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 Emotion regulation is a complex cognitive ability wherein conscious or non-conscious 

processes in an individual result in a change of experienced affect. The work in this dissertation 

involves advanced fMRI analyses to elucidate the connectivity of the neurobiological 

mechanisms of emotion regulation. We investigate the temporality of activation and functional 

connectivity in a form of explicit emotion regulation (cognitive reappraisal), as well as the 

effective connectivity of a form of implicit emotion regulation (affect labeling). We also 

investigate resting state functional connectivity in a subset of the emotion regulation network. 

Finally, these approaches are applied to euthymic individuals with bipolar disorder, a serious 

psychiatric illness in which the ability to regulate emotion is a cyclical and fundamental difficulty. 

The aim of this work is to identify system-level biomarkers to someday assist the diagnostic 

process and the tracking and treatment of therapeutic interventions. 
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CHAPTER 1: INTRODUCTION 

 

Principles of brain function 
 

One prominent conceptual distinction in neuroscience of the principles of neural 

organization is between brain segregation and brain integration. This can be described as a 

view of the brain composed of many specialized and segregated information-processing regions 

and a view that many regions serve multiple processing abilities that are only understandable 

when observing their integration within a broader functional context. It is for both empirical and 

historical reasons that such a distinction arose, and it is largely for empirical and historical 

reasons that both views are more recently seen as critical and convergent (Friston and C. J. 

Price, 2011). And yet despite their increasingly recognized complementarities, the neuroimaging 

tools we currently possess are generally built to provide evidence for one or the other 

perspective. Therefore today’s neuroimager, realizing that the brain possesses both segregated 

and integrated properties, must themselves integrate multiple kinds of neuroscientific findings to 

address his or her scientific questions. The present dissertation is one attempt to do so. 

As with efforts to understand any complex phenomenon, the manner in which one 

conceptualizes the brain often dictates the lens through which we measure and model it.  The 

majority of data presented here were derived from the technologically astounding and yet now 

quite common functional magnetic resonance imaging (fMRI) machinery. Data that fMRI 

provides are rich, multidimensional and can be analyzed in a number of ways, each offering a 

particular window into brain function. The most commonly employed method is to measure 

Blood‐Oxygen‐Level‐Dependent (BOLD) signal changes that occur throughout the brain under a 

psychological task by creating spatial maps of statistical significance using the general linear 

model (GLM) (Friston et al., 1995). These maps demonstrate brain regions that activate to a 
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greater or lesser extent between various conditions within or across groups of individuals. This 

standard fMRI approach lends itself naturally to the “segregation” perspective, and has offered 

many profound and robust indications of where in our neuroanatomy sensory and higher 

cognitive functions are represented. There exist, however, a number of psychological and 

statistical assumptions that underlie this approach, and many prominent users of the technique 

have self-referentially examined its limitations (Friston et al., 1996; Monti, 2011; Poline and 

Brett, 2012).  

One way to evade some of these limitations is through a more integrated or connected 

perspective of the brain. There are currently many methods one can use to investigate brain 

connectivity. One can, for example, examine the BOLD signal for correlations across regional 

time series. A strong positive or negative correlation between two regions indicates a functional 

coupling between them. Often one chooses a region of interest (ROI) and observes significant 

correlations to multiple other regions across the entire brain. In that manner one can begin to 

build an understanding of the broader communication of that ROI within networks tapped by a 

particular sensory or psychological process. This “functional connectivity” approach, however, 

does not yield very simple interpretations as to which regional couplings are specifically 

modulated by a task condition. Therefore, a somewhat similar way to analyze fMRI data is to 

look for an interaction between psychological and physiological variables, i.e. a 

psychophysiological interaction (PPI), which reveals task-induced changes in coupling between 

an ROI and other regions across the brain (Friston et al., 1997). These partially data-driven 

approaches bring us closer to describing the actual dynamics of cognition. However, like all 

techniques, they have their limitations. These include the testing of regional couplings from only 

one ROI and the weak inferences one can make about the influence a region may have on 

another.  
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These issues have been recognized and, therefore, approaches to measure “effective 

connectivity” have been developed (Ramnani et al., 2004). Effective connectivity methods are 

generally more hypothesis-driven than functional connectivity methods and allow an investigator 

to model direct and causal effects between a finite number of a priori regions of interest. 

Dynamic causal modeling (DCM) is one form of this approach, and specifically encourages 

comparison between causal models that themselves have been evaluated in relation to one’s 

empirical data (Friston et al., 2003; Penny et al., 2010). Metaphorically, DCM permits one to 

draw ‘arrows’ between regions instead of simply ‘lines’, and additionally estimates how these 

connection strengths are modulated under task conditions. 

 Finally, there is a burgeoning field within the fMRI neuroimaging community of 

investigating connectivity in the brain while it is “at rest” (Fox and Raichle, 2007). Resting state 

data benefits from being relatively easy to acquire, which expands its applicability, and the 

analyses reveal intrinsically and functionally connected networks that appear to underlie many 

cognitive processes (Smith et al., 2009). For mostly technical reasons, however, researchers do 

not yet in general apply effective connectivity analyses to these data and for this and other 

reasons interpretations of resting state analyses can be difficult (Cole et al., 2010). Nonetheless, 

the much slower signal fluctuations that one correlates with resting state data seem to be a 

valuable, and until recently underappreciated, dimension to where the majority of the brain’s 

metabolic activity is allocated (Raichle, 2011). 

Each of these analytic methods provides a unique window into brain function that was 

entirely unprecedented only a couple decades ago. They were generally built by and for 

methods researchers with non-methodological scientific concerns as well. In this dissertation 

three of these techniques are applied to a particular cognitive process, emotion regulation, and 

then to bipolar disorder, a psychiatric population in which this cognitive processes is deficient. 
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Before discussing these translational efforts, however, let us first discuss what healthy network-

level emotion regulation looks like in the brain, and a number of different tasks that engage it.  

Emotion Regulation  

There is no escaping that everyday existence provides ample opportunities for a variety 

of emotional responses. Our capacity to exert control over these reactions, and transform them 

into (usually) more desirable responses, is called emotion regulation. Some years ago, 

psychologist James Gross developed a “process model” for how we may consider emotion 

regulation in a broadly defined context involving an individual’s attentional and cognitive 

alterations within an emotion-generating situation. Types of control implemented at various 

stages in the process were outlined, and hypotheses made as to which type of control, 

implemented when, would have what effect on generated emotions (Gross, 1998). Although his 

framework has influenced a broad range of research and applied domains, many 

neuroscientists and brain-oriented psychologists have also compared and contrasted the neural 

underpinnings of different kinds of emotion regulation, such as cognitive reappraisal or 

expressive suppression (Mcrae et al., 2009; Ochsner et al., 2004), demonstrating their 

differential efficacy in an individual’s emotion generating brain regions, physiological responses 

and self-reported experiences.  

Implicit and explicit forms of emotion regulation 

 Although Gross’s model established an influential precedent for thinking about emotion 

regulation as a conscious, intentional and reportable process, recent theory and empirical work 

has brought about an additional distinction within emotion regulation research (Gyurak et al., 

2011). Partly due to the window into non-reportable processes that neuroimaging offers, one 

can now speak not only of explicit forms of emotion regulation but additionally implicit forms that 

are more automatic, can run to completion without monitoring, and are less effortful and 
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conscious. By observing the downregulation of emotion and reward-generating subcortical 

regions by prefrontal cortical regions, researchers have shown that forms of implicit emotion 

regulation occur while an individual is simply labeling affect with words (Lieberman et al., 2007),  

during conflict regulation (Egner et al., 2008) or even when considering the attractiveness of an 

alternate partner while in a romantic and committed relationship (Meyer et al., 2011). 

This explicit/implicit dichotomy frames implicit emotion regulation as a valuable area of 

research in itself, and yet most psychologists who study both forms of regulation do not see 

them as fully separate (Berkman and Lieberman, 2009; Gyurak et al., 2011). For example, 

some explicit forms can become implicit (e.g., when conscious pain suppression becomes 

implicit in chronic patients who must perform this form of regulation constantly), and some 

implicit forms can become explicit (e.g., as with the technique of “noting” as one trains in 

Vipassana meditation). As further evidence for their relation, forms of implicit emotion regulation 

have been shown to activate neural control regions that overlap with those recruited during 

explicit emotion regulation (Payer et al., 2012), and they also have similar dampening effects 

upon emotion generating regions. It seems, therefore, that while some psychological 

subprocesses differ among emotion regulation subtypes, they also share crucial neurobiological 

substrates.  

Anatomical substrates of emotion regulation 

Both human and animal research has shown that there exist structural (axonal) 

projections between the amygdala, an emotion generating region, and the prefrontal cortex. 

These connections largely connect the medial and orbital zones of prefrontal cortex (PFC) and 

the basolateral nucleus of the amygdala (Ghashghaei and Barbas, 2002; J. L. Price and 

Drevets, 2009). Specifically, glutamatergic prefrontal efferents synapse on amygdala 

GABAergic interneurons to provide inhibitory input (Amaral, 1992). In animals, lesions or 
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inactivation of the PFC have been shown to prompt abnormal affective behaviors, whereas 

stimulation of the PFC suppresses these (Morgan and LeDoux, 1995). Neurological patients 

with lesions or atrophy to orbital PFC characteristically display inadequate regulation of affective 

behaviors, including loss of social empathy and high emotional impulsivity (Anderson et al., 

1999; Wittenberg et al., 2008). This suggests the amygdala and orbital PFC are critical nodes in 

a network involved in the perception and regulation of emotional experience. 

Other important regions involved in emotion regulation depend in part on the 

psychological context of the regulation and the nature of the processes employed. For example, 

despite their shared recruitment of the ventrolateral PFC (vlPFC) (Payer et al., 2012), more 

regions are significantly activated during the cognitive reappraisal of emotion than for the 

labeling of affect. Regions consistently recruited during reappraisal include the dorsolateral PFC 

(dlPFC), dorsomedial PFC (dmPFC), anterior cingulate cortex (ACC), and posterior parietal 

lobes (Buhle et al., 2013; Ochsner et al., 2012), whereas regions involved in labeling affect 

recruit proportionately less of these and more regions relevant to language processing 

(Lieberman et al., 2007; Torrisi et al., 2013).  Active areas of research across the different kinds 

of emotion regulation processes include what constitute primary emotion regulation regions, 

whether there is actually a single “core” region and the interactions of these (or this) core 

region(s) with other networks critical to more tangential higher cognitive functions. 

Emotion regulation connectivity 

One way to probe these interactions is by testing brain connectivity. Psychologists using 

experimental paradigms with healthy humans have evaluated functional brain connectivity 

during implicit and explicit forms of emotion regulation. Ahmad Hariri and colleagues designed 

the now commonly-used task where subjects simply choose one of two labels to describe an 

emotional face (Hariri et al., 2000). They then used the left amygdala as a seed region for a PPI 
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analysis and observed negative connectivity between it and right vlPFC (BA 47). This was 

interpreted as the prefrontal region exhibiting inhibitory (dampening) control over the amygdala. 

Subsequently, other researchers have found inverse relationships between the activities of 

amygdala and ventrolateral PFC during explicit emotion regulation using functional connectivity 

analyses (Banks et al., 2007; Townsend et al., 2013). Finally, a handful of researchers have 

applied functional connectivity metrics to resting state data by exploring low frequency coupling 

among regions known to be involved in emotion regulation. Interestingly, many of these studies 

that focused on emotion-relevant regions also studied a clinical population (see table 1 of 

Chapter 6). Few studies have focused on a priori designated emotion regions in healthy 

individuals only, although there are some notable exceptions (Roy et al., 2009). 

Several studies have also examined effective connectivity among brain regions involved 

in emotional experiences and regulation. Most focus on the perception of emotional faces (Dima 

et al., 2011; Li et al., 2010; Stein et al., 2007). Some, however, have assessed labeling 

emotional faces (Almeida et al., 2009a; 2009b), and one group performed an analysis that 

demonstrated that activity in prefrontal and subcortical regions mediated successful self-

reported cognitive reappraisal (Wager et al., 2008). Although a complete description of the 

functional anatomic circuits involved in  emotion regulation has not yet emerged, these studies 

each add something valuable and enable further research based on or in relation to them.  

A major reason for these research efforts is their potential to identify highly descriptive 

neurological or psychiatric biomarkers. Connectivity analyses, rather than standard GLM 

analyses, offer a more fine-grained mechanistic description of the networks involved in complex 

mental processes such as emotion regulation. By identifying the specific manner in which brain 

networks functionally connect and are modulated when cognitively engaged, we will have a 

reference for locating when and where pathophysiology occurs in brain diseases (Greicius, 

2008; Rowe, 2010). This systems-level approach is immensely suited to bipolar disorder. 
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Application to Bipolar disorder 

 

Bipolar disorder type I is a severe psychiatric disease characterized by cyclical, dramatic 

mood swings that range from feelings of euphoria, expansiveness and overconfidence (mania), 

to lethargy, hopelessness and suicidal ideation (depression). Epidemiologically, it effects men 

and women equally, has a lifetime prevalence of approximately 1% of the population and has an 

average age of onset between the late teens and early twenties (Kessler et al., 2005; 

Merikangas et al., 2011). Unfortunately, people with bipolar disorder are often clinically 

misdiagnosed as having unipolar depression when the first clinical presentation of the illness is 

the depressed state (that is, before any episodes of mania have emerged). Treatment of the 

disorder can therefore be problematic, as medication suited for unipolar depression 

misallocated to an individual with bipolar disorder will put the latter at risk for switches into 

hypomania or mania (Altshuler et al., 1995; Wehr and Goodwin, 1987). Many researchers 

conceptualize bipolar disorder as a genetically-influenced brain disorder (Strakowski, 2012), and 

so there is hope that improved diagnoses and treatment tracking will someday incorporate 

descriptions of functional patterns in brain networks that distinguish healthy from bipolar 

disordered individuals, and will distinguish bipolar from other mood and anxiety disorders 

(Zorumski and Rubin, 2011). The network which engages emotion regulation processes holds 

particular promise for critical descriptions of dysfunction in bipolar disorder.   

Why study emotion regulation in BP 
 

A reason for studying emotion regulation in bipolar disorder, considered a disorder of 

mood and emotion, is that it is possibly the best lead we currently posess. Although the 

phenotype of bipolar includes disturbances in other domains such as sleep, energy, ‘cold 

cognition’ and even sociality, the majority of structural and functional findings throughout the 

short history of bipolar neuroimaging have strongly implicated regions involved in emotion 
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processing and regulation. Emotion regulation should therefore figure prominently into a full 

description of the pathophysiology of bipolar. We know, for example, that emotion regulation is a 

component of successful therapies and more specifically, cognitive reappraisal is a component 

of cognitive behavioral therapy (Leahy et al., 2011). Cognitive behavioral therapy in turn has 

proved to be an important component, in conjunction with medication, to better health and 

welfare outcomes in bipolar disorder (Lam et al., 2005). 

 
Previous GLM and connectivity findings in BP 
 

This dissertation examines the network mechanisms underlying emotion regulation, and 

its application to bipolar disorder. Such an investigation, however, is built upon research already 

conducted by our group which elucidates regional differences in the functioning bipolar brain. 

Using standard GLM analyses, the UCLA Mood Disorders Research Program has observed in 

the manic state hyperactivation of amygdala and hypoactivation of vlPFC (Altshuler et al., 

2005a; Foland-Ross et al., 2008), in the depressed state hypoactivation of both amygdala and 

vlPFC (Altshuler et al., 2008) and in euthymia no significant change in amygdala but 

hypoactivation in vlPFC (Foland-Ross et al., 2012). These findings implicate state‐related 

changes in amygdala but trait‐related abnormalities in vlPFC. Remaining questions center on 

the extent to which other regions mediate the communication between amygdala and vlPFC, the 

nature of that coupling, and how that coupling is altered in bipolar disorder. 

Summary of Chapters to follow 
 

In the chapters that follow I address some of these questions using the tools and 

psychological paradigms outlined above. I apply a functional connectivity method to an explicit 

emotion regulation task, an effective connectivity method to an implicit emotion regulation task 

and functional connectivity techniques to resting state fMRI of a subset of the emotion regulation 
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network. I also apply these approaches to a euthymic cohort of individuals with bipolar disorder, 

type I. Because the application of these connectivity techniques in the task-based studies was 

novel, I further divided the larger bipolar projects into two smaller projects: the first addressing 

connectivity in these paradigms in healthy subjects and the second applying these analyses to 

the bipolar population. This sequential strategy allowed me to become more familiar with the 

psychology of emotion regulation and to consider more deeply how it relates to the disorder. 

Chapter 2 presents our study of the activation dynamics and functional connectivity of 

the cognitive reappraisal of emotion in healthy subjects. We used a novel GLM-based 

procedure to elucidate the temporally-changing dynamics across the reapraisal period in early 

and late epochs. We then applied a psychophysiological interaction analysis across these 

epochs to observe changing connectivity between the vlPFC and other task-modulated regions 

across the brain. This study is currently in preparation for publication. For this chapter and the 

following chapters (3-6), figures and tables are provided at the end of each. 

 Chapter 3 presents our application of the novel GLM-based procedure to reappraisal to 

a matched cohort of euthymic bipolar subjects. This study is also in preparation for publication. 

 Chapter 4 presents our study of the effective connectivity of affect labeling in healthy 

subjects. We applied Dynamic Causal Modeling to a four node network to elucidate changes in 

directional coupling during affect labeling. The chapter is a version of a publication, reproduced 

here with permission: Torrisi, S.J., Lieberman, M.D., Bookheimer, S.Y., Altshuler, L.L., 2013. 

Advancing understanding of affect labeling with dynamic causal modeling. NeuroImage 82, 

481–488. 

 Chapter 5 presents our application of this DCM analysis to a matched cohort of 

euthymic bipolar subjects. A report on this study is currently in preparation for publication. 
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Chapter 6 presents our study of the euthymic bipolar brain during resting state. We took 

a focused ROI-based approach to assess bilateral functional connectivity between key regions 

involved in emotion regulation. We then further explored the results with a mediation analysis. 

The chapter is a version of this publication, reproduced here with permission: Torrisi, S.J., 

Moody, T.D., Vizueta, N., Thomason, M.E., Monti, M.M., Townsend, J.D., Bookheimer, S.Y., 

Altshuler, L.L., 2013. Differences in resting corticolimbic functional connectivity in bipolar I 

euthymia. Bipolar Disorders 15, 156–166. 

 Chapter 7 consists of a summary, relating of findings, discussion and a consideration of 

both limitations and future directions for the field of fMRI-based brain connectivity research and 

its application to psychiatric populations.  
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Semel Institute for Neuroscience & Human Behavior, Dept. of Psychiatry, UCLAa;  
Dept. of Psychology, University of Denverb; Center for Cognitive Neuroscience, UCLAc 

 

Introduction  

The cognitive reappraisal of emotion, an explicit emotion regulation strategy, involves re-

conceptualizing a stimulus in a way that alters one’s affective response, such as by reframing 

something negative more positively. This complex operation involves a number of 

subcomponent processes including the selection, maintenance and monitoring of goal 

representations which interact with generated emotions (Ochsner et al., 2012). Reappraisal has 

been studied for decades (Lazarus, 1991), often in the context of a well-known psychological 

“process model” that provides a useful framework for a broad sequence of emotion regulation 

operations (Gross, 1998; Sheppes and Gross, 2011; Urry, 2009). Psychologically characterizing 

the process in this manner has important implications for both basic and translational sciences, 

so neuroimaging researchers have also become interested in characterizing the neural 

mechanisms involved. Recent meta-analyses of reappraisal have shown across many studies 

that particularly areas of the medial, ventrolateral and dorsolateral prefrontal brain are strongly 

recruited with amygdala activations usually dampened (Buhle et al., 2013; Diekhof et al., 2011). 

Despite this focus on brain areas involved in and effected by reappraisal, few studies have 

empirically acknowledged the complex temporality of the process by testing models that 

elucidate its dynamics.  
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A notable exception can be found with the work of Raffael Kalisch, who postulated an 

implementation-maintenance model (IMMO) of reappraisal which he and his colleagues 

supported with a meta-analysis of reappraisal studies (Kalisch, 2009) and empirical work 

(Kalisch et al., 2006; Ochsner et al., 2012; Paret et al., 2011). Their hypothesis is that 

throughout the course of an episode of reappraisal, in general, initial increases in brain activity 

occur in left posterior regions and then spread into right anterior regions. They tested this using 

general linear model (GLM) designs with linearly increasing or linearly decreasing regressors. 

This model effectively captured an important property of the dynamics of reappraisal, namely 

that activity in certain right and anterior prefrontal regions gradually increases throughout the 

course of reappraisal. However, reappraisal is a highly dynamic and complex process whose 

neural instantiation is thought to be additionally influenced by the tactic an individual deploys 

during the process (Lazarus, 1991; Mcrae et al., 2012). Alternative models of reappraisal may, 

therefore, uniquely reveal complementary features of its dynamics.  

In the first part of this paper, we elaborate a feature of the IMMO to parse neural 

activations specific to separate early and late phases of the cognitive reappraisal of emotion. 

Consistent with the IMMO, we hypothesized that we would observe distinct recruitment and 

attenuation of activations during each phase of reappraisal, namely recruitment of primarily left 

and posterior brain regions during the early stage, and recruitment of primarily right and anterior 

regions during the late stage. We further hypothesized that some components of these neural 

patterns would only appear statistically significant when the early or late periods were tested 

separately and would not be present during a third (and standard) analysis where reappraisal 

was modeled in full. In other words, by dividing the reappraisal epoch we also hypothesized we 

would uncover regional activations that the full model normally dilutes, obtaining greater 

specificity as to which brain regions are instrumental in which phase of the process. 
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Dividing the full epoch into shorter early and late epochs would further enable us to 

explore brain connectivity as it changed throughout the reappraisal process. In the second part 

of this paper we use a psychophysiological interaction (PPI) (Friston et al., 1997; Gross, 1998; 

Sheppes and Gross, 2011; Urry, 2009) analysis to assess task-induced changes in functional 

coupling. We chose a seed region for which we had a priori interest (the ventrolateral prefrontal 

cortex (vlPFC)) and performed separate early and late PPI analyses. This allowed us to ask 

where across the brain does task-induced modulation of connectivity with this seed ‘pivot’ 

across the period of reappraisal.  

Materials and Methods 

Participants 

Fifty one healthy subjects were recruited as part of a larger study of emotion regulation 

in bipolar disorder by advertisement in local newspapers and campus flyers. Participants 

provided written informed,consent in accordance with the Institutional Review Board at the 

University of California, Los Angeles (UCLA). Participants completed the Structured Clinical 

Interview for DSM-IV Structured Clinical Interview for DSM-IV Axis I Disorders (SCIDI/P; (Buhle 

et al., 2013; Diekhof et al., 2011; First, 2002)). Exclusion criteria included any current or past 

psychiatric diagnosis (including history of substance abuse), neurological illness, metal 

implants, left-handedness, a history of head trauma with loss of consciousness greater than 5 

minutes, or currently taking any medications with psychotropic effects. Four participants were 

excluded from data analysis due to excessive head motion, resulting in 47 participants for 

analysis (mean age = 38.9, SD = 12; 27 male).  
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Experimental design 

 We used a well-validated task of cognitive reappraisal of emotion (Kalisch, 2009; Minkel 

et al., 2012). Participants viewed 45 color photographs (30 negative, 15 neutral) selected from 

the International Affective Picture System set (IAPS; (Lang et al., 1997)). Fifteen negative 

pictures were presented in each condition (look, decrease) with 15 neutral images presented in 

the look neutral condition. Based on normative affective ratings, the negative pictures were 

highly unpleasant and arousing, with mean ratings of valence=2.13 and arousal=6.38 (where 1-

point represented most unpleasant and lowest arousal and 9-point represented most pleasant 

and highest arousal). Neutral photographs had mean normative ratings of valence=5.16 and 

arousal=3.03.  

Each photograph was preceded by a 2-second instruction presented on a colored 

background: either the word “LOOK” (a nonregulation condition; green background) or the word 

“DECREASE” (the reappraisal condition; blue background). We presented neutral pictures in 

the look condition for a neutral baseline. Stimuli were then presented for 7-seconds, during 

which a border, colored as stated, surrounded each photograph to remind the participant of the 

instructions for that trial. Following this, a 4-second rating scale asked them to indicate by button 

press how distressed they felt at that moment from 1 (not at all) to 4 (very much). Lastly, a 

screen that read “Rest” was presented for a randomized duration of 1 or 3 seconds at the end of 

each trial (Figure 1A). Fifteen trials of each of the three conditions (look negative, look neutral, 

decrease negative) were presented. 

 To ensure task comprehension, participants completed a pre-scan training session 

including 8 example photographs to allow participants to rehearse the instructional conditions. In 

the decrease condition, they were instructed to change the way they thought about the photo in 

order to decrease the intensity of the emotion they felt. To ensure that strategies used were 
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consistent with cognitive reappraisal (cf. Gross, 1998b) different regulation strategies were 

discussed. After generating a working reappraisal participants were told that “…once you come 

up with something just mentally repeat it to yourself and try to convince yourself it’s true for the 

rest of the short time the picture is up.” Incorrect methods of regulation were illustrated as 

thinking of things unrelated to the picture, focusing only on parts of it, looking away, or 

generating unrelated emotions.   

Behavioral data 

We tested for a significant change in self-reported negative affect following the look 

negative and decrease negative trials by performing two-sample t tests between the ratings. We 

hypothesized that a significant change would occur in the form of a reduction of negative affect 

following decrease trials. 

Image acquisition 

All subjects were scanned on a 3T Siemens Trio scanner. A high resolution structural T1 

MPRAGE was acquired with parameters of TR=1.9 seconds, TE=2.26 ms, Flip-Angle = 9°, 

Matrix = 256×256, FOV=250mm, voxel size 1mm isotropic, and total sequence time 6 minutes 

and 50 seconds. The fMRI scan was acquired using a T2*-weighted EPI gradient-echo pulse 

sequence with IPAT, with TR=2 seconds, TE = 25 ms, Flip-Angle = 78°, Matrix=64×64, 

FOV=192mm, in-plane voxel size 3x3 mm, slice thickness 3mm, 0.75mm gap, and 30 total 

interleaved slices. To allow for scanner equilibration and for IPAT reference, 3 TRs at the 

beginning of the scan were discarded. The total sequence time for the fMRI was 11 minutes and 

26 seconds, with 340 volumes acquired. We additionally acquired a matched-bandwidth 

structural scan with parameters TR=5 seconds, TE=34 ms, Flip-Angle=90°, Matrix=128×128, 

FOV=192mm, in-plane voxel size 1.5×1.5mm, slice thickness 3mm, and a total sequence time 

of 1.5 minutes. MPRAGE scans were not acquired for three subjects so their matched-
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bandwidth images were instead used for registration. Foam padding was placed around the 

heads of participants to help dampen motion, stimuli was presented via LCD goggles, and 

responses were collected by button box. 

Image Preprocessing 

All preprocessing and analyses were performed within SPM8 

(www.fil.ion.ucl.ac.uk/spm/). Subjects’ functional volumes were slice-time corrected (Descamps 

et al., 2007), then motion realigned, coregistered to the MPRAGE structural scan, normalized to 

a T1-weighted standard brain in MNI space, resliced 2 mm isotropically, and smoothed with a 6 

mm FWHM Gaussian kernel. All subjects had maximum translational head movements of less 

than 2.2 mm, with means and standard deviations across subjects for three translation 

parameters (x, y, z): 0.179(0.21), 0.147(0.15), 0.307(0.38) and three rotation parameters (pitch, 

roll, yaw; radians): 0.007(0.01), 0.004(0.004), and 0.003(0.004).  

Within-subject general linear model (GLM) analysis 

First-level GLMs of the preprocessed functional images for each subject included 

convolving the task design blocks with a canonical hemodynamic response function, high-pass 

filtering at 128 seconds, and adding regressors of the rating periods and six additional 

regressors for each subject’s motion realignment parameters as covariates of no interest. We 

additionally specified an explicit whole-brain mask derived from an optimal thresholding of the 

subject masks (Ridgway et al., 2009) to ensure coverage of the ventrolateral prefrontal cortex.  

We performed three different analyses using two regression designs of the reappraisal 

contrast (decrease negative > look negative): a standard, “full” analysis where the entire 7 

second duration of negative stimuli presentation was modeled as a single regressor (Figure 1A; 

“model 1”), and two other analyses with the full epoch divided into two “early” and “late” halves 
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of 3.5 seconds each (Figures 1B and 1C). We modeled these halves as a separate regressors 

within the same design (“model 2”). In these latter analyses, contrast vectors were specified with 

the early regressor assigned a “1” and late assigned “0”, or the early regressor assigned a “0” 

and late assigned “1”. In this way we covaried out overlapping variance associated with late 

while looking at early, and conversely covaried out overlapping variance associated with early 

while looking at late. Interpretations of resulting statistical maps should take this into account 

(Figures 1D and 1E). All contrasts used the entire 7-sec period of look negative as baseline in 

which subjects were asked to simply look at negative photographs and respond the way they 

would naturally. We also assessed evidence that cognitive reappraisal had a predicted and 

often-replicated dampening effect on the amygdala, our primary emotion-generating region of 

interest. This was tested with the reverse contrasts of the three just described: look negative > 

decrease negative, look negative > decrease negative (early) and look negative > decrease 

negative (late). 

We note that although the adjacent early and late blocks are temporally non-overlapping, 

they did partially overlap after each was independently convolved with a canonical 

hemodynamic response function. The correlation of these two regressors was 0.48, and shared 

23% of their variance (Figure 1E), which presents a potential multicollinearity issue (Monti, 

2011). To test if this multicollinearity would be detrimental to the analysis, we measured the 

variance inflation factor for these two regressors in the context of the design matrix using SPSS 

21.0, which quantifies the severity of multicollinearity in an OLS regression analysis. We found 

these to be well under conservative recommendations of 5 (Mumford, 2013; Rogerson, 2001) at 

values of 2.4 and 1.4 for the early and late regressors, respectively.  

Psychophysiological interaction analyses 

 To assess changes in functional connectivity during reappraisal we performed two 
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psychophysiological interaction (PPI) analyses of the early and late stages. The PPI method 

identifies voxel-level interactions between a psychological process and activity within a specific 

brain region, revealing task-induced changes in coupling between that region and the rest of the 

brain (Friston et al., 1997). We chose the same left ventrolateral prefrontal cortex (vlPFC) seed 

region and its time series for both PPI analyses because it (a) was robustly active in the full 

GLM analysis and would allow assessment of its contributions during the early and late 

temporal subsets and (b) has been strongly implicated by other research in emotion regulation 

processes in general as well as reappraisal in particular; see (Cohen et al., 2011) for review. 

With PPI, context-specific changes in functional connectivity are generally interpreted as 

contributory when the regression coefficient is positive, or antagonistic when the coefficients are 

negative (i.e., activity in seed region X “suppresses” region Y). It should be emphasized that 

these are interpretations, however, and a PPI cannot determine excitation vs. inhibition or the 

direction of connectivity. 

 Three regressors were used to construct the PPI model: 1) a physiological regressor 

representing the seed activity (time series) within an 8mm radius sphere around the group GLM 

peak in the full decrease negative vs. look negative contrast (left vlPFC (BA 47);   [-48 16 -4]), 

adjusted for effects of interest; 2) a psychological regressor for the task condition (early or late 

reappraisal) used to determine task-induced changes in functional connectivity between the 

vlPFC and other regions across the brain; and 3) the PPI variable formed by deconvolving the 

BOLD time series to represent the interaction at the neuronal level, computing the element by 

element product of the first two variables and reconvolving this time series to create a regressor 

for the PPI analysis (Gitelman et al., 2003). To determine which areas reflect this 

psychophysiological interaction, a second general linear model was formed with these three 

regressors. Assigning contrast vector values of +1 or -1 for the PPI regressor and 0 for the other 

two produced statistical images showing voxels that possessed a significant, task-induced 
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increase (positive coupling) or decrease (negative coupling) with activity in the left vlPFC during 

the early or late phases of reappraisal.  

Second level (between-subject) group analyses 

 For both group GLM and PPI analyses, individual contrast maps were grouped in a 

second-level random effects analysis for population-level inference using one-sample t tests. 

Whole brain, voxel-level results were thresholded at p<0.001, k=35, FDR corrected at p<0.05. 

Peak coordinates and cluster-level significance are additionally reported in Table 1. Axial slices 

were visualized using xjView (http://www.alivelearn.net/xjview8/). 

Results 

Behavioral data 

Subjects demonstrated a significant reduction in self-reported negative affect for the 

reappraisal trials following negative photographs compared to look trials following negative 

photographs (means(SD) = 2.15(0.5), 2.57(0.6), respectively; p=0.0002). Self-reported negative 

affect following look neutral trials was 1.04(0.06) and was significantly lower compared to the 

other two conditions (Figure 3A). 

GLM analyses 

As mentioned above, we performed three separate analyses on the same data set: (1) a 

full analysis with the entire 7-sec reappraisal trial modeled, (2) an early analysis with only the 

first half modeled (0-3.5 sec), and (3) a late analysis corresponding to the second half (3.5-7 

sec) of the reappraisal period to better elucidate the temporal dynamics during cognitive 

reappraisal. Figures 2A-D illustrate select whole-brain axial slices corresponding to each of the 

three analyses, with cluster and peak-level coordinate results provided in Table 1A-C.  
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The results from the standard analysis (full model; decrease negative > look negative) 

are consistent with a large meta-analysis of cognitive reappraisal of emotion tasks (Buhle et al., 

2013). As expected, we found that cognitive reappraisal recruited key brain regions involved in 

cognitive control, including bilateral ventrolateral prefrontal cortex (vlPFC; BA 47), dorsolateral 

prefrontal cortex (dlPFC; BA 9), and superior and anterior frontal gyri (BA 10). Activation results 

were somewhat left-lateralized (e.g. see vlPFC and inferior parietal lobule (IPL) in right column 

of Figures 2B and 2D). To assess the effects of reappraisal, we reversed the reappraisal 

contrast to determine whether the amygdalae were substantially more responsive during the 

‘look’ negative condition versus the decrease negative condition during the full epsiode of 

reappraisal. This contrast (look negative > decrease negative (full)) did not yield significant 

activations in either left or right amygdala at our whole-brain threshold (Figure 3B). 

We then divided the reappraisal epoch into two phases, with each phase represented by 

a unique regressor and both regressors retained in the same design (Figure 1, model 2). In the 

early phase we found significant activations in regions that were not present during either the 

late phase or the full period of reappraisal – namely the right amygdala and bilateral inferior 

temporal (fusiform) gyri (left column in Figure 2A).  

In the late phase we found significant activations that are present but much weaker in 

the full analysis – namely bilateral superior frontal gyri (BA 10; middle column of Figure 2C) and 

right dlPFC (middle column of Figure 2D). Additionally, we found significant activations in the 

second half of the reappraisal period that were not at all present during either the early phase or 

the full period. For example, the middle column in Figures 2C and 2D show regions emerging 

late such as the right anterior cingulate cortex (ACC), caudate and inferior parietal lobule. 

Lastly, the look negative > decrease negative (late) contrast showed significant bilateral 

amygdala activations (Figure 3B) not detectable within the look negative > decrease negative 

(full) analysis. 
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Psychophysiological Interaction analyses 

 Within both the early and late reappraisal periods we assessed changing functional 

connectivity with the left vlPFC. Within the early reappraisal period we observed significant task-

induced positive connectivity between the vlPFC and primary and extrastriate visual regions 

(Figure 4A). We also observed significant negative connectivity between the vlPFC and ACC 

and dorsal midline structures. Within the late reappraisal period we observed continued positive 

coupling between left vlPFC and primary visual regions but reduced positive connectivity with 

extrastriate visual regions (Figure 4B). Additionally, we observed a much stronger and broader 

negative coupling with the ventromedial PFC (vmPFC) as well as greater negative coupling with 

the dorsal midline regions.  

Discussion 

 The cognitive reappraisal of emotion is a commonly studied form of explicit emotion 

regulation with particularly complex internal dynamics. While most analyses of reappraisal do 

not focus on its temporal evolution, notable exceptions have modeled linearly increasing or 

decreasing brain activity across the reappraisal epoch (Kalisch, 2009; Paret et al., 2011). In 

addition to examining the entire reappraisal period, we employed a unique and complementary 

approach to “uncover” brain activity during the early and late phases of reappraisal. We 

expected that reappraisal-related brain activity would globally shift from left posterior to right 

anterior brain regions throughout the course of the reappraisal period and we further assessed 

changing connectivity patterns across the two temporal phases.  

 Consistent with a large number of published studies using similar paradigms (Buhle et 

al., 2013; Diekhof et al., 2011; Ochsner et al., 2012), we found that the full period of reappraisal 

(decrease negative (full) > look negative) was associated with robust prefrontal and parietal 

activation clusters, regions known to subserve explicit emotion regulation in general and 
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cognitive reappraisal in particular. Behaviorally, we assessed negative affect by subjects 

reporting a change following the reappraisal trials versus the look trials and found a significant 

reduction in negative affect following reappraisal. Assessing the effects of reappraisal in the 

neuroimaging context, however, proved more difficult, as we additionally looked at the reverse 

contrast (look negative > decrease negative (full)) for evidence that the amygdala was more 

active during looking at negative photographs versus the reappraising them and found no such 

evidence at our corrected threshold.  

 In comparison to the standard analysis examining the full period of reappraisal, the early 

and late contrasts offer additional insights into the dynamics of the reappraisal process. By 

focusing the statistical contrasts toward early and late periods we observed significant activity in 

regions that the full model ‘dilutes’. In some regions activations are still present but weaker 

when modeled in full rather than only during the late stage (i.e. smaller cluster peak statistic and 

cluster size). Examples include the left superior frontal gyrus (Figure 2C) and right dorsolateral 

prefrontal cortex (Figure 2D). This observation has multiple implications. Outside a priori regions 

of interest, for example, neuroimaging researchers often focus their interpretations on large 

regional effects. If an area is only weakly respresented in standard analyses its significance 

within the reapparaisal process may be overlooked. Even if the region is reported in a table, 

however, its statistical representation would bias some quantitative meta-analysis approaches 

that partly weigh regional contributions to the composite analysis by reported effect size 

(Anticevic et al., 2012). As already shown (Kalisch, 2009), quantitiative meta-analyses of 

cognitive reappraisal are currently meta-analyses of standard (full) models that implicitly make 

assumptions about a static reappraisal process. The early/late division therefore offers a way to 

bring attention to and perhaps even prioritize the contribution of certain brain regions in the 

reappraisal process.  

 Our approach provides another insight into the reappraisal process: activation that is not 
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seen in the full analysis can also be “uncovered” by the early or late analyses. Examples of this 

include activation in the right amygdala and bilateral fusiform gyri during the early period (Figure 

2A), or in the body of the caudate, anterior cingulate (Figure 2C) or right inferior parietal lobule 

(Figure 2D) during the late period. In particular, the early stage reappraisal map suggests 

greater processing of visual aspects of the negative stimuli in extrastriate and inferior temporal 

regions as well as an initially strong emotional response in the amygdala. These activations 

recede during the late stage of reappraisal. This is interesting in light of the historical distinction 

between antecedent and response-focused emotion regulation strategies (Goldin et al., 2008; 

Gross, 1998). Antecedent-focused strategies, like reappraisal, were thought to anticipatorily 

target the appraised meaning of a stimulus. Conversely, response-focused regulatory 

strategies, such as expressive suppression, were thought to target an already experienced 

emotional and/or physiological response. Here, anticipatory targeting is a reasonable 

assumption given that our instructions to ‘look’ or ‘decrease’ were provided before the onset of 

the stimulus. However, our results suggest instead such a distinction is misleading as it appears 

reappraisal is actually acting upon an already initiated emotional response, demonstrated by 

amygdala activity in the decrease negative (early) > look negative contrast. 

 This notion of “uncovering” the signficance of a region’s involvement is further relevant to 

whether reappraisal had neuroanatomical effects for our subjects that correspond to their self-

reports. Only when we specifically probed the latter half of the reappraisal epoch with the 

reverse contrast look negative > decrease negative (late) were we able to observe that 

amygdala activity was much stronger during looking than reappraising during this period (Figure 

3). This is relevant because reporting of amygdala modulation in reappraisal studies is 

inconsistent, with upwards of a quarter of studies not reporting it at all (see Table 1 of (Ochsner 

et al., 2012)). It would be interesting to see if the researchers of those studies reanalyzed their 

data in an early / late manner if amygdala modulation would then become apparent.   
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 Demonstrating dynamic profiles of regional responses across two broad phases of 

reappraisal still leaves many questions regarding the mechanisms behind these observations. 

For example, there are different possible interpretations as to why activity in some regions 

recede from the early to the later stage: attention could be drawn from them to higher-level 

cognitive demands, the early regions may habituate, they may possess unique physiological 

properties (i.e. the amygdala as a “novelty detector”), the shared variance removed during the 

regression may represent the continued activity of those earlier regions, or latter regions may be 

dampening the early-responsive ones. Further research is necessary to sort and revise these 

possibilities. 

 We did, however, offer additional insight into the mechanisms behind our two phase 

results by performing an analysis of how task-based functional coupling with a seed region 

changes across the reappraisal period. We observed that areas that process visual stimuli 

possess a positive connectivity with the vlPFC earlier in the reappraisal process which appears 

to diminish in the later phase. We also observed other areas, such as the vmPFC, are 

negatively coupled with the vlPFC and that this coupling strengthens across the reappraisal 

process (Figures 4A, 4B).     

Limitations and future directions 

 Our study probed the temporal evolution of cognitive reappraisal via a novel partitioning of 

the reappraisal epoch. We addressed the potential confound of multicollinearity between the 

early and late GLM regressors and do not consider it to negatively impact the accuracy of the 

final results. However, one must be cognizant of the different variances explained across all 

three statistical maps and to interpret them appropriately (Figure 1E). For example, covarying 

out shared variance likely produces false negatives, and the early and late statistical maps 

should not be thought to ‘add up to’ the full map.  
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 A potential limitation to our early / late analysis is that we contrasted the half of decrease 

negative with the entire look negative. We wished to retain as much data for statistical 

comparison as possible, but by doing so we also implicitly assumed a less dynamic experience 

looking at the IAPS stimuli than reappraising them. Given the large difference in cognitive 

demand between the two conditions, we feel that this is not an unreasonable assumption. 

However, it could be empirically addressed in future studies by contrasting early decrease with 

early look and late decrease with late look. 

As previously noted, there is recent interest among emotion regulation researchers in 

specifying in finer detail the dynamics of reappraisal. Some psychologists have modeled the 

differential efficacy of deploying regulatory processes within different periods of “emotion 

generating cycles” (Sheppes and Gross, 2011; Urry, 2009), however these models do not 

describe the underlying neural dynamics of these cycles. Artificially partitioning the reappraisal 

epoch as we have adds to our description of these underlying reappraisal dynamics, and yet, 

also greatly simplifies them. Indeed, all modeling efforts are simplifications of the phenomenon 

one is modeling (Box and Draper, 1987) and the standard GLM approach to fMRI analysis, 

whether by box car design or a linearly increasing or decreasing one, is no exception. For 

example, one might consider that reappraisal entails a non-linear sequence of perceiving and 

reacticing to an aversive stimulus, regulating, assessing its effects, perhaps altering one’s tactic, 

regulating again, and converging on a functional strategy held in working memory continuously 

deployed until the end of the trial. Because of these prospects, our early / late analysis is 

agnostic to the details of “emotion generating cycles” and simply concentrates on BOLD-signal 

variance within the beginning and the ending stages of the process. Further examinations of 

within-stage as well as transitional neural dynamics may benefit from other approaches such as 

designing a much longer reappraisal epoch amenable to finer analytical divisions, modeling the 
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directed influences between regions (i.e. dynamic causal modeling) or alternative imaging 

modalities with finer temporal resolution (i.e. electroencephalography).  

Our connectivity findings demonstrated that task-based modulations in functional 

coupling with the ventrolateral PFC change across the early and late periods as well. However, 

one interesting aspect of these findings is that some regions in the early and late GLM maps did 

not appear at all in the PPI analyses (i.e. note the lack of BA 10 connectivity in figure 3B, bottom 

left, despite its clear involvement in the activation maps (Figure 2C). This suggests the 

involvement of multiple networks during reappraisal, some of which were not accessed via the 

vlPFC “window” of our analysis. Therefore a single-seed PPI analysis only reveals a subset of 

multiple ongoing and interacting networks required for reappraisal. This is plausible given the 

multiple psychological sub-processes which psychologists think are involved, such as those 

outlined in the previous paragraph. Future neuroimaging studies of reappraisal would benefit 

from more comprehensive connectivity approaches such as those measuring task-based 

changes in coupling between dozens or more nodes across the brain (Fornito et al., 2012). 

 A detailed understanding of the neurobiological mechanisms underlying reappraisal 

would benefit multiple domains of basic and translational research. The cognitive reappraisal of 

emotion is a uniquely human ability which enables us to return to baseline when internal or 

external events divert us from emotional homeostasis. Strength in emotion regulation is, for 

example, key to successful mindfulness-based and cognitive behavioral therapies (Leahy et al., 

2011). Furthermore, multiple kinds of psychiatric or developmental disorders, from those 

involving anxiety and mood (Phillips et al., 2008a) to externalizing disorders (Halligan et al., 

2013), have demonstrated weaknesses in the ability to regulate emotion. With future studies an 

increasingly fine-grained description of what mechanistically occurs during cognitive reappraisal 

should help clinically-oriented researchers temporally locate where this process breaks down in 

these populations. 
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Figures 

 

 
Figure 1. A-C: full, early and late decrease negative variants of the decrease negative > look negative 
contrast. Darkest gray represents the periods of modeled reappraisal. D. Schematic of the variance 
contained within the full (standard) GLM design for reappraisal. E. Schematic of shared variance (23%) 
between the HRF-convolved early and late reappraisal regressors. Gray portion is covaried out in both 
maps.  

 

 

Figure 2. (A-D) Four select axial slices from ventral to dorsal across all three analyses: early, late and full. 
N=47 subjects; all maps FDR corrected at p<0.001, k=35; left is left; numbers represent Z coordinates in 
MNI space. vlPFC = ventrolateral prefrontal cortex; ba = Brodmann’s area; ACC = anterior cingulate 
cortex; dlPFC = dorsolateral prefrontal cortex; IPL = inferior parietal lobule. 
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Table 1. A-C, full, early and late GLM analysis results, respectively. P<0.001, k=35. All reported clusters 
contain more than one local maxima except where indicated *. 
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Figure 3. A. Self-reported negative affect following the three conditions. Error bars = s.e.m.  
B. Significantly less amgydalae activity (circled) during the late reappraisal period observed in the look 
negative > decrease negative (late) contrast. Maps FDR corrected at p<0.001, k=35. 

 

 

Figure 4. Preliminary psychophysiology (PPI) results. A. PPI of early reappraisal period. Left vlPFC seed 
region (green circle) derived from the full analysis in the decrease negative > look negative (full) contrast 
(recall Figure 2B; same time series for each subject was used in both the early and late analyses). B. PPI 
of late reappraisal period. Blue = positive functional connectivity with vlPFC (t test values), red = negative 
functional connectivity. Non-colorbar numbers indicate the z level in MNI space. p<0.001, k=35. 
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Introduction 

Neuroscientific research in healthy subjects is generally designed to delineate the 

biological mechanisms that serve the range of normal cognition. Understanding which brain 

regions are involved in particular physiological states or psychological processes and how those 

regions interact in a network provides the logical starting point for investigating how aspects of 

that network may be dysfunctional in psychiatric diseases. It can be beneficial, therefore, to first 

elucidate what occurs in the healthy brain, and then apply that approach to a particular disorder. 

Here we apply the early / late temporal approach to the cognitive control of emotion described in 

the previous chapter to a group of individuals in the euthymic state of bipolar disorder, type I.  

As outlined in Chapter 1, bipolar disorder is a serious psychiatric illness with a profile of 

chronic mood episodes, from serious depressions to manias, and with some periods of respite 

between them called euthymia. Because of the fluctuating but cyclical nature of the disease, 

researchers believe that there are some biological properties in the bipolar brain that are 

constant throughout the life of the patient (that are, in effect, synonymous with them identifying 

with the diease and them being successfully diagnosed as such), and some biological 

properties that either cause or are reflective of the different mood states. Researchers often 
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refer to these as trait- and state-related biomarkers, respectively. Therefore a description of 

what occurs within the brain in all three mood states (depression, mania and euthymia) is 

instrumental to understanding which neural substrates, and characteristics of their connectivity, 

are consistently problematic (a trait), and which substrates track with mood (a state). 

The capacity to regulate one’s emotion (where emotion is operationally a component a 

mood) is considered one of the fundamental problems in bipolar disorder (Phillips et al., 2008a). 

The cognitive reappraisal of emotion is furthermore one of the most well-studied types of explicit 

emotion regulation (Ochsner et al., 2012). The few studies that have used this paradigm applied 

to bipolar disorder found hypoactivity in the ventrolateral prefrontal cortex (vlPFC) and 

hypoconnectivity with the amygdala in the vlPFC (Townsend et al., 2013; Townsend and 

Altshuler, 2012). In general, however, little is known about where and how this particular 

process is aberrant in bipolar. 

In this chapter we explore the temporality of where reappraisal breaks down in bipolar 

disorder with the early / late analysis by using fMRI to investigate differences between the 

healthy and euthymic groups. We recruited euthymic subjects because results found during this 

period point to trait, as opposed to state, differences. We additionally tested the normal (full) 

period of reappraisal, as well as self-reports of reappraisal efficacy and tactic use, to connect 

this work with extant and novel research. We hypothesized that we would behaviorally observe: 

(1) a lesser amount of self-reported change in affect following ‘decrease’ trials in the bipolar 

subjects and (2) a difference in tactic use among bipolar subjects (an exploratory analysis). We 

further hypothesized that we would neurobiologically see in bipolar disorder: (3) hypoactivity in 

vlPFC during the full epoch of reappraisal, relative to healthy subjects, (4) no difference in 

amygdala activation while looking during the early epoch and (5) hypoactivity in cognitive control 

regions during the late epoch. 
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Materials and Methods 

Participants provided written and informed consent in accordance with the Institutional 

Review Boards at UCLA and the Veterans Affairs Greater Los Angeles Healthcare System. 

Subjects with bipolar disorder type I  (BP; N=42) were recruited through the outpatient UCLA 

Mood Disorders Clinic, the outpatient Bipolar Disorders Clinic of the VA Greater Los Angeles 

Health Care System and through local advertising in the community. Healthy control subjects 

(HC; N=47) were recruited by advertisement in newspapers and campus flyers. All participants 

were first interviewed using the Structured Clinical Interview (SCID) (First, 2002) for DSM-IV to 

confirm a bipolar diagnosis or absence of. Participants with bipolar were excluded if they met 

criteria for any other current Axis I disorder. Demographics and clinical variables of the healthy 

and bipolar groups are listed in Table 1. There were no significant differences in age (p=0.51) or 

gender (Chi squared p=0.83) between groups.  

Behavioral analyses were conducted using SPSS 21.0. We fit a 2x2 repeated measures 

ANOVA with group (healthy or bipolar) as the between-subjects factor and condition prior to 

reporting (look or decrease). Tactic coding was performed independently by two raters who 

classified self-reported tactics into nine categories (Mcrae et al., 2012). Between group results 

with poor rater reliability (Chronbach’s α <0.6) are not reported.  

All bipolar subjects’ MRI and fMRI data were identically preprocessed and analyzed as 

the healthy subjects’ data. Because these procedures were described in the previous chapter 

they are not detailed here. There were no significant differences in the six head motion 

parameters during scanning between groups. First-level full, early and late GLM maps were 

brought to a random effects group level for between-group comparisons using 2-tailed, 2-

sample t-tests. Between-group maps were thresholded at p<0.001, k=20.  

 



 

 34 

Results 

Self-reported negative affect following each trial revealed a significant reduction in both 

groups after reappraisal trials relative to look trials (figure 1; HC p=0.0002, BP p=0.043), 

however the condition*group interaction showed the bipolar subjects trending towards less 

decrease in negative affect after reappraisal than the healthy subjects (p=0.088). Reappraisal 

tactic coding also showed a significantly greater use of “agency” by the bipolar subjects with 

independent samples t-test with unequal variance (HCµ=0.15±0.06(s.e.m), BPµ=0.31±0.11; t=-

1.3; p=0.019; α=0.77). This type of tactic is categorized as such when the subject has 

specifically mentioned “…a person with skills to change the current situation” when describing 

which tactic they used most often (Mcrae et al., 2012). 

 Between-group full GLM results demonstrated significant hypoactivity in the bipolar 

group in left vlPFC (BA47; cluster peak at [-48 28 -14]: t=4.04, k=25; figure 2A) and in the right 

anterior cingulate cortex (BA32; cluster peak at [6 46 16]: t=4.44, k=28; figure 2B). As 

hypothesized, we also found no group differences in either amygdala at the whole brain level 

during the look negative (full) vs look neutral contrast, lending support to our hypothesis that 

amygdala reactivity tracks with mood state, as we have previously found it to be hyperactive 

during mania, hypoactive during depression, and not significantly different during euthymia 

(Altshuler et al., 2008; 2005a; Foland-Ross et al., 2012).  

Between-group early GLM results demonstrated hypoactivity in a number of posterior 

brain regions in the occipital, temporal and parietal lobes in the bipolar group during reappraisal 

(decrease negative (early) vs look negative; figure 3). We found no significant hyperactivations 

in the bipolar group in the early period. Between-group late GLM results revealed greater 

activation in left hippocampus and right inferior parietal lobule (IPL) in the bipolar group (bipolar 
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> healthy; not shown). We found no significant hypoactivations in the bipolar group in the late 

period. 

Discussion 

 We tested behavioral and neuroactivation differences during reappraisal between 

healthy subjects and an age- and gender-matched group of euthymic subjects with bipolar 

disorder, type I. The bipolar subjects reported slightly less success at downregulating their 

emotional responses to negative photographs by reappraisal than the healthy group, and also 

reported more frequent use of the agency reappraisal tactic. Our hypothesis of hypoactivation in 

vlPFC in the bipolar subjects was supported, as we found a significant cluster in the left vlPFC 

that was more strongly active during the full reappraisal epoch in healthy subjects. This result 

corroborates other results from our laboratory using a similar version of this task but with 

entirely different groups of healthy and euthymic bipolar type I subjects and using entirely 

different fMRI analysis software as well (Townsend et al., 2013). This lends strong support to 

hypoactivity in the vlPFC being consistently problematic in bipolar disorder and is a potential 

trait-related biomarker for the disease. Our hypothesis of no difference in amygdala reactivity to 

the negative photographs was also supported at the whole brain level. 

The early / late analyses, however, yielded unexpected results for which we had no a 

priori hypotheses. Therefore, detailed interpretations of them would be in error of speculation 

and reverse inference. Nonetheless, bipolar subjects appear to have generally less activity in 

posterior brain regions during the early period of reappraisal and more activity in left 

hippocampus and right IPL during the late period, relative to healthy subjects. 
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Limitations and future directions  

One limitation of this study is that most of our bipolar subjects were taking psychotropic 

medications, while our healthy group was not. This is common among studies of BP type I, but 

unfortunately we did not have enough subjects to look at sub-groups based on medication type. 

It has, however, been shown via two non-overlapping meta-analyses that the effects of 

psychotropic drugs on the fMRI signal in bipolar disorder yields no appreciable effect (Hafeman 

et al., 2012; Phillips et al., 2008b). Further research that directly tests this is warranted. 

A number of sub-analyses still need to be performed to solidify the reliability of the early / 

late results. For example, a region of interest (ROI) analysis with an a priori vlPFC mask will 

need to be conducted to determine if the healthy > bipolar, decrease negative (full) > look 

negative contrast survives cluster correction (Figure 2A), as well as confirmation that there was  

no difference in amygdala reactivity between groups using an ROI approach on the healthy > 

bipolar look negative (full) > look neutral contrast maps. Finally, future directions may also 

include a psychophysiological interaction analysis as performed in the previous chapter. 
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Table 1. Demographic and clinical variables. 

 

 
Figure 1. Averaged self-reported negative affect following look and decrease trials. 
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Figure 2. Between group reappraisal, healthy > bipolar. A: Hypoactivity in vlPFC in bipolar subjects. B: 
Hypoactivity in ACC in bipolar subjects. Both axial slices from decrease negative (full) > look negative 
contrast, visualized on a canonical T1-weighted brain. Left=Left. 

 

 
Figure 3. Healthy > bipolar,  decrease negative (early) > look negative contrast. Left=Left, visualized on a 
canonical T1-weighted brain. 
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Introduction 

In this chapter we shift our orientation toward an effective connectivity technique, to 

investigate causal relations among brain regions, and to a form of implicit emotion regulation, to 

see if latent disfunction in a disease can be tapped via a task where the individual is not 

effortfully trying to regulate. Before including bipolar subjects in our analysis, however, this 

chapter focuses on the mechanics of affect labeling in the healthy brain.  

The unique human ability to consciously control one's emotional experience also counts 

among the more difficult to execute. Nonetheless the psychology and neuroscience of explicit 

emotion regulation have been fruitfully studied for over two decades, yielding much 

understanding of the neural mechanisms of emotions and behavioral control (Gross, 2007). 

Neurobiologically, we are now aware of major prefrontal and emotional regions involved 

(Ochsner et al., 2012; Ochsner and Gross, 2005) and are beginning to understand the important 

connections between emotion regulation and health (DeSteno et al., n.d.). However, research 

has more recently suggested that there is a disconnect between self-reported use of explicit 

emotion regulation strategies and their spontaneous use in daily life (Gruber et al., 2012; 

Volokhov and Demaree, 2010). One reason for this may be due to the substantial cognitive 

resources and time required to enact such strategies (Mauss et al., 2006). As a result, research 



 

 40 

on emotion regulation at a non-conscious level has emerged as an equally interesting and 

alternative avenue of investigation into how we commonly control our emotional experiences 

(Berkman and Lieberman, 2009; Koole and Rothermund, 2011). 

By explicit emotion regulation we refer to strategies such as reappraisal of an emotional 

stimuli or suppression of an emotional response, while in contrast non-conscious emotion 

regulation (also called implicit or incidental emotion regulation) refers to those cognitive 

processes that result in the lessening of emotional reactivity and where this effect was not 

consciously intended by the person engaging in it (Lieberman et al., 2011). Although incidental 

emotion regulation at a non-conscious level cannot easily be self-reported, functional magnetic 

resonance imaging (fMRI) offers a window into the process. This technology can reveal the 

presence of incidental emotion regulation via lessened emotional reactivity and the extent to 

which prefrontal regions are recruited that overlap those used to explicitly control emotion 

(Burklund et al., 2012; Payer et al., 2012).  

There are a variety of psychological paradigms currently being used to probe non-

conscious forms of emotion regulation using fMRI (Berkman et al., 2009; Egner et al., 2008; 

Meyer et al., 2011). One frequently studied cognitive process is affect labeling (Hariri et al., 

2000; Lieberman et al., 2007) which is gaining increasing evidence as a form of incidental 

emotion regulation (Kircanski, Lieberman, & Craske, 2012; Lieberman et al., 2011). This 

paradigm lies at the confluence of emotion, control, and language systems. Labeling emotional 

faces results in decreased amygdala response and the increased recruitment of prefrontal 

control and language regions, particularly the ventrolateral prefrontal cortex (vlPFC) in the right 

hemisphere and Broca's area (BA 44/45) in the left. To this end, a task-induced negative 

coupling between the activity in the amygdala and vlPFC has been shown using regression-

based techniques (Foland-Ross et al., 2008; Hariri et al., 2000) and has been interpreted as a 

dampening of amygdala reactivity by the vlPFC. However, causal inferences using such 
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methods remain circumspect. To advance beyond the simple identification of activation patterns 

or the changes in coupling between only two regions one must use more sophisticated analyses 

(Friston, 2011). 

In this study, we examined the nature of the vlPFC-amygdala coupling (specifically, the 

directed influences between these regions) during affect labeling, and additionally assessed the 

understudied contribution of Broca's area to amygdala activity. To do so we used Dynamic 

Causal Modeling (DCM), a validated and reliable Bayesian statistical framework for effective 

connectivity analysis which encourages the comparison of multiple user-defined models of 

causal interactions between a set of brain regions (Friston et al., 2003; Rowe et al., 2010; 

Schuyler et al., 2010). Ours is, to the best of our knowledge, the first application of this method 

to this common paradigm. 

Materials and Methods 

Subjects 

Fifty-two healthy subjects were recruited as part of a larger study of emotion regulation 

in bipolar disorder by advertisement in local newspapers and campus flyers. They provided 

informed consent in accordance with the Institutional Review Boards at the University of 

California, Los Angeles (UCLA). All participants completed the Structured Clinical Interview for 

DSM‐IV Structured Clinical Interview for DSM‐IV Axis I Disorders (SCIDI/P; (First, 2002)). 

Exclusion criteria included any concurrent or past psychiatric diagnosis (including history of 

substance abuse), neurological illness, left-handedness, metal implants, a history of skull 

fracture or head trauma with loss of consciousness of more than 5 minutes, or taking any 

medications with psychotropic effects. 
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Experimental design 

The affect labeling paradigm consisted of three experimental conditions: ‘match facial 

affect,’ ‘label facial affect,’ and ‘match forms’ (Figure 1) (Hariri et al., 2000). They were 

presented as nine experimental 30-second blocks: four displayed emotional faces and were 

interleaved with five control blocks displaying geometric forms. Of the four displaying faces, two 

required the subject to match a facial expression with one of two other facial expressions (match 

faces condition). Faces were shown with neutral or negative affect such as fear, surprise or 

anger. The other two blocks required subjects to choose one of two presented words (e.g., 

‘ANGRY’, ‘AFRAID’) that best matched an emotional face (label faces). For each affect 

condition, 12 different faces were used, taken from a standard set of photographic stimuli 

(Ekman and Friesen, 1976). Each emotion was randomized across blocks and the order of task 

presentation was counterbalanced among subjects. Subjects responded with one of two buttons 

with their right hand and were told to answer “…as quickly as possible without making too many 

mistakes”. Response times were collected and accuracy was calculated for each condition. 

Image acquisition 

All subjects were scanned on a 3T Siemens Trio scanner. A high resolution structural T1 

MPRAGE was acquired with parameters of TR=1.9 seconds, TE=2.26 ms, Flip-Angle = 9°, 

Matrix = 256×256, FOV=250mm, voxel size 1mm isotropic, and total sequence time 6 minutes 

and 50 seconds. The fMRI scan was acquired using a T2*-weighted EPI gradient-echo pulse 

sequence with IPAT, with TR=2.5 seconds, TE = 25 ms, Flip-Angle = 78°, Matrix=64×64, 

FOV=192mm, in-plane voxel size 3×3 mm, slice thickness 3mm, 0.75mm gap, and 30 total 

interleaved slices. To allow for scanner equilibration, 2 TRs at the beginning of the scan were 

discarded. The total sequence time was 5 minutes and 45 seconds, with 135 volumes acquired. 

For co-registration we additionally acquired a matched-bandwidth structural scan with 
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parameters TR=5 seconds, TE=34 ms, Flip-Angle=90°, Matrix=128×128, FOV=192mm, in-plane 

voxel size 1.5×1.5mm, slice thickness 3mm, and a total sequence time of 1.5 minutes. We were 

not able to acquire MPRAGE scans for four subjects, so their lower resolution matched-

bandwidth images were used instead for registration. Foam padding was placed around the 

heads of participants to suppress motion, responses were recorded by button box, and stimuli 

was presented by LCD goggles.  

Image Preprocessing 

All preprocessing and analyses were performed within SPM8/DCM10 

(www.fil.ion.ucl.ac.uk/spm/). Subjects’ functional volumes were slice-timing corrected 

(Descamps et al., 2007; Kiebel et al., 2007), then motion realigned, coregistered to the 

MPRAGE, normalized to a T1-weighted standard brain in MNI space, resliced 3mm 

isotropically, and smoothed with a 6mm FWHM gaussian kernel. All subjects had maximum 

translational head movement of less than 2.5mm, with means and standard deviations across 

subjects for three translation (x, y, z; in mm) parameters: 0.16(0.2), 0.10(0.11), 0.29(0.31) and 

three rotation (pitch, roll, yaw; in radians) parameters: 0.005(0.005), 0.003(0.004), 0.003(0.005). 

First level (within-subject) analysis 

First‐level general linear modeling (GLM) of the preprocessed functional images 

included convolving task design blocks with a canonical hemodynamic response function, 

high‐pass filtering at 128 seconds to remove low frequency drifts, adding six motion realignment 

parameters as covariates of no interest and specifying an F-statistical contrast for subsequent 

VOI extraction (i.e. when adjusting for effects of interest). The first level statistical maps were 

run twice; the second time with an explicit whole-brain mask derived from an optimal 

thresholding of the initial masks to ensure coverage of vlPFC (Ridgway et al., 2009). 
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Second level group GLM analysis 

The standard mass univariate summary statistics approach was used to bring single-

subject contrast images into a group random effects analysis. The contrast label emotion vs 

match forms was of interest to elucidate the incidental emotion regulation network while the 

contrast label emotion vs match emotion more specifically revealed those regions involved in 

labeling (thresholds: p<0.0005, cluster size 10 voxels; p<0.05 AlphaSim-corrected 

(http://www.restfmri.net/)). Furthermore, the contrast match emotion vs match forms robustly 

activates the amygdala and was used to guide functionally defined node extraction (see below). 

Region of interest analyses 

To demonstrate and confirm with our data the expected labeling-induced increase of 

right vlPFC activity with the decrease of right amygdala activity we performed region of interest 

(ROI) analyses on both these regions with independently defined anatomical masks. We 

brought a histologically-defined probabilistic right amygdala (Amunts et al., 2005) and a 

Tailarach Daemon right vlPFC (BA 47) mask into the MarsBaR toolbox (Brett et al., n.d.) across 

the 45 subjects that survived a time series extraction procedure (see below). For the amygdala 

the contrast match emotion vs label emotion was used to verify that its activity is significantly 

greater during matching emotional faces than during labeling emotional faces, while the reverse 

contrast was used to verify greater activity of vlPFC.  

Dynamic Causal Modeling and model space construction 

To perform a dynamic causal modeling analysis of a network one first selects nodes for 

which one has a priori knowledge and hypotheses, but bases the selection on GLM maps of 

significant task-induced activation. We chose four regions that were shown to be activated in the 

group match emotion vs match forms or label emotion vs match forms contrasts which we 
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hypothesized either launched the cognitive process (through visual input) or potentially caused 

the dampening of amygdala activity previously noted (Foland-Ross et al., 2008; Lieberman et 

al., 2007; 2005). These regions were the right inferior occipital gyrus (IOG), the right amygdala 

(both coordinates chosen at the individual subject level with the match emotion vs match forms 

contrast), the right ventral lateral prefrontal cortex (vlPFC; BA 47) and Broca’s area (aka left 

posterior inferior IFG; pars triangularis; BA 44/45) (Figure 2 top row; both coordinates chosen at 

the individual subject level with the label emotion vs match forms contrast). Two of these 

regions, Broca’s area and vlPFC, also appeared in the targeted label emotion vs match emotion 

contrast (Figure 2 bottom row), supporting their specific involvement in affect labeling over and 

above matching or perceiving affect. However, coordinates for the latter two nodes were not 

chosen at the individual subject level within this latter contrast because of a decrease in 

sensitivity. After choosing these four regions based on their response profiles to affect labeling, 

DCM then allowed us to advance our research question from what occurred regionally during 

labeling to how it occurred mechanistically. 

Dynamic causal modeling is a Bayesian framework to infer effective connectivity 

between brain regions in a neural system of interest (Friston et al., 2003). The investigator 

specifies a given model (i.e. hypothesis) by assigning an endogenous architecture to the 

regions, the location(s) of a stimulus input that drives the system, and specifies which 

connections’ couplings are modulated by a particular task condition. The evaluation of a model 

results in posterior parameter estimates on the model’s uni- or bidirectional edges, as well as a 

‘score’ of the model as a whole. The negative free energy approximation to the model evidence 

is the score used to compare multiple models (which constitute a model space) in a Bayesian 

Model Selection (BMS) scheme. The negative free energy value represents a balance between 

a model’s goodness of fit to the data and the model’s complexity which additionally takes into 

account interdependencies or covariances among parameters (Penny, 2012). Given a particular 
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network, a model space is generally a subset of all theoretically testable models built by the 

investigator to probe specific questions in a computationally pragmatic manner. The inferences 

one makes with DCM are therefore relative to the model space one tests. Multiple models can 

further be grouped into families (Penny et al., 2010), which contain a common element of 

interest and can be compared in this manner if one asks specific questions about that common 

element. Finally, one can test not only model architectures as a whole but specific connection 

strengths and their ‘sign’ (positive or negative) with Bayesian Model Averaging (BMA) (Penny et 

al., 2010) within a model family. 

In service of these analytical options, we systematically constructed a factorial model 

space that embodied our neuroscientific assumptions and the hypotheses we wished to test. 

The basic model was constructed to investigate both forward and backward information 

propagation centered on the right amygdala. The presence of some connections among regions 

was held constant throughout all models while others were systematically permuted, resulting in 

eight basic patterns of endogenous connectivity (figure 3). Based on recent research on 

‘multiple routes’ in the processing of written words, emotion and emotional faces (Dima et al., 

2011; Pessoa and Adolphs, 2010; Richardson et al., 2011), we chose to keep the information 

propagation from IOG to right vlPFC constant across all models, along with the more obvious 

assumption of affective stimuli also entering the amygdala via IOG. The inclusion of IOG as the 

visual processing node, rather than, e.g. the fusiform face area, also follows previous theory and 

empirical research on the effective connectivity of face processing (Cohen Kadosh et al., 2011; 

Dima et al., 2011; Fairhall and Ishai, 2007; Haxby et al., 2000). By conflating the matching and 

labeling emotional faces conditions into a single regressor we specified the driving input to our 

models, which as such contained mostly face stimuli. However, one third of what a participant 

saw during these conditions were affective words, and so each model was also crossed with 

two driving input hypotheses (families): entering only at the right IOG or at both the right IOG 
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and the left Broca’s Area. For the latter family it was assumed that language information entered 

previously via left hemisphere regions upstream from Broca’s not explicitly included in our 

models. Naturally the same assumption applies to our choice of IOG, a higher-order visual 

processing region, however the degree of synaptic distance from sensory input is different 

between these regions. Finally, to investigate the specific changes in coupling that labeling 

affect engenders, our primary interest in this study, we created four families of amygdala 

afferent modulation. These were where labeling modulated either the Broca’s to amygdala 

connection, the right vlPFC to amygdala connection, the Broca’s to Amygdala via right vlPFC 

pathway (i.e. these two connections simultaneously) or all three of these directed edges 

simultaneously. This resulted in an 8(endogenous) × 2(driving) × 4(modulatory) = 64 element 

model space, where each model was separately estimated for all 45 subjects. 

Time series extraction 

 The peak coordinates of these four volumes of interest (VOIs) as observed in the second 

level group maps were the right IOG [42 -82 -16], right amygdala [24 -4 -13], right vlPFC [42 23 

-7], and left Broca’s Area [-57 20 23], located within the label emotion vs match forms contrast 

(figure 2A). Left Broca’s area and right vlPFC were also shown in the language specific contrast 

label emotion vs match emotion (figure 2B). Within each subject we then manually chose peak 

coordinates around these group peaks within anatomical constraints and within a threshold of 

p<0.05 uncorrected overlaid on the subjects’ own normalized structural images (Leff et al., 

2008). Because the quality and extent of a given region’s atlas representations are quite 

variable (Bohland et al., 2009), we chose those anatomical reference tools we reasoned would 

optimize our selection for a particular region in our tested network. Threshold-crossing subject-

specific activations were thusly considered within the IOG if they conformed to the Harvard-

Oxford probabilistic atlas, within the amygdala or Broca’s Area (BA 44/45) if they conformed to 

the Jülich histological/probabilistic atlas (Eickhoff et al., 2005) and within the vlPFC (BA 47) if 
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they conformed to the Tailarach Daemon (www.talairach.org) after non-linear coordinate 

conversion from MNI to Talairach space (www.bioimagesuite.org). All subject-specific 

coordinates were also within 15mm Euclidean distance of the group peak (supplemental figure 

1). If any region for a given subject did not pass any of these constraints they were eliminated 

from the study. Seven subjects were lost in this manner, which produced our final subject pool 

of 45 subjects. All DCM and ROI results are based on this group (Table 1 for demographics). 

Finally, the principal eigenvariate time series was extracted from each peak, adjusted for effects 

of interest, within a 5mm radius sphere. 

Model Comparisons and Bayesian Model Averaging 

Our first DCM model comparison step was to exploit the factorial nature of our space 

and compare two large model families that differed only in the anatomical locations of the 

driving inputs. We chose to run a random-effects (rfx) bayesian model selection because we 

could not assume that the optimal model was uniformly used by each individual in our group 

(Stephan et al., 2010). We looked at a given family or model’s exceedance probability, which is 

the probability of a particular model being more likely than any other model in the space. 

Exceedance probabilities across all models sum to 1, providing a relative measure of fit specific 

to one’s model space. We then performed rfx BMS on the winning half of the model space and 

included the BMA procedure. BMA averaged the connectivity parameters within each subject’s 

32 models, weighted by their posterior probabilities, which yielded estimates for their strength 

and directions in the form of posterior distributions (means and standard deviations) at both the 

subject and group levels. Because we tested 11 parameters of interest (8 endogenous plus 3 

modulatory) we applied Bonferroni correction (α= 0.05/11= 0.0046) to two-tailed, one-sample 

tests. 
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Correlations with behavioral measures 

 To explore the potential connection between the strengths of subject-specific effectivity 

connectivity parameters with behavioral measures, we ran correlations with reaction time and 

percent accuracy with the parameter estimates from BMA. We applied Bonferroni correction for 

multiple comparisons to these tests as well. 

Results 

Behavioral data 

 All participants performed at a high level of accuracy for both the match emotion and 

label emotion conditions (Table 1).  

GLM analysis 

 As predicted, second level group GLM maps for the contrast of interest label emotion vs 

match forms replicated previous work by demonstrating a number of known regions activated by 

the affect labeling paradigm: most prominently bilateral occipital and fusiform regions, 

amygdalae, vlPFC, dlPFC (BA 6), a medial region of the superior frontal gyrus (BA 8), Broca’s 

area and posterior superior temporal sulcus (Wernicke’s Area; BA 22) in the left hemisphere 

(Figure 2a and supplemental table 1A). The more targeted contrast label emotion vs match 

emotion revealed that a subset of these regions responded specifically to the linguistic stimuli 

(Figure 2b and supplemental table 1B). After elimination of 7 subjects due to node finding for 

DCM all GLM second level analyses were re-run and the results were marginally less robust but 

consistent with those of the primary analysis  (supplemental figures 2A, 2B). 

For the region of interest analyses the match emotion vs label emotion contrast was 

used to confirm that activity within the amygdala during matching emotion was significantly 

greater than during labeling emotion (t=2.0, p=0.026 corrected). The reverse contrast label 
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emotion vs match emotion was used to confirm that activity within the vlPFC during affect 

labeling was significantly greater than during affect matching (t=2.37, p=0.011 corrected).  

DCM analysis 

Comparing families of models 

We first split our model space to determine the better of two general hypotheses 

regarding the driving input to affect labeling (Penny et al., 2010), i.e. whether the driving input 

was best modeled as entering the right IOG alone or in conjunction with the left Broca’s area. 

Random-effects bayesian model selection showed that the family with driving input entering only 

at the right IOG strongly won over the family where the driving input entered additionally at the 

left Broca’s area (respective posterior means: 0.9493, 0.0507; exceedance probabilities: 100%, 

0%).  

Comparing individual models (BMS) and Bayesian Model Averaging (BMA) 

 The family-level result allowed us to focus on the winning family of 32 models in a 

comparison using rfx Bayesian Model Selection. This would help answer further questions: (1) 

are any of the three permuted connections especially important to the basic model structure? (2) 

If so, which connections are? (3) Does affect labeling produce significant changes in regional 

coupling over endogenous coupling? (4) If so, which connections are significantly modulated?  

We found model 1 to outperform the other models with an exceedance probability of 

22% (Figure 4). This model had a basic endogenous architecture without any of the three 

permuted connections (Figure 3, template ‘a’) and with modulation under affect labeling 

targeting the Broca’s area to amygdala connection. Model 17 was the second-best model with 

an exceedance probability of 17%. In this model the same endogenous architecture as model 1 

is present, although labeling modulates the Broca’s area to amygdala via vlPFC pathway. 
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However, neither of these modulatory hypotheses emerged as very clear winners at the BMS 

level, i.e. if we calculate the ratio of model posterior means between these two models (their 

Bayes Factor) we return 0.0804/0.0685=1.1737, which constitutes weak evidence in favor of 

model 1 (Penny et al., 2004). However, what emerged from this 32-model comparison was that 

the third and fourth strongest winning models also possessed that basic endogenous 

architecture that lacked amygdala afferents and the vlPFC to Broca’s projection (Figure 4, 

asterisks). In other words, while the top four models were dissimilar in the location of modulation 

under labeling, they all shared an identical endogenous architecture (Figure 3, template ‘a’), 

seemingly providing strong support about the best-fit endogenous architecture of the labeling 

task. To quantify this observation we next ‘post hoc’ grouped our model space into eight families 

of those endogenous architectures. Of these, the family with the first model’s architecture 

strongly won the Bayesian model comparison with a family posterior mean of 0.479 and 

exceedance probablity of 88% (supplemental figure 3). As a parallel, exploratory analysis we 

also performed BMA (see below) on this smaller group of models and the main results below did 

not change (supplemental Table 2). 

For greater insight into our main apriori interest of labeling-induced modulation of 

regional coupling we looked at the results of our Bayesian model averaging (BMA) of the 32 

models that won the family-level driving input test. This provided subject and group-level 

posterior distributions for the endogenous and modulatory parameters. For a given parameter, 

i.e. a directed edge between two regions, we performed two-tailed, one-sample T-tests for 

significance on their mean values. Four endogenous connections survived Bonferroni 

correction: the IOG projections to amygdala and vlPFC as well as the bidirectional connections 

between vlPFC and Broca’s area (Table 2; Figure 5). With the exception of the Broca’s area to 

vlPFC connection, all of these values were positive, meaning that an increased rate of a source 

region’s neural population-level activity results in an increase in the neural population-level 
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activity of its target. Finally, the modulatory effect of affect labeling showed the right vlPFC to 

right amygdala influence to be very significantly negative, meaning we can infer that an 

increased rate of vlPFC activity under the labeling condition causes a decrease in the rate of 

amygdala activity (p<0.0001).  The modulatory effect of labeling showed Broca’s area to also 

significantly decrease the rate of amygdala activity, albeit not as strongly as the vlPFC. Finally, 

the Broca’s to vlPFC modulatory connection was found to be significantly negative, but did not 

survive correction. In sum, affect labeling appears to induce a dampening effect across the 

corticolimbic network where one of these connections becomes more negative under 

modulation than its endogenous coupling (Broca’s to vlPFC) and the other two couplings (vlPFC 

to amygdala and Broca’s to amygdala) become significantly negative where there was 

previously no significant endogenous coupling present.  

DCM parameter correlations with behavior and external variables 

 There were no significant correlations between BMA parameter estimates and reaction 

time or percent accuracy.  

Discussion 

 To our knowledge, the current study is the first application of an effective connectivity 

technique to investigate causal neural interactions during a task of affect labeling, a paradigm 

acquiring increasing evidence as a form of incidental emotion regulation. By including a strongly 

language-involved brain region in our network modeling we have advanced a mechanistic 

understanding of what occurs while ‘putting feelings into words’ and, namely, how the often-

replicated observation of decreased amygdala activity may arise. Our findings reinforce 

common interpretations of previous regression and correlation-based analyses of vlPFC-

amygdala negative connectivity, however they both solidify and extend them, as dynamic causal 
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modeling permits stronger claims about causal interactions and allows the testing of multiple 

connections simultaneously.  

As predicted, we found the right vlPFC to right amygdala connection to be strongly 

modulated, negatively, by labeling facial affect. This means that during this task the vlPFC 

exhibits a dampening effect on the activity of the amygdala that is not endogenously present but 

rather manifests during the labeling of affect. The DCM model results additionally support a 

causal role for Broca’s area during labeling affect, in that its involvement directly and negatively 

modulates the amygdala as well, and may additionally indirectly modulate the amygdala via the 

vlPFC. We also found strong evidence at the model level of the data supporting a most minimal 

endogenous architecture. Taken together, our results demonstrate that the most significant 

regulatory effect on amygdala originates from the right vlPFC, yet also present are weaker but 

nonetheless substantial labeling-induced contributions from Broca’s area to both the amygdala 

and to the vlFPC. Finally, we found that the endogenous connection from IOG to vlPFC that we 

modeled was strongly supported by our data, corroborating recent work on parallel routes for 

the visual processing of facial affect (Dima et al., 2011; Pessoa and Adolphs, 2010).  

 This study has several limitations. It is only practical to test a small number of nodes with 

Dynamic Causal Modeling, and although this is common practice, we may have missed crucial 

players in the network that forms the basis of affect labeling. The dampened amygdala 

activation observed could additionally be caused or mediated by the left middle temporal gyrus 

(Wernicke’s Area; BA 22) or the medial superior frontal gyrus (BA 8) which were both shown as 

active in the label emotion vs match emotion GLM contrast (supplemental Table 1). Future DCM 

studies of affect labeling should systematically add these regions as other nodes to tested 

models, as well as the contralateral homologues of the regions investigated here. Additionally, 

other areas implicated by previous research may be important to this regulatory network. For 

example, in animal models ventromedial PFC activity has been demonstrated to dampen 
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amygdala activity (Quirk et al., 2003) or mediate its dampening in humans (Lieberman et al., 

2007).  Other incidental emotion regulation paradigms have additionally shown increases in 

rostral anterior cingulate cortex (Berkman and Lieberman, 2009; Cohen et al., 2011), however, 

our task did not significantly recruit either the vmPFC or rACC, where significant recruitment is 

required for node inclusion in DCM analyses (Stephan et al., 2010).  

 As for brain regions whose effective connectivity we did investigate, the vlPFC and 

Broca’s area were revealed in the targeted contrast label emotion vs match emotion and yet 

they are both regions that have been studied in cognitive contexts other than affect labeling. For 

example, and as previously mentioned, the right vlPFC has more broadly been considered a 

candidate mechanism for self-control of several types, as it additionally activates during many 

tasks of response inhibition, risk-taking (gambling) and temporal discounting (delaying 

gratification) (Cohen et al., 2011). Additionally, the right vlPFC has been implicated in attentional 

switching (reflexive reorienting) (reviewed in Levy and Wagner, 2011), although the relation of 

this function to our affect labeling paradigm is unclear. The vlPFC has also been implicated in 

language studies, and in particular the processing of semantic information, however the 

evidence more strongly suggests hemispheric lateralization to the left (Dapretto and 

Bookheimer, 1999; Noesselt et al., 2003; C. J. Price, 2012). To this end we did observe bilateral 

vlPFC activation in the label emotion vs match emotion contrast (supplemental Table 1) and so 

we may speculate that the left vlPFC could be processing semantic (affect-related) aspects of 

affect labeling while the right vlPFC acts as a regulating mechanism. Our paradigm, however, 

precludes more targeted contrasts or factorial interactions to better tease apart these relations. 

Likewise, Broca’s area is a heterogeneous region (BAs 44/45) that has been studied in multiple 

contexts, most prominently as serving multiple sub-functions of affect-neutral language 

processing (extensively reviewed in (C. J. Price, 2012). Therefore, given their known functional 

heterogeneity, our study offers greater understanding of how to interpret the changing roles of 
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these regions given a “neural context” of affect labeling (Henson, 2005; McIntosh, 2004).  

 In sum, the present study investigated causal mechanisms ostensibly responsible for the 

effect of greater vlPFC and dampened amygdala during tasks of affect labeling, and in doing so 

helps situate affect labeling within a broader context of emotion regulation (Gyurak et al., 2011). 

While there are overlaps between the mechanisms and effects of explicit and incidental forms of 

emotion regulation, the latter offers advantages to evoking this cognitive process less directly. 

For instance, explicit emotion regulation paradigms, such as reappraisal, additionally test an 

individual’s capacity to regulate their emotions following a set of directed instructions. As such, 

the subject’s capability of quickly and creatively producing a scenario that achieves the desired 

goal is tested along with their regulatory abilities. In contrast, regulation of emotion that occurs 

incidental to intentionally instructed goals may reflect an individual’s tendency to regulate more 

automatically in domains outside the laboratory (Berkman and Lieberman, 2009). Following this 

logic, if incidental emotion regulation lends insight into an individual’s tendency to regulate, be it 

genetic or learned, it may also be used to probe ‘latent’ disfunction caused by, or reflective of, 

disease states such as post traumatic stress disorder, anxiety, or mood disorders. In the case of 

affect labeling, for example, research has already been conducted with spider phobic subjects 

and suggests a pronounced effect in mitigating fear responses by labeling affect versus 

cognitive reappraisal (Kircanski et al., 2012; Tabibnia et al., 2008). Future behavioral and 

neuroimaging work leveraging an individual’s tendency to spontaneously regulate emotion with 

incidental emotion regulation strategies and the ability for this to additionally inform disorders 

characterized by deficits in emotion regulation will be highly valued. 
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Figures and Tables 
 
 

 
Figure 1. Affect Labeling paradigm. (A) Match emotion condition (B) label emotion (C) match 
geometric forms. (Hariri et al., 2000) 
 

 
Figure 2. (A) Label emotion vs Match forms. The map (N=52) used to determine node peak selection, 
(four peaks circled) before the loss of seven subjects due to node extraction. (B) Label emotion vs Match 
emotion, the targeted affect labeling contrast. See supplemental Table 1 for cluster-specific information. 
Axial slices (R=R) at indicated Z coordinates overlaid on standardized brain in MNI space. Both maps 
p<0.0005, k=10. 
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demographics and behavior 

N=45  

Age 41.9 (12.1) 

Gender 20F 25M 

Years education 15.5 (2.2) 

Race  

Caucasian 34 (76%) 

African American 9 (20%) 

Asian 2 (4%) 

match emo accuracy 0.94 (0.09) 

match emo RT (sec) 2.09 (0.51) 

label emo accuracy 0.84 (0.08) 

label emo RT (sec) 2.01 (0.47) 

Table 1. DCM subject demographics (mean and SD) and behavior during task. 

 

 
Figure 3. Eight templates of endogenous connectivity in schematic axial slice orientation. These were 
crossed with 2 different driving input and 4 different modulatory hypotheses, creating a 64-element model 
space. 
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Figure 4. Bayesian Model Selection for 32 models from the winning driving input family (input to IOG). 
Asterisks above the four models with the highest exceedance probabilities. 
 

BMA results     

     

Endogenous Mean SD P Value  

IOG to Amyg 0.17 0.11 0.0000000110 ** 

IOG to vlPFC 0.15 0.10 0.0000001550 ** 

Amyg to vlPFC 0.04 0.10 0.0336 * 

Amyg to Broca's 0.03 0.07 0.0124 * 

vlPFC to amyg 0.00 0.18 0.9549  

vlPFC to Broca's 0.20 0.09 0.0013 ** 

Broca's to amyg -0.03 0.20 0.2228  

Broca's to vlPFC -0.11 0.20 0.0038 ** 

     

Modulatory     

vlPFC to amyg -0.27 0.12 0.0000000173 ** 

Broca's to amyg -0.06 0.11 0.0013 ** 

Broca's to vlPFC -0.09 0.10 0.0090 * 

Table 2. Parameter-level results (as distributions) from Bayesian Model Averaging across 32 models and 
45 subjects. SD = standard deviation. **Bonferroni corrected, *p<0.05 uncorrected. 



 

 59 

 

 
Figure 5. Graphic depiction of Bayesian Model Averaging results (Table 2). Color saturation values map 
to mean effective connectivity parameters (in hertz) while arrow thickness maps to statistical significance 
proportional to log(1/p-value). (A) Endogeneous connectivity. (B) Modulation of connectivity by affect 
labeling representing the three tested connections. Due to the basic bilinear DCM equation the 
modulation values add to the endogenous values. Driving input (not shown graphically) enters the IOG in 
both states. 
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Supplemental Material: 

52 subjects:  

(A) label emotion vs match forms    

p<0.0001, k=10      

  BA cluster cluster  peak MNI 

   P (FWE) size Z x,y,z {mm} 

L Inferior Occipital Gyrus 18 0 3997   Inf  -24 -97  -7 

R Inferior Occipital Gyrus 18     Inf  27 -97   2 

R Lingual Gyrus 18     Inf  21 -91  -7 

L Insula 13 0 1770   Inf -33  23  -1 

L IFG: pars opercularis 44/45   7.73 -54  17  32 

L Middle Frontal Gyrus 6   7.71 -45   2  47 

L Superior Frontal Gyrus 8 0 885 7.8   0  17  56 

L Superior Frontal Gyrus 8   7.1  -6  29  47 

L Superior Frontal Gyrus 8   6.99  -3  38  47 

R MFG: pars triangularis 46 0 1571 7.56  45  29  23 

R MFG: pars opercularis 44/45   7.56  51  20  32 

R Ventral Lateral IFG 47   7.52  42  20  -7 

R Thalamus  0 73 6.91  24 -31   2 

R Thalamus    4.59   6 -28  -1 

R Cerebellum: Culmen    4.39   9 -28 -13 

L Thalamus  0.003 22 6.17  -18 -34  -1 

R Amygdala  0 44 5.67  21  -7 -13 

R Amygdala    4.9  27  -4 -19 

L Middle Temporal Gyrus 22 0 162 5.66  -54 -31  -4 

L Middle Temporal Gyrus 22   5.39  -60 -43  -1 

L Middle Temporal Gyrus 39   5.28 -48 -49   5 
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L Amygdala  0 38 5.47  -24  -7 -13 

L Amygdala    4.53 -27   2 -16 

R Middle Temporal Gyrus 22 0 99 5.33  57 -40  -1 

R Middle Temporal Gyrus 22   4.9  48 -46   8 

R Middle Temporal Gyrus 37   3.89  63 -43 -13 

L Superior Parietal Lobule 7 0 55 4.8 -33 -64  47 

L Middle Occipital Gyrus 7   4.39 -30 -67  38 

R Thalamus  0.052 10 4.5   6 -13   5 

R Angular Gyrus 7 0.052 10 4.15  33 -64  47 

       

(B) label emotion vs match emotion    

p<0.0005, k=10      

  BA cluster cluster  peak MNI 

   p (FWE)  size Z x,y,z {mm} 

L IFG: pars triangularis 44/45 0.001 49 4.77 -54  17  26 

L IFG: pars triangularis 45   4.35 -51  26  17 

L Middle Temporal Gyrus 22 0.05 21 4.69 -66 -31   5 

L Middle Temporal Gyrus 22   4.14 -69 -40   2 

L Cingulate Gyrus 32 0.001 46 4.61  -3  26  38 

L Superior Frontal Gyrus 8   4.19  -6  29  47 

R Ventral Lateral IFG 47 0.085 18 4.59  42  20  -7 

L Middle Frontal Gyrus 6 0.03 24 4.59 -45  11  50 

L IFG: pars triangularis 44/45 0 60 4.57 -54  20  -1 

L Ventral Lateral IFG 47   4.5 -42  35  -4 

L Ventral Lateral IFG 47   3.58 -48  44  -4 

L Superior Frontal Gyrus 6 0.003 38 4.44  -3   8  65 

L Superior Frontal Gyrus 6   4.12 -12  14  65 

L Superior Frontal Gyrus 8 0.001 44 4.41  -6  41  44 
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L Middle Temporal Gyrus 21 0.011 30 4.4  -51 -31  -4 

L Middle Temporal Gyrus 39   3.89 -48 -49   5 

R Inferior Parietal Lobule 40 0.05 21 4.37  54 -58  44 

L Superior Frontal Gyrus 6 0.011 30 4.25 -21  26  59 

L Superior Frontal Gyrus 6   3.8 -12  32  59 

R Superior Frontal Gyrus 6 0.013 29 4.15   6  29  62 

R Superior Frontal Gyrus 8   3.72  15  32  56 

R Superior Frontal Gyrus 9 0.085 18 3.97   3  44  35 

L Superior Frontal Gyrus 9 0.149 15 3.9  -6  56  35 

Supplementary table 1. Voxel-level results from general linear model analysis, corresponding to Figure 
2 of main text. (A) Label emotion vs match forms contrast. (B) Label emotion vs match emotion contrast. 
BA = Brodmann’s area. 

 

         

Supplementary figure 1. Sagittal (left) and axial (right) glass brain projections of the locations of all 
coordinate peaks specific to each individual in the DCM analysis (N=45). Peaks chosen after reslicing 
during normalization. Mip_maker.m visualization tool courtesy of Darren Gitelman. Means and (SDs) for 
each region are IOG = [X: 39.7 (4.2), Y: -82 (5.4), Z: -15 (5.2)];  AMYG = [X: 22 (3.1), Y: -3.7 (2.8), Z: -16 
(2.8)]; vlPFC = [X: 45.2 (4.7), Y: 27 (3.8), Z: -9.3 (3.9)]; Broca’s area = [X: -54 (3.6), Y: 21.3 (4.8), Z: 23.2 
(5.3)].  
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Supplementary figure 2. N=45 subjects, after removal of seven, i.e. the subject pool that the DCM and 
ROI analyses were performed with. (A) GLM contrast Label emotion vs Match forms. (B) GLM contrast 
Label emotion vs Match emotion. Both maps p<0.001, k=5. 

 

Supplementary figure 3. Post-hoc, family-level Bayesian Model Selection of 32 models (the driving input 
winning half of the original model space) grouped by endogenous architecture. Each family contained 4 
different models of modulation. BMS demonstrates that model family 1 wins, with the most minimal 
endogenous architecture (see main text Figure 3a), with an exceedance probability of 88% 
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BMA of winning endogenous connectivity family: 

     

endogenous mean sd p value  

IOG to Amyg 0.1933 0.11 0.000000004 ** 

IOG to vlPFC 0.1137 0.10 0.0000000005 ** 

vlPFC to amyg -0.0992 0.18 0.0277 * 

Broca's to amyg 0.0043 0.21 0.0775  

Broca's to vlPFC 0.0073 0.21 0.0033 ** 

     

modulatory     

vlPFC to amyg -0.2588 0.11 0.000000008 ** 

Broca's to amyg 0.0017 0.12 0.1672  

Broca's to vlPFC 0.0002 0.10 0.7795  

Supplementary table 2. Parameter-level results (as distributions) from Bayesian Model Averaging of the 
4 models within the winning endogenous connectivity family following a post-hoc BMS procedure (figure 
3). sd = standard deviation. **Bonferroni corrected, *p<0.05 uncorrected. 
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CHAPTER 5:  

Effective connectivity alterations in bipolar disorder during affect labeling 

 

Salvatore Torrisia, Nathalie Vizuetaa, Susan Y. Bookheimerc, Lori L. Altshulera 

 

Semel Institute for Neuroscience & Human Behavior, Dept. of Psychiatry, UCLAa; 
 Department of Psychology, UCLAb; Center for Cognitive Neuroscience, UCLAc 

 

Introduction 

The ability to characterize a brain network not only by its functional connections but 

additionally by the directed influences among those connections gives us a finer degree of 

“resolution” through which to see pathophysiology in a psychiatric disease. Because bipolar 

disorder is considered in part a disorder of emotion regulation (Phillips et al., 2008a; Townsend 

and Altshuler, 2012), probing this particular network may yield insights into which connections 

are aberrant. If we know these connections, then we know where to look for changes under 

different conditions such as mood state (which may assist the diagnostic process) or talk or 

pharmacological therapies (to track the success of and even guide treatments).  

 Labeling with words one’s own affect or the affect within a stimulus has been shown for 

some time to cause largely the same self-reported and neural effects that forms of explicit 

emotion regulation produce. For example, subjects report feeling less negatively after labeling a 

stimulus and consequently have less amygdala activity but more activity in prefrontal control 

(and language) related regions. Therefore it is useful to probe potential network dysfunction in 

bipolar disorder with this seemingly innocuous task of implicit emotion regulation. 

 Our work in this chapter directly builds on the previous one. In this chapter we 

investigate differences in brain activity and connectivity between healthy subjects and subjects 
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with bipolar disorder while they label emotional facial expressions. We hypothesized that we 

would observe weaker vlPFC to amygdala negative connectivity in bipolar subjects relative to 

healthy subjects during a task of affect labeling. We began by using the standard fMRI analysis 

method to find activation differences and then went one step farther with the dynamic causal 

modeling (DCM) method to probe model and parameter-level differences in the bipolar brain. 

We constructed a large dynamic causal model space because they are advantageous when the 

true underlying functional network is not precisely understood. DCM procedures such as 

bayesian model averaging exploit the benefits of large model spaces through weighted 

averages over parameter results. This increases one’s confidence in the final averages. Finally, 

we address some of the issues and difficulties that arise from the application of this novel 

method to this fMRI paradigm.  

Materials and Methods 

Participants provided written and informed consent in accordance with the Institutional 

Review Boards at UCLA and the Veterans Affairs Greater Los Angeles Healthcare System. 

Subjects with bipolar disorder type I  (BP; N=48) were recruited through the outpatient UCLA 

Mood Disorders Clinic, the outpatient Bipolar Disorders Clinic of the VA Greater Los Angeles 

Health Care System and through local advertising in the community. Healthy control subjects 

(HC; N=53) were recruited by advertisement in newspapers and campus flyers. All participants 

were first interviewed using the Structured Clinical Interview (SCID) (First, 2002) for DSM-IV to 

confirm a bipolar diagnosis or absence of. Participants with bipolar were excluded if they met 

criteria for any other current Axis I disorder. Other exclusion criteria are listed in the previous 

chapter. Demographic and clinical variables of the healthy and bipolar groups are given in Table 

1. There were no significant differences in age or gender between groups.  

All bipolar subjects’ fMRI data were identically preprocessed and analyzed as the 

healthy subjects’ data. The GLM procedure up through the first levels, time series extractions 
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and model space construction for the DCM procedure were all described in detail in the 

previous chapter and so are not repeated here. First-level GLM maps were brought to a random 

effects group level for between-group comparisons using 2-tailed, 2-sample t-tests. Between-

group second level maps were thresholded at p<0.001, k=20. For the dynamic causal modeling 

analysis it should be noted that manual coordinate-finding for each node was performed blind to 

diagnosis for the work in both chapters. There were no significant differences in the six head 

motion parameters during scanning between groups, either before or after subject removal. In 

addition, there were no significant differences in MNI coordinate locations of the four nodes 

between groups (individual peaks were also chosen in relation to 2nd level peaks in pooled 

group maps). See Appendix 2 for a two group DCM protocol. Finally, two-tailed, two-sample t-

tests were performed between groups for each of the 11 tested model parameters (e.g. a 

particular directed connection such as Broca’s area to vlPFC) as estimated by Bayesian Model 

Averaging (BMA). 

Results 

Second level between-group GLM analyses revealed significant hypoactivation in the 

right vlPFC in the bipolar subjects (Figure 1). This cluster was in a slightly more anterior and 

lateral position than the right vlPFC cluster that was chosen with both groups’ label emotion vs 

match forms contrast images pooled. Both peaks, however, were within the general region 

“ventrolateral prefrontal cortex” as labeled by standard atlases. The bipolar subjects also 

demonstrated hyperactivation in the ventromedial PFC, as indicated in Table 2. 

The dynamic causal modeling analysis was performed in three stages. First, the family 

level ‘driving input’ division (half of the original 64-element model space) yielded the same 

winner in the bipolar subjects as the healthy controls (right IOG only; exceedence 

probability=100%, not shown). In stage two, bayesian model selection (BMS) was performed 

among those winning 32 bipolar models. These results, along side the healthy subject BMS 
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results, are shown in Figure 2. The same four model pattern was shown with the bipolar 

subjects (i.e. the endogenous architecture winner, see chapter 4, figures 3a and supplemental 

figure 3), although one model additionally stood out (#28) as being more highly preferred by the 

bipolar than the healthy subjects (Figures 2 and 3, red arrow; see also Figure 4). We performed 

post-hoc exploratory correlations between the posterior probabilites of this model across the 

bipolar subjects and some of their clinical variables (HAMD, YMRS, years ill, weeks euthymic, 

etc) and found no significant correlations. The third stage, using BMA, also yielded no significant 

differences between groups for any of the 11 model parameters. 

Discussion  

The current study was the first dynamic causal modeling analysis of bipolar subjects 

using a large model space. We tested for differences between groups of euthymic bipolar and 

healthy subjects in their network functional architecture and connectivity of a four-node 

subnetwork of affect labeling, a form of implicit emotion regulation. At the activation level we 

observed hypoactivation in the bipolar subjects in their right vlPFC during labeling, relative to 

the control subjects. At the DCM model level we observed a difference in model preference, one 

which contains as its endogenous architecture a structure that is more connected than the main 

winning architecture. In other words, with this model there is back propogation in its 

endogenous architecture from vlPFC to Broca’s area, something we saw very little preference 

for in the healthy subjects’ BMS results. This might be considered a kind of functional 

“hyperconnectivity” in the bipolar subjects, something our group found with a group of much the 

same subjects while simply resting (see chapter 6). However, DCM and resting state results 

should not be expected to mirror each other (Rehme et al., 2013). Some researchers have 

stated that different winning models between patient and control groups is an interesting finding 

in itself (Seghier et al., 2010). Unfortunately, however, probing this model for correlations to 
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subject-level clinical variables yielded no significant results and so the value of this model-level 

finding as an index or marker of bipolar pathophysiology is currently unclear.  

Limitations and Future Directions 

There are a number of limitations and considerations with this study. Some of these 

involve issues of general interpretability and comprehension of the DCM method and will be 

discussed in greater detail in chapter 7, while others are more specific to the current study. The 

major issue is as follows: between-group GLM results revealed a weakened right vlPFC in the 

bipolar subjects during affect labeling, and yet there appears to be no weakening of the 

connections to or from this node in the DCM parameter-level analysis. How is this seemingly 

paradoxical situation possible? In the following sections we speculate on a few potential 

explanations. 

Our first is that the DCM vlPFC node chosen (based on pooled data) and the between-

group vlPFC GLM results are actually in different functional sub-regions. The vlPFC is a 

neuroanatomical area whose functional and structural heterogeneity has been acknowledged 

and studied (Carmichael and J. L. Price, 1995; Chiavaras et al., 2001), but for which we human 

neuroimagers currently have few standardized tools with which to work. It could be that we 

would have detected parameter level differences if we had picked the DCM nodes based on the 

between-group GLM map. This may have produced an error of “double dipping”, of course, and 

would have also made the manual node-choosing unblind. Using anatomical masks, for 

example, may have alleviated the issue of a biased or different location, but then, for example, 

would have skirted DCM authors’ recommendation that coordinates be specifically chosen 

based on activation to one’s task (Stephan et al., 2010). These kinds of best-practice procedural 

details still need to be worked out in the DCM community. 
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Another explanation for the paradox could be that the statistics used for the between-

group BMA comparison were suboptimal, and that a non-parametric Wilcoxon rank-sum test 

would be preferable (Eickoff, 5/17/13; personal communication). We plan to follow up on this. 

We also acknowledge that the between-group effects we hypothesized to find may be rather 

subtle and therefore could be undetectable by DCM, which has built-in conservative and 

generally un-adjustable “shrinkage priors” that require strong effects in the data to overwhelm 

them (Friston et al., 2003).  

An explanation for the null results of clinical variable correlations with the model (BMS) 

level results is that the posterior probability measurements for each model for each subject are 

highly abstract values that are difficult to correlate with the more concrete measures of clinical 

variables (but which are also susceptible to different kinds of noise). Careful consideration of 

which clinical variables would be most appropriate to connect to the strength of the evaluation of 

a model as a whole would be highly valued. We may eventually find that model-level posterior 

results are simply too far removed from the underlying biology that finding linear correlations 

between them is impossible. The posterior results are, after all, a variational free energy 

approximation to the model evidence (Penny, 2012), which is an estimation of how probable the 

observed data is given a model (p(y|m)). Strength of probability in this context might mean 

more, therefore, if the underlying model is already known in advance (e.g. as with our current 

neuroscientific knowledge of most sensory processes). In contrast, the DCM approach we took, 

using a large model-space designed to capture the most probable configurations of a network, 

is still more exploratory than perhaps it should ideally be to correlate model-level results with 

clinical variables. Nonetheless there remain potential exploratory analyses to be perforrmed 

here, including using these subject-specific matrices of posterior model probabilities as inputs to 

a cluster analysis blind to diagnosis. 
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Finally, we may have found no results at the BMA parameter level between groups 

simply because the subjects were in the euthymic state. While a number of researchers have 

observed differences in the euthymic bipolar brain, that does not imply that all aspects of their 

brains are abnormal at all times, or that even if the abnormality existed in a known area or 

connection would we observe its functionality affected in a directly corresponding manner.  As 

previously mentioned, our laboratory has collected and published on data using this labeling 

task on all three mood states in bipolar, type I. Therefore our “null” BMA results may be better 

couched within a larger, future study that tests the effective connectivity in this network across 

depression and mania as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 72 

Figures and Tables 

 

 

Table 1. Demographics for Dynamic causal modeling. YMRS = Young Mania Rating Scale; HAMD = 
Hamilton Depression Rating Scale. 

 
Figure 1. Right vlPFC hypoactivity in bipolar subjects: GLM contrast of healthy > bipolar for label emotion 
vs match forms. Axial slice at -11 z MNI level, visualized on MNI averaged brain. N= 53HC and 48BP 
subjects, before node finding. p<0.001, k=20. 

 

Label  
vs Forms 

Region Cluster size Z stat Voxel unc Cluster p MNI coords 

R vlPFC 21 3.62 0.000 0.048 51 47 -10 HC > BP 

R BA 8 27 3.88 0.000 0.028 9 32 53 

vmPFC 31 3.26 0.001 0.02 12 35 -13 BP > HC 

L BA 9 21 3.88 0.000 0.048 -30 50 35 

Table 2. Between group GLM contrasts. N= 53HC and 48BP subjects, before node finding. 
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Figure 2. Two group DCM bayesian model selection results. N= 45HC and 42BP subjects, after node 
finding. On right: red arrow points to model #28 with substantially greater probability among the bipolar 
than the healthy subjects. 

 
Figure 3. Two group subject-specific posterior model probabilities (the data summarized in Figure 2). On 
right, red arrow points again to model 28. 

 

 
Figure 4. Graphic of the model that stands out as particularly different between healthy and bipolar 
subjects. 

 

 



 

 74 

CHAPTER 6: Differences in Resting Corticolimbic 
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Introduction 

 After the previous literature reviews of the emotion regulation network, its dysfunction in 

sample populations with bipolar disorder, and our own results showing differences in activation 

and connectivity between healthy indviduals and those with bipolar disorder in this network, we 

have gained confidence for knowing, a priori, which regions to particuarly focus on. This chapter 

therefore takes a region-of-interest approach to investigating these areas in the resting brain. 

Resting state analyses generally focus on a lower end of the frequency spectrum than task-

based analyses do, giving them a separate but equally valuable place in the neuroimaging field. 

Their ease of acquisition is additionally a benefit to those researchers interested in studying 

psychiatric populations, such as bipolar disorder.  

Bipolar disorder (BP) is a serious psychiatric illness thought to involve deficits in the 

neural substrates for emotion regulation because of its characteristic profile of lifetime 

depressed and manic mood episodes (Green et al., 2007; Phillips et al., 2008a). Neuroimaging 

research in healthy subjects has revealed a number of brain areas involved in emotional 

regulation, including subcortical (e.g., amygdala) and ventrolateral prefrontal cortical (vlPFC) 

regions (Lieberman et al., 2007; Ochsner et al., 2004). Research in both humans and primates 

has additionally demonstrated strong anatomical projections between these areas, forming the 
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substrate for which functional coupling (connectivity) is possible (Ghashghaei and Barbas, 2002; 

J. L. Price and Drevets, 2009). The amygdala, for example, is functionally responsive to 

emotional stimuli, while the vlPFC is instrumental in the regulation of that response. In healthy 

subjects, during down-regulation of emotion, the functional connectivity between these areas 

has been observed to increase (Banks et al., 2007; Hariri et al., 2000).  

 The above referenced fMRI studies of emotion regulation involve observation of brain 

activity while subjects perform a task. Recent studies that have evaluated subjects while not 

performing any cognitive tasks –-e.g. resting state studies-- have also revealed intrinsic 

activation patterns in the brain.  Resting state fMRI provides complementary information to task-

based fMRI in that both provide a platform for examining functional brain networks. Spatially 

distributed large-scale brain networks can be reliably derived and interrogated by either kind of 

fMRI experiment (Biswal et al., 1995; Smith et al., 2009; Van Dijk et al., 2010) and one could 

argue that both contribute different dimensions to a full characterization of brain activity. A 

variety of methods have been used to analyze such data (Fox and Raichle, 2007) and have 

been applied to diverse clinical populations in the effort to delineate disease-related 

dysfunctions in connectivity (Fox and Greicius, 2010).  

While there are a handful of studies that have investigated functional connectivity in 

bipolar disorder, few are resting state studies (Table 1). Of these, there is some overlap with the 

regions used as seeds such as the medial prefrontal cortex (Anand et al., 2009; Chai et al., 

2011b) or amygdala (Cerullo et al., 2012; Chepenik et al., 2010) but the findings show 

differences in connectivity in lateralization (left or right hemisphere), sign (positive or negative 

coupling) and between group differences (HS > BP or BP > HS). Three of these studies 

investigated bipolar mania and/or depression (Anand et al., 2009; Cerullo et al., 2012; Chai et 

al., 2011b), however one combined several mood states into its bipolar sample (Chepenik et al., 

2010) while another combined bipolar subtype (type I and II) (Anand et al., 2009). This latter 
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issue is particularly problematic as there is evidence to suggest that patterns of activation and 

connectivity change with different mood state and subtype of BP (Cerullo et al., 2012; 

Townsend et al., 2010; Vizueta et al., 2012b). For a clearer picture of the underlying 

pathophysiology of bipolar disorder further research is necessary which investigates common 

regions in both hemispheres in single mood states and in single bipolar subtypes.  

The goal of the present resting state study was to elucidate differences in intrinsic 

functional connectivity that might contribute to mood lability in bipolar disorder type I.  We 

therefore took a focused approach to assessing connectivity in two bilateral brain regions 

strongly implicated in emotion regulation (four regions in total: right and left amygdalae and right 

and left vlPFC) in a group of euthymic bipolar type I subjects. We hypothesized that subjects 

with bipolar disorder would demonstrate aberrant functional connectivity relative to healthy 

subjects between amygdalae and lateral ventrolateral PFC - regions that subserve emotion 

regulation. Furthermore, observed alterations of brain connectivity during the euthymic state 

may be considered a potential biomarker of trait aspects of the disease. 

Methods and Materials 

Participants 

 Participants provided written informed consent in accordance with the Institutional 

Review Boards at UCLA and the Veterans Affairs Greater Los Angeles Healthcare System. 

Subjects with bipolar disorder, type I, were recruited through the outpatient UCLA Mood 

Disorders Clinic, the outpatient Bipolar Disorders Clinic of the VA Greater Los Angeles Health 

Care System, and through local advertising in the community. Healthy subjects were recruited 

by advertisements in local newspapers and campus flyers. All participants were first interviewed 

using the Structured Clinical Interview (SCID) (First, 2002) for DSM-IV to confirm a bipolar 

diagnosis or absence thereof.  Participants with bipolar were excluded if they met criteria for any 
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other current Axis I disorder.  Healthy subjects were excluded if they had a current or past 

psychiatric diagnosis (including history of substance abuse) or were taking any medications for 

medical reasons. Additional exclusion criteria for all participants included left-handedness, 

neurological illness, metal implants, and a history of skull fracture or head trauma with loss of 

consciousness of more than 5 minutes.  

In total, 21 bipolar and 26 healthy subjects (HS) were scanned. Mood symptoms were 

evaluated in all participants on the day of the scan, using the Young Mania Rating Scale 

(YMRS; (Young et al., 1978)) and the 21-item Hamilton Depression Rating Scale (HDRS; 

(Hamilton, 1960)) to assess for any symptoms of mania or depression. Participants were 

considered appropriate for this study if they had a YMRS score of < 7 (BP: 1.9±1.9; HS: 

0.74±1.19, p=0.03), a 21-item HDRS score of < 7 (BP: 3.55±2.5; HS: 0.79±0.9, p<0.001) and 

had been euthymic by self-report and by SCID for at least 1 month prior to scanning.  

Following the removal of seven subjects due to excessive head motion, 20 bipolar (10f, 

age 42.1±11.4 yrs) and 20 (10f, 39.8±12.6 yrs) age (p=0.55) and gender matched (p=1.0) 

healthy subjects were included in the final analysis. Based on their age at first episode, they had 

been ill an average of 22.7±11 years and currently euthymic an average of 34.5 ± 38.9 weeks. 

Length of formal education was 14.1±1.9 years for bipolar subjects and 15.6±2.1 for healthy 

subjects. Employment rate was 10% for bipolar subjects and 95% for healthy subjects. Three 

(15%) of these bipolar subjects were unmedicated and had been off medications for ≥ 2 months. 

The remaining 17 subjects were on a range of medications including, antipsychotics (15%), 

antidepressants (75%), and anticonvulsants (valproic acid: 25%, lamotrigine: 20%). 

Image Acquisition 

Subjects were scanned on a 3T Siemens Trio scanner. They were asked to rest with 

eyes closed during the scan but to not fall asleep.  A structural T1 MPRAGE was acquired with 
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parameters of TR=1.9 seconds, TE=2.26 ms, Flip-Angle = 9°, Matrix = 256x256, FOV=250mm, 

voxel size 1mm isotropic, and total sequence time 6 minutes and 50 seconds. The resting state 

fMRI scan was acquired using a T2*-weighted EPI gradient-echo pulse sequence with IPAT, 

with TR=2 seconds, TE = 25 ms, Flip-Angle = 78°, Matrix=64x64, FOV=192mm, in-plane voxel 

size 3x3 mm, slice thickness 3mm, 0.75mm gap, and 30 total interleaved slices. To allow for 

scanner equilibration, 2 TRs at the beginning of the scan were discarded.  The total sequence 

time was 7 minutes and 2 seconds, with 208 volumes acquired. 

fMRI Analysis 

Following slice-timing correction of functional volumes, we performed motion 

realignment, gray matter/white matter/cerebral spinal fluid structural segmentation, 

normalization of both structural and functional scans to MNI space, 3mm isotropic voxel re-

slicing, and 6mm FWHM Gaussian smoothing. To perform the statistical analysis we used the 

CONN-fMRI functional connectivity toolbox, version 12.p (www.nitrc.org/projects/conn(Whitfield-

Gabrieli and Nieto-Castanon, 2012)), built on SPM8 (www.fil.ion.ucl.ac.uk/spm/). 

Head movement can be a serious confound with resting state studies because it can 

introduce spurious correlations across the brain (Power et al., 2011; Van Dijk et al., 2010). We 

took several precautions to ensure that it would not be a factor in our results. First, at a gross 

level subjects were excluded if they had translational movement greater than 1 voxel (3mm). 

Second, we tested whether the maximum head motion values (three translation and three 

rotation) were different between groups and we found no differences (all p-values > 0.05). Third, 

for each subject we calculated two different combinations of the six motion parameters that 

indicated total displacement (TD) along the scan or framewise displacement (FD; i.e. scan-to-

scan). Both metrics took into account each subject’s individual head sizes to accurately assess 

the effects of rotation (Wilke, 2012). We tested whether there were differences between groups 
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for these metrics as well. TD did not differ between groups (BP: µ=0.69±0.3, HS: µ=0.89±0.5, 

p=0.14) but FD did (BP: µ=0.14±0.07, HS: µ=0.1±0.04, p=0.01). Therefore subject-specific FD 

mean values were added as a separate covariate of non-interest during subsequent analysis 

and was found to exert no significant influence on the final reported results. 

To account for movement and other noise confounds during the preprocessing of the 

functional images, and to avoid known issues with regressing out the global signal (Murphy et 

al., 2009), the CONN-fMRI toolbox uses the anatomical component correction (aCompCor) 

method of flexibly removing physiological noise and movement confounds on a voxel-by-voxel 

basis  (Behzadi et al., 2007; Chai et al., 2011a). The aCompCor approach enhances the 

sensitivity and specificity of positive correlations and can reveal non-artifactual anticorrelations. 

We used this method to regress out 5 principal components from the noise regions of interest 

(ROI) obtained from the anatomical segmentation as well as the six realignment parameters and 

their first temporal derivatives for each subject. The functional scans were further band-pass 

filtered between 0.01 and 0.1 hertz (100 to 10 second cycles) to investigate low frequency 

correlations, which are most consistently produced within this range (Van Dijk et al., 2010).  

The CONN-fMRI toolbox implements a default set of (eighty-eight) Tailarach Daemon 

masks that may be augmented by additional regions of interest. Thus, although the present 

study was mainly concerned with a focused set of connectivity pairings, the averaged time 

series from each of 88 cortical and 2 subcortical anatomical ROIs across the brain were 

extracted and bivariate Pearson correlations were calculated from each of these time courses at 

the voxel-level. The two additional subcortical ROIs added to the default Tailarach Daemon 

masks were the 75% probabilistic Harvard-Oxford’s left and right amygdalae (Harvard Center 

for Morphometric Analysis).  
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We performed an analysis among regions of interest (ROI-to-ROI) by calculating 

statistics for all possible connections for a selected subset of ROIs (right and left amygdalae, 

right and left BA 47). This effectively performs a small volume correction on (Fischer-

transformed) correlation values by setting the FDR correction to assure that only 5% or less of 

significant effects could be false positives. Results from this ROI-to-ROI analysis were then 

checked at the whole brain level to confirm that they were not driven by a very small number of 

voxels (the ROI-to-ROI analysis works on the averaged time series of all voxels within the ROI). 

For this whole-brain (seed-to-voxel) analysis the amygdala was chosen as the seed region from 

the bi-directional right amygdala-vlPFC finding from the ROI-to-ROI analysis (see results below) 

to allow comparison with other studies that used the amygdala as a seed in connectivity 

analyses during rest (Chai et al., 2011b; Chepenik et al., 2010) and in studies of emotion 

regulation (Foland-Ross et al., 2008; Hariri et al., 2000; Townsend et al., 2013). The toolbox 

creates T-statistic volumes, which were brought into SPM8 for whole-brain investigations of 

within and between-group maps. A voxel statistical height threshold of p<0.001, k=10 with a 

cluster height of p<0.05 was used to identify significant correspondences between right 

amygdala whole-brain connectivity in the within and between-group contrasts. These results 

were then tabulated (Table 3), with anatomical and Brodmann labels automatically determined 

by the Tailarach Client (www.talairach.org/client.html) after nonlinear coordinate conversion 

(www.bioimagesuite.org). These labels were then checked and revised against a probabilistic 

Anatomy toolbox (Eickhoff et al., 2005) and an atlas in MNI space (Oishi et al., 2011). 

For confidence that findings in the tested model were not simply a reflection of global 

differences between the bipolar and healthy subject groups, we ran additional analyses between 

brain areas in which we did not expect to observe connectivity differences between groups.  

Specifically, we tested correlations of a number of primary sensory areas with the rest of the 

brain and compared groups. 
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 Post-hoc associations between correlation values of right amygdala-vlPFC functional 

connectivity and patient course of illness variables (illness duration, number of depressive and 

manic episodes) and clinical variables (HAMD and YMRS scores) were assessed through 

correlations and 2-tailed T-Tests with right amygdala to right vlPFC beta values. These beta 

values were extracted from each bipolar subjects’ individual ROI correlation matrices. Prior to 

conducting these correlational analyses, an outlier correction was applied in which outlying 

connectivity parameter estimate values were winsorized to a value of 2.5 standard deviations 

from the group mean as in recent fMRI work (Vizueta et al., 2012a). These correlations were 

performed in PASW version 18.0 (SPSS Inc; Chicago, USA). 

 To explore regions outside our a priori model that may have driven our within-group 

bipolar functional connectivity results, a ‘connectivity conjunction map’ of two different statistical 

maps was performed – the map of whole brain correlations with the right amygdala and the map 

of whole brain correlations with right vlPFC -- using the toolbox xjView 

(www.alivelearn.net/xjview8/). Strong correlations common to both connectivity maps outside 

our regions of interest were identified by conjunction (i.e. a logical AND), with each map 

individually set at p<0.0001, k=10. A third brain region was identified in this manner and was 

included in a group-level mediation analysis, along with the amygdala and vlPFC nodes, to 

determine whether that region was responsible for a full or partial mediating effect on the main 

results. The mean times series from the third region was extracted from each of the bipolar 

subjects- preprocessed and filtered as the other ROIs- and was included as the mediator in a 

mixed effects group level mediation analysis. Regressions for the mediation analysis were 

performed in four steps (Baron and Kenny, 1986) using the all-in-one model described by 

Beckmann and colleagues which retains the variance of each subject throughout (C. F. 

Beckmann et al., 2003). 
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Results 

Figure 1a shows the main region of interest ROI-to-ROI model investigated, with the six 

labeled functional correlations between the four a priori nodes (left and right amygdalae and left 

and right vlPFC). Figure 1b shows the between group ROI-to-ROI positive connectivity result in 

graphical form. Only the connection “IV” (right amygdala with right vlPFC) survived FDR multiple 

comparison correction (T(38)=3.07, FDR p=0.024). Adding head movement measurements TD 

and FD as covariates of non-interest left this result virtually unchanged (TD: T(37)=2.93, FDR 

p=0.035; FD: T(37)= 2.74, FDR p=0.028). Table 2 lists the within and between group results for 

this ROI-to-ROI analysis. The strength of within group connectivity between all nodes survived 

FDR correction in both groups with the exception of weaker V (R amygdala with L vlPFC) and VI 

(L amygdala with R vlPFC) connections in healthy subjects (p<0.05, FDR corrected). There 

were no whole brain connectivity differences between bipolar and healthy subjects in primary 

somatosensory (BA 1), auditory (BA 41, 42), or visual (BA 17) regions. 

As stated, whole brain connectivity from the right amygdala seed was also assessed to 

confirm that the ROI-to-ROI results were not driven by a very small number of voxels, as is 

possible when averaged time series are extracted from an anatomical mask. Figures 2a and 2b 

(top and middle rows) show within group axial slices, while figure 2c shows the between group 

contrast (circled cluster size =11 voxels, cluster p<0.05; peak at MNI: [51 41 -8], p<0.0001, 

Z=3.52). Consistent with the ROI-to-ROI result our between group results (BP>healthy subjects) 

confirmed significant hyperconnectivity between the right amygdala and right vlPFC, but also 

revealed significant regional hyperactivity between a number of other regions such as the right 

and left medial frontal gyri (BAs 10 & 11, respectively), the right superior temporal gyrus (BA 41) 

and the precentral gyrus (BA 6). Table 3 lists these within and between group right-amygdala-

to-whole-brain connectivity results.  
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 We found no significant correlations between right amygdala with right vlPFC 

connectivity and any of the five illness or clinical variables collected (illness duration, number of 

depressions, number of manias, HAMD and YMRS scores). We also checked for medication 

effects on connectivity parameter estimates to make sure our few unmedicated bipolar subjects 

were not actually outliers driving our results. 

 Finally, we conducted a post-hoc test for possible ‘third’ regions outside our model that 

may have driven, through mutual coupling, our right amygdala with right vlPFC result in the 

bipolar subjects. A significant cluster in the anterior cingulate cortex (ACC; BA 32, center of 

gravity [1.9 44 0.63]) was found to be strongly and positively functionally connected to both the 

right amygdala and the right vlPFC using the ‘connectivity conjunction map’ procedure (Figure 

3a). We constructed our mediation model with the ACC mediating the influence of vlPFC to 

amygdala, which is what we hypothesized based on previous regression-based connectivity 

analyses of these regions (Foland-Ross et al., 2008; Hariri et al., 2000). A diagram and group-

level betas for the analysis are shown in Figure 3b. We found the ACC to partially mediate the 

influence of vlPFC on the amygdala and this mediation effect was significant with the Sobel test 

(Z=7.88).  

Discussion 

Bipolar disorder is associated with a trait dysregulation of the corticolimbic network 

(Green et al., 2007; Phillips et al., 2008a), which may in turn result in fluctuations of mood states 

over time. Here we investigated the corticolimbic network using a focused, seed-based 

correlation analysis of resting state data in one mood state of one subtype of BP. Our results 

demonstrate an altered intrinsic connectivity in euthymic bipolar type I compared to healthy 

subjects between brain regions vital for emotion regulation. Specifically, we observed 

hyperconnectivity of the right hemisphere vlPFC (BA 47) and right amygdala in BP and its 
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partial mediation by the anterior cingulate cortex. Here ‘hyperconnectivity’ refers to greater 

positive correlations in low-frequency fMRI signal in one group than a reference group 

(Whitfield-Gabrieli et al., 2009), which in this case are healthy subjects. Our within-group maps 

clearly support this difference in magnitude; subjects with bipolar disorder have greater positive 

connectivity between these two regions in comparison to healthy subjects (figures 2b and 2a). 

Additionally, we found this resting hyperconnectivity elsewhere in the BP brain between 

amygdala and, for example, the ACC and the middle frontal gyrus (BAs 10 and 11) (see also 

Table 3).  

One interpretation of our hyperconnectivity result is that functional coupling between 

vlPFC and may be especially sensitized in bipolar disorder and that this may contribute to or 

reflect the characteristic mood lability of the disease. Whether this sensitization stems from 

differences in right hemisphere white matter structural connections is unclear and warrants 

further research (Honey et al., 2010). The lateralization of differences of brain coupling in BP 

also warrants further exploration and replication in general, however what we report here is 

consistent with prior neuroimaging research documenting right lateralization for emotion-

processing effects (Noesselt et al., 2005). 

The present findings are also consistent with four other studies in bipolar subjects that 

have shown increases in seed-based connectivity between or involving at least one of these 

regions. For example, hyperconnectivity, as measured by mutual information, has been 

observed in bipolar disorder between ventromedial PFC and right amygdala while labeling sad 

facial expressions (Versace et al., 2010). During a psychophysiological interaction, 

hyperconnectivity was observed in BP subjects between right vlPFC and insula (Pompei et al., 

2011), and during rest hyperconnectivity was observed during mania between medial and 

ventrolateral PFC (Chai et al., 2011b) as well as between left and right ventral PFC in a variety 

of mood states (Chepenik et al., 2010) (c.f. Table 1.) 
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We also found that an area of the anterior cingulate cortex (ACC; BA 32) was 

significantly coupled with both right amygdala and right vlPFC. The ACC is known to have 

anatomical and functionally reciprocal connections with the amygdala within humans (M. 

Beckmann et al., 2009; Bracht et al., 2009; Stein et al., 2007), has been strongly implicated in 

mood disorders (J. L. Price and Drevets, 2009), and has been found by one group to mediate 

the coupling between right vlPFC and amygdala during incidental emotion regulation 

(Lieberman et al., 2007). The functional connectivity between the ACC and the amygdala has 

been found by another group to be decreased in bipolar disorder relative to healthy subjects 

during the processing of fearful and happy faces (Wang et al., 2009). Therefore one 

interpretation of our results is that the ACC is dysfunctionally mediating the relationship of the 

vlPFC and amygdala which creates the hyperconnectivity we observed in our BP subjects. 

There exist multiple white matter pathways connecting these three regions and so we may 

speculate that healthy subjects during rest posess less distributed patterns of information flow 

across these potential pathways and that, conversely, bipolar subjects have an ACC-mediated 

disinhibition of one or more of these paths not normally as engaged by healthy subjects. Which 

precise pathways are involved, and whether it is a disinhibition or simply greater excitation, 

however, is not identifiable from the present analysis. It is interesting that Chai, et al (Chai et al., 

2011b) also found hyperconnectivity during rest between the vlPFC and this area in manic 

bipolar subjects, however not between this area and the amygdala, as we did. This suggests 

this connection could be dependent on mood state, and other research which shows the 

coupling between ACC and amygdala tracking with anxiety (Kim et al., 2011) supports this. 

Further investigation is necessary to elucidate the resting effective connections of the ACC.  

There are several limitations to the current study. First, the volumes of the anatomical 

ROIs we used for this seed-based functional connectivity analysis, especially the vlPFC, were 

based on an atlas and as such will contain certain errors. If, for example, the time-series 
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extracted from an atlas-derived brain region averages over both gray and non-gray matter 

signals the resulting series will not properly represent that region’s activation, which can result in 

unreliable measures. However, the aCompCor algorithm, which incorporates a high-resolution, 

subject-specific anatomic segmentation into its noise reduction procedure, takes such variability 

into account and attempts to compensate by higher weighting of gray matter voxels, thereby 

minimizing the effect of this issue (Nieto Castañón, personal communication; (Chai et al., 

2011a)). Nonetheless, there is likely some degree of functional heterogeneity within both the 

vlPFC and amygdala atlas ROIs used, which would add variability to the extracted time series. 

The effect of this, however, could likely dilute our results. Thus, our observed significant effects 

would likely only become more significant if this limitation were corrected.  

A second limitation, characteristic of any bivariate correlation, is that significant 

couplings between two brain regions could be the result of their being driven by a third. We 

explored this possibility and found that the ACC is a region potentially driving the apparent 

coupling between right hemisphere amygdala and vlPFC (see results above and figure 3a). We 

investigated this further and found partial mediation of the ACC with the vlPFC to amygdala 

connection. Despite our standard “arrowed” diagram (figure 3b) the causality in such a 

mediation should be interpreted cautiously, as it represents ‘soft’ causal links that stem from the 

DV/IV regression relation. The mediation analysis does, however, provide a more mechanistic 

description of the hyperconnectivity between amygdala and vlPFC. Future studies which 

systematically expand our four-node model and assess effective connectivity between regions 

are needed to further elucidate the causal relationship of functional pathology of bipolar disorder 

(Palaniyappan and Cousins, 2010). Such work is ongoing in our laboratory. 

Certain characteristics of our sampled subjects are also limitations. First, many of our 

bipolar subjects were medicated. There were too few subjects in each medication group to 

investigate the effects of specific medications, but this is something future work should address. 
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We did, however, examine the correlation beta values of the three unmedicated subjects in our 

bipolar pool to make sure their connectivity estimates were not driving the results and found 

them to be well within 1 standard deviation of the group mean. Despite the potential, but 

inconclusive, impact of medications on BOLD signal in subjects with bipolar disorder (Phillips et 

al., 2008b), we argue that including medicated subjects ensures that our subject population is 

representative of the bipolar population at large, thereby increasing the generalizability of our 

results.  Second, there was a significant difference in employment between the two groups: the 

vast majority of BP subjects were unemployed while the majority of HS were employed. This is 

not something commonly controlled for in BP studies, although future studies would benefit from 

taking a closer look at this issue. We note that unemployment is often correlated to BP severity 

(Goodwin and Jamison, 2007), but the relationship of the variable to resting state functional 

coupling has, to our knowledge, not been studied.  

Finally, and not so much a limitation to our particular study as a reminder to exert 

interpretive caution with resting state studies, the current state of MRI-based imaging does not 

yet have a clear explanation of the relationship between task-based and resting state functional 

brain activity. The extent to which findings from experimental manipulations of cognitive states 

should and can map to resting states studies is still being actively investigated (Smith et al., 

2009; Van Dijk et al., 2010). Many resting state studies have focused on a small set of reliably 

produced large-scale networks across the brain and yet for two decades the majority of 

cognitive neuroscientists have studied the activity and connectivity in a variety of different 

networks specific to cognitive processes and which have not been reliably uncovered within 

resting state analyses. One likely explanation for this discrepancy is that analyses of resting 

state data are conducted on a much lower and usually non-overlapping end of the fMRI signal 

frequency spectrum than standard task-based studies (Fox et al., 2006; Van Dijk et al., 2010). 

Knowledge coming from advances by those researchers actively investigating these important 
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relationships will, no doubt, inform the types of studies, like this one, performed by clinical 

neuroscientists. 

In summary, we took a focused approach to exploring resting state brain patterns in 

subjects with bipolar disorder during the euthymic mood state. Specifically, we investigated 

intrinsic connectivity between four regions of interest that have been implicated in emotion 

regulation and have been previously shown to be functionally altered in bipolar disorder. Our 

results of hyperconnectivity between the right vlPFC and the right amygdala in bipolar subjects 

are in accordance with the few prior studies of bipolar that have found either hyperactivation or 

hyperconnectivity in these brain regions. We further observed a mediating effect from the ACC, 

which was functionally coupled to both amygdala and vlPFC. Together these findings suggest a 

maladaptive misallocation of neural resources in bipolar disorder. Intrinsic hyperconnectivity in 

the bipolar group between regions, in the “normal” euthymic state and while at rest, could be 

evidence of a trait marker of disease pathophysiology. 
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Figures and Tables 

 

Table 1. A selection of fMRI connectivity studies of bipolar disorder. BA, Brodmann's Area; AMYG, 
amygdala; FC, functional connectivity; "—", correlation (coupling); PPI, psychophysiological interaction; 
LH, left hemisphere; RH, right hemisphere; omPFC, orbitomedial prefrontal cortex; vlPFC, ventrolateral 
PFC; dlPFC, dorsolateral PFC; mPFC, medial PFC; dmTHAL, dorsomedial thalamus; IFG, inferior frontal 
gyrus; HS, healthy subjects; BP, bipolar disorder; N/A, these direct contrasts were not performed. 
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Figure 1a (left). The four node (six correlation) connectivity model that was tested. Node locations at 
center of mass of anatomical ROIs. Figure 1b (right). Result of greater positive connectivity between right 
amygdala and right vlPFC in bipolar subjects relative to healthy subjects. 

Table 2. Within and between group ROI-to-ROI analysis results with connections labeled as in Figure 1a. 

 

 
Figure 2. Positive connectivity with right amygdala. Top and middle rows (2a and 2b): within group maps 
for healthy subjects (HS) and bipolar subjects (BP). Bottom row (2c): between group contrast. Right 
vlPFC cluster circled.  Voxels visualized on an average T1-weighted brain in MNI space, p<0.001, k=10. 

 

 

 



 

 91 

Healthy subjects right amydala connectivity 
      

 Brodmann cluster cluster p peak Z MNI 

 Area size   x, y, z 

POSITIVE      

R  Amygdala  2391 0.000 Inf 21 -4 -17 

R Temporal Pole BA 38   0.000 45  23 -26 

L Superior Temporal Gyrus    0.000 -54 -16   7 

L Medial Temporal Pole    0.000 -33   8 -32 

L Insula    0.000 -42   8  -8 

R Parahippocampal Gyrus BA 36   0.000 39 -19 -32 

L Hippocampus    0.000 -27 -22 -17 

L Superior Temporal Gyrus BA 13   0.000 -45   5 -14 

L Superior Temporal Gyrus    0.000 -39   2 -20 

R Postcentral Gyrus BA 3   0.000 63  -1  22 

R Superior Temporal Gyrus BA 22   0.000 48 -19   1 

L  Middle Temporal Gyrus BA 22 12 0.027 4.56 -66 -55  10 

L  Middle Temporal Gyrus BA 39 10 0.041 3.51 -60 -64  10 

    Anterior Cingulate Gyrus  10 0.041 3.57   0  35   1 

R  Insula BA 13 53 0.000 4.51  36 -13  19 

R  Thalamus  16 0.013 3.66   3 -10   7 

      

NEGATIVE      

L  Middle Frontal Gyrus BA 10 70 0.000 4.72 -24  47  25 

L  Inferior Parietal Lobule BA 40 33 0.001 4.6 -48 -52  40 

L  Precuneus BA 7 14 0.019 4.07  -9 -64  49 

L  Superior Parietal Lobule BA 7 29 0.002 3.85 -39 -49  61 

L  Middle Orbital Gyrus  16 0.013 3.5 -42  56 -11 

R  Precuneus BA 7 18 0.009 4.28   6 -70  58 

R  Middle Frontal Gyrus  18 0.009 3.84  33  50  13 

      

Bipolar Euthymic right amydala connectivity 
 Brodmann cluster cluster p peak Z MNI 
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 Area size   x, y, z 

POSITIVE      

R  Amygdala  2020 0.000 Inf 27 -4 -20 

R Inferior Temporal Gyrus    5.2 51 -55 -17 

R Hippocampus    5.18 33 -13 -35 

R Parahippocampal Gyrus    5.14 24 -25 -14 

R Inferior Frontal Gyrus BA 45   5.04 54  32  10 

R Ventrolateral PFC BA 45   4.93 45  35  -2 

R Fusiform Gyrus BA 36   4.8 24 -40 -17 

R Middle Temporal Gyrus    4.77 60  -7 -14 

R Inferior Frontal Gyrus BA 47   4.66 48  38  -5 

R Temporal Pole BA 38   4.3 42  20 -38 

R Thalamus (somatosensory)    4.18 21 -19   4 

R  Superior Temporal Gyrus BA 41 67 0.000 4.58  66 -22   4 

R  Posterior Insula BA 13 58 0.000 4.33  42 -28  22 

R  Angular Gyrus BA 39 32 0.001 4.2  54 -67  34 

R  Posterior Cingulate BA 30 32 0.001 4.12  15 -58   7 

R  Insula BA 13 17 0.011 4.08  39   5  10 

R  Superior Temporal Gyrus  95 0.000 4.03  54 -46  19 

R  Middle Frontal Gyrus BA 11 42 0.000 4.01  18  29 -14 

R  Precuneus BA 19 13 0.022 3.99  36 -85  37 

R  Precentral Gyrus BA 6 15 0.015 3.99  51   2  37 

R  Precentral Gyrus BA 6 14 0.018 3.84  54  -7  31 

R  Middle Occipital Gyrus  16 0.013 3.81  36 -73  25 

R  Middle Frontal Gyrus  12 0.027 3.66  45  20  28 

R  Inferior Temporal Gyrus  10 0.041 3.65  45 -70  -5 

L  Fusiform Gyrus BA 37 40 0.000 4.22  -42 -49 -26 

L  Middle Occipital Gyrus BA 19 29 0.002 4.2 -42 -85  25 

L  Rolandic Operculum  13 0.022 4.03 -51  -4   7 

L  Inferior Frontal Gyrus  36 0.001 3.82 -30  35  -8 

L  Posterior Cingulate  11 0.033 3.64 -18 -64  13 

L  Medial Frontal Gyrus BA 10 10 0.041 3.59  -6  62  16 

Cingulate Gyrus BA 24 50 0.000 5.29   0   2  34 
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BP > HS right amydala connectivity 

 Brodmann cluster cluster p peak Z MNI 

 Area size   x, y, z 

POSITIVE      

L  Middle Frontal Gyrus BA 10 16 0.021 3.5 -30  62  13 

R  Middle Frontal Gyrus BA 9 14 0.029 4.3  45  20  40 

R  Inferior Temporal Gyrus BA 20 11 0.049 3.58  33  -4 -47 

R  Ventral Lateral PFC BA 47 11 0.049 3.52  51  41  -8 

      

p<0.001 (k=10)      
Table 3. Within and between group voxel-level functional connectivity from right amygdala in healthy and 
bipolar subjects. There were no significant negative connectivity results with bipolar subjects. Rows in 
gray represent subclusters within a large cluster. Within and between group maps thresholded at 
p<0.001, k=10. 

 

 

Figure 3a. Connectivity conjunction map shows a cluster in the anterior cingulate cortex (BA 32) that is 
strongly positively functionally connected to both the right amygdala and right vlPFC regions in bipolar 
subjects. Figure 3b. Group-level analysis of ACC mediating vlPFC to amygdala. Path coefficients labeled 
with traditional mediation nomenclature and standard errors in parentheses. All paths were significant 
(p<0.0001), indicating partial mediation of vlPFC to amygdala by ACC. 
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CHAPTER 7: SUMMARY AND DISCUSSION 

 

The work for this dissertation involved the use of multiple advanced fMRI analysis 

techniques to elucidate functional and effective connectivity in the emotion regulation circuit in 

healthy subjects and in subjects with bipolar disorder.  In particular, this work focused on the 

connections between two brain regions, the amygdala and the ventrolateral prefrontal cortex, 

both of which have been strongly implicated in the patholophysiology of bipolar disorder. This 

work has contributed novel findings to the understanding of normal emotion regulation, including 

an investigation into the little-explored temporality of cognitive reappraisal (chapter 2), and a 

novel application of an effective connectivity technique to the form of implicit emotion regulation 

known as affect labeling (chapter 4). After applying our novel approaches to these forms of 

emotion regulation in healthy subjects, we then applied those approaches to groups of euthymic 

bipolar type 1 patients (chapters 3 and 5). Finally, we tested differences in the resting brain 

between these bipolar subjects and healthy subjects in an analysis that identified the anterior 

cingulate as mediating intrinsic hyperconnectivity between the right amygdala and ventrolateral 

PFC in bipolar (chapter 6).  

 While each study has been valuable in itself, there are some common findings that run 

throughout. The main one of these is that the vlPFC is shown to be consistently hypoactive in 

bipolar disorder. Our group has already observed this with BP I subjects in mania (Altshuler et 

al., 2005b), depression (Altshuler et al., 2008) and euthymia (Foland-Ross et al., 2012; 

Townsend et al., 2013). However, as suggested by the findings in chapters 3 and 5, the 

laterality of this finding may be a function of which hemisphere a task preferentially recruits, i.e. 

right-lateralized vlPFC activation (or dysfunction) during affect labeling and left-lateralized vlPFC 

activation (or dysfunction) during the cognitive reappraisal of emotion. This offers some clue as 

to why laterality of dysfunction remains unclear across neuroimaging studies of bipolar disorder 
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(Chen et al., 2011), but nonetheless speaks of the (perhaps bilateral) vlPFC hypoactivation as a 

general trait marker for bipolar.  

How many of the other major findings relate to each other, however, is difficult to 

understand at this point in time. It may be some years before we, as a neuroimaging field, are 

capable of comprehending how the varying results from different techniques precisely connect 

and inform each other. It will be important to know whether any two techniques reveal to us 

entirely different phenomena, different ‘angles’ on the same phenomena, or perhaps 

phenomena at one scale hierarchically contained within or containing another (Smith, 2012). A 

concrete example is the still unclear relationship between higher cognitive-based GLM analyses 

and seed- and ICA-based analyses of the resting state, despite the breadth of research using 

both approaches. While some of the same intrinsic networks repeatedly appear in data-driven 

analyses of rest (Smith et al., 2009), conscious, cognitive tasks seem to probe a broader 

configuration of networks that largely but not entirely fall within the jurisdiction of the intrinsic 

networks and which often recruit sub- or super-sets of resting state intrinsic networks. The fact 

that these two kinds of analyses are performed at largely non-overlapping ends of the fMRI 

frequency spectrum has prompted some researchers to test the idea that the phenomena 

represented by each superimpose (Barnes et al., 2009; Fox et al., 2006). This may explain why 

we found both hypoactivation and hyperconnectivity of the vlPFC in our bipolar subjects. 

Relevant to understanding ‘inter-method’ relationships, one study has shown that a resting state 

analysis of a neuroscientifically understood motor network could not be replicated when that 

same network (and exact time series) was subjected to a dynamic causal modeling analysis. 

The authors suggest the divergent findings were not due to a difference in method, but rather to 

the different mental states engaged during task-based and resting paradigms (Rehme et al., 

2013). 
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 Other issues preventing clear interpretability of the totality of findings presented in this 

dissertation are more intra- than inter- method concerns. Some of these were alluded to in the 

discussion section of chapter 5. Indeed, despite a very helpful paper of recommendations for 

practical implementations of DCM (Stephan et al., 2010), there remain a number of detailed 

questions about the technique, worth noting here: (1) At the individual subject level, is it 

imperative, highly recommended, or simply preferred that a particular statistical contrast show 

the node one is interested in for selection (Stephan et al., 2010)? Some regions, for example, 

respond to more than one condition at the group level, and yet during node selection at the 

individual level the given region is sometimes only visible during one of these contrasts.  (2) To 

what extent does a weak time series (i.e. extracted from a small cluster with a small statistical 

effect or from a particularly noisy region) influence the model’s overall evidence and parameter 

values? (3) To what extent could a weak node in a psychiatric population be considered a 

"missing node" in the neurological sense (Seghier et al., 2010). For example, investigators 

researching brain-damaged aphasics found patient-specific differences after not directly testing 

brain damaged areas but instead intact areas upstream from the damaged ones (Brodersen et 

al., 2011; Schofield et al., 2012). Would such an approach be recommended for psychiatric 

diseases like bipolar disorder where we already have strong clues as which areas are 

problematic? (4) Is a more diverse and larger model space better for Bayesian model averaging, 

seeing that the averaging is already performed in a weighted manner? While more 

computationally expensive, this would allow for more exploratory model spaces than are 

currently tested (but see (Friston et al., 2011)). (5) How does one perform a between-group 

study with a large model space that ‘narrows in on’ a best model (i.e. with successive family 

divisions) but also maximizes the potential for individuals of either population to express 

preferred model(s)? This is one potential issue with the analysis performed in chapter 5. Finally, 

(6) How can we make quantitative inferences at the model level between groups? This is 
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another problem encountered in chapter 5. Karl Friston, the main inventor of the DCM technique 

wrote recently in the SPM listserve (posted May 29, 2013; https://www.jiscmail.ac.uk/cgi-

bin/webadmin?A0=spm): 

To make inferences about different architectures or models it is, in principle, possible to 
add a hierarchical level to the random effects Bayesian model selection, to test the 
hypothesis that models were selected at random from two different distributions for two 
groups. We have not actually implemented this ...  

These are, of course, largely empirical questions, and one hopes that in the following few years 

such matters will be settled by both DCM authors and expert users. 

As for resting state data, an unambiguous interpretation of what low frequency BOLD 

signal fluctuations neurobiologically represents is also not currently possible. However, this 

issue is not being ignored and many researchers are actively investigating the mysteries of the 

resting state (see (Raichle, 2011) for review). Some of the most sophisticated attempts to 

understand the resting brain, however, do so using computer modeling and dynamic systems 

theory to build complex but biologically-plausible simulations (Deco et al., 2011; Ritter et al., 

2013).  

This raises an interesting issue for researchers of psychiatric diseases. Although 

neuroimaging is a very interdisciplinary enterprise with many kinds of information informing 

different strata of skills and knowledge required to execute a study, one must not become 

complacent towards uncomfortable or unfamiliar domains of knowledge. Because the human 

brain is as complex as it is, it should come as no surprise that mathematics and engineering 

offer very useful empirical tools and even metaphors to help us understand it. It is also well 

known that these tools are making neuroimaging increasingly computationally sophisticated. 

However, many neuroimagers fall victim to using them without deeply understanding how they 

work or how their results arise from the underlying machinery. Interpretations of results should 

be dependent on one’s understanding of how the results were gotten at. Of course this situation 
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is expected given the typical educational background of today’s neuroimager interested in 

higher cognitive functions. Similarly, tool makers do not usually have a sophisticated 

understanding of a particular disease, which is also understandable given their backgrounds. 

One important and common bridge between this gap is through collaboration, with some 

individuals from both ‘sides’ working on the same data set and contributing coauthorship. 

Another solution, however, which may yield more appropriate and nuanced applications of 

techniques to particular disease properties, would be to try to close this gap by each side 

spending more time and effort informing and understanding the other side. First, bioengineers, 

statisticians, programers and other tool-makers can make more concerted efforts to explain 

what they are doing to clinical imagers. This will likely entail more creative thinking and use of 

metaphors and visualizations than they are perhaps used to. Second, clinically-minded imagers 

must continue to supplement their knowledge of math and engineering principles throughout 

their careers through continuing education. This will likely entail (re-) taking courses in 

programming and especially mathematics and perhaps even swallowing a little pride to do so.  

This dissertation reflects the desire of the principle author of these chapters to create a 

middle ground between these two extremes. Through the novel application of sophisticated 

fMRI analysis techniques to the psychology of emotion regulation, and applied to bipolar 

disorder, I hope that some of this distance between method and relevance has been shortened. 

I hope that I have advanced our understanding of the neural networks involved in normal 

emotion regulation, and contributed to understanding why there are some perhaps 

methodologically-based discrepanicies within the field. I additionally believe my efforts over the 

past five years have incrementally advanced our understanding of neural network abnormailites 

in persons with bipolar disorder. I sincerely hope that the imaging approaches I have utilized to 

make some of the discoveries reported on above will contribute to future of translational 

neuroimaging research. 
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Appendix 1 

Seven Major Matlab Scripts to Accomplish the Above 

 
================================== mediate.m =============================== 
 
% Regression-based MFX mediation analysis of fMRI time series  
% at the group level, retaining subject variances throughout. 
% bpSubjs.mat was extracted and compiled with another script. 
% note: variable naming is kinda lame 
% Salvatore Torrisi and Martin Monti. August, 2012 
  
load bpSubjs.mat; clear subj* acc vlPFC; 
  
why = threeRegions(:,1); % column 1 = amygdalae concatenated 
em = threeRegions(:,2);  % column 2 = ACCs concatenated 
ex = threeRegions(:,3);  % column 3 = vlPFCs concatenated 
  
numSubjs = 20; 
tsl = 208;     % time series length 
  
subjColumns = zeros(size(why),numSubjs-1); % minus 1 for no colinearity 
for i=1:numSubjs-1          % make columns of 1s to distinguish time series 
    subjColumns((1+tsl*(i-1)) : (tsl*i), i) = 1; 
end 
  
% STEP 1: is the predictor (ex) related to the mediator (em)? 
X = [ex subjColumns];  
stats=regstats(em, X,'linear',{'beta','covb','rsquare','tstat'}); 
a=stats.beta(2); a(2)=stats.tstat.t(2); a(3)=stats.tstat.pval(2); 
sea = stats.tstat.se(2); % standard error of a 
  
% STEP 2: Is the predictor related to the outcome (why)? 
stats=regstats(why, X,'linear',{'beta','covb','rsquare','tstat'}); 
c=stats.beta(2); c(2)=stats.tstat.t(2); c(3)=stats.tstat.pval(2); 
  
% STEP 3: is the mediator related to the outcome? 
X = [em subjColumns];  
stats=regstats(why, X,'linear',{'beta','covb','rsquare','tstat'}); 
b=stats.beta(2); b(2)=stats.tstat.t(2); b(3)=stats.tstat.pval(2); 
seb = stats.tstat.se(2); % standard error of b 
  
% STEP 4: full or partial mediation? (full mediation if cPrime p>0.05) 
X = [ex em subjColumns];  
stats=regstats(why, X,'linear',{'beta','covb','rsquare','tstat'}); 
cPrime=stats.beta(2); cPrime(2)=stats.tstat.t(2); 
cPrime(3)=stats.tstat.pval(2); 
bPrime=stats.beta(3); bPrime(2)=stats.tstat.t(3); 
bPrime(3)=stats.tstat.pval(3); 
  
% Sobel test of significance: 
me = a(1)*b(1); % mediated effect 
seme = sqrt(((a(1)^2)*(seb^2))+((b(1)^2)*(sea^2))); % standard error of me 
Z = me/seme; 
  
a 
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b 
bPrime 
c 
cPrime 
Z 
 
========================== pull_SPM_design_timings.m ======================= 
 
% Pull SPM design timings out of multiple subjects' SPM.mat for FSL. 
% This script must be at the same level as the subjects' folders and is 
% useful for event-related designs such as go-nogo w/ different designs for  
% each subject (e.g. only “correct” trials). Salvatore Torrisi 04.13.12 
  
% Names of folders to iterate through 
Folders={'1001'; '1013'; '1014'; '1015'}; 
  
numSess = 1; 
  
for i = 1:length(Folders) 
    cd (sprintf('%s', Folders{i})) 
    cd 'design2' 
     
    load SPM.mat; 
    numConditions = length(SPM.Sess.U); 
     
    for j = 1:numSess 
        for k = 1:numConditions 
            ons = SPM.Sess(j).U(k).ons; 
            durs = SPM.Sess(j).U(k).dur; 
            height = ones(length(ons),1); 
            forFSL = [ons durs height]; 
            filename = [num2str(Folders{i}), '_', 'session', num2str(j), '_', 
SPM.Sess(j).U(k).name, '.txt']; 
            stringName = 
strcat(filename(1),filename(2),filename(3),filename(4), 
filename(5),filename(6),filename(7)); 
            fid = fopen(stringName{1}, 'w'); 
            fprintf(fid, '%f %f %f\n', forFSL'); 
            fclose(fid); 
        end 
    end 
     
    cd ../.. 
end 
 
============================== SummarizeMotion.m =========================== 
 
% TO HELP Q.C. MOTION (REALIGNMENT) PARAMETERS BETWEEN GROUPS 
% This assumes nothing special like regressing out or removing spiky vols has 
% occurred. Before running script, change the names of the rp_*.txt files to 
% be 'rp_aafaces.txt' in each subject's folder. "-c" added to ends of  
% controls' files so i could throw them all in the same folder and then  
% retrieve them easily. Salvatore Torrisi 9.8.11 
  
Files = { '1002'; '1004'; '1006'; '1007'; ... 
    '1001-c'; '1013-c'; '1014-c'; '1016-c' }; 
  
NumBP = 34; 
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Sums = []; 
pVals = []; 
  
for i = 1:size(Files,1) 
    cd (sprintf('%s', Files{i})); 
    cd 'raw' 
  
    load 'rp_aafaces.txt'              
        xTransMean = mean(abs(rp_aafaces(:,1))); 
        Sums(i,1)=xTransMean; 
        yTransMean = mean(abs(rp_aafaces(:,2))); 
        Sums(i,2)=yTransMean; 
        zTransMean = mean(abs(rp_aafaces(:,3))); 
        Sums(i,3)=zTransMean; 
        pitchRotMean = mean(abs(rp_aafaces(:,4))); 
        Sums(i,4)=pitchRotMean; 
        rollRotMean = mean(abs(rp_aafaces(:,5))); 
        Sums(i,5)=rollRotMean; 
        yawRotMean = mean(abs(rp_aafaces(:,6))); 
        Sums(i,6)=yawRotMean;        
    cd ../.. 
end 
  
for i = 1:6 
    [h,p] = 
ttest2(Sums(1:NumBP,i),Sums((NumBP+1):size(Files,1),i),[],[],'equal'); 
    pVals(1,i) = p;      
end 
     
fprintf('\n2-sample t-test btwn groups of 6 realignment parameters:\n'); 
fprintf('%10s%10s%10s%11s%10s%9s\n','x','y','z','pitch','roll','yaw'); 
pVals 
 
============================== mtxPerm.m =========================== 
 
% This script takes user input to generate DCM model permutations. 
% First select the connections in the 'A' adjacency matrix that  
% you wish to remain static throughout all models. 
% Then select the connections you wish to permutate across models. 
% It assumes familiarity with the ordering of VOI selection. 
% And it prints in a form that’s pasteable into dcm_spm8_batch_fn.m 
% 
% One can also use it to generate permutations of the 'B' matrix. 
% To do so you must conceptualize what you're doing in terms of modularity, 
% remove the first "%" in line 88, and then change "DCM.a =" of outputed text  
% to, e.g.: DCM.b = zeros(4,4,4); DCM.b(:,:,4)= 
  
% Salvatore Torrisi, UCLA MDRP, 5.28.12, 4.27.13  
% This script also makes use of permpos.m by Jos van der Geest (10584): 
% http://www.mathworks.com/matlabcentral/fileexchange/11216 
  
clear all; close all; 
Finter = figure; 
bcolor = get(Finter,'color'); 
dx     = 40; 
r      = 4;     %number of regions (VOIs) 
a      = zeros(r,r); 
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for i = 1:r 
    for j = 1:r 
        h3(i,j) = uicontrol(Finter,... 
            'Position',[180+dx*j 350-dx*i 020 020],... 
            'BackgroundColor',bcolor,... 
            'Style','checkbox'); 
        if i == j 
            set(h3(i,j),'Value',1,... 
                'enable','off'); 
        end 
    end 
end 
  
%now user selects 'static' elements of the 'A' adjacency matrix 
uicontrol(Finter, 'String','"A" static', 'Callback','uiresume(gcbf)'); 
uiwait(Finter); 
  
for i = 1:r 
        for j = 1:r  
        a(i,j) = get(h3(i,j),'Value'); 
        end 
end 
  
for i = 1:r 
    for j = 1:r 
        h3(i,j) = uicontrol(Finter,... 
            'Position',[180+dx*j 350-dx*i 020 020],... 
            'BackgroundColor',bcolor,... 
            'Style','checkbox'); 
        if a(i,j) == 1 
            set(h3(i,j), 'enable','off');  
        end 
    end 
end 
  
%now user selects permutable elements of 'A' 
uicontrol(Finter, 'String','"A" permute', 'Callback','uiresume(gcbf)'); 
uiwait(Finter); 
  
for i = 1:r 
        for j = 1:r  
        permutate(i,j) = get(h3(i,j),'Value'); 
        end 
end 
  
num2perm = sum(permutate(:));  
modelPerms = [ ]; 
  
%build all permutations of the connections to permute 
for i = 1:num2perm+1 
    temp  = permpos(i-1, num2perm);  %avoid perms.m redundancies 
    modelPerms = [modelPerms; temp]; %concatenate 
end 
  
permCells = find(permutate);         %cell indices 
models = size(modelPerms,1); 
tempPermutate = permutate; 
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%prints into Command Window to copy/paste into dcm_spm8_batch_fn.m: 
for i = 1:models 
      x = modelPerms(i,:); 
  for j = 1:length(permCells) 
      tempPermutate(permCells(j))= x(j); 
  end 
      model = a + tempPermutate %- eye(r); %put them together (and remove 
self-connections if permuting a B mtx) 
       
      fprintf('%1s%', 'DCM.a = [')     
   for k = 1:size(model,1)-1 
      fprintf('%1s%1s', num2str(model(k,:)),'; ');  
   end 
      fprintf('%1s%1s\n', num2str(model(size(model,1),:)), '];');  
      tempPermutate = permutate; 
end 
 
 
============================== dcm_AhmadFaces.m =========================== 
 
% This is the DCM script to execute, which calls the function in the block of 
% code below (dcm_spm8_batch_fn.m) 
% Copyright 2011, UCLA MDRP, Salvatore Torrisi & Ed Lau 
 
DATADIR = ['/Users/storrisi/Desktop/Altshuler/BP1_DCM/controls']; 
global SUBJVOITSTATS;  
 
SUBJ = {'1001'; '1013'; '1014'; '1015' }; 
CB = [1, 2, 1, 1];  
load(fullfile(DATADIR, 'VOIs.mat')); 
VOI=VOIs; 
fid = fopen('TsForAllNodes.txt', 'a'); 
 
for i=1:length(SUBJ) 
    dcm_spm8_batch_fn(DATADIR, SUBJ{i}, VOI(30+i,:), CB(i)) % change 
    subjAndTs = [SUBJ{i} '   ' num2str(SUBJVOITSTATS)]; 
    fprintf(fid, '%s\n', subjAndTs); 
    cd ../.. 
end 
fclose(fid); 
 
============================ dcm_spm8_batch_fn.m ========================= 
 
% This function analyses Ahmad Hariri's face labeling task (but can be  
% adapted). It performs a Dynamic Causal Modeling analysis, currently called  
% DCM10 in SPM8. It assumes an entire (1st and 2nd) level GLM analysis has  
% already been done with these extant directories: subj*/design/DCM and  
% subj*/raw, where the subj*/design has the 1st level files, subj*/design/DCM  
% is empty, and subj*/raw has the preprocessed files. btw, if you do >1 model  
% selection 'stages' you might want, e.g., at the same level as /DCM a  
% /DCM_DI folder (for driving input). Then of course change code accordingly. 
% 
% It also assumes that subject-specific volume of interest (VOI) coordinates 
% (and the contrasts they come from) have been entered into the file called  
% VOIs.mat (most likely with fillVOIs.m), and that this file along with  
% dcm_AhmadFaces.m and this function (dcm_spm8_batch_fn.m) are 
% all in the same directory that has all subject directories in it too.  
%  
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% The final model space and estimation lines below need study-specific  
% specification 
% 
% DATADIR is the aforementioned directory with all that stuff in it. 
% SUBJ is a structure of directory names specified in dcm_AhmadFaces.m. 
% VOI comes from VOIs.mat and contains three fields: name, contrast, and 
% coords. CB is a subject-specific value that represents one of two stimuli 
% counterbalancings 
% 
% Copyright 2010, Wellcome Trust Centre for Neuroimaging, G. Flandin 
% Copyright 2011-2013, UCLA MDRP, Salvatore Torrisi & Edward Lau 
  
function dcm_spm8_batch_fn(DATADIR, SUBJ, VOI, CB) 
 
data_path = fullfile(DATADIR, SUBJ,'design','DCM'); 
  
% Initialise SPM 
%-------------------------------------------------------------------------- 
spm('Defaults','fMRI'); 
spm_jobman('initcfg'); 
global SUBJVOITSTATS;  
 
% CHANGE WORKING DIRECTORY 
%-------------------------------------------------------------------------- 
clear matlabbatch 
matlabbatch{1}.cfg_basicio.cfg_cd.dir = cellstr(data_path); 
spm_jobman('run',matlabbatch); 
  
% DCM-NECESSARY GLM SPECIFICATION (i.e. with collinear driving-input 
regressor) 
%-------------------------------------------------------------------------- 
clear matlabbatch 
  
matlabbatch{1}.spm.stats.fmri_spec.dir = {data_path}; 
matlabbatch{1}.spm.stats.fmri_spec.timing.units = 'secs'; 
matlabbatch{1}.spm.stats.fmri_spec.timing.RT = 2.5; 
matlabbatch{1}.spm.stats.fmri_spec.timing.fmri_t = 16; 
matlabbatch{1}.spm.stats.fmri_spec.timing.fmri_t0 = 1; 
f = spm_select('ExtList', fullfile(data_path,'../../raw'), 
'^swa.*nii$',[1:135]); 
matlabbatch{1}.spm.stats.fmri_spec.sess.scans = cellstr(f); 
  
for i = 1:length(f) 
    matlabbatch{1}.spm.stats.fmri_spec.sess.scans{i} = 
[fullfile(data_path,'../../raw/') 
matlabbatch{1}.spm.stats.fmri_spec.sess.scans{i} ]; 
end 
  
if CB == 1 
    matlabbatch{1}.spm.stats.fmri_spec.sess.cond(1).name = 'Match'; 
    matlabbatch{1}.spm.stats.fmri_spec.sess.cond(1).onset = [57.5 122.5]; 
    matlabbatch{1}.spm.stats.fmri_spec.sess.cond(1).duration = 30; 
    matlabbatch{1}.spm.stats.fmri_spec.sess.cond(2).name = 'ID'; 
    matlabbatch{1}.spm.stats.fmri_spec.sess.cond(2).onset = [187.5 252.5]; 
    matlabbatch{1}.spm.stats.fmri_spec.sess.cond(2).duration = 30;  
else 
    matlabbatch{1}.spm.stats.fmri_spec.sess.cond(1).name = 'Match'; 
    matlabbatch{1}.spm.stats.fmri_spec.sess.cond(1).onset = [187.5 252.5]; 
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    matlabbatch{1}.spm.stats.fmri_spec.sess.cond(1).duration = 30; 
    matlabbatch{1}.spm.stats.fmri_spec.sess.cond(2).name = 'ID'; 
    matlabbatch{1}.spm.stats.fmri_spec.sess.cond(2).onset = [57.5 122.5]; 
    matlabbatch{1}.spm.stats.fmri_spec.sess.cond(2).duration = 30; 
end 
  
matlabbatch{1}.spm.stats.fmri_spec.sess.cond(3).name = 'faces'; 
matlabbatch{1}.spm.stats.fmri_spec.sess.cond(3).onset = [57.5 122.5 187.5 
252.5]; 
matlabbatch{1}.spm.stats.fmri_spec.sess.cond(3).duration = 30; 
matlabbatch{1}.spm.stats.fmri_spec.sess.cond(4).name = 'crap'; % instruction 
screens + fixation crosses 
matlabbatch{1}.spm.stats.fmri_spec.sess.cond(4).onset = [0 22.5 55 87.5 120 
152.5 185 217.5 250 282.5 315]; 
matlabbatch{1}.spm.stats.fmri_spec.sess.cond(4).duration = [22.5 2.5 2.5 2.5 
2.5 2.5 2.5 2.5 2.5 2.5 20]; 
  
spm_jobman('run',matlabbatch); 
  
% EXTRACTING TIME SERIES (specify these in a relevant order in VOIs.mat) 
%-------------------------------------------------------------------------- 
  
for i = 1:length(VOI) 
    clear matlabbatch 
    matlabbatch{1}.spm.util.voi.spmmat = cellstr(fullfile(data_path, '..', 
'SPM.mat')); 
    matlabbatch{1}.spm.util.voi.adjust = 1;                              
    matlabbatch{1}.spm.util.voi.session = 1; 
    matlabbatch{1}.spm.util.voi.name = VOI(i).name; 
    matlabbatch{1}.spm.util.voi.roi{1}.spm.spmmat = {''};% using 1st SPM.mat 
    matlabbatch{1}.spm.util.voi.roi{1}.spm.contrast = VOI(i).contrast;   
    matlabbatch{1}.spm.util.voi.roi{1}.spm.conjunction = 1; 
    matlabbatch{1}.spm.util.voi.roi{1}.spm.threshdesc = 'none'; 
    matlabbatch{1}.spm.util.voi.roi{1}.spm.thresh = 0.1; 
    matlabbatch{1}.spm.util.voi.roi{1}.spm.extent = 0; 
    matlabbatch{1}.spm.util.voi.roi{1}.spm.mask = struct('contrast', {}, 
'thresh', {}, 'mtype', {}); 
    matlabbatch{1}.spm.util.voi.roi{2}.sphere.centre = VOI(i).coords;   
    matlabbatch{1}.spm.util.voi.roi{2}.sphere.radius = 6; 
    matlabbatch{1}.spm.util.voi.roi{2}.sphere.move.fixed = 1; 
    matlabbatch{1}.spm.util.voi.expression = 'i1 & i2'; 
    spm_jobman('run',matlabbatch); 
     

% get Tstat for peak voxel of each node: 
V=spm_vol(['spmT_000' num2str(VOI(i).contrast) '.img']); tstat =  
spm_get_data(V,V.mat\[VOI(i).coords 1]');  
% and also print to a .txt file (see also the .m file that calls this)  
SUBJVOITSTATS(1,i) = abs(tstat);  

 
    movefile(['VOI_' VOI(i).name '_1.mat'], './DCM_DI'); 
    movefile(['VOI_' VOI(i).name '.hdr'], './DCM_DI'); 
    movefile(['VOI_' VOI(i).name '.img'], './DCM_DI');  
end 
  
% DYNAMIC CAUSAL MODELLING 
%-------------------------------------------------------------------------- 
clear DCM 
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% SPECIFY MODELS 
load(fullfile(data_path,'.','SPM.mat')); 
  
for i = 1:length(VOI) 
    load(fullfile(data_path, ['VOI_' VOI(i).name '_1.mat']),'xY');  
    DCM.xY(i) = xY; 
end 
  
DCM.n = length(DCM.xY);      % number of regions 
DCM.v = length(DCM.xY(1).u); 
DCM.Y.dt  = SPM.xY.RT; 
DCM.Y.X0  = DCM.xY(1).X0; 
  
for i = 1:DCM.n 
    DCM.Y.y(:,i)  = DCM.xY(i).u; 
    DCM.Y.name{i} = DCM.xY(i).name; 
end 
  
DCM.Y.Q    = spm_Ce(ones(1,DCM.n)*DCM.v);  
DCM.U.dt   =  SPM.Sess.U(1).dt; 
DCM.U.name = [SPM.Sess.U.name]; 
DCM.U.u = []; 
  
for i=1:length(VOI) 
    DCM.U.u    = horzcat(DCM.U.u, SPM.Sess.U(i).u(33:end,1)); 
end 
  
DCM.delays = repmat(SPM.xY.RT,length(VOI),1); 
DCM.TE     = 0.025;  
DCM.options.nonlinear  = 0; 
DCM.options.two_state  = 0; 
DCM.options.stochastic = 0; 
DCM.options.nograph    = 1; 
  
% Manually enter your models (here, three are listed as an example):  
if length(VOI) ~= 4 
    error('change number of VOIs to fit the study!'); 
end 
  
DCM.a = [1 1 1 1; 1 1 1 1; 1 1 1 1; 1 1 1 1];                              
DCM.b = zeros(4,4,4);  DCM.b(2,1,2) = 1;  DCM.b(2,3,3) = 1;  
DCM.c = [0 0 1 0; 0 0 0 0; 0 0 0 0; 0 0 0 0];                               
save(fullfile(data_path,'DCM_1A.mat'),'DCM');                
  
DCM.a = [1 1 1 1; 1 1 1 1; 1 1 1 1; 1 1 1 1];                               
DCM.b = zeros(4,4,4);  DCM.b(2,1,3) = 1;  DCM.b(2,3,2) = 1;  
DCM.c = [0 0 0 0; 0 0 1 0; 0 0 0 0; 0 0 0 0];                               
save(fullfile(data_path,'DCM_2A.mat'),'DCM');                 
  
DCM.a = [1 1 1 1; 1 1 1 1; 1 1 1 1; 1 1 1 1];                              
DCM.b = zeros(4,4,4);  DCM.b(2,1,2) = 1;  DCM.b(2,3,3) = 1;  
DCM.c = [0 0 1 0; 0 0 1 0; 0 0 0 0; 0 0 0 0];                               
save(fullfile(data_path,'DCM_3A.mat'),'DCM');                 
 
% ESTIMATE MODELS 
%-------------------------------------------------------------------------- 
  
DCM_1A = spm_dcm_estimate(fullfile(data_path,'DCM_1A.mat')); 
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fprintf('Model evidence: %f (DCM_1A) \n', DCM_1A.F); 
  
DCM_2A = spm_dcm_estimate(fullfile(data_path,'DCM_2A.mat')); 
fprintf('Model evidence: %f (DCM_2A) \n', DCM_2A.F); 
  
DCM_3A = spm_dcm_estimate(fullfile(data_path,'DCM_3A.mat')); 
fprintf('Model evidence: %f (DCM_3A) \n', DCM_3A.F); 
  
end 
 
 
========================== TTEST_withinGroup_bma.m ======================= 
 
% TO TEST BMA MODULATORY OR INTRINSIC PARAMETER ESTIMATES WITHIN 1 GROUP 
% Salvatore Torrisi 6.26.12, modified 7.16.12, 9.16.12 
  
load BMS.mat; 
NumSubjs = 45;  
taskCondition = 2; 
  
meanAs = BMS.DCM.rfx.bma.mEps(1).A;  % mean A matrix values 
meanBs = BMS.DCM.rfx.bma.mEps(1).B;  % mean B matrix values 
A_dims = length(meanAs);   % we assume mtx B has same 1st & 2nd dimensions 
  
ParameterMeansTTest2 = []; 
  
for r=1:A_dims,                      % rows 
    for c= 1:A_dims,                 % columns 
        
        for i=1:NumSubjs, x(i) = BMS.DCM.rfx.bma.mEps(i).A(r,c); end; 
        % or change part of the above to .B(r,c,taskCondition); 
  
        [h,p] = ttest(x,[],[],'both');  % matrix 2-tailed diff from 0? 
        %[h,p] = kstest(x);             % is distribution normal?    
         
        ParameterMeansTTest2(r,c) = p;  % change p to h for y/n significance 
    end; 
end; 
  
ParameterMeansTTest2 
  
% Now let's mine the results for graphing (see Fig.5 of my NeuroImage paper).  
% We assume the use of Inkscape or comparable software with arrow stroke 
% width specifiable in pixels and arrow colors specifiable as hue and 
% saturation (HSL or HSV). Firstly we turn positive and negative mean BMA  
% values into colors (with diminishing strength moving towards gray), and  
% secondly we turn p-values into line widths (the greater the significance 
% the thicker the arrow). Run this twice, the second time changing line 17  
% and commenting out the upper block of code and uncommenting the lower. 
  
meanAs = BMS.DCM.rfx.bma.mEp.A; meanBs = BMS.DCM.rfx.bma.mEp.B; 
% Get rid of self-connections: 
meanAsNoDiag = meanAs-diag(diag(meanAs)); 
meanBsNoDiag = meanBs(:,:,taskCondition)-
diag(diag(meanBs(:,:,taskCondition))); 
pvalsNoDiag = ParameterMeansTTest2-diag(diag(ParameterMeansTTest2)); 
  
% Have only one scale factor for A and B mtx positive saturation values and  
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% another scale factor for negs: 
mxA= max(max(meanAsNoDiag)); mxB=max(max(meanBsNoDiag)); mx=max([mxA mxB]); 
mnA= min(min(meanAsNoDiag)); mnB=min(min(meanBsNoDiag)); mn=min([mnA mnB]); 
  
% =================================================== (upper block) 
% FOR A MATRIX GRAPHIC: 
onlyPos = find(meanAsNoDiag>0);  
cleanMeanAsNoDiag = zeros(A_dims);  
cleanMeanAsNoDiag(onlyPos) = meanAsNoDiag(onlyPos); 
posScale = 255/mx; posColorsAmtx = round(cleanMeanAsNoDiag*posScale)  
  
onlyNeg = find(meanAsNoDiag<0); 
cleanMeanAsNoDiag = zeros(A_dims); 
cleanMeanAsNoDiag(onlyNeg) = meanAsNoDiag(onlyNeg); 
negScale = 255/mn; negColorsAmtx = round(cleanMeanAsNoDiag*negScale) 
  
% line widths specified in pixels for graphing.  
% "0.5" is fudgeable for aesthetics/viewability: 
lineWidthsAmtx = log(1./pvalsNoDiag)*0.5 
  
% =================================================== (lower block) 
% FOR B MATRIX GRAPHIC: 
  
% onlyPos = find(meanBsNoDiag>0);  
% cleanMeanBsNoDiag = zeros(A_dims);  
% cleanMeanBsNoDiag(onlyPos) = meanAsNoDiag(onlyPos); 
% posScale = 255/mx; posColorsBmtx = round(cleanMeanBsNoDiag*posScale)  
%  
% onlyNeg = find(meanAsNoDiag<0); 
% cleanMeanBsNoDiag = zeros(A_dims); 
% cleanMeanBsNoDiag(onlyNeg) = meanBsNoDiag(onlyNeg); 
% negScale = 255/mn; negColorsBmtx = round(cleanMeanBsNoDiag*negScale) 
%  
% lineWidthsBmtx = log(1./pvalsNoDiag)*0.5 
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Appendix 2 

A Protocol for a Two Group DCM Analysis 

 
THE ORDER OF EVENTS FOR A DCM ANALYSIS FOR PATIENT POPULATIONS 
by Salvatore Torrisi. UCLA Mood Disorders Research Program. October, 2011  
(italics = a separate script or file to use, * = wild card): 
 
PRELIMINARIES: 
Don't attempt DCM unless you've had some experience with SPM and Matlab. 
If you've already performed a PPI analysis that's even better. 
Think hard about the network you want to test and the problem you want to test. 
Read at least 5 DCM papers and get to know the technique and how it's used. 
Do both the 'DCM for fMRI'  and 'Bayesian Model Inference' tutorials in the manual, in that order. 
Read at least 5 more DCM papers (including “Ten Simple Rules…”) after you've done the tutorials in their 
entirety. It's preferable, by the way, not to just apply DCM to data that's already been collected. 
Design/use an experiment for your particular questions. Scan tons of subjects :-) 
 
SPM ANALYSIS: 
Make sure the two groups of subjects you start with are gender and age matched. 
Set up your directories correctly; see help for dcm_spm8_batch_fn.m 
Batch preprocess everyone (start w/ slice timing correction if data was acquired interleaved). 
Make your 1st levels batch *.m w/ model estimation, T & F contrasts, and added motion regressors (from 
rp_*). Run this file, which will among other things will make 1st level masks for everyone. 
Make an everyone-together-mask with Ged's "Masking" toolbox, modify a line in spm_defaults.m to make 
work. Run messWith*Files.m which gets rid of SPM.mats to make over-writing easier. 
Change the 1st level *.m using the new mask explicitly and re-run all 1st levels. 
Run all 2nd level within and between group contrasts. 
 
DCM ANALYSIS PART 1: 
Study 2nd level within and between group results. Continue thinking hard about the network you want to 
test. Think hard about your model space and if you want to partition it into families. 
It's better to use families than to estimate elements of your model sequentially (e.g. doing BMS to 
compare models which only differ by driving input, then using the winner as a 'backdrop' to test 
modulations... Better to have a space that BMS can compare families from all at once). Draw little 
network graphs, number stuff, learn how to 'think matrix', make sure you really know what you're doing. 
I recommend specifying a few of your models via the DCM GUI, then mine the a, b and c matrices to see 
how they're represented that way. Then elaborate on those when building your batched model space. If 
you wish to permute some matrix connections/modulations but not others you can use mtxPerm.m  
 
DETOUR: NODE FINDING AND CONSEQUENCES: 
After you've decided on your number of nodes, manually get unique coordinates for each individual's 1st 
levels. Do this by following VOI_selection_rules.rtf. For example, this part took me over 15 hours for 71 
subjects x 4 nodes. Discard subjects which don't meet criteria, I was left with 62. Check behavior and 
motion (run SummarizeMotion.m) and double check age & gender again between groups. Perhaps get rid 
of more subjects if there are significant differences between groups. This is your final subject pool. Run all 
2nd level within and between group contrasts again (in different folders) and hopefully the main results 
still stay. For example, I had to run AlphaSim (in the REST toolbox) to confirm that my slightly weaker 
between group results were still fine at that cluster threshold. It is the pics from this analysis that you'll 
report for the SPM portion of your paper. Export coordinates from VOI_COORDINATES.xlsx as tab-
delimited .txt with those same columns in that order. Optional: run mip_maker.m to plot coordinates for 
each group for a supplementary figure. 
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DCM ANALYSIS PART 2: 
You should now have 5 files in each group folder:  
 dcm_AhmadFaces.m 
 dcm_spm8_batch_fn.m 
 fillVOIs.m 
 VOI_COORDINATES.txt 
 VOIs.mat 
 
Use fillVOIs.m to put the coordinates (and contrasts they came from) in VOI_COORDINATES.txt into 
VOI.mat.  
Delete other workspace variables except VOIs and then save the updated VOIs.mat. 
 
Customize and then run dcm_AhmadFaces.m for each group separately.  
This script will call the function dcm_spm8_batch_fn.m, which will: 
 make a new 'dummy' GLM with a necessary collinear driving stimulus regressor 
 extract X timeseries, adjusted for effects of interest 
 specify Y models in their /DCM folder 
 estimate those models 
 repeat for each subject 
 
DCM ANALYSIS PART 3: 
Specify families by grouping models together in non-overlapping subsets. 
Perform either fixed or random effects BMS depending on your assumptions. 
If part of your scientific questions, include BMA. Then use BMA_TTEST.m to compare 
parameter values between groups (or TTEST_withinGroup_bma.m to look within one group and for figure 
plotting information). 
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