
UCSF
UC San Francisco Previously Published Works

Title

Multi-scale visual analysis of time-varying electrocorticography data via clustering of 
brain regions

Permalink

https://escholarship.org/uc/item/8d86w21r

Journal

BMC Bioinformatics, 18(Suppl 6)

ISSN

1471-2105

Authors

Murugesan, Sugeerth
Bouchard, Kristofer
Chang, Edward
et al.

Publication Date

2017-06-01

DOI

10.1186/s12859-017-1633-9
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8d86w21r
https://escholarship.org/uc/item/8d86w21r#author
https://escholarship.org
http://www.cdlib.org/


The Regents of the University of California BMC Bioinformatics 2017, 18(Suppl 6):236
DOI 10.1186/s12859-017-1633-9

RESEARCH Open Access

Multi-scale visual analysis of time-varying
electrocorticography data via clustering of
brain regions
Sugeerth Murugesan1,3*, Kristofer Bouchard1, Edward Chang2, Max Dougherty1, Bernd Hamann3

and Gunther H. Weber1,3

Abstract

Background: There exists a need for effective and easy-to-use software tools supporting the analysis of complex
Electrocorticography (ECoG) data. Understanding how epileptic seizures develop or identifying diagnostic indicators
for neurological diseases require the in-depth analysis of neural activity data from ECoG. Such data is multi-scale and is
of high spatio-temporal resolution. Comprehensive analysis of this data should be supported by interactive visual
analysis methods that allow a scientist to understand functional patterns at varying levels of granularity and
comprehend its time-varying behavior.

Results: We introduce a novel multi-scale visual analysis system, ECoG ClusterFlow, for the detailed exploration of
ECoG data. Our system detects and visualizes dynamic high-level structures, such as communities, derived from the
time-varying connectivity network. The system supports two major views: 1) an overview summarizing the evolution
of clusters over time and 2) an electrode view using hierarchical glyph-based design to visualize the propagation of
clusters in their spatial, anatomical context. We present case studies that were performed in collaboration with
neuroscientists and neurosurgeons using simulated and recorded epileptic seizure data to demonstrate our system’s
effectiveness.

Conclusion: ECoG ClusterFlow supports the comparison of spatio-temporal patterns for specific time intervals and
allows a user to utilize various clustering algorithms. Neuroscientists can identify the site of seizure genesis and its
spatial progression during various the stages of a seizure. Our system serves as a fast and powerful means for the
generation of preliminary hypotheses that can be used as a basis for subsequent application of rigorous statistical
methods, with the ultimate goal being the clinical treatment of epileptogenic zones.

Keywords: Electrocorticography, Clustering, Spatio-temporal graphs, Unsupervised learning, Neuroinformatics,
Epilepsy, Visual analysis, Brain imaging, Graph visualization, Mutli-scale analysis

Background
The human brain is a highly connected, dynamic system
comprised of specialized brain regions that coordinate
and interact in many complex ways for communication,
producing intricate patterns of system behavior [1]. Ana-
lyzing these communication patterns can help us gain an
understanding of the normal functioning of the brain, how
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we learn or age, and how neurological disorders develop
or can be treated [1, 2]. Brain systems function across a
large range of spatial and temporal scales. Investigating
how the connectivity patterns vary across these differ-
ent scales has provided new insights into how low-level
signals cause global brain state transformations [3]. To
support such analysis and capture these patterns compre-
hensively, data with high temporal and spatial resolution
and the low signal-to-noise ratio is needed.

Recent advances in invasive monitoring technologies
such as electrocorticography (ECoG) have risen to this
challenge by recording high-resolution electrical signals
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captured by electrodes placed directly on the cortical sur-
face of the brain. The correlation of electrical activity
between these electrodes yields a measure of functional
connectivity between them. As the derived functional net-
work changes over time, the topology and the attributes of
the network vary as well, making it difficult to analyze and
visualize the network.

Developments in graph theoretical methods have made
it possible to simplify and characterize the data con-
tained in the connectivity network. For example, through
community detection methods, it has been determined
that brain networks exhibit modular organization [4], i.e.,
they consist of clusters—subsets of regions having strong
inter-modular connections and sparse inter-modular con-
nections. These clusters represent specialized behavioral
systems such as higher-order vision, or sensory-motor
processing [5].

One way to explore how these behavioral systems inter-
act when performing a task or are impaired due to neuro-
logical disorders is to study how the modules evolve over
time [2]. This study involves identifying cluster evolution
patterns such as: spatial distribution, or a combination of
clusters; electrical activation or deactivation of a cluster;
and the birth and death of clusters. In the case of epilepsy,
for instance, visual analysis of the cluster data combined
with the electrical activity can help differentiate normal
and ictal (seizure) states of the brain. These patterns—
when validated with statistical analysis—are crucial for a
successful treatment of the identified epileptogenic zones.

The spatio-temporal patterns in time-varying clusters
appear at different spatial and temporal scales. To capture
and analyze these patterns, it is important that the tem-
poral scale of the analysis matches the temporal scale of
the patterns themselves [6]. For example, patterns such as
spatial distribution or combinations of clusters are best
captured at a finer temporal scale while global transitions
of brain states are captured at a coarser temporal scale.
Analyzing the patterns at varying granularity is crucial as
appropriate scales for evaluation are not obvious a pri-
ori and a single optimal solution at a particular scale is
unlikely to exist [6].

Existing approaches to visualize dynamic spatio-
temporal clusters operate mostly at a single temporal
scale and do not satisfactorily support the in-depth com-
parison and evaluation of the evolution patterns under-
lying the data. They mainly focus on visualizing such
data by directly depicting all of the information through
visual representations or using computational methods to
reduce and summarize the visual data. While direct depic-
tion methods suffer from scalability issues, data reduction
methods ignore the low-level details of the dataset that are
important in explaining high-level evolution patterns.

To support a comprehensive and detailed study of ECoG
data, we present ECoG ClusterFlow (Fig. 1), an interactive

system that supports the exploration, comparison and
analysis of time-varying community evolution patterns at
varying temporal granularity through two major views:
1) an overview (Fig. 2) summarizing the overall changes
in cluster evolution, where users explore salient dynamic
patterns; and 2) a hierarchical glyph-based timeline visu-
alization for exploring the dynamic spatial organizational
changes of the clusters that uses data aggregation [7] and
small multiples [8] methods.

These techniques allow users to gain insights at many
levels of temporal granularity, exploring globally evolv-
ing patterns to observing small-scale spatial changes. In
summary, our main contributions include:

• A hierarchical multi-scale approach to visualizing
temporal modular changes in brain networks

• Unique glyph-based designs that explore spatial
organizational changes of the dynamic cluster
configuration

Furthermore, the specific design goals and capabilities
of our system were articulated in close collaboration with
the neuroscientists and the neurosurgeon on our team,
ensuring that our prototype improves the overall data
exploration process. Our system was repeatedly evaluated
and tested by the users, making possible the development
of analysis modules that help gain new insights into the
data. We present two case studies using synthetic and
epileptic seizure datasets to demonstrate the usefulness of
our system.

Related work
Work related to ours falls into three categories: visualiza-
tion of communities for dynamic graphs; visualization of
spatio-temporal data; and visualization systems for study-
ing brain connectivity in ECoG data.

Communities for dynamic graphs
When exploring communities in dynamic graphs, existing
techniques primarily use animation (time-to-time map-
ping) or static timeline-based (time-to-space mapping)
visualization methods to depict modular changes over
time.

In animations, the community structure of the network
is shown by color-coding the nodes or partitioning the
drawing space into sections [9–12] or nested blocks [13]
(if the data is hierarchical). Due to their reliance on short-
term memory, animations increase the cognitive load
during analysis [14]. One way to mitigate this problem is
to maintain the ‘mental map’ of the layout by minimiz-
ing node movement in the animation [15]. An alternate
approach to decrease the cognitive load is to place mul-
tiple graph representations along a timeline using small
multiples [16]. However, this multi-view approach leaves
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Fig. 1 Overview of the ECoG ClusterFlow pipeline. a Raw electrical signals are statistically analyzed to derive the dynamic network data. b The data
pre-processing step identifies and links cluster across timesteps. c Main modules of the visualization system. d Users can investigate patterns in two
major visualization views. e Users can perform various types of spatio-temporal analysis based on these views

the user with the manual task of assimilating and identify-
ing changes.

To address this problem, several approaches uti-
lize timeline-based representations [17–19], visualizing
only the evolution of clusters over time. In a timeline view,
each segment along the axis perpendicular to the timeline
represents a cluster identified at that particular timestep.
The links between two axes represent the changes in the
cluster affiliation of the nodes. The arbitrary ordering of
the nodes along the vertical axis may increase link cross-
ings between axes, inhibiting easy comprehension of the
evolution patterns. To address this issue, Reda et al. [18]
and Sallabury et al. [20] employ sorting techniques to

place active and stable communities at the top of the
vertical axis.

To further support the comprehension of transitions
between communities, alluvial diagrams [21] model the
links between clusters in different vertical axes as split-
merge ribbons [17, 22, 23]. This approach enhances the
visual traceability of important cluster evolution patterns.

Reda et al. [24] visualize the evolution of time-varying
clusters while taking into account the spatial context,
and by linking a space-time cube with a timeline repre-
sentation. In contrast, our method provides the spatial
context showing a multi-scale dynamic evolution patterns
in 2D space, reducing visual clutter and occlusion. Our

Fig. 2 Evolution of clusters for four timesteps. a The cluster evolution view shows clusters and transitions between them. The nodes have colors
based on their cluster membership. b The K-cluster heatmap on the bottom visualizes the likelihood of a range of K values that determine the final
number of clusters for a particular timestep, for e.g. a clear maxima is evident for 100 ms (K as 5) and 200 ms (K as 3)
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technique matches clusters through a best overall match
algorithm, enabling intuitive identification of time-
varying community patterns.

Spatio-temporal data
Previous visual analysis methods for spatio-temporal data
utilize either integrated or separated views [25].

Integrated views visualize spatial and temporal data
in one view. Superimposing temporal graph data onto a
spatial view [26] and visualizing a 3D space-time cube
timeline over a 2D spatial view [27] are two examples of
integrated views. Another hybrid 2.5D approach proposed
by Tominski et al. [28] displays temporal information on
top of a 2D spatial layout. However, for a large number of
timesteps or data points, these views can easily become
cluttered and occluded.

Separated views overcome visual clutter by using dedi-
cated views to present different aspects of spatio-temporal
data. Plug et al. [29] link data in spatial and temporal
domains by using small multiples of maps, superimpos-
ing a subset of temporal data on each of the spatial maps.
Jern et al. [30] utilize color to link spatial and temporal
data. Other methods [31] for static data use interac-
tion techniques to link data in both domains, requiring
substantial and concentrated eye movements for visual
analysis.

To overcome such drawbacks, visual glyph designs
aggregate spatio-temporal attributes that not only reduce
the size of the represented data but also enable intuitive
comparison of temporal data. Glidgets [32] depict tempo-
ral changes by segmenting glyphs into time slices, enabling
the comparison of attributes over time. Related work by
Nan Cao et al. [33] and Erbacher et al. [34] uses glyphs that
aggregate temporal data to summarize the entire dataset
with the overall goal of detecting anomalous behavior in
the network.

ECoG ClusterFlow uses a combination of the aforemen-
tioned concepts to provide unique glyph-based designs
and visual analysis methods that show the overall modular
changes of the network.

Visualization systems for ECOG brain connectivity data
Graimann et al. [35] presented methods to visual-
ize event-related desynchronization and synchronization
(ERD/ERS) patterns of implanted electrodes. Research
done by Korzeniewska et al. [36] and Cristhian et al.
[37] included the visualization of causal relationships
among electrode sites. Kubanek et al. [38] recently pre-
sented a tool for visualizing topographies of ECoG cor-
tical activity on a 3D model of the cortex. Although
these approaches satisfactorily portray the spatial lay-
out of the brain, they do not support the visualization
of time-varying modular data for functional ECoG brain
networks.

There exists a need for tools supporting efficient, high-
level data analysis and exploration, including dynamic
cluster analysis as a main focus. To aid the process of
generating and verifying scientific hypotheses, a thorough
visual understanding of the intricate spatio-temporal pat-
terns of ECoG data is necessary. We address this need
with a stand-alone application that allows a user to explore
cluster community evolution at varying granularity.

Cluster detection
Our visualization methods are based on sequence of com-
munities detected at each timestep. We call this sequence
of communities dynamic communities or dynamic clus-
ters. Given the graph at a particular timestep G = {N , E},
where N are the nodes that represent electrodes and E are
the edges that represents the correlation between the elec-
trodes, the community detection algorithm clusters the
data into K non-overlapping and exhaustive communities.

Derivation of time-dependent clusters is an essential
task in the analysis of time-varying brain network [39].
Two main approaches [40] are commonly used: 1) A
two-stage approach derives communities at each timestep
and then tracks them over time using different com-
munity tracking methods [20, 41]. 2) An evolutionary
clustering approach takes into account the graph topol-
ogy and the clustering results from previous timesteps.
Based on the feedback from the neuroscientists on our
team and other existing work [20, 39], we choose the
two-stage clustering approach (described in detail in
“Cluster tracking” Section) with consensus clustering [42]
as our primary detection algorithm. This method pro-
duces a better quality of clustering results since each
timestep is clustered locally (determining the statisti-
cally correct number of clusters) [20], and combines the
best outputs of multiple runs of the K-means clustering
algorithm.

Methods
We developed ECoG ClusterFlow in close collaboration
with neuroscientists (including neurosurgeons) to guide
the design of our analysis framework and to ensure that it
would be truly valuable as an exploratory tool.

Figure 1 shows the pipeline of our system. The input
to our system is: 1) the processed electrical signal data
originating from each electrode in the ECoG grid and,
2) its corresponding pairwise dynamic correlation net-
work. The dynamic network data is pre-processed to
derive dynamic clusters. Visualization methods, such
as data aggregation, are applied to the cluster data in
the pre-computation phase and final visualizations are
generated.

Based on our conversations with domain experts and
the network task taxonomy by Ahn et al. [43], we have
identified the following domain questions of interest:
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Identify temporal brain states (Q1): What
activation patterns are consistent over a continuous
period of time?
Identify transitions between brain states (Q2):
Given the brain states, what patterns characterize
their transition to another state?
Compare the evolution patterns associated with
different brain states (Q3): What patterns underlie
the brain states during normal versus diseased
condition?
Assess changes in community membership (Q4):
Given a spatial region of interest in the brain, how do
the clusters belonging to these regions change over
time?

These questions led us to establish the following system
design goals:

Timeline-based visualizations (G1): Support views
that display the time-varying cluster information on
a static display to take advantage of the user’s visual
perception instead of cognition (time-to-time
mapping)
Multiple levels of detail and abstraction (G2):
Support views that enable neuroscientists to explore
the data at multiple levels of granularity for analysis
Holistic visualizations (G3): Support visual designs
that combine multiple data attributes like cluster
membership and its electrical activation

These goals are addressed in our system by two major
views: the Cluster Evolution View and the Electrode View.

Cluster evolution view
The cluster evolution view (Fig. 3) highlights the salient
patterns of the cluster evolution including the emergence,
death, contraction, expansion, merging and splitting of
clusters (Q2, Q3, Q4). Through this view, analysts can
compare and analyze modular signatures (cluster evo-
lution patterns) over time and identify important time
intervals and distinct brain states. The cluster evolution
patterns are represented using a flow-based visualization
[21, 22] (G1) (alluvial diagram), where the clusters
metaphorically flow like a river with split/merge tribu-
taries from left to right.

Formally, at each timestep t on the horizontal axis, rect-
angular blocks represent clusters Ct,i where the height
of each block corresponds to the cluster’s size at that
timestep. Flow-based transition links Li,j, where i is the
source community and j is the sink community, connect
clusters to show changes in the community structure over
time. We model these links as Bezier curves, to generate a
continuous representation of the transition between suc-
cessive communities [22]. Figure 3 shows the evolution of
dynamic clusters for five timesteps. Furthermore, to easily

assess the community membership in dynamic clusters,
we color communities using solid coloring, using N per-
ceptually distinct colors from a qualitative colorbrewer
[44] colormap.

Cluster tracking
To support the two-stage cluster detection approach, it
is necessary to determine correspondences between clus-
ters in consecutive timesteps. Based on the input from
neuroscientists, we have investigated two approaches to
compute this matching: (1) maximum overlap tracking
and (2) computing the globally optimal match.

Maximum overlap tracking (Fig. 3a, c) is a greedy algo-
rithm that iteratively matches the two clusters in con-
secutive timesteps that share the maximum number of
electrodes. This process is repeated until no overlapping
clusters remain. This approach may not always produce an
intuitive correspondence between clusters. For example,
in Fig. 3a and c, clusters C1,2 and C2,2 have maximum over-
lap (of 11 electrodes) and are paired in the first iteration.
This only leaves C2,1 as possible match for C1,2 in the sec-
ond iteration, even though the overlap between C1,2 and
C2,1 is relatively small (only two electrodes).

To find the globally optimal assignment, our second
approach picks the best overall match between all clusters
in consecutive timesteps. We define a similarity measure

sim =
∣
∣Ct,i ∩ Ct+1,j

∣
∣

∣
∣Ct,i ∪ Ct+1,j|

∣
∣

between clusters Ci and Cj in consecutive timesteps t
and t+1, similar to the approaches by Greene et al. [45] and
Sallabury et al. [20]. Next, we compute a similarity matrix
comprised of the pairwise similarity measures between
all possible cluster combinations. To avoid matching of
clusters with small overlap, we set to zero those similar-
ity values that are below a threshold θ . To match clus-
ters, we consider all possible cluster matchings between
timesteps—by considering all possible permutations of
clusters—and compute a global similarity value as the sum
of the similarity values for all matched clusters. The over-
all best match is the permutation that maximizes global
similarity. While considering all possible permutations
is computationally expensive, we usually consider only a
small number of clusters (approximately seven) per time
step, keeping this approach tractable. Figure 3b shows the
best overall match for our example, matching clusters C1,1
and C2,1 as well as clusters C1,2 and C2,2, a more intu-
itive choice than the result obtained by maximum overlap
tracking. Figure 3 shows an example of this approach for
an artificial dataset with three dynamic communities. The
two approaches differ in the community results starting at
timestep four.
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Fig. 3 Comparison of tracking algorithms in artificial datasets. In image c the maximum overlap algorithm pairs C3,3 to C4,1, while in d the globally
optimal matching algorithm pairs C3,3 to C4,3, qualitatively making communities more visually traceable in image d. The scalar values for the links in
image A and B are L1,1 = 11, L1,2 = 11, L2,1 = 10, L2,2s = 2

Sorting and ordering of nodes
To enhance the visual traceability of the clusters, the node
layout of the graph should ideally minimize edge crossings
with optimal ordering of the nodes (clusters) at each ver-
tical axis. To determine such an ordering, we must take
all the timesteps into consideration. Several methods have
been proposed to compute such an ordering [20, 22]. Our
approach handles more timesteps by not considering the
individual elements contained within clusters and divid-
ing the sorting procedure into N individual blocks of T
timesteps. To reduce the computational complexity—to
achieve the least start-up-time of 40–60 s and to scale
to up to 60 timesteps—our heuristic solution (barycenter
approach [46]) sweeps horizontally across all the clus-
ters over N blocks of T timesteps (where NT is the total
number of timesteps in the data) in a front-to-back and
back-to-front manner to optimize the order and position
of these communities on the vertical axis. This proce-
dure results in a cluster ordering that minimizes the link
distance between the timesteps.

K-Cluster heatmap
Cluster analysis results can be sensitive to noise and prone
to overfitting [42]. The K-Cluster heat map produces
important information for the evaluation of the unique-
ness of the number of clusters detected per timestep.

Consensus clustering uses a cumulative distribution func-
tion (CDF) to determine an appropriate number of clus-
ters K. In most cases, the likelihood for a single value of
K will be large compared to the others, and the confi-
dence that the chosen number of clusters is correct is high.
The K-Cluster heat map (Fig. 2) shows the likelihood for a
range of values of K for each time step. Black denotes high
likelihood and white low likelihood. Using this heat map,
analysts can identify timesteps where multiple values for
K are almost equally likely and where confidence in the
clustering results is low.

Electrode view
The electrode view shows (Fig. 4) cluster membership and
electrical activity in a spatial context (G3) (Fig. 9a, b),
enabling the user to identify important spatial cluster evo-
lution patterns (Q1, Q2 and Q3). These evolution patterns
(Fig. 5) include 1) spatial cluster distribution, i.e., a cluster
originally comprised of spatially adjacent electrodes splits
into disjoint parts, 2) spatial cluster combination, i.e., a
cluster consisting of disjoint regions becomes spatially
coherent, and 3) spatial activation, i.e., the electrical activ-
ity of electrodes increases over time. The electrode view
places interactive glyphs–representing electrodes–on a
2D sagittal projection of a subject-specific reconstructed
brain MRI model to provide the spatial context.
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Fig. 4 To save display space, our tool crops the electrode view to the
region of the brain where electrodes are placed

To support exploration at multiple temporal scales (G2)
and effective comparison of cluster characteristics—i.e.,
cluster membership and electrical activity of the individ-
ual electrodes—over the spatial domain, our visualization
method aggregates N multiples of continuous timesteps

on each electrode view. Furthermore, interactive tech-
niques that can be applied to glyphs, make it possible for
the user to define the N multiples to be aggregated on
each glyph.

The aggregation techniques provide the user with a
detailed overview of the underlying data while not being
overwhelmed by the entire data [47]. However, aggregated
views have a drawback: they can lead to cognitive informa-
tion overload. Nonetheless, for the multiples we consider,
we found that our visualizations are better suited for the
tasks performed by our collaborating neuroscientists.

Glyph design
All our glyph designs display n user-defined timesteps per
individual electrode view, to save presentation space and
to facilitate comparison between timesteps. We consid-
ered three visual designs for our glyphs, following some
of the data aggregation guidelines specified by Elmqvist
et al. [47]. The first design uses vertically stacked bar
charts. Each bar represents one time step with its color
indicating cluster membership and its height correspond-
ing to electrical activity (Fig. 6a). The second design uses
a clock metaphor [32] and subdivides each glyph into n

Fig. 5 Dynamic spatial patterns captured by the electrode views. The colors of the glyphs represent clusters, and the opacity of the glyphs denote
electrical activation. The orange cluster in the top, spatially distributes, while the green cluster in the bottom, spatially combines. The yellow cluster in
the top activates over time
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Fig. 6 Design choices for visualizing cluster membership along with brain electrical activity. a The height of the individual bar correspond to the
electrical activity and the color its cluster affiliation, b The radius corresponds to electrical activity and the color its cluster membership, c. The
opacity of color represent the electrical activity and the color its cluster membership

equal slices. Each slice—starting at the top in clockwise
order—represents a time step with its color indicating
cluster membership and its radius representing electrical
activity (Fig. 6b). The third design is a variation of the
second design and uses slice opacity instead of radius to
represent the electrical activation level (Fig. 6c).

The first design depicts changes in cluster membership
intuitively, but requires a large amount of glyph space. In
the second design, the varying glyph sizes in the entire
spatial layout impede the neuroscientists to assess the
relative positions of the electrodes. Overall, our domain
science collaborators preferred the third design where the
glyph shape remains constant and only color and opacity
are used to convey information. We use this design in our
system and the remaining discussion in this paper is based
on it.

Hierarchical exploration
Patterns in brain activity occur at different temporal
scales, where the appropriate scale may not be known
a priori. To facilitate discovery of these patterns and
scales, our tool controls the timesteps that can be dis-
played in a single electrode view (Fig. 7). At the extremes,
the method either displays all timesteps in a single elec-
trode view (low granularity at the top level) or each
time step in a separate electrode view (high granularity
at the bottom level). Between these extremes, different
levels of aggregation are possible. Different approaches

exist to search for temporal evolution patterns. Top-
down analysis starts with all timesteps in a single view
and decreases aggregation until a pattern of interest is
found. A bottom-up approach starts analysis with each
time step in a separate view and increases aggregation
until a pattern is found. However, exploration may also
start at mid-level, in situations where the user already
has a notion at what temporal scale a pattern may be
identified.

Layout
To identify low-level changes in a bottom-up based
approach, several low-level electrode views need to be
examined simultaneously. The system presents the views
in a from-left-to-right order, synchronized with the time-
line. Visual scalability is problematic as screen resolution
is small relative to data resolution. Therefore, ECoG Clus-
ter Flow utilizes a space-saving layout to achieve a tight
synchronization between the spatial (electrode) view and
temporal attributes (cluster evolution view) of the data.
Each electrode view is ordered alternatively above and
below the cluster evolution view, see Fig. 8, timesteps
3–10, to achieve the desired integration. The cluster evo-
lution view is expanded or contracted based on the com-
bined space allocated to all electrode views. To emphasize
the granularity of the electrode view, the space assigned to
each electrode view is proportional to the corresponding
number of time points.

Fig. 7 Varying the number of timesteps displayed on our glyph design
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Fig. 8 Layout for bottom-up analysis of the spatio-temporal data. The cluster evolution view is divided into equal segments and corresponds to the
electrode views shown along the two horizontal axes, i.e., above (x1) and below (x2) it”

We use the formula

wi = wmin × Sf , Sf ≥ 1

to define the width wi of each electrode view, and

Sf = C × Wmax
wmin × max(Nx1 , Nx2)

to define the expansion factor, Sf , for each electrode view,
The variables Nx1 and Nx2 represent the numbers of the
electrode views for the x1− and x2− axes, representing the
“above” and “below” cluster evolution views, respectively,
The value of Wmax is the maximally possible horizontal
screen display width, C is a user-specified constant, and
wmin defines the minimal size of each electrode view.

Interactivity
The strength of our system is the fact that it supports
fast and intuitive analysis of cluster data at interactive
rates. Based on previous work [48] and the suggestions
made by our collaborating neuroscientists, we selected
interaction techniques satisfying the user-defined design
objectives. These are the interaction principles satisfied by
our system:

Overview first, then details on demand: The
cluster evolution view is an intuitive way for users to
first obtain a simple outline of the entire dataset.

Overview trends and outliers can be easily captured,
enabling users to quickly determine a time interval of
importance, and perform detailed exploration on the
visualization.
Focus+context: This technique [49] allows users to
focus on small-scale evolution patterns while
preserving the overall context. It utilizes smooth,
animated changes to track the patterns in focus.
Furthermore, the technique facilitates comparison of
patterns across time-intervals over the temporal and
spatial domains.
Highlighting and linking: The cluster evolution
view and electrode views are coordinated using
brushing and linking. Users can select timesteps of
interest and observe the evolution of patterns via the
cluster evolution view or the electrode view. All visual
elements are supported by simple tooltips providing
information about the meaning of visual encodings.

Case studies
We discuss the usefulness of our tool by considering
two case studies done in collaboration with the neuro-
scientists and neurosurgeon on our team of co-authors.
We cover two datasets in our case-studies, a synthetic
and real-world seizure dataset. The real-world dataset
is complicated, containing complex cluster patterns. We
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have therefore generated a simple, synthetic dataset with
known patterns to evaluate how our visual analysis
method performs in such a well-understood case. The
case studies are meant to serve the purpose of demonstrat-
ing the value of our system for gaining relevant scientific
insight.

Synthetic dataset
In our setting, electrodes have (1) three known modes of
electrical activity, (2) known intervals of activation pat-
terns, and (3) known likelihood values for the K-cluster
heatmap. The controlled data parameters allow us to
investigate the features of the visualization outside the
context of noisy brain recordings.

We create a dynamic network with 54 electrodes with
activation values 0.9, 0.6, 0.3 activation values for 30 time
steps, and we specify locations of the electrodes with our
system. We keep the number of clusters constant for each
timestep, and we define initial clusters for all electrodes in
the 30 timesteps.

Spatio-temporal analysis:
We start our data exploration with the evolution view,
looking for general evolution trends in the data. In this
view, three distinct clusters (colored in red, green and blue
in Fig. 9) emerge and remain stable throughout timesteps
(0–9) (in Fig. 9b). These clusters become randomly dis-
tributed at (10 to 19) to regain their stable configuration
at (20 to 30).

To further examine the spatial configuration of these
patterns, we employed a top-down approach explor-
ing various temporal scales progressively to identify a

consistent activation pattern (similar activation patterns
in one electrode view) across all electrode views. At
a granularity of ten (ten-time points in one electrode
view, Fig. 9a), persistent electrical patterns in each elec-
trode view were found, e.g., glyphs in electrode views one
and three were fully activated and deactivated, respec-
tively. The electrode view two, on the other hand, showed
a combination of activated and unactivated patterns.

To explore the intricate low-level activational and mod-
ular patterns that caused the temporal state change from
unactivated to activated state, the granularity of the sys-
tem was reduced to one (Fig. 9b). When examining
timesteps (9, 10, 11), an emergent focal activation point
(annotated in Fig. 9c) in the lower-right corner of the
electrode view was evident. Further examination of sub-
sequent timesteps revealed the progressive dominance of
the red cluster over the region (Fig. 9c, views 9, 10 and
11). In summary, our combined visual analysis approach
helped us categorize temporal states and identify low-
level changes and their dependencies with high-level state
changes (Additional file 1).

Epileptic seizure dataset
Epilepsy is a neurological condition where the normal
functioning of the brain is disrupted due to sudden bursts
of electrical activity emanating from a certain region of the
brain, i.e., seizure-initiating foci. This disruption is char-
acterized by changes in the brain’s modular organization
over time [50]. Exploring these differences may provide
insight into the genesis and development of the seizures
over time [50]. The neuroscientists on our team are pri-
marily interested in: 1) identifying the focal site of seizure

Fig. 9 The figure shows evolution patterns underlying our generated dataset which we use to test and evaluate our approach. Color indicates the
cluster configuration at each timestep and the opacities of the glyphs its electrical activity. a Categorizing different temporal states, i.e., unactivated
(View 1), transitional (View 2), activated (View 3). b Evolution of the cluster assignment changes through the cluster evolution view, stable cluster
configuration from timestep intervals (0–10) and (20–30), and, random unstable assignment over timestep interval (10–20). c Detailed analysis of a
time interval selected in the cluster evolution view, activation patterns can be seen in the lower-right corner of the views for the timestep interval
(10, 11)
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genesis and its spatial progression over various stages
of the seizure and 2) identifying distinct spatio-temporal
evolution patterns that characterize the onset and propa-
gation of the seizure.

Data The raw signal data from the ECoG electrode array
was statistically analyzed to provide two spatio-temporal
graph datasets using different pre-processing steps: a
high-gamma dataset at a frequency ranging from 70 to
170 Hz, capturing multi-unit neuronal spiking, and a
full-range dataset, averaging all frequencies captured by
the recording device. We derived communities indepen-
dently at each timestep using the consensus clustering
algorithm [42] that automatically fits the number of clus-
ters detected. (We note that the issue of extracting the
‘correct’communities from time-varying graphs is more
of a question of the statistical data analysis algorithms
used in the graph formation and community detection
algorithms, than the visualization there of). With these
clusters as input, our system detects and visualizes the
dynamic community results in the cluster evolution and
spatial view.

Domain expert analysis:
We now discuss some of the major insights obtained and
details of the usage of our system by our collaborating
neuroscientist and the neurosurgeon on our team:

Detection of brain states: Using the bottom-up
approach, around a temporal scale of ten, we found
consistent progressive seizure activation patterns
across all electrode views (Fig. 10c). Based on these
cluster patterns, we categorized the electrode views
into four major distinct brain states, i.e.,
before-seizure, early-seizure, mid-seizure,
late-seizure.
Detection of transitions between brain states:
Based on the gradual changes in activity patterns
(2200–2600 ms in Fig. 10a), the seizure initiation
zone (2200 ms, Fig. 10a) (cause for state change
from before-seizure to early-seizure) was found. The
neuroscientists stated, “We could see activated
opaque glyph patterns (Seizure Foci) over the Lateral
Temporal Cortex both in Fig. 10a, and in Fig. 11a at
2400 ms. The opaque glyphs emerging from this
point dynamically spread to other parts of the brain
(3000–5000 ms in Fig. 10c).”
Compare and contrast the evolution patterns
governing different brain states: The signatures of
cluster evolution at three distinct brain states
(before-seizure, transition-state, late-seizure) were of
interest to us.

1) 800–1100 ms: Evolution patterns here appear
to be stable and organized (highly confident

clusters with a clear maxima in the K-cluster
heatmap), with the same number of elements in
each community (Fig. 11a, b). The spatial
organization of clusters at 900 ms (Fig. 11a) are
scattered over the spatial layout and are
unactivated with transparent glyphs.
2) 2400–2700 ms: Evolution patterns from this
point onward seem to become irregular. There
is a noticeable activation of certain electrodes in
spatial view and reduction in number of
clusters. The neuroscientist commented, “The
transitions in the cluster evolution view have a
mix of irregular distribution of thin and thick
links between timesteps. For example, the brown
cluster in Fig. 11a and b have comparatively less
redistributions of electrode elements over time.”
3) 5200–5500 ms: Concerning this period, the
scientist’s comment was: “In the cluster
evolution view, a dominant orange ribbon
(starting at 4000 ms) emerges with few isolated
small sized communities.” The zero likelihood
in the heatmap (interval 5500–6000 ms) is
caused as the algorithm produces only identity
(1) values in the consensus matrix, showing no
progressive change in the cumulative density
plot, eventually picking the K value to be one.

Assess changes in community membership: In
Fig. 10c, when evaluating the last electrode
view, there also seems to be a dominance of a single
orange cluster over a significant period of time and
space.

When comparing the evolution patterns of the high-
gamma and full-range pre-processed datasets (Fig. 11a
and b), the domain experts stated that, “In general, the
full-range dataset exhibits larger numbers of communities
in all three sampled intervals (A,B,C). Although a single
orange ribbon emerges in both datasets, it only converges
clearly in the high-gamma dataset.”

Domain expert review
Our collaborating neuroscientists were satisfied with the
system and regarded it as intuitive and easy to use. After
brief initial training, describing the visual designs and dif-
ferent interactions, they were able to identify regions with
coherent cluster configurations for different parameter
settings. The ability to switch between different views and
drilling down to a level of interest was seen as very helpful
by them. One comment was “I could quickly identify gen-
eral patterns of interest in the complex dataset and pick
the outlier regions of interest through the powerful inter-
active techniques. The derived patterns are promising and
reveal relevant insight into seizures, especially their genesis
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Fig. 10 Hierarchical exploration of the seizure dataset at varying levels of granularity revealing th various brain states and associated cluster
characteristics. Four major brain states are found at c. Upon further examination of their detailed evolution patterns in b and a, provides insight into
seizure genesis and the initiation phase. The green cluster (in seizure initiating focii, i.e., ‘Lateral Temporal Cortex’) in a seems to play a prominent role
in the seizure initiation phase (2200–2500 ms)

and overall characterization.” Further, “the representation
of time-varying community structure and combined with
the interactive multi-scale exploration approach has made
possible multi-part observations for the ECoG spatiotem-
poral data. Without this tool, this process would have been
very time-consuming and cumbersome.”

Discussion
Neuroscientists analyzing and visualizing spatial-
temporal graph data commonly use juxtaposed
small-multiples or animations of node-link diagrams
with a corresponding spatial view (brain maps). We have
compared our approach with these baseline visualizations
methods and point out how we gain new insights through
our interactive system.

Small-multiples of brain maps: To identify low-level
community membership changes of a node over time,
information in each discrete timestep and its correspond-
ing brain map must be examined. Such static multi-view
approaches make it difficult to quickly assess the stability
of nodes over a local spatial region of interest. Further-
more, to identify brain states with consistent activation
patterns and investigate the global cluster lifetime phe-
nomena, nodes have to be mentally grouped and com-
pared based on their data attributes, further increasing the
cognitive load for analysis.

Animations of brain maps: Animations are effective in
capturing low-level spatial changes of communities over
a small period—a change in community membership or
activation is denoted by a sudden change in color. How-
ever, the frequently changing data attributes make it chal-
lenging to infer meaningful evolution patterns over long
time-scales. This complication is due to its reliance on
short-term memory that requires users to remember pre-
vious static views and then manually identify and compare
the relevant changes. The same holds true for identifying
brain states or global cluster evolution patterns.

Our approach: The identification of community mem-
bership changes of a node can be achieved by choosing
an appropriate level of granularity and visually analyzing
it over one static view (Fig. 10b and c). The analysis is
reduced to finding the changes in the color of the consecu-
tive slices in the glyph. Furthermore, the split-merge links
in the cluster evolution view ensure that the nodes do not
need to be re-identified at each timestep (small multiples)
or remembered from previous timesteps (animations).
Compared to these methods, interactive techniques in
our approach help filter, select, zoom, pan and increase
or decrease the level of granularity, help gain a thor-
ough understanding of the significant spatio-temporal
patterns in the data. Unlike the small-multiples method,
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Fig. 11 Visualizations of the two pre-processed datasets of the same raw input signals. Colors in the cluster evolution view and the electrode view
indicate the time-varying communities. Three intervals are chosen for analysis to explore the modular signatures at different brain states. Significant
evolution patterns at these stages are 1) normal activity—stable cluster characteristics with equally sized modules, 2) transition state—distinct
activation patterns emerging from the ‘Lateral temporal cortex’, 3) late seizure state—single dominance of the orange cluster. When comparing the
modular signatures between images a and b, the number of clusters in b seems to be larger

our method significantly reduces the visual scalability by
aggregating temporal data over the spatial electrode view.

Findings
In the following, we summarize our findings concerning
the use of our system for exploring and analyzing ECoG
data.

Timeline-based representations enhance perception:
The tightly integrated layout mechanism, where a consis-
tent global timeline between the cluster evolution view
and the electrode views is maintained, allowed neurosci-
entists to correlate evolution patterns across the spatial
layout and functional organization of the brain network.
Furthermore, the side-by-side placement of the views on
a timeline helped the scientists with the comparison of
relevnt salient patterns for discontinuous timesteps.

Bottom-up analysis versus top-down analysis: The
neuroscientists preferred using different approaches for

different tasks. The bottom-up analysis approach (Fig. 10,
a-b-c) was preferred over the top-down approach (Fig. 10,
c-b-a) for tasks relating to Q1 and Q2. As the bottom-up
exploration method generated views with increasing com-
plexity, relationships between evolution patterns at vari-
ous scales could be seen clearly. In contrast, the top-down
exploration method, displaying fewer electrode views with
high levels of aggregation, was cognitively overwhelming.

Comparison of evolution patterns of multiple datasets:
In our case study, we have compared evolution pat-
terns prevalent in two datasets. Sudden changes in clus-
ter membership and activation data were apparent when
comparing the cluster evolution view and the electrode
view for the datasets. However, as both datasets have
different cluster characteristics, it was difficult to deter-
mine detailed changes between the datasets. A uniform
comparison criterion should ideally assign colors based
on an optimization algorithm, where the same colors are
used for the dynamically evolving dataset clusters that
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intersect. We plan to devise a method to achieve this in
the future.

Scalability is a main design consideration that we took
into account when designing ECoG Cluster Flow. Hier-
archical representation/visualization and data aggrega-
tion methods are primary technqiues that we employ
to explore the high-resolution spatio-temporal data. We
have visualized up to 64 timesteps and 256 electrodes. A
challenge will be to scale the system’s real-time capability
to much larger datasets. Our goal is to support interactive,
real-time visual analysis for datasets with more than 500
timesteps. Further, to keep the amount of visual represen-
tation at a level that can be comprehended by a human,
we will devise and employ data reduction and abstraction
techniques to simplify data visualization.

Availability and requirements
ECoG Cluster Flow is implemented in Python as a
standalone application in conjunction with D3.js and
QPainter. ECoG Cluster Flow will be available as a free
open-source software, along with documentation and a
demo video.

Conclusions
We have presented ECoG ClusterFlow, a hierarchical
multi-scale approach for visualizing spatial and functional
cluster evolution patterns. Our approach has allowed neu-
roscientists to investigate the major cluster evolution pat-
terns over space and time. Through our approach, it is
possible to examine whether the major evolution events
were a result of noise or a sudden change in functional or
spatial properties of the network. Furthermore, we have
discussed major neuroscience-driven data analysis tasks
and design choices that led to the entire design of the sys-
tem (done in close collaboration with neuroscientists) that
helped gain insights for the spatial cluster evolution data.

The visual analysis approach greatly supports the com-
prehension of salient spatio-temporal evolution patterns
and provides insight into the life-span of brain states and
the clustering stability of the classification algorithm.

We plan to perform an evaluation concerning the use-
fulness of spatio-temporal clustering, i.e., a clustering
algorithm that takes both the spatial as well as the tem-
poral attributes into account. When utilizing both these
attributes, interesting research questions arise, such as, “is
the resulting visualization an accurate representation of
the data? How can we consistently compare such types of
visualizations with a different dataset?”.

Additional file

Additional file 1: Demo of the tool with artificial dataset DemoVideo.mp4,
A video demonstrating our tool in use with synthetic datasets.

Abbreviation
ECoG: Electrocorticography
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