly of the short reads or on mapping reads to a

standard reference genome. While these techniques work well for inferring ‘simple’

genomic regions, they are confounded by regions with complex variation patterns

including regions of direct immunological relevance such as the HLA and KIR

regions. Characterizing these regions have previously relied on laboratory methods

using traditional and quantitative PCR primers and probes which can be labor and

time intensive. We address the problem of ambiguous mapping in complex regions

by defining a new scoring function for read-to-genome matchings. This scoring

function is applied to predicted sequence assemblies of the KIR region in order to

determine the most likely KIR haplotype groups of the donor. In another approach,

we developing a novel method based on barcoding (deriving signatures) known

KIR templates in order to determine the copy number and allelic type of genes in

the KIR region directly from whole genome sequencing data without assembly or

mapping.
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Chapter 1

Introduction

Deoxyribonucleic acid (DNA) encodes information regarding the develop-

ment, function, and reproduction of living organisms by being transcribed into

ribonucleic acid (RNA) which is translated into proteins that determine cell function

and ultimately phenotype. Thus, knowledge of the genomic sequence encoded by

DNA is motivated by the promise of personalized medicine. DNA is a molecule that

is made up of nucleotides with one of four bases: adenine (A), cytosine (C), guanine

(G), and thymine (T) and is tightly packed in structures called chromosomes. The

human genome is made up of 22 types of chromosomes and 2 sex chromosomes, and

because humans are diploid there are two copies of each chromosome type. The two

chromosomes of the same type are highly homologous to each other and only differ

at a small fraction of variant sites (0.1%). From a computational stand point the

genomic sequence can be represented as a string of {A,C,G,T} that is 3 billion base

pairs long or 6 billion base pairs if the sequence of the two homologous chromosomes

are represented separately. The algorithms and methods in this dissertation revolve

around uncovering the genetic variation in humans as these variations are key to

understanding phenotypic variation in people including susceptibility to disease.

1
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1.1 Background

1.1.1 Variation in Humans

Genomic variations are often classified into two groups based on their size.

Small variations (less than 1Kb in size) include point mutations, or single nucleotide

variations (SNVs), which only affect a single nucleotide. Further classification of

this type of point mutations are defined somewhat arbitrarily. Single nucleotide

polymorphisms (SNPs) are point mutations that are common in a population

(occurring in at least 1% of the population) while private point mutations are

unique to an individual (occurring in 1% of the population). To date, there

are over 43 million SNPs registered in dbSNP for the human genome (Sherry

et al. (2001)). Other types of small variations include indels (small insertions and

deletions) and microsatellites. Larger variations (at least 1Kb in size) are known as

structural variations (SV). Copy number variations (CNVs) are a type of structural

variation that is characterized by the deletion or duplication of large sections of

the genome. Other types of structural variations include genomic rearrangements

such as insertions, inversions and translocations.

1.1.2 Inheritance

Humans inherits one copy of each chromosome type from the mother and the

father. Cellular processes like mutation and recombination result in the inherited

chromosome being different or mutated away from its parent (Figure 1.1). A

mutation will change the allelic value at a chromosome site from parent to child.

In humans, the mutation rate is estimated to be 1.3 − 1.8 × 10−8 per base per

generation (Lynch (2010)). The low mutation rate is why two chromosomes of the

same type only differ at a small fraction (0.1%) of variant sites. Recombination
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Figure 1.1: Mutation and Recombination. A child inherits one chromosome
from the father and one from the mother. In this example, there is a mutation at
the second site of the paternal chromosome (C→ T). There is also a recombination
on the maternal chromosome between the third and fourth site.

occurs when the two chromosomes of the same type exchange regions of their

genome during meiosis, which is the process where reproductive cells are formed

in the parent. Certain areas of the genome are more prone to recombination than

others and regions of sites with a high probability of recombining are known as

recombination hotspots.

1.1.3 Capturing Variation

Sequencing platforms allows one to read or sequence the whole genome

directly rather than probe at specific locations. In recent years, sequencing platforms

have been rapidly developing and are becoming more cost effective than they were

before. Sequencing platforms take as input a DNA sample, cut up and amplify

(replicate) the DNA, read each DNA fragment, and output a set of reads- each read
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is the nucleotide sequence corresponding to a small portion of a chromosome from

the sample.

Though there are a variety of sequencing platforms and protocols, the

sequence fragments output from sequencing technologies represent only a small

subsequence of the genome and require computational tools to reconstruct or

infer the donor sequence. The two main computational methods for inferring

the donor sequence are de-novo assembly of the (short) fragments and mapping

of the fragments to a standard reference sequence. Both of these approaches

are complicated by sequencing errors, alignment errors, and repetitive regions

of the genome. Often the reconstructed donor sequence is left incomplete with

gaps in areas where no fragments were sequenced and in areas where fragment

reads were not long enough to span repeat regions. Once assembled or mapped,

genotype information is relatively easy to obtain via statistical methods with several

computational tools devoted to this problem (McKenna et al. (2010b); Li et al.

(2009b)); however, haplotype information is still limited.

1.2 Haplotype Phasing

Haplotypes are the combination of alleles of SNPs along a single chromosome

while genotypes are the combined haplotype information for a pair of chromosomes.

Recall that humans are diploid, inheriting a pair of each chromosome, where the

two copies of each chromosome are highly homologous to each other and differ in

roughly 0.1% of variant sites. Characterizing variation on the haplotype level is

challenging with current sequencing technology, as the similarity between the two

homologous chromosomes make it difficult to elucidate the combination of alleles

on a single chromosome.
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Given the importance of haplotype information, a variety of computational,

statistical, and experimental techniques have been developed to phase chromosomes.

While we focus our discussion and work on haplotyping with sequencing data, we

mention a few other strategies to put our work in context. Population-based inference

exploits linkage disequilibrium to identify likely haplotypes from genotype data.

Consider a population of individuals sampled at two sites and an individual with

the genotype (A/C-T/A). If a large number of individuals carry the homozygous

genotypes (A/A-T/T), we can infer that the haplotype (A-T) is common in the

population, and infer the two haplotypes to be (A-T) and (C-A). Large scale studies

such as the International HapMap Project (Frazer et al. (2007)) and 1000 Genomes

project (Abecasis et al. (2010a)) have attempted to phase individuals using this

approach; however, historical recombination events can reduce or eliminate linkage,

and reliable phasing can only be achieved over short regions, 30-50Kb on the

average (Reich et al. (2001); Altshuler et al. (2005)). Furthermore, phasing private

mutations may not be possible. While phasing is difficult with populations, it is

almost trivial if parental information is known (Marchini et al. (2006); Roach et al.

(2010)). Given that only a few crossovers occur on each chromosome during meiosis,

a small sampling of homozygous alleles in the parents are sufficient to phase entire

chromosomes. While family-based haplotyping is powerful, it is not always feasible

as it requires genotype or sequencing information of the parents. Several methods

have recently been developed for deriving chromosome length haplotypes based on

isolation of a single cell followed by physical separation of chromosome pairs during

mitosis using microfluidic devices, microdissection, and fluorescence-activated cell

sorting (Fan et al. (2011); Ma et al. (2010); Yang et al. (2011)). Once separated,

the chromosomes are amplified and sequenced. Another recent study achieved

chromosome length haplotypes by isolation of sperm cells and deconvolution of



6

recombination breakpoints (Kirkness et al. (2013)). While these techniques achieve

chromosome length haplotypes, they are often sparse due to amplification bias.

Furthermore, they require custom equipment and are quite labor intensive which

could add to the cost and the throughput.

Alternatively, inferring haplotypes from sequencing data is attractive due to

the proliferation of inexpensive sequencing techniques that have the throughput

to sequence the entire human genome (Shendure and Ji (2008); Mardis (2008)).

Because a sequence fragment is sampled from one chromosome, the heterozygous

variants of the fragment can be chained together to assemble haplotypes, a prob-

lem known as haplotype assembly. Haplotype assembly was proposed some time

ago (Halldórsson et al. (2003); Bafna et al. (2005)), but the data for individuals

genomes has recently become more prevalent. The first sequence of a genomic

individual, J. Craig Venter, (HuRef ) was produced in 2007 using Sanger sequencing.

The sequence fragments were paired-end, spanning 2− 150kbp linking subreads of

2kbp. Each base sampled an average of 6×. The phasing was quite effective, with

a ‘median’ haplotype (the metric is precisely defined later) of length 350kbp (Levy

et al. (2007)). Sanger sequencing provides long and accurate reads but lower

throughput and expensive library preparation making it less cost-effective. By

contrast, next-generation technologies allow for massively parallel sequencing, but

have much shorter reads, and are more error prone. Recall that haplotype as-

sembly relies on linking together heterozygous variants from sequence fragments;

therefore, the length of the sequence fragment is an important factor in achieving

long haplotypes. While current computational research focuses on improving hap-

lotyping accuracy assuming the specific technological parameters are determined

by the technology, the onset of newer technologies such as strobe sequencing and

clone-based haplotyping (utilizes sequencing data) allow for user specification for



7

an experiment.

In the first half of this thesis, we parametrize two types of sequencing

technologies in order to develop more cost effect methods for achieving long range

haplotypes. In chapter 2, we parameterize the technology of strobe sequencing

and analyze the relationship between sequencing parameters and haplotype length.

Strobe sequencing uses single molecule sequencing technology to allow for longer

insert sizes (up to 9Kb) as well as variable advance length and multiple subreads.

This work is also application to other sequencing technologies such as single-read

and paired-end sequencing since strobe sequencing is a generalization of the two. In

chapter 3, we parameterize clone-based haplotyping experiments , which extract long

genomic fragments between 10− 140Kb depending on the type of clone used (Lo

et al. (2013a)) and pool clones together before sequencing such that the probability

that two overlapping clones belong to different haplotypes is low. Relative to

haplotyping with pure sequencing technologies, a bit of cost is absorbed both in the

preparation and computational phase in order to achieve longer sequence fragments.

Parameterization is also applicable to long range fragment reads (i.e. complete

genomics and moleculo) which similarly extract long sequence fragments before

pooling. Applying our analysis, we demonstrate improved haplotype lengths using

BAC clones on PGP1, the first volunteer of the Personal Genome Project (Church

(2005)).

1.3 Genomic Regions With Complex Variation

With current technology, variation in certain regions of the genome are

harder to capture than others. This is due to the fact that these regions are

highly variable and repetitive. One such example is the Killer Immunoglobulin-
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like Receptor (KIR) region on chromosome 19 spanning 100− 200 thousand base

pairs in length. To date, 15 genes including 2 pseudogenes have been identified in

this region (Middleton and Gonzelez (2010)) with haplotypes containing a select

combinations of 7 to 12 genes. Although variable, the KIR region is tightly organized

and haplotypes can be classified into 7 known haplotype groups based on their gene

content. Furthermore, haplotype groups are a combination of 4 centromeric and

2 telomeric motifs suggesting evolutionary history via recombination maintained

by balancing selection (Gendzekhadze et al. (2006)). The region is also extremely

diverse in allelic variation in genes, with over 670 known alleles for the 15 genes of

this region (Robinson et al. (2005)). More recently, gene copy number variation

(besides gene presence and absence) in this region has been discovered (Jiang et al.

(2012); Pontikos et al. (2014)). Coupled with the fact that this region is marked by

segmental duplications of various length, reconstruction of this region using high

throughput sequencing technology and conventional computational methods (e.g.

mapping and de-novo assembly) is challenging (Lo et al. (2013b)).

Characterizing the genetic variation in KIR region is of direct immunological

relevance. The genes of the KIR region play a role in regulating the immune

response in humans by inhibiting or activating natural killer (NK) cells. NK cells

are important mediators of early immune response by recognizing ‘abnormal’ cells’

such as tumor cells and pathogen infected cells. Activating receptors will aid

NK cells in identification of ‘abnormal cells’, while inhibitory receptors aid by

recognizing ‘self’ molecules preventing an auto-immune response. Interestingly, the

genes present in group A haplotypes have more of an inhibitory role where as the

genes present in group B haplotypes have more of an activating role (Middleton

and Gonzelez (2010)). Adding a level of diversity, evidence from disease association

studies suggest the co-evolution between the KIR region and the HLA region,
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a region on chromosome 6 that is also marked by hyper-variability and its role

in regulation of the immune system (Norman et al. (2013); Gendzekhadze et al.

(2009)).

Previous attempts to characterize this regions have primarily relied on

polymerase chain reaction (PCR) along with sequence specific primers (SSP) and

sequence specific oglionucleotide probes (SSOP) to isolate specific genes in order

to determine gene content and allelic type in this region (Middleton and Gonzelez

(2010)). More recent studies have utilized quantitative PCR techniques to detect

the rate of amplification and calculate the gene copy number in this region (Jiang

et al. (2012); Pontikos et al. (2014)). In one study, pooled fosmid clones of fragment

length 30− 50kbp were used to obtain the unambiguous haplotype sequence of this

region for 12 individuals (24 haplotypes) (Pyo et al. (2010)). However, all these

approaches are both labor and time intensive and require additional work even

when whole genome sequence information is available.

The last part of this thesis is devoted to efficient computational methods for

characterizing the KIR region from increasingly prevalent sequencing data. While

the methods developed here are used to characterize the KIR region, they can be

extended to uncover variability in other complex regions of the genome such as

the HLA region. Chapter 4 is the first computational attempt for identifying the

two KIR haplotype groups of an individual using sequencing data. We model the

problem of ambiguous mapping in repetitive regions of the genome as a variant of

the standard (one-to-one) weighted bipartite matching problem, which can be solved

using network flows. The resulting method provides a scoring function for predicted

sequence assemblies of the whole genome sequence reads derived from this region

and use this scoring function to determine the most likely KIR haplotype group.

In chapter 5 we develop a fast, alignment-free method to detect copy number and
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allelic type directly from whole genome sequencing data. As haplotype groups are

classified based on gene content and thus copy number, our method has the ability

to detect haplotype groups of the individual whether they be known or novel. We

applied our method to type individuals from the 1000 genomes project (Abecasis

et al. (2010a)) and the Icelandic population.



Chapter 2

Haplotyping with Strobe

Sequencing Technology

2.1 Introduction

Much of the current computational research on haplotype assembly focuses

on improving haplotype accuracy (Bansal et al. (2008); Bansal and Bafna (2008); He

et al. (2010)). Until now, the length of the haplotypes depended upon the specific

technological parameters, and was assumed to be determined by the technology.

With recent developments in sequencing, the user has the ability to select different

parameters for an experiment. Our paper investigates the relationship of sequencing

parameters on the haplotype length.

Of particular relevance is the recent technology of strobe sequencing, available

from Pacific Biosciences (Ritz et al. (2010)). In this technology, a genomic fragment

is sequenced in a strobed fashion with subreads of pre-determined lengths separated

by user-determined intervals (advances). In Figure 2.1a, we see a number of

fragments with k = 2 strobes, and one with 3 strobes. Paired-end sequencing is

11
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Figure 2.1: Schematic for Haplotype Assembly (a) Strobe sequencing allows
for the generation of subreads, separated by user-defined advance lengths. The
reads can be mapped to the reference to detect heterozygous sites. (b) Nodes in
the SNP-Graph correspond to heterozygous sites. Edges correspond to pairs of
sites that are linked by a fragment. Haplotype assembly is limited to connected
components of the SNP-Graph. (c) The distance between sites is used for measuring
haplotype lengths. (d) The S50, N50, and AN50 measure of haplotype assembly.
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analogous to strobe sequencing with k = 2, however it differs in that the sequenced

reads must be from terminal portions of an insert which leads to reduced flexibility

in selecting advance lengths. A key result of our analysis is that the choice of

advance lengths can change the haplotype length by an order of magnitude for the

same amount of sequencing. In fact, the best results are obtained by a complex

distribution f on advance lengths. Besides k and f we also study the impact of

other parameters on haplotype length. These include (a) L, the number of bp

sequenced per fragment; L =
∑

i li, where li is the length of the i-th subread;

(b) N : number of fragments sequenced; (c) A, the maximum insert size allowed.

Note that because we usually fix L, the advance lengths are related to A. For

example, the maximum advance length for k = 2 strobes is A − L. In addition,

we usually work with coverage c = NL/G, which gives the number of times each

bp is sampled, on average. To obtain our results, we developed a simulator that

generates reads according to specific technological parameters, and constructs

connected components of the SNP-Graph. The software is available upon request

from the authors.

While the focus of our analysis is on designing experiments for haplotype

length, we also touch upon haplotype accuracy. We use a simulator provided

by Pacific Biosciences to generate strobe sequence data based on an error model

having high rates (roughly symmetric) of insertions and deletions relative to miscall

errors (Eid et al. (2009)). We use our previously designed tools to phase in the

presence of error (Bansal et al. (2008)). Our results indicate that long and accurate

haplotyping is feasible even with technology having such high error rates.
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2.2 Preliminaries

We begin by formalizing the problem. Aligned fragments define a SNP-

Graph in the individual, as shown in Figure 2.1b. Each heterozygous location

corresponds to a node. When a fragment overlaps two sites, we add an edge to the

corresponding nodes. It is easy to see that two sites can be phased if and only if they

are connected in the SNP-Graph. Therefore the length of the haplotypes depend

upon the size of connected components, while the accuracy of haplotypes depends

upon the error in sequencing, depth of coverage, and computational algorithms for

error correction. The quality of a haplotype is measured by metrics for length and

accuracy.

Metrics for haplotype length

Given the SNP-Graph, we use three different metrics (S50, N50, AN50)

to measure the median length of assembled haplotypes: S50, N50, and AN50,

related to the size (number of SNPs), span (distance spanned), and adjusted span

of the contigs respectively. See Figure 2.1d. Recall that the haplotyping is limited

to connected components in the SNP-Graph. The length of a haplotype can be

described in terms of its size (# of heterozygous sites), or span (distance between

distal heterozygous sites). As the connected components can interleave, we define

the adjusted-span of a component as the span times the fraction of sites that lie

in the contig. In Figure 2.1d, we observed connected components of size 5 and

2 with spans 12kbp, and 11kbp, respectively. The adjusted spans are given by

5·12
8

= 7.5kbp, and 2·11
5

= 4.4kbp.

We define S50 (and N50) to be the size (respectively, span) such that 50%

of all sites are in contigs of size (span) S50 (N50), or greater. As SNPs display a

‘clumping’ property, S50 might inflate the haplotype size. On the other hand, N50
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tends to inflate the haplotype size when there are contigs that span a long distance,

but do not phase many SNPs. The AN50, or adjusted N50 metric considers both

span, and size. It is defined as the adjusted span s.t. 50% of the SNPs are in

contigs with an adjusted span AN50 or larger. We will primarily use the AN50

metric. However, our results and trends remain the same for any metric.

Metrics for haplotype accuracy

Erroneous base-calls corrupt the accuracy of assembled haplotypes. In

simulations, where the reference is known, we can measure the accuracy of the

reconstructed haplotype as the haplotype edit rate (HER), equal to the fraction of

incorrectly called alleles. A second reason for incorrect haplotyping is that weak

links might cause a ‘switch’, a crossover from one true haplotype to the other.

This could potentially cause HER to be large, even though a single crossover can

correct the haplotypes. See Figure 2.7. Therefore, we define another metric switch

error rate (SER) which is the number of crossovers (per heterozygous site) in the

assembled haplotypes to match the correct haplotype.

2.3 Effect on haplotype length

2.3.1 Singleton strobes

Assuming that the cost is proportional to the number of nucleotides se-

quenced, we compare all designs after fixing coverage c. A back-of-the-envelope

calculation suggests that with long read lengths (L ' 1kbp), we should be able to

link all SNPs together, given that the average pair of SNPs is 1kbp apart. The

intuition is wrong because (a) a Poisson process for SNPs implies an exponential

distribution of inter-SNP distance in a population- hence a long tail; and, (b) a
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single individual is heterozygous at only a subset of the SNPs. Indeed, the distribu-

tion of inter-SNP distances in HuRef is more consistent with the power-law (than

exponential) with a long tail of large inter-SNP distances (Figure 2.2a). Therefore,

we only reach an AN50=48kbp even with L = 5kbp and c = 20× (Figure 2.2b).

Similar results can be obtained with mate pair sequencing (k = 2) at much lower

coverage. The linking together of SNPs through subread probes is indeed the most

significant parameter determining haplotype length.
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Figure 2.2: Haplotype Assembly with Singleton Strobe (a)Distribution of
Inter-SNP Distances. The log-log plot suggests slower than exponential decay,
better fit by a power-law. (b) With single strobes (k = 1), high coverage and very
long reads are needed to achieve significant haplotypes.

2.3.2 Advance Lengths for Paired End Sequencing (k = 2)

We fixed the read-length L = 900bp as it is within the current mean length

distribution reported by Pacific Biosciences (Davies (2010)). For L = 900bp,c =

20×, and k = 2 subreads, choosing fixed insert sizes A1 = 3kbp, A2 = 9kbp results

in low AN50 values 5.4kbp and 6.7kbp, respectively. However, a simple 50-50 mix
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of the two increases this by an order of magnitude AN50=54kbp. Clearly, variation

in insert size, and thus advance length, is important. However, it is not immediately

obvious what distribution of advance lengths will give the highest AN50. For

example, we could consider uniformly varying advances from a minimum to a

maximum length, or follow the library mix used for sequence assembly dominated

by smaller advance lengths to form contigs, mixed with a smaller number of large

advances to create scaffolds. To search efficiently over a large space of distributions,

we used the 2-parameter β-distribution. For parameters (α, β), and maximum

insert size A, define the p.d.f as

f(a) =
aα−1(A− L− a)β−1∫ A−L

x=0
xα−1(A− L− x)β−1dx

(2.1)

where the denominator is a normalizing constant. Different choices of α, β

provide a large range of distributions for f(a) (beta). For example, larger α values

correspond to a negative skew (longer advance lengths are preferred), while larger

β correspond to a more positive skew. When α = β, the distribution is symmetric.

We systematically explored all α, β values in the interval (0 − 4]. Additionally,

we implemented a simulated annealing algorithm (see Section 2.5) to identify the

optimal choice of parameters.

Surprisingly, the distributions with the highest AN50 had α ∈ [1.0−3.2] and

β ∈ [0.3−0.9], and skewed heavily toward the longer clones. For c = 20×, L = 900bp,

A = 9kbp, (α, β) = (1.6, 0.5), we achieve an AN50' 151kbp (Figure 2.3). Even

more surprising, distributions skewed toward smaller clone lengths (α, β) = (0.6, 2.3)

had the worst performance (AN50=38kbp). Uniform (α, β) = (1, 1), and other

symmetric distributions (α = β) show an intermediate performance. The bias

is maintained at different values of coverage, maximum insert size, and other

parameters. While there is a heavy bias towards longer clones, variation is important
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as well. For example, the distribution given by (α, β) = (4.5, 0.1) shows an extreme

skew towards longer clone lengths so that it almost mimics a delta function at 9kbp

and gives an AN50 of 45kbp. The trends do not change with a choice of other

metrics S50, N50 (see Figure 2.8b-d).
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Figure 2.3: AN50 for various α, β values. This grid was created by simulating
the first 10Mbp of chr1 (HuRef), at L = 900bp, c = 20×, A = 9kbp, α ∈ (0, 3.4]
and β ∈ (0, 3]. Each (α, β) pair was simulated 25 times, and the median AN50 was
plotted.

Wasted Reads: Note that popular designs for sequence assembly emphasize

short inserts (with a tight distribution of insert-lengths) mixed with a few large

clones for scaffolding. By contrast, haplotype assembly is improved by focusing

on larger inserts and higher variation. Figure 2.4a provides an illustration of the

impact of different distributions of advance lengths on the connectivity of the

SNP-Graph. A connected component with k vertices and m edges has m− k + 1

‘waste’ edges, as only k − 1 ‘useful’ edges are needed to maintain connectivity.

Due to the clustering of SNPs, a design with larger number of short advances

has more wasted edges compared to a design with long advances. As each useful

edge connects two previously unconnected components, it has a large impact on

haplotype lengths. We computed the number of useful edges for the two designs,

fixing c = 20× and varying maximum insert, A. We observe that the number of



19

useful edges is always larger in designs with a bias towards long advance lengths

(Figure 2.4b). For A = 5kbp, we see a 13% difference in useful edges between the

two distributions.

Figure 2.4: Increase in the number of useful edges with increasing A (a)
A schematic illustration of the impact of designs on the number of useful edges. As
there is a larger number of SNP pairs with small distances, designs that favor short
edges tend to connect already connected components, and have less useful edges.
(b) The fraction of useful edges for two designs, and for a range of values for A.
Note that a large fraction of edges (reads) is wasted either because the edges do not
connect two variants, or because the they connect already connected components.
The design with longer advance lengths always has a larger fraction of useful edges
resulting in better AN50. Simulations used L = 900bp, c = 20×, A = 9kbp.

The Erdós-Renyi theory describes the evolution of a random graph from

isolated components to a single component, with increasing number of edges (Erdos

and Renyi (1959)). In our case, the edge probability in SNP-graphs is not initially

uniform due to the clustering of SNPs (i.e. there is a bias towards proximal SNP

pairs). By choosing designs with a bias towards longer advance lengths, we are

essentially leveling out the probability of linking SNP pairs irrespective of their

distance, leading to improved connectivity.

2.3.3 Other parameters

Maximum Insert Size, A: In Figure 2.5a, we plot maximum achieved
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AN50 (for c = 20×, L = 900bp) maximum theoretical AN50 (assuming infinite

coverage) as a function of A. The achieved AN50 increases with increasing A for

the same amount of sequencing (c = 20×), indicating that the largest possible value

of A should be chosen. Interestingly, the SA optimized parameters (α, β) remain

similar as A is increased (See Table 2.2).
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Figure 2.5: AN50 for Other Parameters. (a) Increasing A increases AN50.
(b) Increasing c increases AN50 until saturation. (c) Increasing L increases AN50,
but saturates quickly. (d) Using more strobes increases the variation of advance
lengths, but decreases the size of the subreads. AN50 is maximized at k = 3, 4. All
simulations were performed on the first 10Mbp of chr1 (HuRef) using L = 900bp,
c = 20×, A = 9kbp. SA based optimal (α, β) values were similar, and produced
advance length distributions skewed towards longer advances. (See Table 2.2 for
exact (α, β) values.)

Coverage, c: The effect of coverage on AN50 is analogous to increasing the

edge probability, and we expect to see an increase in connectivity until saturation

is reached. The plot in Figure 2.5b shows this for A = 9000bp, L = 900bp, and SA

optimized (α, β).

Read length, L: Once A, c are fixed the impact of read-length L is minimal.

Here, we assume that the subread is of minimal size (≥ 100) to permit accurate
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mapping. Initial improvement is seen with increasing L as the same subread

captures proximal SNPs. However, the effect saturates quickly. (Figure 2.5c shows

this for A = 9kbp,k = 2, c = 20× and SA optimized (α, β) values. Again, the

β-distribution stays similar with changes in L. (See Table 2.2)

2.3.4 Number of strobes, k:

Besides flexibility in advance lengths, strobe sequencing allows the possibility

of multiple strobes k. Figure 2.1a provides a cartoon of strobe sequencing for k = 2

and k = 3. To compare designs with different number of strobes, we fixed the

subread lengths for each k to lk = L/k, keeping the total read-length constant. We

also fixed the maximum insert size, A. Recall from the paired-end results that

longer subread lengths help cover the relatively high proportion of SNPs that are

clustered close together. Therefore, increasing number of strobes helps increase the

variation in advance lengths against the penalty of smaller subreads.

Optimal advance distribution for higher k

For a simulation with k strobes, we compute an optimal collection of (αi, βi)

for 0 < i < k iteratively. Thus, for k = 3, a1 is randomly generated with (α1, β1, A),

and a2 is randomly generated with (α2, β2, a1). The strobed read is arranged as in

Figure 2.1a with a1 as the advance length between the subread1 and subread3, and

a2 as the advance length between subread1 and subread2. A similar pattern is used

for higher k. While we see an improvement for k = 3 and k = 4, higher values of k

do not help (Figure 2.5d).

The optimal distribution always skewed towards longer advance lengths.

The skew towards longer advance lengths was extremely strong, and consistent

among the very first set of (α, β)’s chosen, corresponding to the advance length
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between to two furthest strobes. For the other set of (α, β)’s, there was still a

skew towards the longer advance lengths; however, the skew was not as strong and

the degree of the skew was much more varied. We conclude that for the shorter

advance lengths among multiple strobes, the exact distribution does not have a

strong effect, as long as it is skewed towards longer advance lengths.

2.3.5 Regions with a high SNP density

Haplotype assembly is often applied to phase specific regions of interest.

Often, these regions are gene-rich, and have a high SNP density. The HLA Region

on chromosome 6, contains genes encoding cell surface antigen presenting genes

and many other genes involved in the immune system. Diversity in this region

is important for host defense against pathogens, and it has been implicated in

susceptibility to diseases including diabetes, cancer, and various autoimmune

disorders (Aversa et al. (1998); Shiina et al. (2004)). Phasing of coding SNPs could

provide critical structural information, motivating the development of haplotyping

techniques specifically targeted to this region (Guo et al. (2006)). We specifically

looked at the region from position chr6:29, 652K-33, 130K, using HuRef data. While

increased coverage provides modest improvement, high gains in AN50 are obtained

by increasing A (Figure 2.6). At c = 10×, L = 900bp, A = 20kbp we span 80% of

the region with 5 haplotypes.

2.3.6 A short note on haplotype accuracy

While our focus is on the feasibility of generating long haplotypes, accuracy

is also an important consideration with next generation technologies that may have

undesirable raw read error rates. We used our previously developed tools, HASH,

and HapCUT (Bansal et al. (2008); Bansal and Bafna (2008)) to phase haplotypes
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Figure 2.6: Haplotyping the HLA Region (chr6:29,652K-33,130K) of
HuRef. AN50 increases with maximum insert, and increased coverage. For c = 10,
A = 20K, 5 haplotypes cover 80% of the 3.5Mbp region.

while accounting for error. The Pacific Biosciences simulator was used to generate

reads under realistic error models. The simulator takes a single parameter ε as

input, reflective of the overall error rate. We chose ε ∈ {0.05, 0.1, 0.15}. As our

subreads are long, we assumed correct alignment of all reads (see Section 2.5).

Many homozygous sites appear heterozygous due to missed base calls. For

example, we observe 202K heterozygous sites at ε = 0.05 in a region with 936

known SNPs. Using a statistical test for filtering, only 3 of the erroneous sites

remain, and none of the ‘true’ SNPs is eliminated. Table 2.1 summarizes the false

negative and false positive rates for ε ∈ {0.05, 0.10, 0.15}, and c ∈ {10×, 15×}.

For c = 10×, ε ∈ {0.05, 0.1}, we were able to perfectly assemble the hap-

lotypes. Even with ε = 0.15, we were able to assemble haplotypes with HER=

2.25%, SER=0.76%. Increasing coverage to c = 15×, we achieved HER=1.39%,

SER=0.11%. As more data becomes available, we will exploit the error char-

acteristics and related base level quality values to further improve haplotyping

accuracy.
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Table 2.1: Filtering Erroneous Heterozygous Sites. This table shows false
positive rates (% of actual SNPs filtered) and false negative rates (% of erroneous
sites not filtered) when sites are filtered using the likelihood ratio with a cutoff at
−1.

Error Rate, Coverage % of False Positives % of False Negatives
5%, 10× 0 0.467
10%, 10× 0 0.197
15%, 10× 0 0.142
5%, 15× 0 0.329
10%, 15× 0 0.149
15%, 15× 0 0.114

2.4 Discussion and Conclusions

In spite of a long history and success with Sanger sequencing, the feasibility

of assembling meaningful haplotypes with next generation sequencing has been

questioned. Here, we demonstrate that with a judicious choice of parameters and

strobe sequencing, long (and accurate) haplotypes can be effectively generated. The

most important parameter appears to be the flexibility in choosing advance lengths,

available with strobe sequencing. Even with only k = 2 strobes, and coverage

c = 10×, we can achieve long haplotypes. On the target HLA region, we covered

80% of the region with 5 haplotypes.

Surprisingly, the optimal design for haplotyping heavily favors longer ad-

vances, and the trend does not change with higher values of A,L, c, or number of

strobes. Here, we only provide a partial explanation, suggesting that the longer ad-

vances level the probability of all edges. A rigorous explanation based on extending

the Erdós Renyi theory to the interval-like SNP-Graphs will be the focus of future

efforts. Other parameters influence haplotype lengths as well, and our results help

determine the optimal values.

Here, we use the ‘number of bp sequenced (coverage)’ as the “cost” of the

design, and optimized parameters after fixing coverage. However, other cost factors
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might be reasonable. For example, it may be more expensive to generate reads with

longer inserts. Also, more biological sample is needed (and wasted) with longer

inserts, and that can be a limitation when sample is limited (as in tumors). Our

simulated annealing software for optimizing parameters can easily be modified to

deal with a custom cost function.

Finally, while haplotype assembly can generate long haplotypes, it is not

yet capable of separating entire chromosomes. However, other techniques such as

chromosome dissection and amplification can generate long scaffolds connecting

distal sites. Used in conjunction with Haplotype assembly on strobe sequences,

chromosome level haplotyping is indeed feasible, even without familial information.

2.5 Methods

2.5.1 Data Source

The data source was derived from available human assemblies including

HuRef (Levy et al. (2007)). For our simulations we used data from chromosome 1

of the HuRef Genome. While the majority of the experiments were performed on

the first 10Mbp of chromosome 1, tests in other regions show similar results. For

simulations in the HLA region we used a 3.5Mb interval on chromosome 6.

2.5.2 Simulator

The input to the simulator is a data source, D, containing a list of het-

erozygous sites and their respective coordinates, and the parameters of the reads

(L, c, A, k, (αi, βi)). The S50, N50, and AN50 metrics are output. The algorithm

is described below. It simulates subreads as fixed intervals of size L/k, with ad-

vances chosen from the appropriate β-distributions. The nodes of SNP-Graph
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are connected by an edge if a fragment overlaps their locations. The procedure

GETSUMMARY computes the different metrics at the end of the simulation.

Algorithm 1 Simulation algorithm

1: procedure SIMULATE(D,L, c, A, k, (α1, β1), .., (αk−1, βk−1))
2: Initialize SNP-Graph by creating a node for each SNP in D
3: Set N = cG

L

4: Repeat N times
5: Select random start position, d0; Set S = φ
6: For 1 ≤ i < k
7: Set advance ai ← D(αi, βi) (* β-dist *)
8: Set di = di−1 + L/k + ai
9: Add SNPs in intervals [di, di + L/k] to S

10: Add edge (si, sj) and edge (sj, si) to SNP-Graph for all (si, sj) in S
11: (S50, N50, AN50) = GETSUMMARY(SNP-Graph)
12: end procedure

2.5.3 Computing optimal (α, β)

We used a Simulated Annealing (SA) algorithm to compute the optimal

(α, β) values. To test the performance of the SA, we also used a slower coarse-grained

optimization.

Simulated Annealing (SA): We start with α, β chosen at random from

the range (0, 3.5]. Empirically, Temperature T was selected to be 11, 000, and

reduced by a fixed amount in each iteration. The neighboring solution was selected

at random from {(α ± s, β), (α, β ± s)}. We set s = 0.5 for the first half of

the iterations, and set s = 0.1 for the remaining to allow for finer optimization.

This allows for a free exploration of the search space, followed by fine grained

optimization at the end. Due to a large variation in AN50 for a fixed (α, β), we

recompute AN50 values for the current solution and the neighbor, making it easier

to escape an artificially high value. We maintain a list of all (α, β,AN50) triples

observed.
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Algorithm 2 Simulated annealing algorithm

1: procedure SIMULATEDANEALLING(D,L, c, A, k)
2: Initialize grid, G(α, β), a list of observed AN50 values
3: Set (α, β)← (0, 4]× (0, 4]
4: For all 1 ≤ i ≤ l
5: Set s = 0.5 if i < I/2; else Set s = 0.1
6: (α′, β′)← {(α± s, β), (α, β ± s)}
7: G(α, β) = G(α, β)∪ SIMULATE(D,L, c, A, k, α, β)
8: G(α′, β′) = G(α′, β′)∪ SIMULATE(D,L, c, A, k, α′, β′)
9: AN50 = median(G(α, β))
10: AN50’ = median(G(α′, β′))
11: Set T = T − T0/I; ∆ =AN50’-AN50

12: Move to (α′, β′) with probability min{1, e−∆
T }

13: end procedure

2.5.4 SA performance

We use an exhaustive coarse-grained optimization to check the performance

of SA. Each (α, β) pair for α ∈ (0, 3.4] and β ∈ (0 − 3] was chosen with step

sizes of 0.2 and 0.1 respectively. For each value, we performed 25 simulations, and

recorded the median AN50. We compared SA and coarse grained optimization for

c = 20×, L = 900bp, A = 9kbp to match the parameters currently available for

strobe sequencing. See Figure 2.2. The coarse grained optimization entails a total

of 12, 750 simulations, each about 1CPU min. on a PC. By contrast, SA achieves a

finer grained optimization using only 450 simulations. The results are consistent

with the two methods (Figure 2.8).

2.5.5 Calling heterozygous sites (SNPs)

After running our simulated fragments through the Pacific Biosciences error

simulator and aligning the erroneous fragments (since our data is simulated, we use

original fragments to perfectly align the erroneous fragments), we used statistical

methods to differentiate heterozygous sites caused by true SNPs versus those caused
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by error. If a heterozygous site has a coverage of n (n fragments overlap the site),

there are n1 counts of the dominant allele and n2 = n − n1 counts of the minor

allele.

H0: The heterozygous site has no bias in the two alleles; the two alleles both have

a 50% chance of appearing with a small probability of error.

H1: The heterozygous site always shows one allele with a small probability of error

Let ε be the probability of a miscalled base. Then, the likelihood ratio

statistic is given by

Λ = 2 ln
P (O|H0)

P (O|H1)
= 2 ln

(1− ε)n1 · εn2

(1
2

+ ε)n
(2.2)

The likelihood ratio Λ asymptotically approaches the χ2 distribution. How-

ever, we empirically selected Λ = −1 as the cut-off for calling heterozygous SNPs.

2.6 Appendix

Figure 2.7: Haplotype Accuracy. The haplotype edit rate(HER) in this ex-
ample, given by the fraction of incorrectly called alleles, is 4

19
while the switch

error rate (SER) defined as the number of crossovers per site required to match the
correct haplotype is 1

18
.
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Figure 2.8: Contour Plots. Comparison of the contour plot of SA and Coarse
grained optimization shows that optimal (α, β) range of both approaches are
similar. Different metrics (S50, N50, AN50) also produce similar results. (a) Coarse
grain optimization for AN50 (b) SA contour for AN50 (c) SA contour of N50 (d)
SA contour of S50. Optimal (α, β) value for each is circled. All simulations were
performed on the first 10Mbp of chr1 (HuRef) using L = 900bp, c = 20x, A = 9kbp.
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Table 2.2: Simulated Annealing Results for Figure 2.5. The following
tables show the optimal AN50 and the (α, β) values found by simulated annealing.
All the optimal β-distributions are similar and skewed towards longer advance
lengths.

(a) AN50 and Optimal (α, β) for Figure 2.5a
Max Adv Len (kbp) AN50 (α, β)

9 161607 (1.9,0.7)
20 900068 (3.8,0.8)
30 2804943 (2.6,0.6)
40 4389053 (2.8,1.0)
50 10658401 (3.6,0.7)

(b) AN50 and Optimal (α, β) for Figure 2.5b
Coverage AN50 (α, β)

10 84816 (2.6,1.0)
20 152625 (1.7,0.6)
30 158652 (2.1,0.7)
40 166004 (3.1,1.0)
50 195282 (1.6,0.5)
60 226540 (1.1,0.4)
70 226540 (1.8,0.9)
80 226540 (3.6,0.6)
90 226540 (3.2,0.9)

(c) AN50 and Optimal (α, β) for Figure 2.5c
Read Length AN50 (α, β)

300 60593 (2.7,0.8)
500 117657 (3.3,0.7)
700 133155 (2.4,0.8)
900 144690 (0.9,0.5)
1100 155397 (2.3,0.6)
1300 157248 (2.5,0.6)
1500 158652 (1.4,0.4)
2000 166004 (1.4,0.5)
4000 166004 (3.1,0.5)

(d) AN50 and Optimal (α, β) for Figure 2.5d
Num of Strobes (kbp) AN50 (α1, β1) . . . (αk, βk)

2 88084 (1.8, 0.4)
3 108110 (2.7, 0.3), (2.0, 1.6)
4 110740 (2.9,0.1), (2.9, 1.0), (0.3, 0.5)
5 93870 (3.5, 0.1) (2.7, 0 .3), (2.7, 2.0), (0.8, 1.6)
6 86836 (3.1, 0.6), (3.2, 1.1), (2.9, 1.6), (2.6, 2.5), (2.5, 2.5)
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Chapter 3

Haplotyping with Clone-based

Sequencing

3.1 Introduction

The basic principle behind clone-based haplotyping (Burgtorf et al. (2003)),

involves constructing clone libraries that will extract long subsections of a haploid

and pooling together several clones for sequencing. As long as the clones within

a pool do not overlap, the clones can be computationally reconstructed from

shorter sequencing reads and assembled into longer haploid sequences. Alternative

implementations of the clone-based haplotyping method (Kitzman et al. (2011);

Suk et al. (2011); Peters et al. (2012)) mainly differ in how clones are generated

(affecting the length of the clones) and the number of pools sequenced. For example,

in a study by Suk et al., fosmid clones with an average length of 40kbp were

combined into 288 pools, with 5, 000 clones per pool, and the N50 length of the

assembled haplotypes was 1Mbp (Suk et al. (2011)). Several conceptually similar

haplotyping methods have recently been reported that fragment genomic DNA in

31
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vitro and then pool together the fragments for sequencing. From example, the

long fragment read (LFR) method was used in one study (Peters et al. (2012))

to generate haploid fragments of length (L) 10k to 300kbp, which were combined

into 384 pools with around 5,000 to 10,000 fragments per pool. The resulting N50

length of the assembled haplotypes ranged from 400k to 1Mbp. Another method

generated haploid fragments of average length (L) = 13.8kbp, leading to haplotypes

with comparable N50 values (Kaper et al. (2013)). Most recently, research using

Moleculo technology (Illumina Inc., San Diego, CA, USA) reported fragments of

L = 6k to 8kbp, possibly reaching up to 10k (Voskoboynik et al. (2013)).

The differences in the experimental designs of these studies directly affect

the cost versus haplotype length trade-off. Previous clone-based haplotyping

experiments did not explicitly consider how their parameter choices affect the cost

versus haplotype length trade-off, and often used the same design criteria as those

used for sequence assembly. Note that there is a major difference between sequence

assembly and haplotype assembly; sequence assembly relies on partially overlapping

short sequences of typically 20 to 70 bp in length, whereas haplotype assembly

depends on multiple adjacent heterozygous variants at a typical spacing of 1.5kbp,

which is a much more stringent requirement.

Here, we pursue a parameterized approach to haplotype assembly. We

considered the following parameters: clone length (L); number of clones per pool

(n); number of pools (p); and sequence read coverage per pool (r). The use of

parameters allowed us to compare the different methods (Table 3.1) and understand

the effects of haplotype length on different parameters. Please note that we use

the term clone in this paper because we were designing explicitly for clone-based

haplotyping; however, a clone can refer more generally to any type of haploid

subsequence of the genome, regardless of how it was obtained (that is, in vitro or
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in vivo).

We started with the assumption that once the clone library is prepared, the

cost is simply a function of the number of pools (p). However, our calculations

are useful for understanding other trade-offs as well. Although intuitively, larger

clone size (L) leads to longer haplotype length, the assembled haplotype length

depends upon the combination of parameters L, n, p, and r in a non-trivial fashion.

Connecting overlapping haploid clones generates long haplotypes. As mentioned

above, haplotype assembly is unlike sequence assembly, where L only needs to be

long enough to span the longest repetitive sequence. For haplotype assembly, the

clones must be long enough to span adjacent heterozygous variants. Therefore, the

first step in a good design is to make L as large as possible within the constraints of

available technology and cost. Next, to maximize the chance of getting overlapping

clones, the total clone coverage (c = nLp
G

) should be maximized. At the same

time, overlapping clones within a pool may lead to heterozygous calls that are not

informative for haplotyping, implying that clone coverage within a pool (cp = c
p
)

should be kept low. The naive way to accomplish these design objectives is to keep

n low and p high, which in turn, increases the cost of the experiment.

We studied the p versus length trade-off by simulating clones under different

experimental parameters, and assembling haplotypes assuming a known distribution

of variants. To experimentally validate the effect of using larger clone size (L),

we performed an experiment with p = 24 pooled bacterial artificial chromosome

(BAC) clones from a Caucasian male sample, NA20431, of the Personal Genome

Project (designated PGP1). BAC clones are longer (L = 100k to 300kbp) (Shizuya

et al. (1992)) than fosmid-based clones (L = 40kbp) and LFRs (L = 60kbp). To

keep sequencing costs low, we used additional reads from single low-pass WGS

in addition to modest coverage in each pool. Even with low sequencing cost (p
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and sequence coverage), we identified the assembly of accurate haplotypes that

were more than 2.5 times longer than previously reported ones. Our results also

suggest important design principles for clone-based haplotype assembly: for long

haplotyping, L should be as high as possible within the bounds of technology; it

is possible to achieve long haplotypes with a much smaller p (and hence lower

experimental cost) than was implemented in the previous efforts; and, there is

a direct trade-off between depth of sequencing per pool (r), and the length and

resolution of haplotypes (fraction of variants phased), but modest sequencing depth

is sufficient.

In addition to length, we also took into account the accuracy of the generated

haplotypes. The two types of errors that can arise in haplotyping are mismatches

and switches. Mismatches are defined as single nucleotide differences between

the assembled haplotype and the true haplotype, and are probably caused by

erroneous base calls. Switch errors are defined as positions where a crossover in

haplotype orientation is needed to recover the true phase. To test the accuracy

of the haplotypes, we need to compare the generated haplotypes with the true

haplotypes (that is, haplotypes from trio data). However, the true haplotypes are

not always known, and without knowledge of the ground truth, the best we could

do is compare with haplotypes obtained via other methods.

3.2 Results

3.2.1 Design of experiment for clone-based haplotyping

To assemble long and accurate haplotypes, the clone coverage, c, (that is,

the average number of clones covering each genomic position) must be high enough

so that overlapping clones from different pools can be assembled to form longer
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haplotypes. For a genome of length G, the expected clone coverage is given by

c = nLp
G

. Assuming that clones of fixed length L arrive at random and overlapping

clones come from different pools, the overlapping clones assemble into longer contigs.

The Lander and Waterman estimate (Lander and Waterman (1988)) for expected

length of a contig is given by:

E(contig length) =
L(ec − 1)

c
(3.1)

3.2.2 Effect of clone length (L)

The Lander and Waterman estimate allows for a quick comparison of different

strategies, and suggests that increasing clone coverage can compensate for low

L (see Figure 3.6). However, this does not model an important aspect of both

sequence and haplotype assembly. In sequence assembly, L must be long enough

to span repeats in order to permit unambiguous assembly. Once L exceeds the

length of known repetitive sequence (about 10kbp for humans in order to span

long interspersed nuclear elements (LINEs)), increasing L further has diminishing

returns (Chaisson et al. (2009)). However, in haplotype assembly, overlaps are

informative for phasing only when they cover heterozygous variants. If two adjacent

heterozygous variants are further apart than the length of a clone, they cannot be

linked into a single haplotype. Based on the observed variant distribution in the

human genome, no saturation is seen even with very high values of L (Figure 3.1a).

Thus, L must be chosen as high as is technologically possible. We show the affect

of long clone size on haplotype assembly by using available BAC clones (140kbp),

which are longer than clones from previous approaches (Table 3.1).
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Figure 3.1: Expected contig length for various clone-based haplotyping
designs. (a) Log-log plot of the maximum achievable haplotype N50 length for
different values of clone length (L) (assuming a distribution of heterozygous variants
obtained from Complete Genomics Institute (CGI) whole genome sequencing (WGS)
on chromosome 1 of sample NA20431 of the Personal Genome Project (designated
PGP1). This plot suggests a power law relationship between haplotype N50 length
(N50) and clone length (L), which is characterized by N50 being approximately L1.42.
Note that achieved haplotype lengths (filled circles) may not reach the maximum
length, owing to smaller numbers of pools or low fraction of the variants recovered.
(b) Simulated haplotype length versus the number of pools (p) for given values of
L (shown in different colors). In all cases, except one (magenta), the number of
clones per pool (n) is 5,000 (n = 16,800 for magenta). The curves reach saturation
when all variants that are less than distance L apart are connected in a contig.
Simulations are performed using the distribution of heterozygous variants obtained
from CGI WGS on chromosome 1 of PGP1. The squares represent the simulated
estimate given parameter settings of several clone-based haplotyping experiments,
while the circles show the reported N50.
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3.2.3 Effect of pool number (p)

The clone coverage must be high in order to form long contigs, but over-

lapping clones within a pool result in heterozygosity, and are not informative for

haplotyping. Denoting the coverage per pool as cp = c
P

, the probability of overlap

for a clone is given by:

Po = 1− e−2cp (3.2)

Previous clone-based methods, (Kitzman et al. (2011); Suk et al. (2011);

Peters et al. (2012)) (Table 3.1) all kept c high and cp low by keeping p high and

nL low. As each pool must be sequenced independently, the cost increases linearly

with p. To keep sequencing costs low, we considered the effect of overlaps within

a pool explicitly. As a first approximation, we simply discard clones that overlap

within a pool. Thus, the number of clones per pool is reduced to n′ = n(1− Po),

yielding a new coverage of c′ = n′Lp
G

. Figure 3.1b shows this “p (or cost) versus

contig length” trade-off, and clearly shows that the previous approaches (denoted

by circles) used many more pools than necessary for their specific clone length

choices. Here, we worked with a relatively low value of p = 24, which kept costs low.

We additionally improved haplotype contig lengths by not discarding overlapping

clones in a pool, but separating them computationally (see Methods below).

Another consideration in the design is the recovery of heterozygous variants.

For haplotyping, the heterozygous variants of the individual must be linked, and

therefore the variant must be sampled from both parental chromosomes. By

contrast, the homozygous variants (reference or non-reference) can be filled in

subsequently, and it is only necessary to sample the variant on one chromosome.

The expected percentage of heterozygous variants that are sampled by clones from
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both chromosomes is given by:

pv = 1− 2e
−v
2 (3.3)

We worked with low values of c = 6x, thus we expected only 90% of the

heterozygous variants to be recovered. To recover more heterozygous variant

locations, we augmented the detected heterozygous variants by using additional

WGS data of the same individual.

3.2.4 Effect of sequence read coverage per pool (r)

The final parameter of interest is the read coverage per pool, r. Increasing

r increases the sequencing cost per pool, but low values of r can affect clone

reconstruction, and thus haplotype length and resolution. For example, low values

of r decrease the resolution of the clones (that is, not all bases spanned by a clone

will be covered by a read) and make it difficult to detect clone boundaries. At the

same time, increasing r has diminishing returns for increasing cost. In particular,

assuming a Poisson distribution with parameter r, the probability that a position

is covered by k reads is given by:

pr ≈
e−rrk

k!
(3.4)

For r = 6x, Equation 4 suggests that 84% of the base pairs spanned by a

clone are covered by four or more sequence reads. However, the actual coverage (see

Figure 3.7) suggested that the coverage distribution is not Poisson. In fact, only

65% of the base pairs spanned by a clone were covered by four or more sequence

reads. The bias in coverage could be attributable to a variety of factors, such as

amplification bias and filtering of reads in order to control for repeats. To capture
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all these factors (including r, amplification bias, filtering of reads, and variants),

we worked directly with the parameter f (the fraction of heterozygous variants

recovered in a clone). In our experiments, r was 6x and f was 65%. We studied

the effects of f on haplotype length and haplotype-resolution via simulations (see

Figure 3.8, 3.9), and our results showed that modest values of f (or sequencing

depth r) and p could be used to achieve long haplotypes with high resolution.

3.2.5 BAC pool construction

Our analysis suggested that using a limited number of pools of larger clones

can lead to longer haplotypes than using many pools of smaller clones or fragments.

To provide experimental support for this prediction, we implemented the clone-

based haplotyping strategy using a set of BAC clones. We started with existing

BAC clones constructed from high molecular weight PGP1 genomic DNA and

individually maintained in 384-well plates for other purposes. Given that the mean

length of a BAC clone is 140 kbp (L), 384 BAC clones in one plate amount to

54 Mbp, approximately 1.7% of the 3.2 Gbp human haploid genome. Additional

pooling of fourteen 384-well plates, containing a pool of 5,376 (n) BAC clones,

would be expected to cover about a quarter of the human genome. With a total

of 24 (p) pools, the expected clone coverage (c) was 6x. The PGP1 BAC library

was constructed for multiple purposes and maintained as one clone per well in

384 wells, which involved a high cost (>US $50, 000) for handling individual wells.

For haplotyping purposes, we estimated that making pooled BAC libraries from

genomic DNA without individual colony picking and maintenance would costs

approximately US$5,000, and preparing DNA from each pool would cost roughly

US$20. Therefore, to implement this BAC-based approach routinely, the total

cost involved in BAC library construction and preparing DNA from 24 BAC pools
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Figure 3.2: Haplotyping with bacterial artificial chromosome (BAC)
clones. (a) Constructing the BAC library. DNA was extracted from PGP1
(NA20431, Personal Genome Project) and BAC clone libraries with clone length
(L = 140kbp. (b) Forming pools of BAC clones. The number of pools (p) formed
was 24, with each pool consisting of fourteen 16 24-well plates, so that there
was a total of n = 5, 376 clones per pool. (c) Sequencing and mapping each pool.
Sequencing libraries were prepared for each pool with a read coverage of L = 6x.
After sequencing, reads were mapped to hg19. (d) Reconstructing BAC clones.
Clones were reconstructed from the mapped reads of each pool using coverage-based
techniques (clones detected in region of chromosome 20).

would be roughly US$5,480.

Following this design (Figure 3.2), we constructed 24 sequencing libraries

from the 24 pools, which collectively contained 129,024 BAC clones. A total of 2

billion pair-end 100 bp reads were generated for these libraries, with an average of

approximately 74 million reads for each pool. Of these, roughly 47 million reads

(63.5%) were uniquely aligned to the genome, giving an effective read coverage (r)

of 6x per pool.
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3.2.6 Reconstruction of BAC clones

In each pool, the boundaries of BAC contigs were determined by detecting

regions of enriched read coverage after the reads of the pool had been mapped

to the genome (Kitzman et al. (2011)) (see Methods). If clones in a pool do not

overlap, a BAC contig will contain only one BAC clone, and the boundary of a

BAC contig will be the boundary of a BAC clone. However, given that cp = 0.25

in our experiment, we estimated that the percentage of BAC contigs containing

more than one clone would be Po = 39.34%. When clones overlap, it is not possible

to assume that the consensus sequence of the BAC contigs provides haplotype

information.

With the goal of maintaining the haploid nature of each pool, we developed

a computational approach to detect and remove regions covered by more than

one clone (see Methods). Previous clone-based methods detected and removed

overlaps by finding heterozygous variants and either removing the whole contig

(Kitzman et al. (2011)) or breaking the contigs at those locations (Suk et al. (2011)).

These methods were sufficient for previous methods because Po was relatively low

(Table 3.1). However, we developed a more sophisticated method to detect and

remove only the overlapping regions of a contig. Briefly, our method first detects the

boundaries of overlapping regions by searching for bulges in coverage. Using these

boundaries, we removed regions of the contigs that contain a significant fraction of

heterozygous variants, as these probably represent regions of overlapping clones.

Before removing the overlap regions, we detected a total of 92,937 BAC

contigs with an average length of 161,397 bp (N50 = 199,744 bp). This is consistent

with estimates derived from Lander and Waterman statistics for the expected

number and length of contigs (100,396 contigs and 159,127 bp). After removing the

overlap regions, there were a total of 85,445 reconstructed clones with an average
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Table 3.1: Comparison of different clone-based haplotyping protocols.

Kitzman et al.
(Fosmid)

Suk et al.
(Fosmid)

Peters et al.
(LFR)

Kaper et al.
Lo et al.
(BAC)

N : Number of clones in pool 5,000 5,000 5,000-10,000 16,377 5,000
L: Exp(clone length) (Kbp) 37 40 60 13.8 140

P : Number of pools 115 288 384 192 24

c: Exp(clone coverage) = nLp
G

7.1 1 9.2 57.6 14.5 6.0

cp: Exp(clone coverage per pool) = nL
G

0.06 0.07 0.15 0.075 0.25

Po: overlap probability = 1− e−cp 11.31% 13.06% 25.92% 13.93% 39.35%
Exp(haplotype length) (bp) 2.05E7 4.37E10 5.30E16 4.89E9 3.42E5

Simulated haplotype length (bp) 825,046 2,486,692 8,585,663 300,336 2,210,343
Actual haplotype length (bp) 386,000 959,175 411,000 358,000 2,640,036

length of 140,777 bp (N50 = 161,300 bp). Note that some contigs had to be

removed completely because the non-overlapping portions of the clones could not be

recovered (see Figure 3.10 for the distribution of lengths for the final reconstructed

BAC clones).

3.2.7 Variant detection

To recover variants, we pooled together all the sequence data from the 24

pools and called variants using BWA/ GATK software (McKenna et al. (2010a))

(see Methods). A crucial part of phasing is variant calling, and more specifically,

differentiating heterozygous and homozygous variants. However, our method could

call heterozygous variants only where both haploids were covered by BAC clones.

For instance, if only the haplotype with the reference allele of the variant was

covered, the variant would not be called. Likewise, if only the haplotype with the

non-reference allele of the variant was covered, the variant caller would not be

able to confirm its zygosity, and it would be called homozygous by default and be

discarded for phasing. Of the 2,906,810 variants recovered, 1,287,220 variants were

called as heterozygous and 1,619,590 were called as (non-reference) homozygous.

To overcome the challenges caused by low clone coverage, we augmented

the recovered variants by using existing Complete Genomics Institute (CGI) WGS

data of PGP1 [13,20]. A total of 3,283,326 variants were called by CGI (Drmanac
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et al. (2010)). Of these variants, 2,086,302 were heterozygous and 1,196,934 were

homozygous. A total of 3,208,817 variants were recovered by augmenting the

variants detected by the pooled BAC data with those detected by CGI WGS data,

and of these, 1,942,116 were classified as heterozygous (see Methods) and used in

the haplotype assembly. When compared with dbSNP135, 3,083,460 (4%) of the

3,208,817 variants were found to be novel. The percentage of novel variants, the

number of variants, and the homozygous to heterozygous ratio were comparable

with other individuals of European descent (Table 3.2, 3.4).

Table 3.2: PGP1 statistics. Variant statistics for PGP1 compared to others
individuals of European descent.

Total Variants Hom/Het Ratio % Novel Variants

PGP1 (BAC Pools) 2,906,810 1.26 1%
PGP1 (CGI WGS) 3,283,236 0.57 4.9%

PGP1 (BAC + CGI WGS) 3,208,817 0.71 4%

3.2.8 BAC haplotype assembly

Haplotype contigs were assembled by chaining together heterozygous variants

that were connected by a BAC clone; the more overlapping clones (that is, higher

clone coverage) present, the longer would be the expected haplotype length. Given

the number of reconstructed BAC clones (n’ = 85,445), and their average length

(L’ = 140,777), the effective clone coverage, c′ = n′L′p
G

, was 4x. Previous methods

report clone coverage of 6.6x (Kitzman et al. (2011)), 12.56x (Suk et al. (2011)),

and 38 − 56x (Peters et al. (2012)). Although the clone coverage for this BAC

haplotyping experiment was lower, we achieved longer haplotypes because of the

longer length of the BAC clones. In total, 2,379 haplotype contigs were assembled

to form haplotypes with an N50 length of 2, 640, 036 bp. The chromosome level
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breakdown of the number of contigs and N50 lengths is shown (Table 3.3), and the

distribution of the haplotype lengths is provided (see Figure 3.11). The longest

haplotype contig spanned over 14Mbp.

Table 3.3: Chromosome level breakdown of haplotype statistics.

Chrom. # Clones # Het. variants (BAC
+ CGI WGS)

Fraction of het. vari-
ants phased

# Contigs N50 Haplotype
Length

1 6,892 148,691 0.973 219 2,166,488
2 7,632 156,474 0.978 195 2,905,522
3 6,677 147,498 0.985 146 3,015,997
4 6,937 159,704 0.982 106 4,113,256
5 6,101 127,746 0.983 117 2,700,783
6 5,818 142,863 0.981 119 3,005,140
7 4,781 113,746 0.974 150 2,621,008
8 4,589 98,664 0.982 114 2,413,181
9 3,485 80,480 0.966 125 2,276,528
10 4,104 99,111 0.969 109 2,264,959
11 4,233 90,557 0.979 113 3,368,062
12 4,150 93,795 0.979 116 2,641,808
13 3,395 75,463 0.984 51 2,945,506
14 2,846 62,844 0.967 71 2,067,670
16 2,031 59,080 0.956 123 1,252,516
17 1,965 47,238 0.96 116 1,485,600
18 2,547 56,853 0.981 43 3,345,667
19 1,155 32,849 0.956 110 660,242
20 1,649 39,551 0.958 66 1,608,505
21 1,170 34,095 0.958 36 3,226,907
22 768 19,020 0.956 65 1,057,117
TOTAL 85,445 1,942,116 0.975 2,379 2,640,036

3.2.9 Accuracy

We used the minimum edit score (MES) to measure the accuracy between

two independently derived haplotypes. The MES takes into account the two

common error modes for haplotype assembly- mismatches and switch errors. When

comparing two haplotypes, an error can be classified as either a mismatch or a

switch. Given the cost of a mismatch (cm), the cost of a switch (cs), the number of

mismatches (m), and the number of switches (s) the total cost is given by

mcm + scs
# var

(3.5)

Under the MES criterion, the objective is to classify each error as a mismatch

or a switch, such that the total cost is minimized. For example, if there are 10
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consecutive errors, these can either be classified as 10 mismatches or 1 switch. If

cs < 10 ∗ cm, then under the MES objective, these errors would be classified as one

switch. The classification of errors as mismatches or switches will depend on the

cost. In the calculations of this paper, we used cm = 1 and cs = 1.

We tested the accuracy of our haplotypes (henceforth referred to as BAC

haplotypes) by comparing them with the haplotypes of PGP1 constructed using

the LFR clone-based method (LFR haplotypes) and a population-based method.

The population-based haplotypes were computed with BEAGLE (Browning and

Browning (2009) )using CGI WGS genotype data of PGP1 and population data

from the 1000 genomes project (Abecasis et al. (2010b)). In chromosome 1, the

MES between the BAC and LFR haplotypes was relatively lower (0.003) than

the MESs involving population-based haplotypes (LFR = 0.012, BAC = 0.017)

(Figure 3.3). The small discrepancy between two haplotypes could be an error in

either the LFR or in the BAC haplotypes. Specifically, haplotype errors are caused

by the improper linking of heterozygous variants or errors in variant calling, both

of which can happen if there are not enough clones spanning a particular site.

We computed the clone coverage at discrepant sites and found that 95%

of the discrepant sites were covered by three or more clones, and there was no

correlation between discrepancy and clone coverage (see Figure 3.3). Furthermore,

we compared the accuracy between the BAC haplotypes and BAC clones. Of

the 358, 697 overlapping variants, there were 1, 486 mismatches and 353 switches,

giving an MES of 0.005. The small percentage of mismatches (0.41%) and switches

(< 0.1%) can be attributed to sequencing error and errors in clone reconstruction,

respectively. Owing to the clone coverage of 6x, most of the errors are recovered

during haplotype assembly (Figure 3.4). Our results therefore suggest high accuracy

for the computed BAC haplotypes.
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Figure 3.3: Accuracy comparison between bacterial artificial chromo-
some (BAC), long fragment read (LFR), and population-based haplo-
types. The MES score is given by the classification of errors as mismatches or
switches such that cm = cs = 1.

Figure 3.4: Consistency between BAC-assembled haplotypes and BAC
clones. A snapshot of a 1Mbp region on chromosome 1 illustrating three switch
errors between BAC-assembled haplotypes and the population-based haplotypes
(indicated by three color changes along the haplotype). At all three switches, 100%
of the BAC clones that span this switch are consistent with the BAC-assembled
haplotypes. The heterozygous variants that are phased are represented as black
vertical lines in the BAC-assembled haplotypes.
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Figure 3.5: Haplotypes of the human leukocyte antigen (HLA) region.

3.2.10 Haplotyping the HLA region

The human leukocyte antigen (HLA) region is a 5Mbp region on chromosome

6 that contains many genes that have important regulatory roles in the immune

system. Haplotype information of the HLA regions is medically relevant because the

specific combination of certain alleles is known to be linked with several autoimmune

and other diseases. Owing to the repetitive nature of the HLA region, the haplotypes

here are difficult to obtain with current next-generation sequencing technology.

However, the length of BAC clones can be used to span over these repetitive

regions and connect many more genes, achieving long, accurate haplotypes. In our

experiment, the 5Mbp HLA region was covered by 145 BAC clones, which assembled

into 7 haplotype contigs, similar to a previous study (Kaper et al. (2013)). More

than 90% of the entire HLA region was spanned by six contigs, and the longest

haplotype contig in this region spanned 1.37Mbp (N50 : 1.1Mbp). Figure 3.5 shows

the BAC clone coverage of this region. Of 23 HLA genes, 20 were spanned by

BAC clones; 18 of these were phased completely (> 90% of variants phased in

1 haplotype block), and 2 were partially phased. In addition, 96.7% (11, 861 of

12, 272) of the heterozygous variants in this region were phased (see Table 3.5).
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3.3 Discussion and Conclusions

In our parameterized analysis of clone-based haplotyping methods, the

current bottleneck for achieving long haplotypes was the clone lengths (L). Because

of the distribution of variants, adjacent variants that are longer than L can never

be spanned, and thus the haplotype lengths saturate when all variants within a

distance greater than or equal to L from each other are connected.

The importance of L is illustrated in Figure 3.1a, which shows a power law

relationship between haplotype length and L. Furthermore, it illustrates the current

gap between in vitro technologies for isolating DNA and clone-based methods. As

shown, when L = 10kbp (current limit on reported length of Illumina’s Moleculo

technology (Voskoboynik et al. (2013))), the maximum achievable haplotype length

is 188kbp. Meanwhile, clone technologies have the potential to achieve significantly

longer haplotypes with N50 lengths of 1.12Mbp (L = 40kbp, fosmid clones) to

22.8Mbp (L = 140k bp, BAC clones). The importance of L is not just limited to

clone-based and dilution-based methods; haplotyping using sequence reads can be

modeled using our framework by setting L as the read length, n = 1, and p as

the number of reads sequenced. For example, long reads were used to assemble

haplotypes on the HuRef genome (Levy et al. (2007)). The HuRef genome used a

more complex paired-end Sanger sequencing (c = 7.5x) protocol with mixed insert

sizes (L) and achieved haplotype lengths of N50 = 350kbp. More recent methods

(Schadt et al. (2010)) use a single molecule approach to achieve long reads. The

importance of L is further illustrated in Figure 1b, as other clone-based methods are

well into the saturation levels of their corresponding expected contig-length curve.

We concluded that it was more effective to increase L and use a moderate p. In our

experiment (L = 140kbp, p = 24), we achieved haplotypes that had comparable

accuracy to leading clone-based methods, and were more than twice as long, with
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an N50 length of 2.6Mbp and the longest haplotype spanning over 14Mbp. By

contrast, the LFR haplotypes, derived from shorter clones (L(N50) = 60kbp) and

more pools (p = 384), had an N50 length of 411k bp for the same individual (Peters

et al. (2012)).

By reducing p, the total cost of sequencing and clone library construction

was reduced, but clone coverage was also decreased. Although we were able to

compensate for the small clone coverage in terms of haplotype length by using larger

L, our lower coverage recovered fewer variants compared with WGS experiments

from other individuals of European descent (see Table 3.4). This low clone coverage

also decreased the probability of recovering a heterozygous variant (pv) and may

explain the higher homozygous to heterozygous ratio for BAC pool data. However,

the variants could be augmented by acquiring WGS data from the same individual.

The final parameter affecting haplotype resolution and thus length is f, the

fraction of variants recovered per clone, which is affected by many other factors

such as read coverage per pool (r), amplification bias, and the filtering protocol

for reads and variants. The discrepancy between simulated and actual haplotypes

lengths in Figure 1b may be due to different values of f (see Figure 3.8,3.9). For

example, it is not surprising that the most discrepant results are from the LFR

experiment, which used low values of sequencing coverage (r < 2x, in contrast with

our protocol where r = 6x), causing a smaller value of f , which in turn decreases

haplotype lengths.

To test accuracy, we performed a three-way comparison between the BAC,

LFR, and population-based haplotypes (Figure 3.3). The high concordance between

the BAC and LFR haplotypes suggests that both methods have similar accuracy.

The higher MES between the clone-based and population-based haplotypes could

be due to a variety of factors, including limited population sample size and limited
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burn-in iterations run by the algorithm due to limited computational resources.

Furthermore, population-based haplotypes have difficulty phasing rare, individual-

based, and somatic variants. Upon further examination of the population-based

haplotypes, we found that the positions of the switch errors correlated with positions

where the BEAGLE algorithm had difficulties deciding which phase assignment

to choose. The biological implications of these regions have not yet been studied

and could possibly represent undiscovered recombination hot spots, or simply areas

where the population data are weak. In summary, clone-based haplotypes can be

used to provide accurate, megabase-long haplotypes.

Through the integration of statistical modeling and experimental validation,

we found that long-range connectivity encoded in large clones or DNA fragments

is crucial for constructing long haplotypes. We also provide a practical guideline

on the parameter choices and expected haplotype sizes for further design and

development of haplotyping methods.

3.4 Methods

3.4.1 BAC library construction and pooling strategy

BAC libraries were constructed with an average length of approximately 140

kb from genomic DNA of the PGP1 sample by Amplicon Express (Pullman, WA,

USA). BAC clones were grown in separate wells on 16 24-well plates. The 384

clones on a plate were then combined to form a mini-pool via a two-dimensional

pooling strategy, as described by Oeveren et al. (van Oeveren et al. (2011)). Briefly,

the strategy combines clones on a plate by rows and columns using a liquid handling

robot (Biomek 2000; Beckman Coulter, Brea, CA, USA). Super-pools were formed

by further combining clones from 14 mini-pools so that each super-pool contained
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a total of 5,376 BAC clones. On average, 150 to 250 ng of high-quality DNA

was purified in each super-pool by applying DNA isolation via a modified alkaline

lysis DNA extraction protocol (Maniatis (1982)). In total, 24 super-pools were

constructed.

3.4.2 Construction of sequencing library and variant call-

ing

DNA derived from an individual super-pool was precipitated with ethanol

and dissolved in water, then used (10 ng) for random fragmentation by Tn5 trans-

poson based fragmentation method (Epicenter, Madison, WI, USA). Fragmented

DNA was purified by Ampure XP beads (Beckman Coulter) and attached with

illumina adaptors by PCR amplification to construct sequencing libraries. Barcoded

libraries were pooled for sequencing using a HiSeq 2000 instrument (Illumina).

Sequencing libraries were constructed for 24 pools. The resulting sequencing

data were processed for variant calling using an established pipeline based on

BWA/GATK, following the GATK best practices instructions (version 3). All raw

sequencing data have been deposited to NCBI Sequence Read Archive under the

project number SRP029150.

The goal for variant calling is to recover all the heterozygous variants for

phasing. In particular, a heterozygous variant can fall into one of four categories:

1) both alleles are sampled by clones, 2) only the non-reference allele is sampled

by clones, 3) only the reference allele is sampled by clones, and 4) none of the

alleles are sampled. We focused on determining the heterozygous variants that fell

into the first three categories, as no clones covered those the fourth category and

their phase was non-determinable with the sampled BAC clones. In the previous

paragraph, we described how heterozygous variants from category 1) are recovered.
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To recover variants from the second and third category, we used CGI WGS data

of PGP1 (Peters et al. (2012)). The CGI WGS reads were mapped to hg19/b37

reference genome for variant calling using the CGI proprietary algorithm. For

the heterozygous CGI variants that were not recovered using BAC pool data, we

needed to verify that at least one clone covered the variant For instance, if a CGI

heterozygous variant is called homozygous in using pooled BAC reads, it falls into

category 2) and we can phase it. If a CGI heterozygous variant is not called using

pooled BAC reads but is covered by at least eight reads from the pooled BAC data,

we consider it a heterozygous variant from category 3) and recover it.

3.4.3 Reconstructing BAC clones from sequencing reads

After mapping the sequence reads in a pool to the reference genome, we

identified regions of enriched coverage (that is, BAC contigs) by using targetcut in

the SAMtools library (Li et al. (2009a)). targetcut identifies regions of enriched

coverage by calculating read depth for 1kbp windows and then looking for consecu-

tive regions where two-thirds of the windows have a read depth above the predicted

background level (95th percentile of read depths, if reads were distributed uniformly

across the genome). The regions are then appropriately trimmed to find the first

and final base pair read in each region.

G(x) = − x√
2π
e
xs

2 (3.6)

To recover the non-overlapping portions of a BAC clones, we looked for

significant changes in coverage using a method similar to those for detecting changes

in copy number variation (Lee et al. (2011)). This algorithm (see Figure 3.13)

begins by obtaining the read count for non-overlapping windows of 100 bp within
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the boundaries of a BAC contig. It is assumed that the read count of a window

with overlapping clones has low variance. Therefore, when there is a significant

increase in the read count, this indicates that more than one clone is covering the

area. Let R(x) be the resulting window versus read count function, where x is the

window number (in genomic position order), then, to detect significant changes in

read count, we convolute R(x) with the derivative Gaussian function,

The breakpoints of the BAC contig are indicated by positions where the

convoluted function reaches above or below a certain threshold (|t| = 30). After

breaking up the contigs at the breakpoints, the resulting regions are either non-

overlapping potions of a BAC clone or the overlapping portion.

3.4.4 Assembling haplotypes from BAC clones

We used a generalized version of HapCUT (Bansal and Bafna (2008)) to

assemble BAC clones into haplotypes. Following the notation of Bansal and Bafna

(Bansal and Bafna (2008)), the input to HapCUT can be represented as a matrix, X,

where each row represents a BAC clone and each column represents a heterozygous

variant. It is assumed that all heterozygous sites are bi-allelic, as there are only

two haplotypes, and thus the alleles are arbitrarily relabeled as 0 and 1. An entry

in the matrix, X[i][j], is either 0, 1 or − depending on the allelic value of position

j in BAC clone i. The goal is to partition the rows (clones) of the matrix into two

disjoint sets corresponding to the two haplotypes. If the fragments are error-free,

the columns of each set are homozygous. However, sequencing errors, for instance,

can produce errors in the fragments, and perfect bi-partitions cannot be achieved.

Therefore, the goal is to partition the clones such that error correction is minimized-

this is also known as the minimum error correction (MEC) objective.

The generalized version of HapCUT takes as input the BAC clones repre-
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sented in the matrix form described previously. The algorithm starts by assigning

a random haplotype configuration and iteratively improves it by finding positive

cuts in the graph representation of the matrix and current haplotype configuration.

In the graphical representation, the nodes are the variants and there is an edge

between two variants if at least one clone covers both variants. The weight of edge

(i, j) is the number of clones that are inconsistent with the current phase of i and

j, subtracted by the number of reads that are consistent with the current phase of

i and j scaled by some factor. If switching the phase for variants on one side of

the cut will improve the MEC score, the haplotype configuration is updated. The

algorithm iteratively finds positive cuts and updates the haplotype configuration

until the MEC score does not improve.

3.5 Appendix

Table 3.4: More PGP1 statistics. More variant statistics for PGP1 compared
to others individuals of European descent.

Total Variants Hom/Het
Ratio

% Novel Variants

HuRef (Levy et al.
(2007) )

3,213,401 0.82 15%

JDW (Wheeler et al.
(2008))

3,322,090 0.79 18%

NA07022 (Drmanac
et al. (2010))

3,076,870 0.61 10%

20 Genomes (Pelak et al.
(2010))

3,473,639 (avg) 0.593 (aver-
age)

13% (avg, com-
pared to db-
SNP129)

MP1 (Suk et al. (2011)) 3,258,774 0.59 8% (compared to
dbSNP129)
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Figure 3.6: Theoretical contig length of various clone-based haplotyping
designs. (a) Average contig length vs number of pools given read length. This
figure shows Figure 3.1 with the log scale removed. (b) The dotted lines show the
Lander and Waterman estimates for haplotype length capped at 300 Mbp, the
length of chromosome 1. The solid curves show the simulated contig lengths given
the actual distribution of heterozygous variants on chromosome 1 obtained from
CGI whole genome sequencing data of PGP1. In contrast, the diamonds and squares
represent the Lander Waterman estimate and simulated estimate respectively.
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Figure 3.7: Effect of amplification bias on sequencing coverage. (a) Actual
and ideal distribution of the sequencing coverage. The solid line shows the actual
distribution and the dashed line shows the ideal Poisson distribution. Using a nave
4-read coverage rule for variant calling, under the idealized settings (no bias), we
expect to see a variant recovery rate of 84%. However, under the observed bias on
sequencing coverage, the 4-read coverage rule would yield a variant recovery rate
of 61%. Indeed, using the GATK filter protocol for calling variants, the observed
f is 65%. (b) Q-Q plot of the actual read depth distribution and the idealized
Poisson distribution. Comparing the trend of the points to the y=x line illustrate
the difference between the two distributions.
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Figure 3.8: Effect of the fraction of variants recovered on haplotype
length. Simulation results that show how haplotype length is affected by f , the
fraction of variants recovered per clone. In each subfigure, L is set to (a) 37 Kb,
(b) 40 Kb, (c) 60 Kb, or (d)140 Kb while n is fixed at 5000 and p and f are varied.
Each curve in a subfigure represents simulations under a different value of f (1.0,
0.75, 0.65, 0.55, 0.45, 0.35, or 0.25); the darker color indicates higher f value. The
circle dots represent the actual reported N50 length for (a) Kitzman et al., (b) Suk
et al., (c) Peters et al., and (d) our BAC clone haplotypes.
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Figure 3.9: Effect of the fractions of variants recovered on haplotype
resolution. Simulation results that show how haplotype resolution is affected by
f , the fraction of variants recovered per clone. In each subfigure, L is set to (a) 37
Kb, (b) 40 Kb, (c) 60 Kb, or (d)140 Kb while n is fixed at 5000 and p and f are
varied. Each curve in a subfigure represents simulations under a different value of f
(1.0, 0.75, 0.65, 0.55, 0.45, 0.35, or 0.25); the darker color indicates higher f value.
The circle dots represent the reported haplotype resolution for (a) Kitzman et al.,
(b) Suk et al., (c) Peters et al., and (d) our BAC clone haplotypes. The actual
haplotype resolution of our BAC haplotypes (97.5%) is slightly higher than the
simulated haplotype resolution at f=0.65 (93.5%). The value of f is not reported
in the other studies.
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Figure 3.10: Distribution of reconstructed clone lengths.

Figure 3.11: Distribution of the haplotype lengths.
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Figure 3.12: Distribution of clone coverage. Clone coverage at discrepant
locations (red, solid) and match locations (blue, dashed) when comparing BAC
haplotypes with LFR haplotypes. The average clone coverage at discrepant locations
is 6.2 while the average clone coverage at match locations is 5.0. Furthermore, 95%
of the discrepant locations are covered by three or more clones, indicating high
confidence in our calls.
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Figure 3.13: Illustration of clone reconstruction method.(a) Read depth
of a region on chromosome 20 in pool “85”. The read depth is convoluted with
the derivative Gaussian function to determine the boundaries (dotted red lines) of
the overlapping region. (b) The two reconstructed BAC clones after removing the
overlapping region.
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Table 3.5: HLA statistics.

Gene Total
num. of
clones

Number
of hap-
lotype
blocks

% of bases
covered by
clones

Variants
detected
(Het. and
Hom.
variants)

Variants
phased

% of
variants
phased

HLA Class I Genes

HLA-A 7 1 100% 105 104 99%
HLA-B 0 0 - - - -
HLA-C 0 0 - - - -
HLA-E 2 1 100% 3 3 100%
HLA-F 5 1 100% 15 15 100%
HLA-G 1 1 100% 31 29 94%
HLA-H 4 1 100% 63 63 100%
HLA-J 6 1 100% 3 3 100%
HLA-K 5 1 100% 53 53 100%
HLA-L 5 1 100% 13 13 100%
HLA-P 1 1 100% 30 29 97%
HLA-V 1 1 100% 23 23 100%

HLA Class II Genes

HLA-
DRA

2 1 100% 53 53 100%

HLA-
DRB1

7 1 100% 480 477 99%

HLA-
DRB5

0 0 - - - -

HLA-
DPA1

5 1 100% 1 1 100%

HLA-
DPB1

4 1 100%156 154 99%

HLA-
DQA1

8 1 100% 186 185 99%

HLA-
DQB1

7 1 100% 123 121 98%

HLA-
DMA

2 1 100% 14 5 36%

HLA-
DMB

1 1 100% 28 5 18%

HLA-
DOA

4 1 100% 14 14 100%

HLA-
DOB

4 1 100% 15 15 100%
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Simulation of haplotype lengths In order to simulate haplotype length given

clone length (L), number of pools (p), and number of clones per pool (n), the

following approximations were made:

• We used the distribution of heterozygous variants of PGP1 determined by

CGI whole genome sequencing (Peters et al.). Using the exact distribution of

variants is essential in modeling overlapping clones that are useful for phasing

PGP1 and ultimately in determining haplotype length.

• Modeling overlapping clones in a pool. Due to high clone coverage within a

pool, the probability that a clone overlaps with another clone in the same

pool (Po) is greater than 0. While we use more sophisticated methods to deal

with overlaps within a pool, for simulations we use a first order approximation

and assume that overlapping clones within a pool are thrown out. Therefore,

the effective number of clones in a pool is N? = N(1− Po)

• We modeled the sequencing read coverage per pool (r) by only recovering a

fraction of the variants spanned by a clone (f). We calculated the fraction of

variants recovered in each clone for our BAC data and found that f = 65%.

We note that this fraction is probably higher in Kitzman et al. and Suk et al.

because they have higher read coverage and thus a higher chance of recovering

variants, and probably lower in Peters et al. as r is very low. Figure 3.9 shows

these designs using different fractions of recovered variants in a clone.

The simulator for haplotype length and resolution is available upon request.

The actual reported N50 is close to the simulated N50. But we note that

discrepancies may arise due to the assumptions we made. For example, if the

distribution of variant distributions is more/less sparse than PGP1?s, the simulated

haplotype lengths will differ from the actual haplotype lengths. Different methods
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for dealing with overlapping clones and different read coverage (r) may also cause

discrepancy between simulated and actual haplotype lengths. Natural noise in the

data will also cause discrepancy between simulated and actual haplotype lengths.

Derivation: Equation 3.2 The probability that a clone does not overlap with

a given clone is 1− 2L
G

. Thus, the probability that a clone overlaps with a given

clone in the same pool is given by

Po = 1− (1− 2L

G
)NP = 1− (1− 2L

G
)cp

2G
2L ≈ 1− e−2cp (3.7)

Derivation: Equation 3.3 Given the length of the diploid genome is G, the

total length of the haploid genome is given by 2G. Let x be the probability that a

particular position on the haploid genome is not covered by any clone.

x = (1− L

2G
)nP = (1− L

2G
)c

2G
2L ≈ e

−c
2 (3.8)

In order to recover a heterozygous variant, both copies of the variant must be

covered by at least one clone each. Therefore, the probability that a heterozygous

variant is given by

pv = 1− 2x = 1− 2e(
−c
2

) (3.9)
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Chapter 4

Template identification for

complex regions.

4.1 Introduction

The inexorable drop in costs and rise in throughput of DNA sequencing is

driving a future in which every individual person will have their genome sequenced,

perhaps multiple times in their lifetimes (Hall (2011)). Current high throughput

technologies produce sequenced read fragments from donor genomes, which are

then used for inferring the complete genomic sequence. The main algorithmic

approaches for inferring a donor genome from a set of its sequenced reads are either

based on de novo assembly (Li et al. (2010); Pevzner et al. (2001)), i.e. producing a

parsimonious super-string that approximately contains most reads as its substrings,

or based on mapping approaches (Havlak et al. (2004); Kidd et al. (2008); Mills

et al. (2011)), in which the algorithm takes the read set and a previously sequenced

reference genome (or a set of reference genomes), maps the reads to the reference,

and uses the identified similarities and variations in order to predict the donor

65
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genome.

While the accuracies of sequencing technologies keep improving and their

usage costs keep decreasing, many of them still produce reads of relatively short

lengths. Reconstruction of repetitive genomic regions using the mentioned ap-

proaches is considered more challenging, due to the fact that short reads may be

de-novo assembled, or mapped to the reference, in multiple ambiguous manners.

The difficulty even increases for diploid genomes, limiting the investigation of many

important genomic regions, such as the killer cell immunoglobulin like receptor

(KIR) region (located in humans within the 1Mb Leucocyte Receptor Complex

19q13.4, see Fig. 4.1b), the 3.6Mbp Human Leucocyte Antigen (HLA) region and

others, which exhibit highly repetitive sequences and extensive polymorphisms.

Figure 4.1: KIR Region. (a) Variability of gene architecture in KIR haplotypes
(Hsu et al. (2002)). (b) Complex repeat structure in a KIR haplotype, as observed
by a dot-plot of FH05A against FH05A. The different genes all show significant
sequence similarity. Dot-plot prepared using Gepard (Krumsiek et al. (2007)).

Here, we address the problem of assessing the quality of a donor genome

prediction given the set of its sequenced reads, confronting difficulties related to

genomic regions of repetitive nature. We present in Section 4.3 a prediction quality

measure which is independent of the approach used for generating the prediction.

It combines scoring penalties related to both (a) imperfect alignments of the reads

to the predicted region, and (b) deviations between the expected and actual read
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coverage of segments of the region. Our tool differs from previous ones which

compare predictions to a known reference. For example, tools that evaluate the

quality of de-novo assemblies (Salzberg et al. (2012)) rely on comparing assembled

genomes to known references. Mapping tools (Langmead and Salzberg (2012); Li

and Durbin (2010)) can be used to provide a naive scoring function comparable to

SAGE by summing up the best alignment score of each read. This naive scoring

function only optimizes the alignment of the reads and does not take into account

read coverage. In Section 4.4 we show the advantage of simultaneously optimizing

the combined alignment and coverage score by comparing our tool to the naive

approach.

In order to evaluate the new cost function, we applied it in Section 4.4 to

the KIR region, a hyper-variable region known to be important for the immediate

immune response in humans and higher mammals (Hsu et al. (2002)). The KIR

region is challenging to reconstruct from sequence read fragments due to its variable

gene architecture (Figure 4.1a) and repetitive nature (Figure 4.1b). We show that

our scoring function allows us to correctly identify KIR haplotype templates in

diploid genomes, differentiating correct predictions form incorrect ones based on

their computed score, while the naive approach fails in many cases to predict the

correct template.

Our cost function for evaluating donor genome predictions is based on a new

variant of a bipartite matching problem, entitled Coverage Sensitive many-to-many

min-cost bipartite Matching (CSM), which is a many-to-many generalization of the

classical min-cost (or max-weight) bipartite matching problem (Edmonds and Karp

(1972); Lovász and Plummer (1986)). The formal definition of the CSM problem is

given in Section 4.2. While in general CSM is NP-Hard (see Appendix), we show

a special “convex” case for which CSM can be efficiently solved by reducing it
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to a network flow problem, similar to many other variants of bipartite matching

problems (Lovász and Plummer (1986)). Optimal matching/flow algorithms were

recently used by several related works to predict structural variations between

genomes. Examples to such works include (Medvedev et al. (2010)), in which

min-cost flow was used to call copy number variations between a reference and a

donor genome, (Hajirasouliha et al. (2010)), which used maximum-weight matching

in order to reconstruct breakpoint sequences in long genomic insertions, and (Hor-

mozdiari et al. (2011)), which used maximum-flow in order to apply a post-process

refinement of simultaneous detection of structural variations in multiple genomes.

4.2 Coverage Sensitive many-to-many min-cost

bipartite Matching (CSM)

The CSM problem is a many-to-many generalization of the classical min-cost

bipartite matching problem (Lovász and Plummer (1986)). We describe the problem

in an abstract setting, and cast it to a read alignment problem in Section 4.3.

Consider arbitrary sets X and Y . A many-to-many matching (henceforth a

matching) between X and Y is a set M of pairs {(x, y) ∈ X × Y } (see Figure 4.2,

(a), (b), and (c)). The coverage of an element x ∈ X with respect to a matching

M is cM (x) = |{y : (x, y) ∈ M}|. Symmetrically, cM (y) = |{x : (x, y) ∈ M}| for

y ∈ Y .

A coverage sensitive matching cost function (henceforth a cost function) w

for X and Y assigns matching costs wm (x, y) for every pair (x, y) ∈ X × Y , and

coverage costs wc (z, i) for every z ∈ X ∪ Y and every integer i ≥ 0. The cost of a
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Figure 4.2: Matching instance and its reduction to a cost flow network.
(a) A bipartite graph corresponding to sets X and Y . In our particular application,
X represents a set of reads and Y represents a set of genomic segments, where the
expected coverage of each read is one and segments are expected to be uniformly
covered. Each read x ∈ X potentially maps to multiple segments, illustrated by
the edges in the graph. An edge (x, y) has the weight wm (x, y), reflecting the best
similarity between read x and a substring of of the genome starting at segment y.
(b) and (c) depict two possible matchings. In (b), one of the y segments is covered
by four reads, while the other two segments are covered by one read each. In (c),
each segment is covered by two reads. It is possible that the matching in (b) is
better in terms of sequence similarity, though is unrealistic in terms of segment
coverage, which would make the matching in (c) preferable. (d) The corresponding
network. Each pair of consecutive layers is a bipartite graph with capacities c and
costs w′ as described.
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matching M between X and Y with respect to w is given by

∑
(x,y)∈M

wm (x, y) +
∑

z∈X∪Y

wc (z, cM (z)) (4.1)

Note that CSM is a generalization of classical problems in combinatorics.

For example, consider the problem of finding a maximum (partial one-to-one)

matching on a bipartite graph G with vertex shores X, Y , and an edge set E.

This problem can be solved by solving CSM on the input X, Y using the following

costs: set wc (z, 0) = wc (z, 1) = 0, and wc (z, i) = ∞ for all z ∈ X ∪ Y, i > 1; set

wm (x, y) = −1 for (x, y) ∈ E and otherwise set wm (x, y) =∞. Similarly, CSM can

also be used for solving the minimum/maximum weight variants of the bipartite

matching problem. However, CSM is NP-hard in general (see Section 4.6), and

therefore we do not expect to solve the general instance efficiently.

4.2.1 CSM with convex coverage costs

Let (X, Y,w) be a matching instance. We say that w has convex cover-

age costs if for every element z ∈ X ∪ Y and every integer i > 0, wc (z, i) ≤
wc(z,i−1)+wc(z,i+1)

2
. We show here that CSM with convex coverage costs can be

reduced to the poly-time solvable min-cost integer flow problem (Edmonds and

Karp (1972).

For x ∈ X, denote dx = |{y : wm (x, y) < ∞}|, and similarly dy = |{x :

wm (x, y) <∞}| for y ∈ Y . Denote dX = max
x∈X

dx and dY = max
y∈Y

dy. The reduction

builds the flow network N = (G, s, t, c, w′), where G is the network graph, s and t

are the source and sink nodes respectively, and c and w′ are the edge capacity and

cost functions respectively. The graph G = (V,E) is defined as follows (Figure 4.2d).

• V = X ∪Y ∪CX ∪CY ∪{s, t}, where the sets CX = {cX1 , cX2 , . . . , cXdX}, C
Y =
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{cY1 , cY2 , . . . , cYdY }, and {s, t} contain unique nodes different from all nodes in

X and Y . Note that we use the same notations for elements in X and Y

and their corresponding nodes in V , where ambiguity can be resolved by the

context.

• E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5, where

– E1 = {(s, cXi ) : cXi ∈ CX},

– E2 = {(cXi , x) : cXi ∈ CX , x ∈ X, dx ≤ i},

– E3 = {(x, y) : x ∈ X, y ∈ Y,wm (x, y) <∞},

– E4 = {(y, cYi ) : y ∈ Y, cYi ∈ CY , dy ≤ i}, and

– E5 = {(cYi , t) : cYi ∈ CY }.

The capacity function c assigns infinity capacities to all edges in E1 and E5

and unit capacities to all edges in E2, E3 and E4. The cost function w′ assigns zero

costs to edges in E1 and E5, costs wc (x, i) − wc (x, i− 1) to edges (cXi , x) ∈ E2,

costs wc (y, i) − wc (y, i− 1) to edges (y, cYi ) ∈ E4, and costs wm (x, y) to edges

(x, y) ∈ E3. For E ′ ⊆ E, denote w′(E ′) =
∑
e∈E′

w′(e). An integer flow in N is

a function f : Earrow{0, 1, 2, . . .}, satisfying that f(e) ≤ c(e) for every e ∈ E

(capacity constraints), and
∑

u:(u,v)∈E

f(u, v) =
∑

u:(v,u)∈E

f(v, u) for every v ∈ V \ {s, t}

(flow conservation constraints). The cost of a flow f in N is defined by w′(f) =∑
e∈E

f(e)w′(e).

In what follows, let (X, Y,w) be a matching instance where w has convex

coverage costs, and let N be its corresponding network. Due to the convexity

requirement, for every x ∈ X and every integer i > 0, w′(cXi+1, x) − w′(cXi , x) =

(wc (x, i+ 1)−wc (x, i))− (wc (x, i)−wc (x, i− 1)) = wc (x, i+ 1) +wc (x, i− 1)−

2wc (x, i) ≥ 0. Similarly, for every y ∈ Y and every integer i > 0, w′(y, cYi+1) −

w′(y, cYi ) ≥ 0, and we get the following observation:
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Observation 1. Series of the form w′(cX1 , x), w′(cX2 , x), . . . and

w′(y, cY1 ), w′(y, cY2 ), . . . are non-decreasing. Consequentially, for every

E ′ ⊆ {(cXi , x) : x ∈ X, 1 ≤ i ≤ dx} and E ′′ = {(cXi , x) : x ∈ X, 1 ≤ i ≤ |E ′|},

w′(E ′′) ≤ w′(E ′), and similarly for E ′ ⊆ {(y, cYi ) : y ∈ Y, 1 ≤ i ≤ dy} and

E ′′ = {(y, cYi ) : y ∈ Y, 1 ≤ i ≤ |E ′|}.

Given a flow f inN , define the matchingMf = {(x, y) : (x, y) ∈ E3, f(x, y) =

1}. Denote Ef
x = {(cXi , x) : f(cXi , x) = 1} and Ef

y = {(y, cYi ) : f(y, cYi ) = 1}. Since

for edges e ∈ E1 ∪E5 we have that w′(e) = 0, and since for edges e ∈ E2 ∪E3 ∪E4

we have that f(e) ∈ {0, 1} (due to capacity constraints), we can write

w′(f) =
∑
e∈E

f(e)w′(e) =
∑

e∈E2∪E3∪E4

f(e)=1

w′(e)

= w′(Mf ) +
∑
x∈X

w′(Ef
x ) +

∑
y∈Y

w′(Ef
y ).

(4.2)

Given a non-infinity cost matching M between X and Y , define the flow fM

in N as follows:

• For every (x, y) ∈ E3, f(x, y) = 1 if (x, y) ∈M , and otherwise f(x, y) = 0;

• For every (cXi , x) ∈ E2, f(cXi , x) = 1 if cM (x) ≤ i, and otherwise f(cXi , x) = 0;

• For every (y, cYi ) ∈ E4, f(y, cYi ) = 1 if cM (y) ≤ i, and otherwise f(y, cYi ) = 0;

• For every (s, cXi ) ∈ E1, f(s, cXi ) = |{x : f(cXi , x) = 1}|;

• For every (cYi , t) ∈ E5, f(cYi , t) = |{y : f(y, cYi ) = 1}|.

It is simple to assert that fM is a valid flow in N (satisfying all capacity and flow

conservation constraints), and that MfM = M .
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Claim 1. For every flow f in N , w′(fMf
) ≤ w′(f).

Proof. From flow conservation constraints |Ef
x | = |E

fMf
x | = cMf

(x) for every x ∈ X,

where in particular by definition we have that E
fMf
x = {(cXi , x) : 1 ≤ i ≤ cMf

(x)}.

Therefore, it follows from Observation 1 that w′(E
fMf
x ) ≤ w′(Ef

x ) for every x ∈ X,

and similarly it may be shown that w′(E
fMf
y ) ≤ w′(Ef

y ) for every y ∈ Y . Hence,

w′(fMf
)
Eq.4.2

= w′(MfMf
) +

∑
x∈X

w′(E
fMf
x )

+
∑
y∈Y

w′(E
fMf
y )

≤ w′(Mf ) +
∑
x∈X

w′(Ef
x ) +

∑
y∈Y

w′(Ef
y )

Eq.4.2
= w′(f).

Denote ∆ = ∆(X, Y,w) =
∑

z∈X∪Y

wc (z, 0), and note that ∆ depends only on

the instance (X, Y,w) and not on any specific matching.

Claim 2. For every matching M between X and Y , w′(fM) = w(M)−∆.

Proof. For x ∈ X, we have that w′(EfM
x ) = w′(cX1 , x)+w′(cX2 , x)+. . .+w′(cXcM (x), x) =

(wc (x, 1)−wc (x, 0))+(wc (x, 2)−wc (x, 1))+. . .+(wc (x, cM (x))−wc (x, cM (x)− 1)) =

wc (x, cM (x))−wc (x, 0), and similarly w′(EfM
y ) = wc (y, cM (y))−wc (y, 0) for y ∈ Y .

Therefore,
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w′(fM)
Eq.4.2

= w′(M) +
∑
x∈X

w′(EfM
x ) +

∑
y∈Y

w′(EfM
y )

= w′(M) +
∑
x∈X

(wc (x, cM (x))− wc (x, 0))

+
∑
y∈Y

(wc (y, cM (y))− wc (y, 0))

=
∑

(x,y)∈M

wm (x, y) +
∑

z∈X∪Y

wc (z, cM (z))

−
∑

z∈X∪Y

wc (z, 0)

Eq.4.1
= w(M)−∆

Claim 3. Let f ∗ be a minimum cost flow in N . Then, Mf∗ is a minimum cost

matching between X and Y , and CSM(X, Y,w) = w′(f ∗) + ∆.

Proof. Since f ∗ is a minimum cost flow in N , w′(f ∗) ≤ w′(fMf∗ )
Clm.1

≤ w′(f ∗),

thus w′(f ∗) = w′(fMf∗ ). Let M be a matching between X and Y . Again, from

the optimality of f ∗, w′(f ∗) ≤ w′(fM) and so w(Mf∗) − ∆
Clm.2
= w′(fMf∗ ) =

w′(f ∗) ≤ w′(fM)
Clm.2
= w(M)−∆, and in particular w(Mf∗) ≤ w(M). Thus, Mf∗

is a minimum cost matching for (X, Y,w), and so CSM(X, Y,w) = w(Mf∗)
Clm.2
=

w′(f ∗) + ∆.
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4.3 Constructing CSM instance from read map-

ping data

Consider a set of reads and a prediction of the genomic sequence (henceforth,

the “prediction”) from which the reads were extracted. It is assumed that the

sequencing procedure produces reads with some sequencing error probability, and

that read extraction positions along the genome adhere to some expected distribu-

tion. The probability for extracting a read starting at a given position may depend

on the sequential context at this position and its location along the genome. Given

such probabilities, it is possible to compute for a given segment of the prediction

an expected amount of extracted reads starting within this segment. Such an

amount of expected reads will be referred to here as the expected coverage of the

segment. Hence, we can argue that the reads well support the prediction in case it

is possible to assign to each read a position within the prediction, from which it

was presumably extracted, in a manner that (a) each read sequence approximately

matches the substring of the prediction starting at the assigned position, and (b)

for every segment of the prediction, the amount of reads assigned to positions

within this segment does not deviate significantly from the expected coverage of

the segment. On the other hand, when no such position assignment can be found,

it is suggestive that the prediction exhibits some variation with respect to the true

genome.

Given a predicted region, a mapping between the reads and the prediction

is a function that assigns to each read a set of positions in the region from which it

is possible to extract the read (with some allowed amount of sequencing errors).

Software tools for producing such mappings exist (e.g. Bowtie (Langmead and

Salzberg (2012)) and are widely used. Ideally, if the prediction is in fact the
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correct genomic sequence from which the reads were extracted, and this region is

non-repetitive, it is expected that a mapping would assign to each read a unique

position that is the true position from which it was extracted. Nevertheless, when

the sequence contains repeats, and sequencing errors are not negligible, it is expected

that some of the reads will be mapped to multiple positions (due to the repeats),

while others may not be mapped to any position (due to sequencing errors). Given a

mapping between the reads and the region, we define a read-to-genome matching as

a function that selects for each read at most one corresponding position among its

set of positions given by the mapping, from which it was presumably extracted. A

read-to-genome matching better supports the prediction the more reads it match to

the genome, the higher the similarity is between the reads and the chosen matching

position, and the smaller the deviation is between the expected coverage and the

coverage implied by the matching positions.

The quality of a read-to-genome matching can be naturally evaluated using

the CSM formalism described in the previous section. A matching instance (X, Y,w)

can be generated, choosing X to be the set of reads, and Y to be a partition of the

prediction into segments (where each element in Y corresponds to a segment in the

partition). For each read x ∈ X and each segment y ∈ Y , wm (x, y) is set to the

best sequence similarity score between x and a substring of the prediction starting

at y (such similarity scores may be generated by tools such as Bowtie (Langmead

and Salzberg (2012)), or set to ∞ if no substring starting at y is similar to x. The

coverage cost function for a read x ∈ X sets wc (x, 0) to some penalty added to

the score in case x is unmatched, sets wc (x, 1) to 0 (no penalty is added when x

participates in the matching), and wc (x, i) for i > 1 to ∞ (a matching in which

a read is assigned to more than one position is illegal, and has an infinite cost).

For a segment y ∈ Y , it is possible to compute the expected coverage cy of y, and
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generate a convex score function f(i) whose minimum point is at i = cy, and set

wc (y, i) = f(i) for every nonnegative integer i. The cost of an optimal matching

for this instance can then serve as a quality measure for the prediction.

Implementation: We implemented the CSM algorithm as a java based tool

named SAGE, a Scoring function for Assembled GEnomes, freely available upon

publication. The inputs to SAGE are a set of reads, R, mapped to a genomic

template, G, in the BAM format (samtools.sourceforge.net) along with a parameter

file containing alignment costs, unmatched read penalty, genome segmentation,

expected segment coverage values, and a choice of coverage cost functions (currently

linear and polynomial cost functions).

4.4 Results

We tested SAGE on the hypervariable KIR region. The KIR region, while

variable, is tightly organized and contains between 8 and 14 genes, and 2 pseudogenes

(Figure 4.1a) (Middleton and Gonzelez (2010). The genes are organized into two

adjacent regions, each bordered by two anchoring genes/pseudo-genes: KIR3DL3

and 3DP1 for the centromeric region; 2DL4 and 3DL2 for the telomeric region.

Variability within KIR is expressed in the form of changing gene numbers, gene-copy

numbers, and gene polymorphisms. There are two broad types of KIR haplotypes-

Type A and Type B- that are distinguished by their gene content. Type A

haplotypes are characterized by the absence of the following genes: {KIR-2DL5,

-2DS1, -2DS2, -2DS3, -2DS5, -3DS1}, while Type B haplotypes contain one or more

of these genes (Marsh et al. (2003). Type B haplotypes can be split further into

different sub-types, characterized by the gene content on the centromeric-side and

telomeric-side. The various (sub-)types of KIR haplotypes are denoted by {A, AB,
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BA1, BA2, BA2X, Bdel, B}. However, the typing is incompletely developed, and

is likely to change as more data is acquired.

To test the effectiveness of SAGE on a variety of haplotype types, we

simulated reads from 27 known KIR haplotypes using GemSIM (McElroy et al.

(2012b) with an error model learned from paired-end (100× 2)bp reads generated

by Illumina GA IIx with TrueSeq SBS Kit v5-GA(McElroy et al. (2012b). The

27 haplotype templates were taken from the IPD-KIR database (Robinson et al.

(2005). The sequences of these templates were obtained experimentally by first

separating the two haplotypes of an individual using fosmid-pools, determining the

gene content and architecture of each haplotype using STS assays, and then finally

sequencing the individual fosmids (Pyo et al. (2010).

Before we ran SAGE, we mapped each read set, R, back to each template,

G, using Bowtie. We ran Bowtie under the “-a” option with all other parameters

set to the default, in order to obtain a set of all possible mapping locations and

their corresponding alignment costs for each read, which was used as input into

SAGE. The mapping position of a paired-end read was set to be the genomic

index to which the first character of the first sub-read was aligned. The alignment

cost for a complete (100× 2)bp paired-end read varied between 0 and 180, with 0

corresponding to identity. When two paired-ends mapped in a concordant manner,

the total alignment cost for the read was calculated by adding the alignment cost of

both paired-ends. When a paired-end did not have a concordant mate, suggestive

of incorrect architecture, the alignment cost was further penalized by adding a cost

of 90, which is the maximum penalty for one paired-end.

The unmatched read penalty was constant for all reads and set to 100,

allowing for a progressive reduced penalty for matching, scaled by alignment costs.

On the other side, the genome G was partitioned to segments of fixed
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length of 1000bp (except for the last segment which may be shorter than 1000bp),

with expected coverage per segment given by λ = 1000 |R||G| (with the appropriate

adjustment for the last segment), where |R| and |G| denote the number of reads and

the length of the genome, respectively. While coverage varies due to natural biases in

sampling, there are technical challenges in maintaining convexity and computational

efficiency for sophisticated coverage cost functions. Therefore, segment coverage

cost function was chosen to be the quadratic function f(i) = (λ− i)2.

To the best of our knowledge, SAGE is the first tool that scores templates

given a set of reads. As there is no competing tool, we compared SAGE results

against a naive approach that ignores coverage and sums up the best alignment

score for each read to obtain a total score for each read set and template. The

scores obtained by this approach will be referred to as the Bowtie scores below.

Haploid templates

As a first pass, we tested SAGE’s ability to score haploid templates. We

scored each of the 27 read sets against each of the 27 templates using SAGE .

A visualization of the scores are shown in Figure 4.3a, where the templates are

organized by sequence similarity so that templates of the same type/sub-type are

clustered together. Note that the matrix is not symmetric. Each row corresponds

to the scores of a single read data set against a collection of haploid templates. As

can be seen, SAGE always gets the top-score for the correct template. Moreover,

the other templates from the same sub-type get progressively weaker scores. Major

haplotypes fall within distinct blocks, but the scores also suggest a hierarchy within

the subtypes that can be studied further.
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Figure 4.3: Scoring simulated reads against haploid templates using
SAGE . Each row contains the color-coded percentage from the top-score of a
read-set mapped against 27 genomic templates. Black: top-score; Red: within 5%
of top-score; Orange: ≤ 10% ; Yellow: ≤ 20%; White: > 20% below top-score.
Sequences are ordered along the rows and columns so that sequences with the same
(sub-)type are adjacent to each other. Templates of the same type are indicated by
the blue boxes, and those of the same sub-type by light blue boxes.
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Diploid templates

To test scoring on more realistic templates, we simulated reads from 9 diploid

individuals whose pair of haploid templates were obtained experimentally in Pyo

et al. (2010) and are in the IPD-KIR database (Robinson et al. (2005)). The 9

diploid templates from this study fell into one of 6 combination of sub-types. We

scored each of the 9 simulated read sets against each of the 9 diploid templates

using SAGE. In all but one case, SAGE (Figure 4.4a) and Bowtie (Figure 4.4b)

predicted the correct diploid template of the donor.

Figure 4.4: Scoring simulated reads against diploid templates. Each row
of a matrix represent scores from the same read sets mapped to different prediction
templates. The scores are normalized so that the second best score in each row is
equal to 1 and the worst score is equal to 0. Furthermore, the entries are color-coded
accordingly- Black: top-score; Red: second top-score; Orange: within 10% of second
top-score; Light Orange: ≤ 20% ; Yellow: ≤ 30%; White: > 40% below top-score.
Both matrices are ordered according to template sub-types. Templates of the same
type are indicated by the blue boxes. (a) SAGE scores (b) Bowtie scores

Furthermore, SAGE is better at predicting the sub-type of the donor

template than Bowtie. When the donor template is not in database, as is usually

the case in practice, SAGE will give a better score to templates that are more

similar to the donor while Bowtie may not. For example, row 3 of Figure 4.4 show

the scores when the donor template is of type A and BA1. Both SAGE and Bowtie

correctly gave the best score to the diploid template G085-A/BA1. However, the

template with the next best SAGE score was also of sub-type A/BA1, while the
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template with the next best Bowtie score was of sub-type A/BA2.

In general, coverage plays an important role in determining the correct

haplotype. Figure 4.5b-e show the coverage plots when reads from donor template

G085-A/BA1 are mapped to a template of the same sub-type (F06-A/BA1) and a

template of a different sub-type (FH13-A/BA2) using SAGE and Bowtie. When

mapped to templates of the same sub-type (Figure 4.5(b, d)), the coverage plots

for both SAGE and Bowtie show less variance when compared to the coverage

plots of the other templates (Figure 4.5(c, e)). Bowtie does not take into account

variance of coverage and scores the template of a different sub-type (FH13-A/BA2)

higher than the template of the same sub-type (F06-A/BA1). On the contrary,

SAGE penalizes for the variance in coverage, and correctly predicts the sub-type

of the donor.

Furthermore, if several possible mappings of a read are given, SAGE can

be used to determine the best mapping. In Figure 4.5(b, c), we see less variability

in the coverage plots from SAGE’s matching compared against those of Bowtie’s

matching (Figure 4.5(d, e)). Therefore, even if Bowtie is able to determine the

correct donor template, it may not output the correct mapping.

Running time: For a data-set with n reads and a total of m read mapping

locations, SAGE scales as O(nm+ n2 log n). Thus, on our data-sets with haploid

genomes of average length 166Kbp (166 1000bp-segments), and ∼ 24, 900 reads,

SAGE ran in 21 seconds. The running time increased to 210 seconds for the

average diploid genome (∼ 332 1000bp-segments, ∼ 49, 800 reads). Running times

were recorded using a 4 core Intel 2.66GHz processor with 9Gb of RAM.
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Figure 4.5: Coverage plots for reads sampled from G085-A/BA1 tem-
plates. (a) genomic architecture of of G085-A/BA1, FH06-A/BA1, and FH13-
A/BA2. SAGE coverage plots when reads are extracted from G085A/BA1 and
mapped to (b) FH06-A/BA1 and (c) FH13 A/BA2. Bowtie coverage plots when
reads are extracted from G085A/BA1 and mapped to (d) FH06-A/BA1 and (e)
FH13-A/BA2.
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4.5 Discussion and Conclusions

To the best of our knowledge, SAGE is the first tool that scores predicted

donor templates given a set of sequenced reads. Our results on the KIR region

show that SAGE can be used to predict the sub-type of the donor KIR template,

and can be directly used for haplotyping this region. Furthermore, SAGE scores

the correct template higher than even templates of the same sub-type. Haplotype

analysis of the KIR region is medically motivated due to the region’s role in the

human immune system. However, the genomic complexity (i.e. repetitive nature

and variable gene architecture) of this region makes it difficult to do a complete

analysis. Indeed, the possible sub-types of this region have not been completely

characterized. Thus, reconstruction of this region and other complex regions of

the genome, remains a worthwhile problem. Here we took the first step in the

reconstruction.

While we focused our attention on the KIR region, SAGE is general enough

to be applied to any complex region. It is also possible to implement many different

scoring functions, which would allow the user to obtain optimal matchings according

to his own custom scores. For example, read un-matching penalties may be constant

for all reads, or may be read-specific. A motivation for read specific costs is in the

case where the sequencing phase produces some sequencing qualities for reads, and

it is possible to “pay” less when not matching reads of lower sequencing quality.

Similarly, it is possible to choose a segmentation of the prediction in which all

segments are of the same length, and uniform coverage is assumed, or one with

variable segment lengths and possibly different coverage cost functions for each

segment. A motivation to such complex segmentation is e.g. in the case where

one tries to identify a specific structural variation, such as a deletion of a segment

of specific length around a specific region of the prediction. Setting lengths of
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segments in the examined region to the expected deletion length can increase the

likelihood that an optimal matching would not add artifact matchings of reads to a

long segment spanning the deleted segment, in order to compensate for low coverage

of the deleted segment. Lastly, by using different coverage cost functions, it is

possible to decide the rate in which penalty increases due to deviations of expected

coverage, which may grow linearly, polynomially, exponentially, or based on other

probabilistic models, as long as the function satisfies the convexity requirement.

Future work would involve extending the use of SAGE on real data. Some

challenges in dealing with real data include obtaining the set of reads extracted

from the region of interest (especially when sequencing data is likely taken from the

whole genome) and providing the expected coverage. If we know the parameters of

the sequencing run, we could use the target read coverage as the expected coverage;

however, if that is unknown, we may be able to estimate the expected coverage

from the number of reads we need to map to the region. For example, if we assume

a uniform distribution of coverage, then the expected coverage is simply the total

length of the reads over the length of the genome.

Currently, SAGE provides a scoring function for predicted templates based

on their similarity to the true donor. Therefore, it might be possible to obtain a

complete reconstruction of the donor genome by iteratively refining predicted donor

templates until SAGE scores are optimized. Furthermore, SAGE can also be

applied for scoring de-novo assemblies and for comparing the accuracies of different

assemblers. Indeed, this tool is the first that scores predicted donor templates given

a set of sequenced reads and can be used as the first step in reconstructing complex

regions of the genome.
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4.6 Appendix: NP-Hardness of CSM

In this section we show that for general (non-convex) scoring functions, the

CSM problem is NP-Hard. This is proven by reducing the NP-Hard problem SAT

to CSM.

Let B = {b1, b2, . . . , bn} be a set of boolean variables. An assignment for

B is a function A : Barrow{true, false}. A CNF clause φ over B is a boolean

clause of the form φ = (x1 ∨ x2 ∨ . . . ∨ xk), where each literal xi is either some

variable b ∈ B, or a negation ¬b of some variable b ∈ B. For an assignment A for

B and a variable b ∈ B, define A(¬b) = ¬A(b). The clause φ is satisfied by A if

A(x) = true for at least one literal x appearing in φ. A CNF formula ψ over B is

of the form ψ = φ1 ∧ φ2 ∧ . . . ∧ φm, where each φj appearing in ψ is a CNF clause.

The CNF formula ψ is satisfied by an assignment A if all clauses in ψ are satisfied

by A. Say that ψ is satisfiable if there exists some satisfying assignment for ψ. The

CNF-SAT problem is, given a CNF formula ψ over a set of variables B, to decide

whether ψ is satisfiable. CNF-SAT is a well known NP-Complete problem Cook

(1971); Garey and Johnson (1979). Next, we show that CNF-SAT can be reduced

to CSM in a polynomial time, proving NP-Harness of CSM.

Given a CNF formula ψ = φ1 ∧ φ2 ∧ . . . ∧ φm over the set of variables

B = {b1, b2, . . . , bn}, the reduction constructs the matching instance (X, Y,w) as

follows:

• The set X contains an element for each literal of B,

i.e. X = {b1,¬b1, b2,¬b2, . . . , bn,¬bn}.

• The set Y is the union of two subsets Y b = {yb1, yb2, . . . ybn} and Y φ =

{yφ1 , y
φ
2 , . . . y

φ
m}. Each element ybi ∈ Y b corresponds to a variable bi ∈ B,

and each element yφj ∈ Y φ corresponds to a clause φj of ψ.
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• The cost function w defines the following matching and coverage costs:

– For each 1 ≤ i ≤ n, set wm
(
bi, y

b
i

)
= wm

(
¬bi, ybi

)
= 0, and wm

(
x, ybi

)
=

1 for x /∈ {bi,¬bi}. In addition, set wm

(
x, yφj

)
= 0 if the literal x

appears in φj, and otherwise set wm

(
x, yφj

)
= 1.

– For each x ∈ X, let dx be the number of clauses in ψ containing the

literal x. Set wc (x, 0) = wc (x, dx + 1) = 0, and wc (x, a) = 1 for

a /∈ {0, dx + 1}. In addition, wc
(
ybi , 1

)
= 0 and wc

(
ybi , a

)
= 1 for a 6= 1,

and wc

(
yφj , 0

)
= 1 and wc

(
yφj , a

)
= 0 for a ≥ 1.

Claim 4. ψ is satisfiable if an only if CSM(X, Y,w) = 0.

Proof. For the first direction of the proof, assume that ψ is satisfiable, and let A

be a satisfying assignment for ψ. We show that in this case CSM(X, Y,w) = 0.

Construct the matching M between X and Y by adding for each x ∈ X, such

that x = bi or x = ¬bi and A(x) = true, the pair (x, ybi ), as well as every pair (x, yφj )

such that x appears in φj . By the reduction design, for each (x, y) ∈M , wm (x, y) =

0. In addition, it is straightforward to observe that for every x ∈ X we have that

either cM (x) = 0 (when A(x) = false) or cM (x) = dx + 1 (when A(x) = true),

and therefore from the reduction design wc (x, cM (x)) = 0. Moreover, for each

ybi ∈ Y b we have that cM
(
ybi
)

= 1 (since M contains exactly one pair among (bi, y
b
i )

and (¬bi, ybi ), and no other pair in which ybi participates), and for each yφj ∈ Y φ we

have that cM

(
yφj

)
≥ 1 (since φj is satisfied by A and thus M contains at least one

pair of the form (x, yφj )). Therefore, from the reduction design, wc (y, cM (y)) = 0

for every y ∈ Y , and we get that w(M) =
∑

(x,y)∈M

wm (x, y) +
∑

z∈X∪Y

wc (z, cM (z)) = 0,

and in particular CSM(X, Y,w) ≤ 0. Since all costs defined by w are either 0 or 1,

it is clear that CSM(X, Y,w) ≥ 0, and thus CSM(X, Y,w) = 0.

For the other direction of the proof, assume that CSM(X, Y,w) = 0, and
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let M be an optimal matching between X and Y for which w(M) = 0. We show

that in this case ψ is satisfiable.

Construct the assignment A for B, where A(bi) = true if and only if

(bi, y
b
i ) ∈M . Since w(M) =

∑
(x,y)∈M

wm (x, y) +
∑

z∈X∪Y

wc (z, cM (z)) = 0, we have that

wm (x, y) = 0 for every (x, y) ∈ M , and wc (z, cM (z)) = 0 for every z ∈ X ∪ Y

(since all matching and coverage costs defined by w are nonnegative). In particular,

M contains only pairs of the form (bi, y
b
i ), (¬bi, ybi ), and (x, yφj ) such that x appears

in φj (all other pairs have a matching cost of 1). In addition, for every ybi ∈ Y b, in

order to get wc
(
ybi , cM

(
ybi
))

= 0 it must hold that cM
(
ybi
)

= 1 (from the definition

of wc) and thus M contains exactly one of the pairs (bi, y
b
i ) or (¬bi, ybi ). This implies

that for x = bi or x = ¬bi, (x, ybi ) ∈M if and only if A(x) = true. Next, for every

yφj ∈ Y φ, in order to get wc

(
yφj , cM

(
yφj

))
= 0 it must hold that cM

(
yφj

)
≥ 1

(from the definition of wc), therefore M contains at least one pair of the form

(x, yφj ) such that x appears in φ2
j . For such a literal x, cM (x) > 0, and to obtain

wc (x, cM (x)) = 0 it must hold that cM (x) = dx + 1. Hence, M must contain (x, ybi )

and all dx pairs of the form (x, yφj′) such that x appears in φj′ , and in particular

A(x) = true, and φj is satisfied by A. As all clauses in ψ are satisfied by A, ψ is

satisfiable.

It is immediate to observe that the reduction described above is polynomial,

and since CNF-SAT is NP-Hard it follows that CSM is NP-Hard. It is also simple

to formulate CSM as a decision problem (asking whether (X, Y,w) has a matching

with cost of at most k for some argument k) and to design a non-deterministic

polynomial time algorithm for it (which choses a matching M at random and checks

whether w(M) ≤ k), proving that CSM is NP-Complete.
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Chapter 5

Barcode-based characterization of

the KIR Region

5.1 Introduction

Natural killer (NK) cells are important mediators of the early immune

response, by recognizing ‘abnormal’ cells such as tumor cells and pathogen infected

cells. They express a broad array of inhibitory and activating receptors that balance

the input from multiple incoming signals (Hsu et al. (2002)) . In humans and other

primates, these receptors are encoded by genes of the killer cell immunoglobulin like

receptor (KIR)) region, located in 19q13.4 as part of the larger Leukocyte Receptor

Complex. This hyper-variable region encodes Ig-like receptors that respond to

cytokine/chemokine signals from pathogen recognizing NK cells. Interestingly, while

there are other genes with similar functionality in other mammals, the KIR gene

cluster itself has not been observed in rodents. Comparative genomics suggests that

gene duplication events led to the generation of the KIR genomic region 30-45M

years ago. Rapid expansion during primate divergence led to high variability even

90
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within the primates. The receptors encode both inhibitory and activating receptors.

The inhibitory receptors appear to be activated by recognizing “self” molecules and

preventing an auto-immune response. In contrast, activating genes may function

by providing NK cell activation in response to pathogens. Genomic analysis of

the KIR region in individuals is fundamental to understanding their response to

pathogens, success of transplantation, and other resources.

Typical whole genome or targeted sequencing approaches produce sequences

of small lengths (100-150bp) where the sequences are paired-ends of larger inserts

(300-500bp). Predicting the diploid KIR subtypes directly from whole genome

sequencing (WGS) reads is increasingly motivated by the increasing prevalence of

WGS data. However, the problem poses a serious computational challenge. Unlike

other hypervariable regions which predominantly express allelic variation due to

point mutations, the KIR region also shows variability in differing numbers of

genes, with an individual carrying anywhere from 4 to 14 genes, and 2 pseudogenes

(Figure 4.1A) (Middleton and Gonzelez (2010)) . Adding allelic variation, the

total variability within KIR can be expressed in the form of variable gene content,

gene-copy numbers, and gene polymorphisms. This complexity of variation is

compounded by the observation that many distinct KIR genes are paralogous

duplications and share significant sequence similarity. Thus, even mapping a KIR

read to the correct location in light of duplications and sequence variation can be a

challenge. For this reason, there are no existing tools to sub-type KIR based on

WGS data.

In previous approaches, KIR sub-types have been determined by PCR am-

plifying and sequencing of specific target regions (Hsu et al. (2002)) . Quantitative

PCR helps identify gene number. However, this approach is labor intensive, and

imperfect in that it can only type known variants, and the experiments need to be
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done even when the complete genome sequences are available.

Recently, we proposed one of the first algorithms for KIR sub-typing (Lo

et al. (2013b)) , in which reads mapping to the KIR region are re-mapped to known

KIR templates (or haplotypes) using an algorithm that penalizes for deviation in

coverage, as well as for sequence dis-similarity. The intuition is that if the template

has the correct copy number of some gene, the re-mapped reads will have the

smallest deviation in coverage as well as the smallest number of alignment edits.

We used an algorithm based on combinatorial flow to optimize the cost function (Lo

et al. (2013b)) . While the approach works well on simulated data, it turned out

to be computationally expensive to adapt to WGS data. First, all reads must be

mapped, and it is still difficult to separate repetitive sequence from the rest of the

genome as belonging to KIR. A search of WGS Illumina 100bp reads based on

mapping to the repeat-masked KIR region resulted in a huge number of reads that

also mapped to other regions of the genome. Down-weighting or elimination of

repetitive reads is possible but has the danger of removing truly paralogous KIR

gene sequences which also map to multiple locations.

In this manuscript, we use a combination of techniques to resolve the KIR

region on copy-number and allelic variation. We also use a model based approach

that exploits the tight organization of the KIR region. The KIR region is organized

into two distinct genomic regions. The centromeric regions anchored by the genes,

3DL3 and 3DP1, and the telomeric region is anchored by the genes 2DL4, and the

pseudogene 3DL2. We also note, but do not enforce, that a haplotype contains

exactly one of genes 2DL2 and 2DL3, and exactly one of 3DS1 and 3DL1 on the

telomeric side, suggesting that the genes are allelic variants from a common gene,

but diverged enough to be different in sequence. On the other hand, the centromeric

and telomeric sides can each contain 0 or 1 copy of the genes 2DS3, 2DS5, and the
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genes are highly similar to be difficult to differentiate the reads. Recent studies

have suggested that KIR typing is incompletely developed, and is likely to change

as more data is acquired. However, even in these studies showing over 50 KIR

haplotypes based solely on variation in gene copy number, these rules appear to be

observed. Thus, any analysis of the KIR region must take these rules into account,

but allow for the possibilities of novel haplotypes.

To resolve these challenges, we use an alignment-free approach based on

read counts of fixed length-indicator strings (k-mers). First, we mark the order of

genes based approximately on genomic location as:

E = (3DL3, 2DS2, 2DL2, 2DL3, 2DL5, 2DS3/5, 2DP1,

2DL1, 3DP1, 2DL4, 3DL1, 2DS1, 2DS1, 2DS4, 3DL2)

Table 5.1: Copy number representation of different KIR types.

KIR Type Copy number representation
A [1,0,1,0,0,0,1,1,1,1,0,1,0,1,1]

AB [1,0,1,0,1,1,1,1,1,1,1,0,1,0,1]
BA1 [1,1,0,1,0,0,0,0,1,1,0,1,0,1,1]

BA2X [1,0,1,0,1,1,1,1,1,1,0,1,0,1,1]
BA2 [1,1,0,1,1,1,1,1,1,1,0,1,0,1,1]
Bdel [1,1,0,1,1,1,0,0,1,1,1,0,1,0,1]

B [1,1,0,1,2,2,1,1,1,1,1,0,1,0,1]

Thus e0 = 3DL3 and so on. Note that e5 = 2DS3/5 represent copies that

may occur on either the centromeric and/or telomeric side. Counts of indicator

strings (k-mers) are used to determine copy numbers of genes in the sampled genome

as well as presence and absence of KIR genes E. Specifically, we output a vector

C, where Ci gives the number of copies of ei. The copy numbers corresponding
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to common KIR haplotypes and are given in Table 5.1. While the combination

of gene copy numbers is unique enough to differentiate among haploid KIR types,

a few pairs (diploid) KIR types are equivalent on the gene copy number level.

For example, the diploid copy number representations of (A,B) and (AB,BA2)

are both [2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2]. Similarly, (A,Bdel) and (AB,BA1) are

equivalent and (Bdel,BA2) and (BA1,B) are equivalent at the gene copy number

level. In our approach, we predict only the diploid copy numbers, treating all

equivalent haplotype pairs as equivalent, or inferring likely ones based on frequency

in the population. Additional long range haplotype information, (not available in

short-read sequencing) can later be used to phase to the correct haplotype pairs,

but is not part of the tool.

Once the diploid copy numbers have been computed, we use sequence

information to determine the allelic sub-types for each copy in all genes. For each

gene, we pre-compute a list of polymorphic genomic locations, and known allelic

variants at that location. Each allelic variant is a selection of a specific allele at

each variant locus. For any sample, we recruit and align reads that map to all

allelic copies of the gene. We use the mappings to call variants, and sub-type the

alleles.

The KIR is just one of many hypervariable regions, which include the

1Mb LRC region on Chr19, the 3.6Mbp Human Leucocyte Antigen (HLA) region,

and others. Automated tools that can mine genome sequence data to sub-type

these complex regions has direct implications for many autoimmune diseases,

susceptibility to other disorders including diabetes and cancer, as well as the

success of transplantation (Rajagopalan and Long (2005); De Re et al. (2011)) .



95

5.2 Results

5.2.1 Data sets

KIR Templates. To simulate data-sets for tests, we used the Immuno Poly-

morphisms database (IPD) (Robinson et al. (2013)) that lists 23 complete KIR

haplotypes (denoted as the set Th), each classified into one of 7 sub-types as follows:

{A(10), AB(1), BA1(3), BA2(3), BA2X(1), Bdel(2), B(3)}

Each sub-type contains a unique combination of copy numbers of the genes in the

KIR region, and can be represented as a vector of copy numbers ordered according

to a given gene order (see Table 5.1).

KIR Alleles. The IPD-KIR database (Robinson et al. (2013)) (Release 2.5.0

October 2013) lists a total of 678 KIR alleles for all the genes in the KIR region.

The information per gene is summarized in Table 5.2. The complete genomic

sequence of many of the alleles in the database is not available and those are not

used for allelic typing in this paper. Table 5.2, Column 3 lists the different allelic

types used by us. It is worth noting that we treat the genes as independent, and

choose the right combination from an enormous number of possibilities. Kit also

accepts a user-supplied database of known alleles.

Simulated Data. We use the notation G[t] to denote the hg19/b37 reference

genome G, with template t replacing the KIR region in G. The scaled-haploid

data-set consisted of G[t] sampled with reads at a uniform coverage of c = 15×

with no errors or variants for all t ∈ Th. We also paired the haplotypes to create

the set Td of
(
23
2

)
+ 23 = 276 distinct template pairs. The scaled-diploid data-set
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Table 5.2: KIR Alleles. This table lists for each gene the number of alleles in the
IPD-KIR database. Alleles which we do not have the complete genomic sequence
for are filtered out so only a subset of alleles are used for determining allelic type.
All alleles are aligned to a gene reference sequence which is the gene sequence in
b37/hg19 if available or a randomly selected allele of the gene. Polymorphic sites
are determined from the multiple alignment of these alleles.

Gene IPD-KIR Typing Polymorphic sites Gene Reference
KIR3DL3 108 23 95 hg19
KIR2DS2 22 12 16 2DS2*0010101
KIR2DL3 44 16 197 2DL3*0010101
KIR2DL2 29 14 39 2DL2*0010101

KIR2DL5B 43 23 127 2DL5A*001010101
KIR2DS3B 33 12 355 2DS3*0010301
KIR2DP1 28 21 169 hg19
KIR2DL1 44 20 227 hg19
KIR3DP1 23 22 36 hg19
KIR2DL4 52 23 88 hg19
KIR3DS1 17 4 209 hg19
KIR3DL1 78 21 424 hg19
KIR2DS1 15 6 11 2DS1*0020101
KIR2DS4 30 17 349 hg19
KIR3DL2 86 22 172 hg19

consisted of G[τ ] (for all τ ∈ Td), sequenced at perfectly uniform coverage of

c = 30× with no errors or variations.

To test if our method is robust to deviations in coverage and errors in WGS

experiments as well as point mutations, we introduced variants in G using an

in-house genome simulator to create two haplotypes, G1, G2. Single nucleotide

polymorphisms (SNPs) from dbSNP were induced by applying an average SNP rate

of 0.001. Furthermore, the ratio of homozygous/heterozgyous variants SNVs was

set to 0.33 based on previous observations (Kim et al. (2013)) . From the germline

diploid, we generated a somatic diploid genome by inducing SNVs at random

locations with an average rate 0.00001. Finally the generated germline diploid



97

contained 280,473 SNVs compared to the reference genome (224,536 heterozygous

and 55,936 homozygous SNVs) and 30,995 somatic variants were added. For a

simulated-haploid data-set, 2 × 100bp paired-end reads were generated from

G1[t] and G2[t] for each t ∈ Th at 5×, 15×, 30×, and 50× coverage using GemSIM

under the Illumina GA error model (McElroy et al. (2012a)) . Likewise, a diploid-

simulated data-set was constructed by combining reads from two haplotypes for a

total coverage of 10×, 30×, 60×, and 100×.

Real Data. For assessment of our method on real data, we used whole genome

sequencing data for 5 parent-offspring trios from different populations in the 1000

Genomes Project. The 1000G data-set included the CEU trio (NA12877, NA12878,

NA12882) sequenced at 250× coverage, CEU trio (NA12889, NA12890, NA12877)

( 13× coverage), PUR trio (HG00731, HG00732, HG00733) ( 7× coverage), and

KHV trio (HG02026, HG02025, HG02024) ( 5× coverage). The sequence reads were

obtained from NCBI SRA (Kodama et al. (2012)) (Table 5.7). Finally, we tested

on an Icelandic dataset comprising of 2649 whole genome sequenced individuals

among which contained 289 trios.

5.2.2 An overview of the method

The main result of the paper is a novel barcode-based method Kit, to identify

KIR types directly from paired-end WGS Illumina reads without explicit read

mapping or assembly. An overview is presented here, with details in Section 5.2.4.

Let G be the ordered set of KIR genes numbered 1 . . . |G|. Recall that the

variability in the KIR region is mediated by changes in copy numbers of each of

the genes, as well as allelic variation in the gene sequences. Correspondingly, Kit
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has two parts: Kit-CN outputs for each sample, the vector

~p = [p1, p2, . . . , p|G|]

where pg describes the copy number of each gene g ∈ G. Second, for each gene g,

where 1 ≤ pg ≤ 2, Kit-AT outputs allelic sub-types of each of the gene copies.

The first part, Kit-CN, is based on the notion of barcodes. For gene g, a

barcode is constructed with respect to a set of indicator strings Fg, chosen from

the set of k-mers (k = 50) from the gene in all known KIR templates. Genomic

sequence fragments from a sample S are used to construct a barcode, BS
g by

counting the number of occurrences of each fragment in Fg in S. Similarly, a

barcode is constructed corresponding to a single copy of the gene, B1
g . We use BS

g ,

and B1
g to compute a scaling-factor sg for each gene. In general, sg ' cpg, where c

is the global sequence coverage (constant for all genes), and pg is the number of

copies of gene g in the sample. Kit-CN estimates the copy number that minimizes

a penalty function (See Section 5.2.4)

~p∗ = arg min
c,~p
D(~s, c, ~p) = arg min

c,~p

∑
g

D(sg, cpg)

Note that the integer array of copy numbers does not give us haplotype pair

information. We infer the diploid KIR type by comparing to the integer copy

number array of known KIR type pairs. A match is conservatively assigned to the

known pair.

The second part, Kit-AT, determines the allelic type of each copy of each

gene, also with a maximum likelihood computation. It recruits all reads that map

to a specific gene, and aligns them using the aligner bwa. The set of nucleotides

mapping to a specific position is used to compute the most likely pair from a
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known set of alleles in IPD. In the current classification scheme (Robinson et al.

(2013)) , allelic types have up to seven digits. The first three digits are used to

distinguish alleles that differ in the sequence of the encoded protein. The fourth and

fifth digit distinguish between alleles with synonymous differences in the sequence

of their coding region while the last two digits distinguish allelic variants in the

non-coding region. The resolution of allelic typing can be adjusted based on the

user’s preference, but a five digit resolution is considered state-of the art, and most

commercial typing goes up to a three digit resolution. Kit-AT predicts the alleles

for each gene separately and outputs a ranking of allelic types sorted by likelihood

(see Section 5.2.4).

5.2.3 Copy number validation

We validated the copy number and allelic typing separately. Kit-CN

was applied to scaled-haploid and scaled-diploid data-sets and all samples were

correctly typed. Next, we tested on simulated-haploid, and simulated-diploid

data-sets. As sequence variation can influence barcodes, we tested performance

with sequence coverage chosen from {5×, 15×, 30×, 50×} for haploid case, and

{10×, 30×, 60×, 100×} in the diploid case. Table 5.3 summarizes the results.

Except for a few erroneous calls in the low coverage diploid data sets, all haploid

samples and higher coverage diploid samples were typed correctly.

Kit-CN makes predictions by minimizing a penalty function described in

Section 5.2.4. The penalty score of the prediction can be used as a level of confidence

for the prediction. Figure 5.1a shows the score distributions of the various datasets.

For the available data-sets (1000G, and Icelandic), the true copy numbers

are not known, but parent-child trios can be tested for consistency. In each trio that

could be resolved into known haplotypes, we verified if the child had one haplotype
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Table 5.3: Typing the KIR region. Accuracy of Kit-AT on simulated data.

Dataset Correctly typed

Haploid 5x 23/23
Haploid 15x 23/23
Haploid 30x 23/23
Haploid 50x 23/23

Haploid Scaled 23/23
Diploid 10x 265/276
Diploid 30x 276/276
Diploid 60x 276/276
Diploid 100x 276/276
Diploid Scaled 276/276

that matches the type of the mother and the other haplotype was transmitted from

the father. For a novel copy number vector, the child would have no more copies

of a gene than both parents combined in order for the trio to be consistent. All 4

1000G trios and 288 of the 289 Icelandic trios were consistent (Tables 5.4).

Table 5.4: Typing trios from 1000 Genomes.

Sample Score Predicted type

Father NA12877 1.467 A,BA1
Mother NA12878 2.419 AB,BA2
Child NA12882 1.507 A,AB

Father NA12889 2.414 A,BA1
Mother NA12890 1.972 A,BA1
Child NA12877 1.467 A,BA1

Father HG00731 3.376 2, 2, 0, 2, 1, 1, 1, 1, 3, 3, 1, 2, 0, 2, 2
Mother HG00732 4.444 A,AB
Child HG00733 1.914 2, 1, 1, 1, 1, 1, 2, 2, 3, 3, 1, 2, 0, 2, 2

Father HG02024 4.359 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2
Mother HG02025 3.279 B,Bdel
Child HG02026 5.029 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2

Inheritance patterns can also be used to distinguish between type pairs

that are copy number equivalent. For example, for the CEU trio, the KIR type of
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Figure 5.1: Score distribution of Kit. (A) Kit-CN score distribution on
various datasets. In the haploid-simulated datasets there were 23 samples. In the
simulated diploid datasets there were 276 samples. The Icelandic dataset contains
2649 individuals. In the simulated data sets, the red marks indicate the scores for
the incorrectly typed samples. (B) Kit-AT score distribution for gene KIR3DL1
on various datasets. In the haploid-simulated datasets there were 17 samples
with KIR3DL1 and in the diploid-simulated datasets there were 255 samples with
KIR3DL1. In the Icelandic dataset, 2547 samples with KIR3DL1. Again, the red
marks in the simulated data sets indicate scores for incorrectly typed samples.

the father (NA12877) is (A,BA1), while the mother (NA12878) can be resolved

into (A,B) or (AB,BA2). The KIR type of the child is (A,AB) (Table 5.4) is

used to resolve the mother to (AB,BA2) and phases the child as inheriting the A

haplotype from the father and AB from the mother.

Table 5.5 shows the haplotype frequency of the unrelated individuals in the

Icelandic dataset. In previous studies, it was estimated that the A haplotype has a
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frequency of 55% in Caucasian populations (Parham (2003)). The higher frequency

of A haplotypes in Icelandic population may be attributed to the relative genetic

homogeneity of the population (Helgason et al. (2003)). Of the 2086 unrelated

individuals (known children not included), 274 were of novel type.

Table 5.5: Frequency of known types in Icelandic population.

Type Frequency
A 2553

AB 628
BA1 552
BA2 350

B 61
Bdel 28

Novel Pairs 274
Total 4172 + 548

5.2.4 Allele typing

The allelic type for 237 genes of the KIR templates were previously deter-

mined using experimental methods (Pyo et al. (2010)) and provide a platform for

validating the accuracy of our computational method. We called the allelic types

on the known gene sequences in each template and compared to the types obtained

previous via laboratory methods.

On the scaled-haploid data-set, Kit-AT typed all but 1 genes correctly

(at the highest, 7-digit, resolution). The gene that was inconsistent with the

experimentally known type was KIR2DL5B in sample FH08BA2X. It was typed

previously as KIR2DL5B*00601, but further examination showed that among the

127 polymorphic sites of this gene, the filtered reads differed from KIR2DL5B*00601

at 42 of sites, while it only differed from KIR2DL5B*003 at 6 of the sites, suggested
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that the computationally typed allele matches the known genomic sequence of

FH08BA2X better than the previously typed allele. To test our method on simulated

data, we used the computationally typed alleles from the scaled-haploid data set as

the gold standard.

Kit-AT was applied to the simulated-haploid and simulated diploid datasets.

Not surprisingly, the accuracy increases with increasing coverage (Table 5.6). At 30x

coverage, 11 of the 15 genes have a true positive rate higher than 95%. Furthermore,

the scores themselves give a level of confidence in the prediction as incorrectly

typed genes tended to have a higher score (see Figure 5.1b).

Table 5.6: Allele Typing on Simulated Data. Kit-AT was used to type the
alleles of the 15 KIR genes on samples simulated with various sequencing coverage
depth. This table shows the accuracy of the predictions at 5-digit resolution.

Haploid 5x Haploid 15x Haploid 30x Haploid 50x Diploid 10x Diploid 30x Diploid 60x Diploid 100x
3DL3 0.95 1 1 0.95 0.91 0.96 0.96 0.92
2DS2 1 1 1 1 1 1 1 1
2DL3 1 1 1 1 1 1 1 1
2DL2 1 1 1 1 1 1 1 1

2DL5B 0.9 0.9 0.9 0.9 0.74 0.76 0.77 0.84
2DS3B 1 1 1 1 1 1 1 1
2DP1 1 1 1 1 0.95 0.92 0.94 0.93
2DL1 1 1 1 1 0.82 0.88 0.83 0.75
3DP1 1 1 1 1 0.98 1 1 1
2DL4 1 1 1 1 1 1 1 1
3DS1 1 1 1 1 1 1 1 1
3DL1 0.94 1 1 1 0.8 0.99 0.98 1
2DS1 1 1 1 1 1 1 1 1
2DS4 1 1 1 1 1 1 1 1
3DL2 0.95 0.95 0.95 0.95 0.84 0.9 0.9 0.91

We also used Kit-AT to predict the allelic type of the Icelandic population.

The 289 trios provided a level of validation. Genes where the child had copy number

1 or 2 were typed. Among the 2541 genes typed in the Icelandic trio dataset, only

19 genes among 15 trios were inconsistent with inheritance patterns.

5.2.5 Running times

The implementation of our barcode-based typing method runs very efficiently.

Both Kit-CN and Kit-CT scale linearly to the number of reads. The majority of
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the runtime for Kit-CN is taken up by the barcode generation which needs to parse

each read, while the majority of the runtime for Kit-AT is taken up by filtering of

the reads. See Figure 5.2 for the runtime on various sized bam files on a 4 core

Intel 2.66GHz processor with 9Gb of RAM.

Figure 5.2: Kit Runtime. This log-log plot shows the runtime of Kit given
sequence reads (in fastq format) at various coverage. Both Kit-CN and Kit-AT
scale linearly with respect to the size of the input bam file. With 5x WGS reads,
Kit will take approximately 2 hours to run. All runtimes are recorded on a 4 core
Intel 2.66GHz processor with 9Gb of RAM.
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5.3 Methods

5.3.1 Copy number inference with Kit-CN

Pre-processing. The first step in Kit-CN is the generation of barcodes, de-

scribed in the next section. The barcodes are generated based on indicator strings

constructed from available KIR sequences in a pre-processing step, described here.

While Kit-CN can accept any database of templates, we used the set of 23

full-length template sequences from the IPD database (Pyo et al. (2010)) , and

denote the set as T . As mentioned earlier, we denote the entire reference genome as

the string G. For for any template sequence t ∈ T , we define G[t] as the reference

sequence with the KIR region replaced with the sequence of KIR template t. Let G

be the set of KIR genes. Note that each gene g may exist in multiple copy numbers

within T , and the different copies may have different allelic variation (typically

small nucleotide variation). We construct indicator strings for each gene g using

the following procedure.

1. For each gene, g ∈ G, a collection of candidate-indicator strings are created

as length k strings that appear in g in any template in T .

2. A candidate-indicator in gene gi ∈ G is selected as an indicator if it appears

at least once in G[t] for any t ∈ T that contains gene g, and does not appear

in G[t′] for all t′ ∈ T that do not contain gene g. In an effort to reduce the

noise from repetitive regions of the genome (i.e ALU, LINE, SINE elements),

candidates that appear more than 35 times (empirically chosen) in G[t] are

discarded from the set of indicators. The set Fi denotes the set of indicator

strings for gi ∈ G. Note that the set is dependent on T , but we omit T for

ease of exposition.
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Generating barcodes. The general definition of a barcode is as follows: For

sample (a collection of DNA sequences) S, the barcode with respect to an ordered

set of indicators F = (f1, f2, . . . , ) is defined as vector of integers BS where for each

i, BS[i] is the count of fi in S.

To allow for fast barcode construction, we implemented the Aho-Corasick

pattern matching algorithm (Aho and Corasick (1975)) , which takes a dictionary

of words and generates a trie-like data structure with fail transitions in linear time

with respect to the total dictionary length. This data structure allows, given a

string s, to report all pairs (v, w) such that the w-th word in the dictionary appears

as a substring of s starting at position v. The running time for analyzing s is linear

in the length of s and number of output pairs (v, w). Following this, we construct

a trie for each set of indicator strings (Fg for gene g ∈ G).

As part of the preprocessing step, barcodes are generated for each template

in T . Let G be the reference genome. Denote t∗ as the string encompassing the

KIR region (chr19:55,235K-55,379K in b37/hg19) in G. We use the trie for gene

g to search G and construct BGg , Bt∗
g , and for each template t ∈ T , Bt

g. For each

template t ∈ T , KIR gene g ∈ G, we construct the barcode:

BG[t]g = BGg −Bt∗

g +Bt
g

Next, for each gene, we use the template set T to construct a barcode

corresponding to a single copy for the gene. Let pg(t) denote the number of times

gene g ∈ G occurs in template t ∈ T . Define

B1
g [i] =

∑
t∈T

B
G[t]
g [i]/pg(t)

#{t : pg(t) > 0}
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Inferring scaling factors. For donor sample S, and KIR gene g ∈ G, and

assuming uniform sequence coverage, we expect that BS
g is a scaled version of

B1
g . Define the scaling-factor sg as The scaling factor sg between BS

g and B1
g is

computed as

sg =

∑
iB

S
g [i]∑

iB
1
g [i]

and is used to create the following vector of scaling factors, ~s = [s1, s2, . . . , ] for all

genes 0 ≤ g ≤ |G|. Note that if the sequenced sample contains pg copies of gene

g, we expect the scaling factor sg = cpg for some constant c related to sequencing

coverage. Furthermore, c, is expected to be constant for all genes. Therefore, it is

expected that ~s = c~p = c[p1, p2, . . . , p|G|]. The discrepancy due to sequencing errors

and variation in coverage sequencing is measured by a likelihood based distance

function.

Computing barcode distance function. While many distance measures can

be used, we report one that exhibits high classification success rates over simulated

and real data (see Results). Our similarity measure is derived from the Normal

distribution. Specifically, for gene that appears with a count pg, and is sequenced

with coverage c in a sample, we assume that sg is Normally distributed with mean

and variance both equal to cpg. Thus, the p.d.f is given by

f(sg|cpg) =
1√

2πcpg
e
−(sg−cpg)2

2cpg

We model the corresponding penalty, D, for observing sg as

Dg(sg|cpg) =
(sg − cpg)2

2cpg
− log

1√
2πcpg
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Correspondingly,

D(~s, c~p) =
∑
g

Dg.

Thus, Kit-CN takes sample sequence S as input, computes barcodes and ~s, and

returns

arg min
c,~p
D(~s, c~p)

From practical reasons, for the case where si = 0 we replace the 0-variance by

ε > 0, in order to avoid infinite penalties. In order to make scores across samples

comparable the scaling factor vector ~s is normalized by multiplying by the constant

200∑
1≤i≤|G|

si
.

Computing optimal copy numbers. If c is given, it is easy to find the integer

barcode ~p that minimizes D(~s, c~p). We use a simulated annealing procedure to

estimate the optimal c and corresponding integer barcode ~p.

procedure CopyNumberInference(~s)
1: c = s0

2
.

(* We start by assuming that there are two copies of the first framework gene. *)
2: ~pbest = getCopyNumbers(~s,c)
3: For 1 ≤ g ≤ T

3.1: If g < T
2
, cnew = c± 0.05; else cnew = c± 0.01

3.2: ~pnew = getCopyNumbers(~s,cnew)
3.3: Set δ = distance(~s, cnew~pnew) - distance(~s, cbest~pbest)
3.4: if δ > 0, set ~pbest = ~pnew
3.5: With probability max(1, e−δ

10i
I ), set c = cnew

4: Return ~pbest.
end procedure

5.3.2 Allele typing with Kit-AT

Recruiting reads. Reconstruction of the genomic sequence in the KIR region is

challenging with conventional assembly and mapping methods due to the high level
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of polymorphism and repetitive nature of the region. To overcome these obstacles,

Kit-AT employs a pre-processing step using unique indicators to extract reads

from the gene region of interest. A unique indicator of a gene g is a k-mer that

appears only in g, and does not appear in the non-gene sequence of any other KIR

template or the reference genome.

The set of unique indicators is derived from the known KIR templates T and

G, which we selected as the b37/hg19 reference sequence. As in Kit-CN, we used

the Aho-Corasick (Aho and Corasick (1975)) trie to compute unique-indicators

efficiently.

Selecting gene reference for allele typing. For most genes, we used the gene

region of b7/hg19 as the reference. Kit-CN typed b37/hg19 to be of KIR type A.

Therefore, the reference sequence for genes not in KIR haplotype A (e.g. KIR2DS2,

KIR2DL5A/B, KIR2DS3/5, and KIR2DS1) were chosen arbitrarily among the

known alleles (Table 5.2). Furthermore, the weak signal for KIR2DL3 in b37/hg19

was suspect and a known allele was arbitrarily chosen to be the reference for

KIR2DL3 as well.

Likelihood function for allelic typing. For each reference gene, we align

extracted reads using bwa (Li and Durbin (2010)) with default parameters. Again,

we use a maximum likelihood computation; the length l of the reference gene g is

chosen to be the length for all alleles, to normalize the likelihood computations.

Let Ag be the set of known alleles for gene g. Each allele is represented as a

vector of strings ~a = [a1, a2, a3, ..., al] ∈ Ag where ai is the nucleotide at position i.

If the sample is predicted to have pg copies of the gene, its allelic information will



110

be represented by pg alleles,

~a(1),~a(2), . . . ,~a(pg).

However, we do not have the phasing information for alleles, and instead aim to

identify the vector

~α(pg) = [(a11, a21, . . . , apg1), (a12, a22, . . . , apg2), . . . , (a1l, a2l, . . . , apgl)]

Currently, we only handle cases where 1 ≤ pg ≤ 2; these represent the vast majority

of cases and can be resolved using low coverage as well.

Each aligned read contributes a nucleotide at position i. Let di represent

the observed data, or the collection of nucleotides at position i from the alignments

of all mapped reads. Correspondingly, ~d = [d1, d2, d3, ..., dl] represents the total

observed data. Assuming pg ≤ 2, and each position to be independent,

Pr(~d|~α(pg)) =


∏

1≤i≤l
Pr(di|a1i) if pg = 1

∏
1≤i≤l

Pr(di|a1i, a2i) if pg = 2

To calculate Pr(di|a1i, a2i) when pg = 2, we represent the collection di by the triple

(q1, q2, q3) where q1 is the count of reads in di consistent with a1i, q2 is the count of

reads in di consistent with a2i, and q3 is the count of reads in di that don’t match

either a1i or a2i. Let ε be the sequencing error rate. Similarly, when pg = 1, we

represent di by the pair (q1, q3) where q1 is the count of reads consistent with a1i,
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and q3 is count of all other reads. Then,

Pr(di|α(pg)
i ) =


(
q1+q3
q3

)
εq3 if pg = 1

(q1+q2+q3)!
q1! q2! q3!

1
2q1+q2

εq3 if pg = 2

Polymorphic Sites and Constructing Ag. Kit-AT does not predict the alleles

de novo, but instead selects the most likely pair from the extensive list of distinct

alleles available in the IPD. The IPD-KIR Database lists a total of 678 alleles,

but many of these have partial sequences. For each gene, we pre-extract a list of

polymorphic sites from the IPD alleles. Next, an allele is kept as a candidate for a

gene only if it includes at least 70% of the polymorphic sites. With this constraint,

KIRtool-AT selects from 256 alleles, as shown in Table 5.2. For each gene and

each pair of alleles (including the homozygous pair), a candidate ~α(pg) is created

for the likelihood computations. If for a candidate, a1i or a2i is unknown for some

position i, KIRtool-AT scores all possibilities and selects the one that maximizes

the likelihood.

Finally, to expedite the allele calling, the likelihood computations are limited

to the extracted polymorphic sites, as all other sites will give the same value to the

function.

5.4 Discussion and Conclusions

Given the proliferation of WGS data, we provide the first method for

characterizing the KIR region directly from WGS reads. As the KIR region is

marked by diversity in both gene content (including copy number variation) and

allelic polymorphisms, Kit has two parts- one for inferring copy number and the

other for allelic typing. Since KIR haplotypes are grouped by gene content, our
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method also has the ability to detect potentially novel haplotype groups in the

population. The method, based on indicative strings and barcodes, is fast and

accurate and does not require conventional assembly or mapping of the reads to a

reference sequence, both techniques which can be challenging in regions which are

repetitive and hyper-variable.

Finally, the computational techniques used in this manuscript are general

enough to elucidate other complex regions of the genome such as the HLA region,

which is also related to the immune system. In fact, the balancing selection in the

KIR and HLA regions help maintain the advantageous diversity of the immune

system in the human population (Norman et al. (2013)). As such, characterizing

these regions are extremely relevant to personalized medicine and human population

studies.

5.5 Appendix

Table 5.7: Accession numbers for Trios from 1000 Genomes.

Sample Accession number Platform Coverage
NA12877 ERS179576 Illumina HiSeq 2000 189x
NA12878 ERS179577 Illumina HiSeq 2000 230x
NA12882 ERS179578 Illumina HiSeq 2000 462x
NA12889 ERX168847 Illumina HiSeq 2000 10x
NA12890 ERX168848 Illumina HiSeq 2000 16x
NA19238 ERX283213 Illumina HiSeq 2500 71x
NA19239 ERX283214 Illumina HiSeq 2500 71x
NA19240 ERX283215 Illumina HiSeq 2500 72x
HG00731 SRX028935 Illumina HiSeq 2000 6.7x
HG00732 SRX028921 Illumina HiSeq 2000 14x
HG00733 SRX254975 Illumina HiSeq 2000 5x
HG02024 SRX018743 Illumina HiSeq 2000 5.5x
HG02025 SRX015053 Illumina HiSeq 2000 4.4x
HG02026 SRX018741 Illumina HiSeq 2000 5x



113

5.6 Acknowledgements

Chapter 5, in part, is currently being prepared for submission for publication

of the material. Lo, Christine; Bafna, Vineet. The dissertation author was the

primary investigator and author of this paper.



Chapter 6

Conclusion

High throughput sequencing technology has advanced tremendously in

recent year motivating the development of computational methods to leverage the

technology’s full potential. Current analysis methods based on mapping reads

to a reference or assembling the genome allow us to capture the majority of the

variation. However, they are unable to capture more complex variation including

the combination of alleles on a single chromosome and variation in highly repetitive,

hyper-variable regions of the genome such as the KIR region.

The onset of newer sequencing technologies allows for user specification

of experiments. Unlike previous work in haplotype assembly, which focused on

improving haplotype accuracy assuming specific technological parameters were

dictated by sequencing technology, we address the question of what considerations

(i.e. parameter choices) one should make in order to achieve long haplotypes

in a cost-effective manner. We address this by parameterizing two variations of

traditional sequencing technologies: strobe sequencing and clone-based haplotyping.

In general, the cost of sequencing experiments can be split into two parts: cost of

library preparation and cost of sequencing. The sequencing cost is proportional

114
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to the number of base pairs sequenced while the library preparation cost involves

the process of extracting the DNA and preparing it for sequencing. It is known

that long fragments are necessary to link distal heterozygous variants in order

to reconstruct longer haplotypes. However, longer fragment lengths are usually

associated with technologies that have higher library preparation cost. For example,

on the one hand, next generation sequencing technologies are high throughput and

relatively inexpensive. However, the read lengths are prohibitively short and the

feasibility of assembling meaningful haplotypes with next generation sequencing has

been questioned. On the other hand, the recent technology to isolate single cells (i.e.

microdissection, customized microfluidic devices, florescent based cell sorting) have

laid the foundation for haplotyping technologies that isolate single cells and then

separate chromosome pairs in mitosis before sequencing. These technologies achieve

chromosome length haplotypes but have high “library preparation” cost. Strobe

sequencing is a technology that allows for variable advance lengths and multiple sub-

reads. Our results are based on keeping the cost of sequencing constant. Keeping

total read length fixed, we show that the most important parameter appears to

be flexibility in choosing advance lengths. The optimal design for haplotyping

favors a distribution of advance lengths that is heavily skewed towards the longer

advances as these fragments help to connect distal heterozygous sites and improve

haplotype length. Clone-based haplotyping is a method based on using clones

to achieve longer fragments of DNA, pooling clones, and barcoding clones before

sequencing. By absorbing a bit more laboratory preparation cost, these methods

achieve longer fragments, and thus longer haplotypes. In our parameterization of

clone-based haplotyping, we challenged the convention of having medium length

clones and a large amount of pools and demonstrated, theoretically and empirically,

the effect of having long clones with small number of pools on haplotype length.
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We applied this concept using BAC clones on PGP1 to achieve haplotypes over

a mega-base longer than other clone-based haplotyping methods to date. With

technology improvements, it may be possible to separate long strands of DNA for

improved haplotyping. Nevertheless, there will always be trade-offs between quality

and effort; our techniques help to formalize and explore these trade-offs.

We also address the problem of characterizing highly repetitive, hyper-

variable regions directly from whole genome sequencing data. This dissertation

includes two approaches to this problem. In our first approach, we developed a

method, called SAGE that scores predicted reconstructions of the genomic region

given a set of sequenced reads from the region. Our results on the KIR region

showed that SAGE can be used to predict the haplotype group of the donor

by scoring the reads against a set of known KIR haplotype sequence of different

haplotype groups. In practice, it is quite difficult to extract the set of sequenced

reads from a particular region of the genome given whole genome sequencing data.

This fact motivated our second approach to the problem. In our second approach,

called Kit, we developed a method that determines and applies indicative strings

to directly determine copy number and allelic type of KIR genes from whole genome

sequencing data. Our methods provide high throughput characterization of the

KIR region and will open the door to larger population studies of this region.

Gene-disease association studies in the KIR region should be of particular interest

due to the role of the KIR genes in the immune system. Associations at different

resolutions (i.e. haplotype group, allelic type, and variants) will provide insight

into a more complete understanding of the impact of the KIR region. Our study of

the KIR region is only the beginning of research in complex regions. The methods

we describe in this dissertation, while they were applied to the KIR region, are

general enough to be applied to other complex regions of the genome.
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