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Grouping of N − 1 Contingencies for Controller
Synthesis: A Study for Power Line Failures

Neelay Junnarkar, Emily Jensen, Xiaofan Wu, Suat Gumussoy, Murat Arcak

Abstract—The problem of maintaining power system stability
and performance after the failure of any single line in a power
system (an “N−1 contingency”) is investigated. Due to the large
number of possible N − 1 contingencies for a power network,
it is impractical to optimize controller parameters for each
possible contingency a priori. A method to partition a set of
contingencies into groups of contingencies that are similar to
each other from a control perspective is presented. Design of a
single controller for each group, rather than for each contingency,
provides a computationally tractable method for maintaining
stability and performance after element failures. The choice of
number of groups tunes a trade-off between computation time
and controller performance for a given set of contingencies.
Results are simulated on the IEEE 39-bus and 68-bus systems,
illustrating that, with controllers designed for a relatively small
number of groups, power system stability may be significantly
improved after an N − 1 contingency compared to continued
use of the nominal controller. Furthermore, performance is
comparable to that of controllers designed for each contingency
individually.

Index Terms—N − 1 contingency analysis, power system
stability

I. INTRODUCTION

THE robustness of a power system against disturbances
is important for power system stability. To this end,

controller parameters are tuned to minimize inter-area oscil-
lations due to disturbances. Some of the available approaches
are pole placement [1], H2 control [2]–[5], and H∞ control
[5]–[7]. These parameters are tuned for a particular power
system and may be suboptimal if the dynamics of the power
system change, due to, e.g., changes in operating conditions
or line failures. Existing approaches to this problem include
robust control design methods which enable performance and
stability for a single controller in feedback with any plant in
a fixed set of plants [7], [8].

In this work, we consider the problem of maintaining
stability and performance of a power network when dynamics
change due to so-called N −1 contingency events, as stability
in the presence of these events is required by the North
American Electricity Reliability Corporation (NERC) [9]. An
N − 1 contingency event is the failure of a single element
in a power system, such as generators, transmission lines,
and transformers. In what follows, we restrict our attention
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to line failures. Line failures change the topology of a power
system, and thus the dynamics. A controller that optimally
rejects disturbances for the nominal system may perform
suboptimally on the perturbed system.

Related to this problem is the identification of problematic
contingencies or critical components [10]. Existing results
include methods to identify contingencies that initiate cascad-
ing failure [11], to identify contingencies that involve several
failing components [12], and to estimate the probabilities of
various types of contingencies [13]. Identification of critical
N − 1 contingencies has also been considered in parallel with
controller design [8].

In this work, we focus on computational tractability in the
setting of maintaining stability and performance of a power
network in the presence of changes due to N−1 contingencies.
To optimize performance, a separate controller should be
synthesized for each possible contingency with each new
operating condition. This should be done in advance of failure
as designing a controller after a contingency has already oc-
curred leaves the power system vulnerable to disturbances and
oscillations during the controller design period. Although this
is optimal for performance, it is computationally intractable
due to the number of contingencies, and the timescale at which
operating conditions (and thus dynamics) of power networks
change. On the opposite extreme, a single controller could be
synthesized for use in the event of any failure scenario. This is
impractical as it will likely lead to instability or at least poor
performance in a variety of failure scenarios. Intermediate to
these extremes, we propose partitioning the space of failure
scenarios into n “groups”, and synthesizing a controller for
each such group. The choice of n serves to tune the tradeoff
between performance and computational tractability: n should
be larger than one and much smaller than the total number of
failure scenarios. Designing one controller per group reduces
the number of controllers that need to be synthesized to
handle all contingencies since there need only be as many
controllers as there are groups. When a contingency occurs,
the appropriate group controller can be applied immediately
since all controllers are designed in advance.

While existing methods in robust control can be applied
to synthesize a controller to stabilize the multiple systems
within each group, a partitioning of the space of contingencies
into the “best” groups for controller synthesis is unknown.
The aim of this work is to provide a method to find a well-
performing grouping, in a computationally efficient manner.
In power systems literature, clustering techniques have been
commonly used in areas related to decomposing power sys-
tems into voltage control areas [14]–[17]. The clustering use
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most closely related to our work is for identifying a small
subset of contingencies to use during design as representative
of the types of power system dynamics that may occur [18].

Relevant to our work is [8], where the authors present a
method to identify a critical subset of N−1 contingencies, and
a method to optimize a controller to be robust to the occurrence
of these select contingencies. Our work is advantageous
compared to some aspects of [8], and complementary to others.
First, whereas [8] identifies and handles only a subset of
contingencies, our proposed method of partitioning contingen-
cies handles all contingencies. Second, whereas [8] designs a
single controller to handle all (in general, dissimilar) critical
contingencies, our proposed method designs one controller per
group, where each group consists of contingencies resulting
in similar dynamics. Designing a single controller for a set
of dissimilar contingencies as in [8] limits the performance
that the controller can achieve on any one contingency. If the
dynamics of the contingencies are sufficiently different, there
may not exist a single controller which stabilizes all selected
contingencies. Our proposed method avoids this problem by
constructing the groups such that all contingencies in a group
result in similar dynamics, and designing one controller per
group. We note that the control design technique presented in
[8] could be used as a component of our approach to design
controllers for each group.

The main results of this work are as follows:

• A method for partitioning a set of contingencies for
a power network into groups that are similar to each
other from a control perspective. This proposed grouping
method additionally serves as an analysis tool to identify
severe contingencies.

• A procedure that leverages this grouping method to
design controllers to handle all contingencies in a com-
putationally tractable manner.

• Experimental verification of the effectiveness of this
grouping and control procedure through simulation using
H∞ and H2 performance measures.

The rest of this paper is organized as follows. In Section II
we describe the power system model and performance metric
we consider. In Section III we present our main contributions:
a method for grouping contingencies based on a distance
metric together with a clustering algorithm, and a procedure
to use this grouping method to design controllers to handle
all contingencies. In Section IV we illustrate the performance
of our method through simulation on the IEEE 39-bus and
68-bus systems. In Section V we present our conclusions and
directions for future work.

A. Notation

The H∞ and H2 norms of a transfer function T are denoted
by ∥T∥H∞ and ∥T∥H2 , respectively. These norms are defined
in Section II-C. The transfer function from disturbance to
performance output of the closed-loop system of a plant P
and controller K is denoted by F(P,K).

II. PROBLEM SET-UP

A. Power System Model

A power system can be modeled by a system of nonlinear
differential-algebraic equations (DAEs). The differential equa-
tions describe the dynamics of, for example, the generators,
while the algebraic equations represent the network equations.
We consider a linear time-invariant (LTI) model where the
DAE has been linearized around an operating point and
the network equations have been eliminated. We model the
operating point as fixed for some period of interest, noting that
it will change on a slow timescale as conditions such as loads
throughout the network change. Note that this LTI model
can be formed from the DAE model regardless of whether
the power system has synchronous generators, inverter-based
resources (such as renewable energy sources), or a mix of the
two. See, for example, [19] and [20].

We assume the LTI model is of the form

ẋ = Ax+Bww +Buu, (1)

where x ∈ Rn is the deviation of the power system state from
the operating point, w ∈ Rnw is the disturbance, and u ∈ Rm

is the control input.
In a power system with synchronous generators, for exam-

ple, the LTI model can be constructed such that x consists of
the following: θ, the vector of generator rotor angles, with the
average of rotor angles removed; θ̇, the vector of deviations of
generator rotor frequencies from the operating frequency; and
additional states accounting for fast electrical dynamics [2].
An LTI model with this interpretation can also be constructed
for power systems with inverter-based resources using virtual
inertia techniques. A review of such techniques can be found
in [21].

The contingencies we consider are single-line failures. For a
power system, we can construct a graph where buses are nodes
and lines between buses are edges. A line failure is represented
by the removal of the corresponding edge from the graph.
For simplicity of modeling, we consider line failures that do
not disconnect the graph. This ensures that the states of the
model have the same interpretation across all contingencies.
Under these assumptions, only the A matrix differs between
contingencies. Thus, the dynamics of contingency i can be
represented as

ẋ = Aix+Bww +Buu. (2)

Note that under contingency i, the state vector x represents
the deviation of the power system state from the operating
point of contingency i.

With this model, the event where contingency i oc-
curs is where the dynamics change from nominal dynamics
(A0, Bw, Bu), to contingency dynamics (Ai, Bw, Bu), and the
operating point changes from the nominal operating point to
the operating point under contingency i. Since we handle only
single-line failures, we assume that this change in dynamics
happens once.
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B. Controller Model

We model the controller as a state-feedback LTI controller.
In particular, for a a plant P as in equation (1), the controller
K is of the form

ẋk = Akxk +Bkxx

u = Ckxk +Dkxx
(3)

where xk ∈ Rnk is the controller state, x is the state of the
plant P , and u is the control input to plant P . Matrices Ak,
Bkx, Ck, and Dkx are all tunable controller parameters.

This is a centralized controller, with all entries of the control
input u being a function of all entries of the plant state x.
Further, we assume this centralized communication topology
does not change when a line failure occurs; i.e. line failure
does not result in communication failure.

With this controller, the closed-loop system of P and K
can be written as

˙̃x = Ax̃+ Bww (4)

where

A =

[
A+BuDkx BuCk

Bkx Ak

]
, Bw =

[
Bw

0

]
.

The control design problem is to find suitable parameters
Ak, Bkx, Ck, and Dkx, where we define “suitable” with
respect to a performance objective, defined in the next sub-
section.

C. Performance Objective

We consider the control problem of suppressing effects of
disturbances. In our experiments in particular, we consider the
effect of disturbances on inter-area oscillations. To measure
performance of a controller, we first add a virtual output z to
the closed-loop system, as follows, for some C and D.

˙̃x = Ax̃+ Bww
z = Cx̃+Dw

(5)

We refer to the transfer function from disturbance w to
performance output z of this closed-loop system of plant P
and controller K by F(P,K). Then, we measure disturbance
suppression using the H∞ norm of F(P,K), where a smaller
norm means more suppression, with the optimal value being
0. The H∞ norm is defined as

∥G∥H∞ ≜ ess sup
ω∈R

σ̄[G(jω)] (6)

where σ̄ denotes the maximum singular value of a matrix [22].
This metric represents the maximum possible amplification
of an input disturbance. Methods involving H∞ control are
widespread in power systems control literature, e.g. in [8],
[23], [24].

In this work, we focus on control design and performance
measurement using the H∞ norm. However, we note that
this norm can be replaced by other norms, as long as the
same norm is used consistently throughout. Thus, in our

experiments, we will also consider theH2 norm. TheH2 norm
is defined as

∥G∥H2
≜

√
1

2π

∫ ∞

−∞
Trace[G⋆(jω)G(jω))]dω. (7)

In the case where the disturbances w are stochastic, the
squared H2 norm corresponds to the variance in performance
output z at steady-state [2].

For our experiments, we use a performance output previ-
ously used in [2] for suppressing inter-area oscillations. This
performance output is defined with respect to inertia, which
may be either inertia of a synchronous generator, or virtual
inertia of a virtual synchronous generator. In particular, let
θ̃ be the deviation of the generator rotor angles from the
average angle, θ̇ be the deviation of rotor frequencies from
the operating frequency, and MG be the diagonal matrix of
generator inertias. Then we define the performance output of
the system to be

z =

[
I 0
0 ( 12MG)

1/2

][
θ̃

θ̇

]
.

III. GROUPING

In the event of a contingency, one might continue to use a
controller designed for the nominal (pre-contingency) system.
However, there is no guarantee that this nominal controller
will perform well on the perturbed system. To achieve opti-
mal performance, one controller would be designed for each
possible contingency and then be applied in the event that
that contingency occurs. However, this is computationally
intractable for large numbers of contingencies, especially
since each controller would need to be updated with each
significant change in operating conditions of the network.
Therefore, we present a grouping method to partition a set of
M contingencies into k groups and to design one controller
per group of contingencies. For a group of contingencies, the
same controller is applied no matter which contingency occurs.
If a contingency occurs, its group is determined, and then the
group’s controller is applied, replacing the nominal controller.

This grouping procedure is depicted in Figure 1 for a 3-
generator system. For illustration, we consider three N−1 con-
tingencies of interest, resulting in the three perturbed systems
denoted by P1, P2, and P3. These three contingency scenarios
are grouped by (i) computing a pairwise distance between
all perturbed systems of interest and (ii) clustering these
systems according to these pairwise distances. A controller
design method is applied to obtain one single controller to
use in feedback with all systems in each given group. In what
follows, we describe various pairwise distance metrics and
clustering algorithms.

Many controller design approaches can be utilized once the
groups have been formed. Here, we consider finding the single
controller K that minimizes maxi ∥F(Pi,K)∥H∞ for a group
of plants P1, . . . , PM . This minimizes the worst-case H∞
norm that can occur when applying controller K to any plant
in the group and is used as a proxy for minimizing the worst-
case oscillations resulting from any system in the group. Note
that the control design approach applied to each group can be
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Fig. 1. Illustration of this grouping method on a 3 generator system
considering 3 possible line failures, and grouping into 2 groups. Pairwise
distances between perturbed systems are computed, followed by clustering of
the perturbed systems, and finally controller design for each group of systems.

freely modified to handle other power system considerations,
such as small signal stability and transient response.

We formulate the grouping problem as a clustering problem
with two modules: a metric for measuring distance between
contingencies, and a clustering algorithm for computing a
partition. The metric should be chosen with respect to the
controller design method such that if two contingencies are
close to each other, then a controller that achieves high
performance on one of the contingencies should achieve high
performance on the other. The clustering algorithm uses the
pairwise distances to group contingencies. Factors affecting
clustering algorithm choice may include the specific controller
design technique being used and desired performance criteria.
For example, some robust control design techniques on a group
of plants depend on the maximum distance between any pair
in the group, so a clustering algorithm that minimizes this
distance would be desirable. Finally, for any combination of
metric and clustering algorithm, the number of groups can be
tuned to trade-off performance and computation time.

Algorithm 1 summarizes the process of creating and using
a library of controllers to handle a set of contingencies. To
account for changing load and generation levels over time,
the “offline” grouping and controller design process can be
run repeatedly, with the next iteration beginning as soon
as the previous iteration ends. The “online” portion of the
algorithm, run in parallel, then uses the most up-to-date set of
contingencies, groups, and controllers.

A. Metrics

We investigate three metrics to measure distance between
contingencies. Due to the number of pairwise distances scaling
in the square of the number of contingencies, we choose

metrics with reasonable computation times. We apply these
metrics to the plants in feedback with the nominal controller. A
metric may be refined for the needs of a particular application.
For example, if an application is sensitive to low-frequency
differences between plants, one could apply a low-pass filter to
the frequency response creating a weighted frequency response
metric.

1) Frequency Response (FR): Let the transfer functions
from disturbance input w to performance output z of two
LTI systems be Twz,1(jω) and Twz,2(jω). For a given set of
frequencies ω1, . . . , ωn, we sample both Twz,1 and Twz,2 at
these same points and vectorize the result to form the vectors
f1, f2 ∈ Cn·nw·nz . Then, we define the frequency response
metric as

df (f1, f2) = ∥f1 − f2∥2

using the usual ℓ2 norm.
Note that similar metrics could be defined using Lp norms

directly on Twz,1 and Twz,2, but these are significantly slower
to compute than a sampling-based approach.

2) Step Response (SR): We define a step response based
metric largely following our definition of the frequency re-
sponse metric. Let Swz,1(t) and Swz,2(t) be the step responses
of two systems from disturbance to performance output. For
a set of sampling times t1, . . . , tn, we sample both step
responses and vectorize to form vectors s1, s2 ∈ Rn·nw·nz .
Then, we define the step response metric as

ds(s1, s2) = ∥s1 − s2∥2.

As with the frequency response metric, we find Lp norms
too computationally expensive.

3) Perturbation Spectral Norm (PSN): While the frequency
response and step response metrics defined above depend on
the entire transfer function from disturbance to performance
output, we note that the plants in our model only differ in
their A matrix. Therefore, for two plants (A1, B1, C1, D1)
and (A2, B2, C2, D2) we define the perturbation spectral norm
distance by

dp(A1, A2) = ∥A1 −A2∥2

where ∥ · ∥2 is the spectral norm.

Algorithm 1: Grouping and Controller Selection
Input: Open-loop dynamics of each contingency

P1, . . . , PM , number of groups k.
// Offline

1 D ← form matrix of pairwise distances from {Pi}Mi=1;
2 G1, . . . , Gk ← cluster {Pi}Mi=1 into k groups using D;
3 for i ∈ {1, . . . , k} do
4 Ki ← design controller for Gi;
5 end
// Online

6 K ← nominal controller;
7 if contingency P occurs then
8 find i such that P ∈ Gi;
9 K ← Ki;

10 end
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While this metric does not include the effects of the B,
C, and D matrices on the input-output transfer function, it is
faster to compute than the other metrics mentioned.

B. Clustering

To group the M contingencies into k clusters using the
selected metric, we consider several existing graph or metric
clustering algorithms. These algorithms only require pairwise
distances between points, not the points themselves (as might
be required in, for example, k-means to average points),
allowing the clustering algorithm to be chosen independently
from the metric.

We consider three types of clustering: k-centers [25], k-
medoids [26][27], and divisive clustering [28]. These methods
optimize for different objectives and have varying scalability.

C. K-Centers

For a set of M points and a metric d(i, j), the k-centers
problem is to find clusters and centers of each cluster such
that

max
i

d(i, c(i))

is minimized, where c(i) gives the index of the center of the
cluster that point i is in. Note the center of a cluster is one of
the points in the cluster. This method minimizes the maximum
distance from a point to its cluster center.

While finding an optimal solution to this problem is NP-
hard, there exist approximation algorithms with time complex-
ity O(Mk) that can achieve a maximum distance to center
within twice the optimal value [25].

This clustering method is useful for robust group controller
design techniques that view the radius of a group (the max-
imum distance between a point in the group and the center
of the group) as the radius of an uncertainty set that covers
plants in the group.

D. K-Medoids

The k-medoids problem is to find clusters and centers of
each cluster to minimize∑

i

d(i, c(i)).

Note that algorithms to minimize this objective can also be
used to minimize

∑
i d̃(i, c(i))

2 by setting d = d̃2.
Algorithms of various approximation performance and time

complexity are available, such as an algorithm with time
complexity O(k(M − k)2) presented in [26] and one with
time complexity O(Mk) presented in [27].

E. Divisive Clustering

Divisive clustering is an iterative clustering algorithm that
starts with all points in one cluster and repeatedly divides the
worst performing cluster until k clusters are reached [28]. We
choose the worst performing cluster as the one with the highest
average distance of points in the cluster to the cluster center.

This cluster is divided using another clustering algorithm, like
one for k-centers or k-medoids.

While we divide clusters until we reach k clusters, one
might also divide until a certain performance criterion is
achieved, if such a criterion is available and fast enough to
compute.

IV. SIMULATION

As case studies, we apply this grouping method to the
IEEE 39-bus and 68-bus systems. We use the smaller 39-
bus system to illustrate in detail the output of this grouping
method. The case study of the 68-bus system demonstrates
the scalability of the grouping method and also highlights that
some of the observations on the IEEE 39-bus system are not
universal. We first demonstrate the grouping method with
extended examples on both systems using H∞ methods. Then,
we repeat the experiment on the IEEE 39-bus system using
H2 control to demonstrate the applicability of our grouping
method to different types of performance measurement.

1) Distance Metrics: When computing the distance be-
tween two contingencies, we put both perturbed systems in
feedback with the nominal controller and apply the metric to
these resulting closed-loop systems. To sample the frequency
responses for the frequency response metric, we first find the
distance between the origin and all poles and zeros of both
systems. Let a be the smallest distance and b be the largest
distance. We then sample 1000 log-spaced frequencies in the
interval [ a

10 , 10b]. For the step response metric, we take the
absolute value of real parts of each pole of both system. Let
the smallest value be c. We then sample 1000 time points in
the interval [0, 1

c ].
2) Power System Modeling and Controller Design: In all

examples, the matrix Bu is set to control of the generator
exciters, where the excitation model used is Type AC4A from
[29]. This represents control for voltage stability. We also set
Bw = Bu, so the disturbance enters into the control input. For
solving power flows and computing linearized dynamics, we
use the Power System Toolbox [30] and MatNetFlow libraries.
All code was run in MATLAB 2023a on an Intel Xeon Skylake
6230 at 2.1 GHz.

For control design, we use the MATLAB systune function.
This function can be configured to design controllers that
minimize the H∞ norm or the H2 norm. This function returns
the parameters Ak, Bkx, Ck, and Dkx of a controller in the
form of equation 3. We configure systune to design a static
H∞ (or H2) state feedback centralized controller with limited
gains. The gain limits reflect the lower and upper limits on
the tunable parameters and can be adjusted independently for
each parameter. We restrict the gains of each parameter to
the interval [−1, 1]. This controller design method, applied
to a group of plants P1, . . . , PM , designs the controller K
to minimize maxi ∥F(Pi,K)∥H∞ (or maxi ∥F(Pi,K)∥H2

)
where F(Pi,K) represents the feedback system of plant Pi

with controller K. Other methods that might be used for this
control design process include the ones presented in [8] and
[7].
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3) Performance Analysis: To analyze the cost of a group-
ing G = {G1, . . . , Gk}, we use comparisons with two
extremes of grouping: the grouping {{P1, . . . , PM}} where
all contingencies are in the same group; and the grouping
{{P1}, . . . , {PM}} where each contingency in its own group
(a group of size 1). Consider contingency i corresponding
to plant Pi. Denote the group in grouping G that contains
contingency i by g(i;G) and the controller for a group G̃ by
KG̃. Then the controller applied to Pi is Kg(i;G). Denote the
controller for the group consisting of all contingencies by Kw,
and the controller for the group consisting only of contingency
i by Ki.

Note that for any controller K we have that
∥F(Pi,Ki)∥H∞ ≤ ∥F(Pi,K)∥H∞ since Ki by definition
minimizes the H∞ norm when in feedback with Pi.
Therefore, ∥F(Pi,Ki)∥H∞ ≤ ∥F(Pi,Kg(i;G))∥H∞ .
Further, since g(i;G) ⊆ {1, . . . ,M}, we typically see
that ∥F(Pi,Kg(i;G))∥H∞ ≤ ∥F(Pi,Kw)∥H∞ .

To compare cost across contingencies, we normalize a
grouping’s controller cost on each contingency, creating a
scaled H∞ norm greater than or equal to 0. The lower this
scaled value, the higher the grouping’s performance.

s(G, i) ≜
∥F(Pi,Kg(i;G)))∥H∞ − ∥F(Pi,Ki)∥H∞

∥F(Pi,Kw)∥H∞ − ∥F(Pi,Ki)∥H∞

(8)

The numerator is the difference in cost between using the
controller for contingency i under grouping G, and using
the optimal controller for contingency i. The denominator is
the difference in cost between using the controller designed
to handle all contingencies on contingency i, and using the
optimal controller for contingency i.

In this scale, a cost s(G, i) of 0 represents a grouping
G performing optimally on contingency i, meaning that the
grouping G results in the optimal controller for contingency
i. A cost s(G, i) of 1 represents a grouping G’s controller
for contingency i performing the same as the single controller
designed to handle all contingencies. Note that controllers may
exist that score above 1 in this scale, since it is possible to
design worse performing controllers than Kw.

As a measure of overall grouping cost, we average across
all contingencies the cost of the grouping on each contingency.
This is the mean scaled H∞ norm, below:

1

M

M∑
i=1

s(G, i). (9)

Note that the cost of a grouping depends both on the
partition of contingencies and on the controller design method.

We note that an alternate, more time-consuming, method to
analyze performance is through simulation of the full nonlinear
dynamics. In practice, we may want to avoid even this in-depth
linear performance analysis for the sake of computation time.
One option is a quick performance verification procedure over
each group using our recent dissipativity-based approach [31].

A. IEEE 39-bus System with H∞ Control

The IEEE 39-bus system is a 10-machine, 39-bus, 46-line
system representing the New England power system. Of the
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Fig. 2. The IEEE 39-bus system with lines that may fail labeled. Only single-
line failures that do not disconnect the grid are considered.

46 lines, there are 11 whose removal will disconnect the
underlying graph. We assume these line failures are handled
separately, and only consider the remaining M = 35 lines
as contingencies. These lines are labeled in Fig. 2. In this
example we study the performance of the algorithm presented
in Section III with several metrics and clustering methods, for
varying numbers of groups.

We run Algorithm 1 on all nine combinations of the
metric and clustering methods in Section III for numbers of
groups k = 1, . . . , 20 and compare performance across metric
and clustering methods versus number of groups. Figure 3
summarizes the average scaled H∞ norm over contingencies
versus number of groups for each grouping method. As a
baseline, we include the cost of the nominal controller applied
to the contingencies. All tested grouping methods perform near
optimal on every contingency when partitioning the contin-
gencies into 20 groups. For numbers of groups under 10, we
observe four well-performing methods: PSN k-medoids, PSN
divisive k-medoids, SR k-medoids, and FR divisive k-medoids.
Additionally, for this system, we observe that designing just
one controller to handle all contingencies performs better on
average than continuing to use the nominal controller after a
contingency occurs.

While Figure 3 summarizes mean cost of grouping algo-
rithms, mean cost may not be the only performance charac-
teristic of interest. Figure 4 plots the scaled closed-loop H∞
norm for each contingency when applying the step response
metric with k-medoids clustering for numbers of groups 1
through 20. This shows the distribution of the cost on each
contingency for this grouping method for groupings into
various numbers of groups. The right-most column displays
the scaled closed-loop H∞ norm when applying the nominal
controller to each contingency. There are several contingen-
cies on which the nominal controller achieves a scaled H∞
norm of under 0.5. There are also several contingencies on
which the nominal controller achieves a scaled H∞ norm of
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Fig. 3. Comparison of metrics and clustering algorithms on IEEE 39-bus system by scaled H∞ norm averaged over contingencies versus number of groups.
FR is the frequency response metric, SR is the step response metric, and PSN is the perturbation spectral norm metric.

Fig. 4. Scaled H∞ norm of each contingency when applying the step
response metric and k-medoids clustering algorithm for various numbers of
groups. The “nominal” column is the scaled H∞ norm when applying the
nominal controller to each contingency.

over 1.0, which is worse than the performance achieved by
one controller designed to handle all contingencies. For low
numbers of groups, the scaled H∞ norms achieved by the step
response and k-medoids grouping method does not decrease
consistently across contingencies. Instead, some contingencies
see a large decrease in scaledH∞ norm while the performance
on other contingencies improves only slightly.

Figure 5 shows the change in cost on each contingency
as the number of groups increases when using the step
response metric and k-medoids clustering algorithm. The
cost of the nominal controller is also shown, but cutoff for
those contingencies where the nominal controller’s scaled
H∞ norm is above 1.1 since, as seen in Figure 4, the
nominal controller’s scaled H∞ norm goes as high as 4.5

for one contingency on this system. As expected, the cost
on any particular contingency is generally non-increasing in
the number of groups. Across most contingencies, there is a
large improvement in performance between 5 and 8 groups,
and improvements in performance become more incremental
as the number of groups rises after that. Since additional
groups means additional computation time to design the extra
controllers, this information could be used by an operator to
refine the number of groups to use in the future. The scaled
H∞ norms of some lines such as 3, 4, 25, 27, and 34 drops
to near-optimal after 2 groups, suggesting these lines are split
into smaller groups by the clustering algorithm at low numbers
of groups. Note that while the scaled H∞ norm of the nominal
controller on some contingencies is high enough that it is not
displayed in this figure, on a few contingencies such as lines
8, 9, 10, 11, 13, 18, and 19, the nominal controller achieves
a level of performance that exceeds that of the step response
and k-medoids grouping method at 11 groups. This suggests
one direction to improve this grouping algorithm would be to
use the nominal controller itself as the basis for one group,
since the nominal controller is pre-computed.

For illustration of the groupings generated by this grouping
method, we examine two groupings in closer detail: the
grouping generated using the step response metric, k-medoids
clustering, and a choice of 7 groups (depicted in Figure 6);
and the grouping generated using the frequency response
metric, divisive k-medoids clustering, and a choice of 7 groups
(depicted in Figure 7). These two groupings have similar mean
scaled H∞ norm cost.

While the two groupings are generated using both different
metrics and different clustering algorithms, there are several
similarities between the groupings. Both have a group con-
sisting of only lines 1 and 2. Group 7 of the step response
& k-medoids grouping consists of lines 30, 39, 41, 42, 43,
and 44, and group 4 of the frequency response & divisive k-
medoids grouping is almost the same, only differing through
the addition of line 6. Both groupings also have a “catch-all”
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Fig. 5. Scaled H∞ norm of each contingency for various numbers of groups
using step response metric and k-medoids clustering. The scaled H∞ norm
of the nominal controller is cutoff above 1.1.
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Fig. 6. The grouping generated using the step response metric and k-medoids
clustering for 7 groups. Lines colored the same are in the same group. One
controller is designed per group. If any line in the group fails, then that
controller is applied.

group: group 4 in the step response & k-medoids grouping,
and group 2 in the frequency response & divisive k-medoids
grouping. Finally, both groupings isolate lines 4 and 25 into
groups of size 1.

Compared to the nominal controller, both of these groupings
improve significantly upon the highestH∞ (not scaled) norms:
the highest H∞ norm seen using the nominal controller is
0.202, when applied to line 25, while under the step response
& k-medoids grouping it is 0.152, when applied to line 37, and
under the frequency response & divisive k-medoids grouping
it is 0.152, when applied to line 3. The five highest H∞ norms
seen using the nominal controller are 0.202, 0.190, 0.181,
0.179, and 0.177 on lines 25, 4, 3, 34, and 27 respectively.
These same contingencies see the H∞ norms of 0.151, 0.149,
0.146, 0.149, and 0.149 respectively using the step response &
k-medoids grouping, and H∞ norms of 0.151, 0.149, 0.152,
0.149, and 0.149 respectively using the frequency response &
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Fig. 7. The grouping generated using the frequency response metric and
divisive k-medoids clustering for 7 groups. Lines colored the same are in the
same group.

divisive k-medoids grouping. Under both groupings, the H∞
norms on these lines is reduced significantly.

Some aspects of the groupings are intuitive. For example,
lines 1 and 2 are in the same group in both groupings,
which is unsurprising since the two lines are connected by
a bus with no other lines, loads, or generators. Additionally,
many groups in both groupings consist of lines that are
close together in the power system. In fact, only group 4
in the step response & k-medoids grouping, and groups 2
and 4 in the frequency response & divisive k-medoids are
disconnected. It is these disconnected groups where the utility
of this automated grouping method is demonstrated. It may
not be obvious to a human operator that line 35 might be
put with lines 7, 8, 9, etc., as done in group 4 of the step
response & k-medoids grouping, instead of with lines 27, 28,
and 34. We also note that several lines are isolated into groups
of size one by each grouping: the step response & k-medoids
grouping isolates lines 3, 4, and 25; and the frequency response
& divisive k-medoids grouping isolates lines 4 and 25. While
line 3 is not isolated in the frequency response & divisive
k-medoids grouping, it is the line on which this grouping
performs the worst. This suggests that the removal of any of
lines 3, 4, or 25 causes unique changes to the power system
dynamics. This type of analysis could be useful to a power
system operator for identifying contingencies which may need
further consideration.

Table I summarizes the average time required to evaluate
each metric once on an Intel Xeon Skylake 6230 at 2.1 GHz.
Running the clustering algorithm may require all M(M−1)/2
pairwise distances. For the IEEE 39-bus system, this means
computing all pairs of distances on a single thread using
the frequency response metric takes 55.63 seconds, using
the step response metric takes 28.95 seconds, and using the
perturbation spectral norm metric takes 0.1039 seconds. This
can be parallelized to bring the computation time for the
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distance matrix down by a constant factor.
Over all controllers synthesized for these IEEE 39-bus

system experiments, the time to synthesize a single con-
troller ranged between a minimum of 33.771 seconds and
a maximum of 512.746 seconds, with a mean of 138.864
seconds. With these times, Algorithm 1 could be re-run—
using appropriate parallelism for control design—every 15
minutes to account for changing load and generation levels,
even with the worst case controller design times. Note that this
is heavily dependent on the controller design algorithm used,
and in these experiments we used methods readily available
in MATLAB. Other works such as [7] and [8] present methods
for computationally efficient H∞ controller design.

B. IEEE 68-bus System with H∞ Control

We also apply our grouping method to the larger IEEE 68-
bus system. Of note, the perturbation spectral norm metric
does not perform well on this system, even though it did on
the 39-bus system. This 68-bus system, extracted from data
presented in [32], consists of 16-machines, 68 buses, and 86
lines. For further description of this system, we refer to [33].
Of the 86 lines in this system, there are 18 lines whose removal
disconnects the graph, and 4 more lines whose removal results
in a lack of a power flow solution. We exclude these lines and
consider only the remaining M = 64 lines as contingencies.

We compute groupings using the step response, frequency
response, and perturbation spectral norm metrics with the
k-medoids clustering algorithm based on the results on the
IEEE 39-bus system and compare the mean cost versus the
number of groups in Figure 8. The mean scaled H∞ norm
approaches 0 (optimal) for all three methods faster relative
to the number of contingencies than they did on the IEEE
39-bus system. However, while the perturbation spectral norm
metric performed better than the other metrics on the IEEE
39-bus system, it significantly under-performs compared to
the step and frequency response metrics on this system. Both
the step response and frequency response metrics with k-
medoids outperform the nominal controller on average over
the contingencies with just 3 groups and perform close to
optimally on average at 15 or more groups. This is a significant
reduction from the 64 controllers that would need to be
designed to handle each contingency individually.

Figure 9 shows the cost applying the step response and k-
medoids grouping method to each contingency in the IEEE
68-bus system for various numbers of groups. As in the IEEE
39-bus system, the grouping method tends to create groups
on which controllers do near-optimal, and a remaining large
group whose performance slowly improves as the number of
groups increases. Note that while the scaled H∞ norm should

TABLE I
AVERAGE TIME TO COMPUTE DISTANCE BETWEEN TWO CONTINGENCIES

ON THE IEEE 39-BUS SYSTEM FOR VARIOUS METRICS.

Average Metric Computation Time (s)
FR SR PSN

0.0935 0.0487 0.000175

Fig. 8. Comparison of metrics using the k-medoids clustering algorithm on
the IEEE 68-bus system by scaled H∞ norm averaged over contingencies
versus number of groups. FR is the frequency response metric, SR is the step
response metric, and PSN is the perturbation spectral norm metric.

Fig. 9. Scaled H∞ norm when applying the step response metric and k-
medoids clustering algorithm on the IEEE 68-bus system for various numbers
of groups. The “nominal” column is the scaled H∞ norm when applying the
nominal controller to each contingency. Note that the y-axis is limited to
[−0.1, 1.1]; the nominal controller’s values go up to 7.02.

be greater than or equal to 0, we see some slightly negative
values due to controller design variance in systune.

The five highest H∞ norms (not scaled) using the nominal
controller on each contingency in this system are 0.262, 0.249,
0.148, 0.138, and 0.130. Under the grouping into 10 groups
with the step response and k-medoids grouping algorithm,
theseH∞ norms become 0.120, 0.123, 0.101, 0.102, and 0.109
respectively. The overall highest H∞ norm seen under this
grouping is 0.123. This is less than half of the worst-case
H∞ norm from continued use of the nominal controller.

Due to the larger state dimension when modeling this
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Fig. 10. Comparison of metrics and clustering algorithms on IEEE 39-bus
system by scaled H2 norm averaged over contingencies versus number of
groups. FR is the frequency response metric, SR is the step response metric,
and PSN is the perturbation spectral norm metric.

system, the time required to compute the distance between two
contingencies increases significantly: the frequency response
metric takes 0.653 seconds to evaluate compared to 0.0935
seconds on the IEEE 39-bus system; the step response metric
takes 0.3522 seconds compared to 0.0487 seconds on the IEEE
39-bus system; and the perturbation spectral norm metric takes
0.000959 seconds compared to 0.000175 seconds on the IEEE
39-bus system. While the perturbation spectral norm is fast to
compute, its performance does not match that of the other
metrics tested on the IEEE 68-bus system.

C. IEEE 39-bus System with H2 Control

In this section, we repeat the experiments of Section IV-A
using H2 control instead of H∞ control. To design the
controllers, we use systune configured for H2 control. The
rest of the control design configuration is the same as in
Section IV-2. Other than the change in control design and
performance measurement, our testing methodology is the
same as in Section IV-A. Note that these changes do not affect
the distance metrics or grouping.

Figure 10 summarizes the average scaledH2 norm over con-
tingencies versus number of groups for each grouping method.
The SR k-medoids, FR k-medoids, FR divisive k-medoids, FR
k-centers, FR divisive k-centers, and PSN divisive k-medoids
methods perform the best for numbers of groups under 9.
These methods outperform the nominal controller at 4 or more
groups. All methods perform roughly the same at 10 or more
groups. The PSN metric, with both k-centers and divisive
k-centers, performed erratically, not achieving a monotonic
decrease in mean scaled H2 norm that would be desired.

Figure 11 plots the scaled closed-loop H2 norm for each
contingency when applying the perturbation spectral norm
metric with divisive k-medoids clustering for various numbers
of groups. For two and three numbers of groups, the scaled
H2 norms are above 1, indicating variance in the results of the
control design method. The mean drops rapidly between from
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Fig. 11. Scaled H2 norm of each contingency when applying the perturbation
spectral norm metric and divisive k-medoids clustering algorithm for various
numbers of groups. The “nominal” column is the scaled H2 norm when
applying the nominal controller to each contingency.

three to four groups, but the performance on many individual
contingencies remains high until eight groups and above.
Between eight and twelve groups, the groupings perform
poorly on one contingency. Further analysis shows that this
contingency corresponds to the removal of line 3 in all of these
groupings. The removal of line 3 was found to cause unique
changes to the power system dynamics in Section IV-A.

V. CONCLUSION & FUTURE WORK

In this paper we presented a method to improve the ro-
bustness of a power system in the event of a contingency.
Our method involves automating the process of determining
groups of contingencies that result in similar dynamics. This is
used to partition the set of contingencies into a smaller set of
groups of contingencies. We showed this finds high performing
groupings that may not be identified by human operators, and
can also be used to identify severe contingencies. We further
showed that by designing one controller for each group of
contingencies, we can reduce the number of controllers that
need to be designed to handle all contingencies, resulting in
computational savings. This method naturally allows trading-
off between computation time and performance by choosing
the number of groups into which the set of contingencies is
partitioned, enabling operators to choose a balance for their
specific system and computational resources. We demonstrated
the effectiveness of this approach in simulation.

One direction of future work is in developing improved met-
rics to determine similarity between contingencies. A metric
with low computation time is important since the number of
distance computations scales in the square of the number of
contingencies. A good metric should also scale well in the
dimension of the system. One approach may be to extract
features important for similarity from the frequency response
and compare just these features.

While in this paper we presented control design as largely
independent of grouping, another direction is to tie control
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design to the particular metric and clustering algorithm being
used. The metric might be used as a measure of uncertainty
and the clustering algorithm may aim to create groups that
represent small uncertainty sets. A robust control design pro-
cedure for these uncertainty sets could allow greater guarantees
of overall system robustness. The k-centers algorithm or a
sequential-greedy version of it may be useful for this, since it
aims to reduce the radii of groups.

Other directions of future work are: leveraging performance
criteria to automatically determine the number of groups
into which the set of contingencies should be partitioned;
generalizing this grouping method to handle other types of
contingencies such as generator failures, transformer failures,
and N−k contingencies; and exploring the effect of distributed
energy resources on this type of clustering method.
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