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Can double dissociation uncover the modularity of cognitive
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Giorgio Ganis
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University of California at San Dicgo

9500 Gilman Dr.
92093-0515, La Jolla, CA.

Abstract

Neuropsychological evidence has proved influential both
in testing pre-existing cognitive theories and in developing
new accounts, It has been argued that dissociations, and, in
particular, double dissociation are particularly valuable in
developing new theoretical accounts, since they may reveal
the gross structure or "modularity” of cognitive processes. In
this paper, we show that even fully distributed systems -i.e.
systems with no modularity can give rise to double
dissociations. We give the example of a recurrent neural
network which draws loops and spirals which shows a double
dissociation between the two tasks when lesioned. This
result suggests that the observation of a double dissociation
implies little about the modularity of the underlying system.
In the final section we argue that a dual task technique can
give additional hints about the structure of the underlying
system because the class of distributed systems we describe
are not able, in general, to perform two tasks at the same
time. Finally, we argue that neurobiology has to be taken
into account in order to interpret purely behavioral data.

Introduction

For several centuries neurological patients has been used
to inform and constrain psychological accounts of normal
function. Such evidence has served both to test existing
psychological theories and to suggest how new theories can
be developed. The value of neuropsychological evidence in
theory testing 1is at least relatively uncontroversial and has
been carefully analyzed (Caramazza, 1986). Much of the
current upsurge of interest in neuropsychology within
cognitive psychology and cognitive science has, however,
stemmed from the hope that studying impaired function can
play a role in the construction of theories of normal
function. For example, a central theme of Shallice's recent
and important book (Shallice, 1988) is that cognitive
neuropsychology can have an important and proactive input
into building theories of the processes involved across the
range of cognitive domains, from language, memory and
thinking to perception and action. We share the hope that
evidence from impaired function may be an important and
much needed source of constraint on cognitive theory, but
suspect that inferences from neuropsychological data should
be used to guide the development of new theories only with
considerable trepidation Other authors (Henderson 1981;
Crowder 1982), express of similar sentiments, though for
different reasons). In the context of theory testing,
Caramazza (Caramazza 1986) has argued that dissociations
and associations are equally important. In the context of
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theory construction, Shallice (Shallice 1988) has argued that
dissociations, and, in particular, double dissociation are
particularly valuable, since they may reveal the gross
structure or "modularity” of cognitive processes. In this
paper, we argue that inference from double dissociation to a
particular modular structure of the underlying cognitive
system is problematic because double dissociations can be
observed in a fully distributed system - that is, a system
which does not decompose into isolable subsystems.

Even if double dissociations per se are not, as we argue, a
sure guide to the existence of separable underlying
subsystems, it may be that for example, a dissociation
between "phonological” and "lexical" reading strategies do
indicate the existence of distinct phonological and lexical
routes. The plausibility of the dual route versus a single
route model can only be decided in the light of the relative
merits of specific models attempting to account for the range
of data from impaired and normal function (for example,
Patterson, Seidenberg & McClelland1989; Coltheart 1990).

one piece of data for which reading models must account
will be the dissociation of phonological and lexical reading.
Our contention is not that double dissociations do not
amount to interesting data for theory development and
evaluation - rather we argue that they have no special status
as a means of directly uncovering the modularity of the
cognitive system.

Single and double dissociations

The range of characterizations of the method of double
dissociation (Teuber 1955; Kinsbourne 1971; Shallice
1988) makes exposition of the method difficult. We shall
assume what we take to be a typical modern "functional”
formulation.

A patient with a lesion exhibits a single dissociation
between tasks I and II when performance on task I is very
poor, whereas performance on task II is either close to or at
a normal level, or at least very much better than performance
in task I (Marin, Saffran & Schwarz 1976; Beauvois &
Derouesne 1979; Shallice 1988). It was once thought that
such dissociations allowed one to infer that the set of
isolable processes underlying the two tasks must be
different. However, it has been argued that this inference is
not licensed, since task I may make greater demands on a
single damaged subsystem(s) than does task II. A
subsystem working at, say, 50% capacity might be adequate
for task II, but not sufficient for task I. This is often
referred to as the problem of resource artefacts (Shallice
1988; Dunn & Kirsner 1988). In response to such



difficulties, it has been proposed that double rather than
single dissociations are required to infer that two tasks draw
on different processes, subsystems or modules. Tasks I and
Il doubly dissociate if there are patients A and B, such that A
is more impaired than B in task I and, conversely, B is more
impaired than A in task II. The point is that, unlike single
dissociation, double dissociation cannot be generated with a
resource artefact explanation. If task I makes greater
demands on a single processing subsystem than task II, then
task II may be selectively preserved (generating a single
dissociation), but the reverse cannot occur. For if the
subsystem is sufficiently impaired to damage task II, then
task I, which relies on it even more heavily, will be even
more severely impaired.

Original formulations of the inference from double
dissociation (Teuber 1955; Kinsbourne 1971) assumed
distinct and consistent lesion sites for patients with each
kind of selective impairment. This anatomical assumption
has been dropped in more recent "functional” formulations
(Marin Saffran & Schwarz 1976; Shallice 1979; Shallice
1988). We argue that this less stringent criterion, although
widely used (Caramazza 1990), may suggest an entirely
misleading picture of the modularity of the underlying
system.

Double dissociations in distributed
systems

Shallice (Shallice 1988) observes that "to make the
inference [from observed double dissociation to separate
underlying subsystems] valid, one would need to add the
assumption that [double] dissociations do not arise from
damage to non-modular systems"” (Shallice, 1988:248).
Prima facie, this claim runs counter to evidence for double
dissociation in lesioned distributed neural networks (Wood
1978; Wood 1980; Wood 1982; Gordon 1982; these studies
are based on the "brain state in a box" model of Anderson,
Silverstein, Ritz & Jones 1977).

Wood specifies two patterns for the network to learn,
which differ in activation at just two of the units. Selective
ablation of each unit produces selective damage to the
memory for each pattern. Thus the memory for the two
patterns doubly dissociates, even though the memory for
each pattern is distributed through entire set of network
weights. Such examples rely on a close relationship between
the structure of the task and particular units. Shallice argues
that this may reduce their relevance to discussion of effects
of damage on real neural networks which "..will be
composed of millions of neurons... [of which] no individual
neuron is likely to have much importance in determining
what output occurs” (Shallice 1988:255). He thus adds two
conditions that a lesion in a distributed system would have
to meet to be threatening to the double dissociation
inference: "First, before the lesion is made, the influence of
any particular neuron on what output is produced should be
small. Second, the neurons affected by the lesion should
not be selected by some complex algorithm that is
determined by the dissociation to be explained and that is not
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typical of those that arise naturally. It seems most unlikely
that if these conditions are satisfied, a ...double dissociation
could be demonstrated in a properly distributed memory
system." (Shallice 1988:256).

While this claim is couched in terms of memory, the
domain in which Wood's network showed a double
dissociation, it is clearly intended to apply more generally.
We now describe a fully distributed system which performs
two tasks - drawing loops or spirals, and which is intended
to satisfy Shallice's two conditions. We shall introduce the
network in three stages. Firstly, we describe the non-linear
equation which the network implements. Secondly, we give
a simple "local" network implementation of the equation.
Finally, a totally distributed version of this network is
described, and the effect of damage to this network discussed.

The equation

The equation that we chose is a simple iterative difference
equation, a variant of the logistic difference equation,
x(n+1) = lambda.x(n).(1-x(n)), used in classical population
genetics (e.g., Maynard-Smith 1968) which was
unexpectedly found to produce chaotic behavior (May
1976). Our equation is the delayed logistic map:
x(n+1) = lambda.x(n).(1-x(n-1)) , which, when x(n+1) is
plotted against x(n) for each n produces either spirals if
lambda is less than 2 and loops if lambda is greater than 2

(fig 1)
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Figure 1. Loop and spiral drawn by the network (lambda
equal to 1.925 and 2.075 respectively).

This critical value, at which the topology of the output is,
in dynamical systems terminology, "structurally unstable”,
is know as the Niemark bifurcation. This equation is a
standard example in non-linear dynamics (for example,
Thompson & Stewart 1986). The parameter lambda, which
determines whether a loop or a spiral is drawn, and the
particular form of each, is what we shall term the "global"
feedback parameter of our distributed network, and



perturbation of this parameter due to damage can lead to the
selective loss of either spiral or loop drawing.

A local network implementation

A natural implementation of this equation in a simple
neural network is shown in Figure 2.

Output

Figure 2. Local implementation of the delayed logistic
function.

To draw a spiral a lambda of less than 2, say 1.95, is
necessary. A lambda of 2.05 might be used to draw a loop.
The structure of the network mirrors the fact that the
equation embodies both non-linearity and feedback. All
units are linear, except for the single multiplicative unit
(Hinton 1981), which takes the product of the value of the
input, and the two previous values x(n-1) and x(n). The
delay-lines feed the activation of the x(n) unit to the x(n-1)
unit at the next time step, and the activation of the x(n+1)
back to the x(n) unit. All other lines propagate immediately
(with delay 0). The delay lines serve to "feed back" the
output of the units at a given time-step as inputs at the next
time-step. The combination of non-linearity and feedback is
required for a system to exhibit a range of dynamically
interesting behaviors, including chaotic behavior. It is not
important here that we are using a discrete iterative map,
rather than a system which continuously evolves in time
according to a set of differential equations. The advantage of
iterative maps, exploited both in the study of non-linear
dynamics and in our illustrative example, is simplicity.

A distributed network implementation

In the local implementation, the loss of any unit or link
would lead to catastrophic failure. There are, of course, many
ways in which this function could be distributed across a
larger number of units - we choose one of the simplest. For
each local element, a corresponding distributed network will
have the following properties (Chater & Ganis 1991) :

1) Each single unit of the local network is replaced by a
group of units in the distributed network. The mean
activation value of all the units in a group corresponding to
the activation of the single unit in the local implementation.
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ii) Each single link between a pair of units i$ replaced
family of links, such that there is a connection between each
unit in the "source" group to each unit in the "target" group.
Thus, each unit in the target group is not fed a substantial
input from a single unit in the input group, bul rather
receives a small amount of input from every unit in the
source group (fig3).

x(n+1)

000000 iambda
Figure 3. Distributed implementation of the delayed
logistic function.

An average (Chater & Ganis 1991) of the values of these
links corresponds to the value on the corresponding single
link of the local implementation (there is the additional
constraint that the values of the links from each unit are the
same, to keep analysis tractable).

Thus, the distributed implementation (figure 2) simply
reduplicates hardware so that the role of each unit is replaced
by a set of units. The values of x(n-1), x(n) and x(n+1) are
represented by the average of the activation levels of each
group of unit, and the large arrows denote totally connected
sets of links between groups of units with the ensemble
averages (1 or -1) as shown.

By design, the distributed network behaves in the same
way as the corresponding local network the ensemble
average values of groups of units and links correspond to the
values of single units and links in the local implementation.
If we consider the various ways in which the network may
be impaired by ablation of a subset of a single group of
links or set of units, then the damaged network will again be
equivalent to a local network. Suppose that some proportion
of a set of links with ensemble average 1 are ablated. If the
links damaged are mostly positive, then the the ensemble
average of the set will be reduced - the equivalent local
network will have a single link with a value of, say, 0.8.
On the other hand, if it happens that the links ablated are
mostly negative then the ensemble average of the set (and
hence the value on the corresponding link in the local
implementation) may be increased - say to 1.2. The way in
which positive (excitatory) and negative (inhibitory)
connections are anatomically organised (whether, for
example, they are separated or together), and depending on
the typical size of the link values (e.g., whether the inputs
to a typical unit are, say, 0.2, -0.2, 0.4, -0.1, 0.4, -0.2, 0.3,



02(=1Dorl, -5 6,2, 3, -3, 4, -7 (=1)) will have a
dramatic impact on the distribution of changes in ensemble
average that a lesion is likely to cause. We shall consider a
full range of lesions at each of the links A, B,C,D,E & F
and ablations of units in each set of the units. Notice that
the ablation of a unit is equivalent to the removal of the
connections which feed out of that unit. Thus unit ablation
is simply a special case of the ablation of connections A-F,
except for the ablation of the x(n) group, which feeds into
both x(n-1) and the multiplicative units thus the ablation
of these units is equivalent to the ablation of subsets of two
sets of links - C & E. Suppose that the value of a link is
reduced/increased by a factor of mu (mul and mu2 in the C
& E case). Then the equations governing the impaired
system is no longer x(n+1) = lambda.x(n).(1-x(n-1)) but:

A, B, C, D, F: x(n+1) = [lambda*x(n)*(1-x(n-1)]*mu

E: x(n+1) = lambda * x(n) * (1-mu) * x(n-1)

C & E: x(n+1) = [lambda*x(n)*(1-mu2*x(n-1)]*mu

Thus the general form of the equations after damage is:

x(n+1) = [alpha * lambda] * x(n) * (1-beta * x(n-1)

The beta term, which differs from 1 only in two cases,
serves only to slightly distort the spirals or loops drawn,
rather than changing their underlying structure. In
particular, it does not disturb the value of the Niemark
bifurcatiom. So, if the feedback parameter lambda is less
than 2, a spiral will be drawn; if lambda is greater than 2, a
loop will be produced. Hence, damage to the distributed
network has the same effect as setting lambda to lambda *
mu, in the corresponding local network. Now it is clear
how a double dissociation may arise.

Suppose spirals are drawn with lambda 1.95, and loops
with lambda 2.05. Damage to the network which ablates
more excitatory than inhibitory connections will reduce the
amount of feedback, and mean that alpha is less than 1 - say
0.95. In this case, a lambda of 2.05 would correspond to
lambda*0.95, that is 1.95 : the network will no longer be
able to draw loops.

Notice that our example conforms with Shallice's
strictures. Firstly, the influence of each neuron on task
performance is small. Whereas in Wood's examples,
particular neurons were especially significant for
remembering certain patterns, in this example each neuron
has the same influence every other neuron, in both loop and
spiral drawing. Damage produces a dissociation by changing
global system parameters rather selectively impairing
particularly important individual units. Secondly, the kinds
of damage that we have suggested do not involve any
complex procedure for selecting which parts of the net
should be ablated. Any kind of damage which alters the
amount of feedback in the system, whether as a result of a
chemical changes, loss of some external non-specific input
or some other pathology, is liable to generate a dissociation
of loop and spiral drawing.

Conclusion

We have shown in this paper that fully distributed
systems can generate double dissociations. The fact that one
distributed system can produce a double dissociation does not

717

necessarily mean that a large and neurally plausible class of
distributed systems can do so, and only in the latter case will
the inference from double dissociation to modularity be
impugned in practice. Certainly neural systems do fall into
the class of non-linear dynamical systems with feedback, and
will exhibit far more interesting and elaborate dynamics than
that generated by the logistic function. In particular, they
may have a far more elaborate range of distinct structural
configurations rather than just two, and the operative
configuration is likely to be determined by a complex set of
global parameters rather than the value of a single parameter,
as here. Further, which of these structural configurations is
operative may well importantly affect the task performed,
and the relevant parameter values may be altered by a range
of neurologically plausible forms of damage - chemical
imbalances, localized lesions, loss of non-specific input
from other centers, and so on. There is strong evidence that
real neural networks can be multifunctional; this means that
a single anatomically defined neural network can generate
more than one behavior , depending on the value of one or
more global parameters. ‘Modulation of the network,
synaptic, and cellular building blocks can serve to adapt the
output pattern to ongoing needs or may dramatically
reorganize a network into an entirely new mode mediating a
different behavior' (Getting 1989). Therefore, there
seems 0 be plenty of scope for double
dissociations in real distributed neural systems. It may be
countered that, whereas it is easy to see how loop drawing
and spiral drawing may be products of the same system,
with different global parameter values, it is less easy to
conceive of how different global parameter values might
transform a system from, say, phonological reading, to
lexical reading. On the other hand, it is only easy to see
how different parameter values of the same underlying
system can produce loops and spirals in retrospect, and that
our understanding of the properties of complex non-linear
dynamical systems is too slight to put much weight on
intuition. It may be that confidence in the inference from
observed dissociation to underlying modular organization is
based as much on our current lack of understanding of
distributed systems, as on their underlying properties.

The question of how we can reduce the uncertainty of
inferences from double dissociations obviously arises. We
suggest two answers, one tied to our particular example, the
other more general.

With regard to our specific example, we suggest that data
from dual task techniques might be useful in interpreting
double dissociations. Indeed, the class of multifunctional
networks we have described is not able to perform two tasks
at the same time (namely, drawing loops and spirals).
Therefore, if there is a double dissociation between two
tasks, and the subjects are able to perform both tasks at the
same time, it seems unlikely that the underlying system be
a multifunctional network like the one we put forward. In
practice, results from dual task experiments may be difficult
to interpret; for example, it is obvious that it is impossible
to draw spirals and loops with the same hand at the same
time; this, however, does not imply anything about the



existence of one or more cognitive isolable subsystems for
drawing spirals and loops.

With regard to the general problem of interpreting double
dissociations, we think that the only possible way to reduce
uncertainty is to take into account cvolutionary constraints
and advantages (Weiskrantz 1990) and data from
neuroscience (Weiskrantz 1990; Sereno 1990). Indecd, we
think that the purely ‘functional approach’, still dominant in
cognitive neuropsychology, has led to *...a kind of candy
floss neuropsychology, brightly labelled, complexly
reticulated, full of growth but shifting in substance’
(Weiskrantz 1990), the reason for this being the systematic
overlooking of neurobiological data’.
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