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Abstract

Background: Early initiation of breast cancer screening is recommended for high-risk women, including survivors of child-
hood cancer treated with chest radiation. Recent studies suggest that female survivors of childhood leukemia or sarcoma
treated without chest radiation are also at elevated early onset breast cancer risk. However, the potential clinical benefits and
cost-effectiveness of early breast cancer screening among these women are uncertain. Methods: Using data from the
Childhood Cancer Survivor Study, we adapted 2 Cancer Intervention and Surveillance Modeling Network simulation models
to reflect the elevated risks of breast cancer and competing mortality among leukemia and sarcoma survivors. Costs and
utility weights were based on published studies and databases. Outcomes included breast cancer deaths averted, false-
positive screening results, benign biopsies, and incremental cost-effectiveness ratios. Results: In the absence of screening,
the lifetime risk of dying from breast cancer among survivors was 6.8% to 7.0% across models. Early initiation of annual
mammography with breast magnetic resonance imaging screening between ages 25 and 40 years would avert 52.6% to 64.3%
of breast cancer deaths. When costs and quality-of-life impacts were considered, screening starting at age 40 years was the
only strategy with an incremental cost-effectiveness ratio below the $100 000 per quality-adjusted life-year (QALY) gained
cost-effectiveness threshold ($27 680 to $44 380 per QALY gained across models). Conclusions: Among survivors of childhood
leukemia or sarcoma, early initiation of breast cancer screening at age 40 years may reduce breast cancer deaths by half and
is cost-effective. These findings could help inform screening guidelines for survivors treated without chest radiation.

Female survivors of childhood and adolescent cancer previously
treated with chest radiation are at elevated risk for early onset
breast cancer (1), and guidelines recommend initiation of breast
cancer screening with mammography and breast magnetic res-
onance imaging (MRI) starting at age 25 years (2-6). Recent data
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suggest that in addition, female childhood cancer survivors
who did not receive chest radiation are also at high risk for de-
veloping breast cancer (7-11). Factors contributing to this in-
creased risk include a primary diagnosis of leukemia or
sarcoma, as well as exposure to specific chemotherapy agents.
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For example, survivors of leukemia and sarcoma, representing
the majority of nonirradiated breast cancer cases in a recent
study (7), have a four- to sixfold higher risk of developing breast
cancer compared with the general population. Use of anthracy-
clines is associated with an increased risk in a dose-dependent
manner (7-11). Early initiation of screening with mammography
and adjunct breast MRI could reduce breast cancer deaths in

their greater burden of comorbidities and higher risk for mortal-
ity (12,13). Currently, there are no specific screening recommen-
dations tailored for childhood cancer survivors treated without
radiation (6).

Building on prior work (14), we estimated the benefits,
harms, and cost-effectiveness of early initiation of breast
cancer screening among childhood cancer survivors treated

these survivors. However, the health benefits of breast cancer without chest radiation, focusing on leukemia and sarcoma

screening and treatment may be lower among survivors given survivors.
A
Life history without breast cancer
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Figure 1. Schematic overview of simulated life histories and effect of screening among 5-year survivors of childhood cancer. These panels depict examples of life histo-
ries simulated in models G-E and W for (A) survivors who do not develop breast cancer during their lifetime, (B) survivors who develop breast cancer, and (C) survivors
who develop breast cancer and undergo screening. Model G-E is an event-driven, continuous time-state transition model in which the preclinical, screen-detectable
phase of the tumor (sojourn time) is sampled from a distribution. Model W is a discrete-event, stochastic tumor growth simulation model, where the detectability of a
tumor via screening is based on tumor size. In both models, the benefit of screening is modeled via early detection at more treatable stages. In model G-E, the stage of
detection is based on distributions. In model W, the likelihood of detection is a function of a survivor’s age and tumor size. G-E = Georgetown-Einstein; W = Wisconsin .
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median age of 5Syears (range =0 to 20years), the cumulative risk o =
of breast cancer by age 50 years was 7.5% (95% confidence inter- %E R § g ﬁ §
val [CI] = 5.0% to 10.6%) (Supplementary Figure 1, available online) &g § AR
(7). Compared with Surveillance, Epidemiology and End Results E‘ g
(SEER) estimates for average-risk women, this represented an in- ,2 g E;
creased relative risk of 4.1 (95% CI=2.4 to 6.9) for leukemia survi- o .%" 8 v | | g E g §
vors and 5.3 (95% CI=3.6 to 7.8) for sarcoma survivors (7). To '% g3 é’ AR
reflect this higher risk of breast cancer, we applied age-specific 'g
standardized incidence ratios estimated among the leukemia 4; wo. |3
and sarcoma survivors (relative to age- and calendar year-spe- & § 2 T LasEN
cific SEER rates) to adjust breast cancer incidence rates in models 4; g o 3 A
G-E and W (25). As described in Table 1, we assumed that breast 2S¢ E =
cancer natural history was similar among survivors and average- § k> g .
risk women, including stage distribution and joint distribution of T R8 |V N oo | &
estrogen receptor (ER) and human epidermal growth factor 2 o § g R § § § % g
(HER2) status, and breast cancer mortality rates (26). ﬁ o & § g
: !
515 B - o
Screening Strategies & B |3 85§23 £
E g% 8 9@m8e|d
We evaluated the following strategies: 1) no screening and 2) '; 3§ = %
joint digital mammography and MRI screening starting at ages % .%0 g M é
25, 30, 35, or 40 years (and continuing to age 74 years). Because % f.j E % | g § § %' §
of the limited available data on screening performance specific 5 3 § s Y E
to childhood cancer survivors, we based screening test perfor- P = @
mance estimates on a meta-analysis from 6 high-risk screening _g = éf’
studies in BRCA1 and 2 mutation carriers (29). 5 53, T IS I
@ g‘ 2 3 <+ < ¢ g
[} o 5| S -
€| 5§ B
Costs and Quality of Life g 6 E g g
> 19)
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To reflect uncertainty in key model parameters on results,
we conducted sensitivity analyses on the elevated breast cancer
risk observed among survivors, screening performance, screen-
ing and diagnostic disutility weights, and cancer treatment
costs. Plausible ranges were based on 95% confidence intervals
for data used in the base case and expert opinion. For all out-
comes, we report estimates as a range across models to reflect
the impact of structural uncertainty on modeled outcomes.

Results

Reduction in Breast Cancer Deaths

The models project that 36.3%-43.4% (range across models) of
survivors would develop breast cancer in their lifetimes and, in
the absence of screening, 6.8%-7.0% would die from breast can-
cer (Table 2). Screening with mammography and MRI starting
between ages 25 and 40 years would avert 52.6% to 64.3% of
these breast cancer deaths (Table 2; Figure 2). For all strategies,
estimates of breast cancer deaths averted were greater in model
W compared with model G-E, reflecting differences in how
screening benefits occur in the models (ie, detection of smaller
vs earlier-stage tumors).

Harm-Benefit Tradeoffs

The number of screening tests, false-positive screens, and be-
nign biopsies associated with each screening strategy is shown
in Table 2. For all strategies, the number of screening tests per
breast cancer death averted ranged from 1066 to 1955 per 1000
women, the number of false-positive screening results per
death averted was 90 to 175 per 1000 women, and the number
of benign biopsies per death averted was 29 to 56 per 1000
women across models (Supplementary Table 2, available on-
line). For all screening strategies, the number of screening tests
per death averted was more favorable in both models than ac-
cepted benchmarks (Figure 3). This was also the case for false-
positive screen results but not benign biopsies (although the es-
timate for screening starting at age 40 years was close to the
benchmark in model W).

Cost-Effectiveness

When costs and quality-of-life impacts were considered, com-
pared with no screening, the ICER for screening starting at age
40 years was $27 680 per QALY gained in model W and $44 380
per QALY gained in model G-E (Table 3). The ICER for screening
starting at age 35 years vs age 40years was $152 890 per QALY
gained in model W and $540 150 per QALY gained in model G-E.
ICERs were lower in model W compared with model G-E be-
cause of the estimated greater reductions in breast cancer
deaths associated with each strategy. Moreover, those strategies
that begin screening at ages 30 or 25 years were more expensive
and resulted in fewer QALYs gained in both models (Figure 4;
Supplementary Table 3, available online).

Sensitivity Analyses

Using the upper bounds of the 95% confidence intervals of ele-
vated breast cancer risk in leukemia and sarcoma survivors,
the lifetime risk of developing breast cancer increased to 49.1%-
52.7% (data not shown). All harm-benefit ratios were more fa-
vorable than average-risk benchmarks (Supplementary Figure
2, available online), and the ICER for screening starting at age
35 years declined to $103 930-$162 380 per QALY gained
(Table 3; Supplementary Figure 3, available online). In contrast,
using the lower bounds of breast cancer risk, the lifetime risk of
developing breast cancer was 25.7%-29.0%, and screening start-
ing at age 40years was the only strategy meeting any of the
average-risk harm-benefit benchmarks (Supplementary Figure
4, available online); the ICER for this strategy was $89 880 to $90
510 per QALY gained across models (Table 3; Supplementary
Figure 5, available online). To evaluate the uncertainty in risk at
older ages, if we assumed that the elevated risk for breast can-
cer was 50% lower than base case estimates on reaching age 50
years, both the harm-benefit ratios for screening starting at age
40 years remained lower than average-risk benchmarks
(Supplementary Figure 6, available online), and the ICERs below
the $100 000 per QALY gained threshold in both models ($71
600 per QALY gained in model G-E and $58 750 per QALY gained
in model W) (Table 3; Supplementary Figure 7, available
online).
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Figure 2. Reduction in breast cancer deaths for screening strategies varying by start age among female survivors of childhood leukemia and sarcoma treated without
chest radiation. Reductions in breast cancer deaths were estimated for each screening strategy, by starting age (25, 30, 35 or 40 years), compared with no screening. G-E
= Georgetown-Einstein; Mammo = mammography; MRI = magnetic resonance imaging; W = Wisconsin.
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Figure 3. Harm-benefit ratios for screening strategies varying by start age among female survivors of childhood leukemia and sarcoma treated without chest radiation.
For each screening strategy, harm-benefit ratios are estimated per death averted for (A) screening tests, (B) false-positive screens, and (C) benign biopsies. Ratios are
compared with benchmarks based on published estimates for average-risk women in the general population undergoing US Preventive Services Task Force screening
recommendations (biennial mammography between ages 50 and 74 years) (17,24). G-E = Georgetown-Einstein; mammo = mammography; MRI = magnetic resonance

imaging; W = Wisconsin.

Results were robust across assumptions on disutility associ-
ated with screening and diagnostic procedures and cancer
treatment costs. As quality of life among survivors was mainly
driven by declining general health (Supplementary Figure 8,
available online), ICERs were largely unchanged when the dis-
utility weights associated with screening or diagnostic proce-
dures were 50% lower ($40 050 per QALY gained in model G-E
and $25 570 per QALY gained in model W). Even if treatment
costs for distant stage cancers were 25% higher, mammogra-
phy with MRI screening starting at age 40 years remained at-
tractive with ICERs below $100 000 per QALY gained ($80 660
per QALY gained in model G-E and $48 760 per QALY gained in
model W).

Discussion

In our study, we found that early initiation of annual breast
cancer screening with mammography and MRI starting at age
40 could avert half of breast cancer deaths among female survi-
vors of childhood leukemia or sarcoma without a history of
chest radiation. Compared with benchmarks for average-risk
women, the estimated balance between false-positive screening
results and breast cancer deaths averted was acceptable for all
screening starting ages. However, this was not the case for be-
nign biopsies, where screening starting at age 40 years was the
only strategy with a harm-benefit tradeoff close to the average-
risk benchmark. Further, mammography with MRI screening
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Table 3. Cost-effectiveness of breast cancer screening among female childhood cancer survivors of leukemia and sarcoma treated without
chest radiation: base case and sensitivity analyses on elevated breast cancer risk®

Cost per QALY gained®

Lower bound of 95%
confidence intervals

Upper bound of 95%
confidence intervals

Base case, except for 50%
reduction in elevated risk

Base case used in the base case used in the base case starting at age 50 years
Strategy Model G-E Model W Model G-E Model W Model G-E Model W Model G-E Model W
No screening — — — — — — — —
Mammo/MRI-40 $44 380 $27 680 90510 $89 880 $19 820 $16 180 $58 750 $71 600
Mammo/MRI-35 $540 150 $152 890 ¢ $1 640 160 $162 380 $103 930 $155 620 $360 960
Mammo/MRI-30 ¢ ¢ ¢ ¢ € ¢ ¢ ¢
Mammo/MRI-25 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

@ Standardized incidence ratios used to reflect the elevated risk of breast cancer among survivors (base case and 95% confidence intervals) were based on CCSS partici-
pants compared to Surveillance, Epidemiology, and End Results estimates (7). G-E = Georgetown-Einstein; LY = life-year; mammo = mammography; MRI = magnetic

resonance imaging; QALY = quality-adjusted life-year; W = Wisconsin.
® Costs and benefits discounted 3% annually.
€ Dominated (more costly, less effective).
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Figure 4. Cost-effectiveness efficiency frontier for screening strategies varying by start age among female survivors of childhood leukemia and sarcoma treated without
chest radiation. Incremental discounted costs per gain in discounted QALYS compared with the baseline strategy in model G-E and model W. Strategies on the effi-
ciency frontier (solid line) offer both higher effectiveness and lower cost than those strategies below it. Incremental cost-effectiveness ratios (ICERs), expressed as cost
per QALY gained, are shown for these strategies. Both costs and benefits were discounted 3% annually. G-E = Georgetown-Einstein; mammo = mammography; MRI =

magnetic resonance imaging; QALY = quality-adjusted life-year; W = Wisconsin.

starting at age 40 years was the only strategy that was cost-
effective given commonly cited thresholds (43).

Together, our findings suggest that based on the currently
available evidence, survivors of childhood leukemia or sarcoma
may benefit from early initiation of breast cancer screening
with mammography and MRI starting at age 40 years. This later
onset of surveillance for survivors of leukemia and sarcoma
compared with that recommended for survivors treated with
chest radiation is consistent with the lower breast cancer risk
observed before age 40 years (2% vs 12%) among CCSS partici-
pants (Supplementary Figure 1, available online) (1,7). In a previ-
ous study conducted with the same simulations models and
comparable CCSS data, we found that early initiation of breast

cancer screening among survivors with a history of chest
radiation starting at ages 25-30 years could also avert more
than half of breast cancer deaths and would be cost-effective
using the same cost-effectiveness threshold as our current
study (14).

Our study is the first to our knowledge to evaluate breast
cancer screening among survivors without a history of chest ra-
diation. However, our findings should be interpreted within the
context of the uncertainty in the underlying mechanism for the
elevated risk observed among leukemia and sarcoma survivors.
The elevated risk could be due to cancer predisposition, explain-
ing both the primary cancer and the secondary cancer in Li-
Fraumeni syndrome and other conditions. Yet the prevalence
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among CCSS participants of TP53 pathogenic variants, the most
likely gene mutation associated with sarcoma and breast can-
cer, is low (0.2%; 11 out of 5105), suggesting that this co-
occurrence is not explained by Li-Fraumeni syndrome for most
of these individuals (44). A dose-dependent effect for anthracy-
clines on breast cancer risk has been shown in several studies
(7-11). A recent CCSS study found that the combination of
anthracyclines and radiotherapy markedly increased breast
cancer risk among survivors, with the combined risk being
greater than the individual effects (9). As new studies inform
risk stratification and better delineate the underlying etiology of
breast cancer, including the roles of anthracycline exposure,
cancer predisposition syndromes, gene-chemotherapy interac-
tions, and other factors, our models can be refined to reflect
these data and provide updated estimates.

Our findings could help inform screening guidelines for sur-
vivors of leukemia or sarcoma not previously treated with radia-
tion. Currently, guidelines by the Children’s Oncology Group
and the International Late Effects Guidelines Harmonization
Group do not include recommendations for these survivors
(2,6). Our findings suggest that screening with mammography
and MRI starting at age 40 years warrants careful consideration.
We note that a screening start age of 40 years for leukemia and
sarcoma survivors is similar to some recommendations for
average-risk women (45) and also distinctly later than recom-
mendations for childhood cancer survivors with a history of
chest radiation (who are currently recommended screening at
age 25 years) (2-6). As the understanding of breast cancer risk
and cancer screening recommendations continues to evolve,
ensuring survivors have a summary of their cancer treatment is
crucial so that clinicians can monitor and care for these
women.

Limitations to our study include using data on survivors di-
agnosed with cancer between 1970 and 1986 to adapt the simu-
lation models and may not reflect newer therapies. Our
conclusions remained consistent however when using the
lower bounds of breast cancer risk at all ages and/or at only
older ages where data are limited. Because many patients diag-
nosed with leukemia or sarcoma were also treated with anthra-
cyclines, we could not disentangle the effects of risk due to
genetic predisposition to breast cancer vs treatment-related
cancers. We also assumed that breast cancer natural history
among survivors was similar to average-risk women as data are
currently lacking. Because of the large number of model inputs
and the computing resources needed, we were unable to con-
duct probabilistic sensitivity analyses to capture all parameter
uncertainty simultaneously. However, despite differences in
model structures and assumptions about breast cancer natural
history, our findings were consistent across models. Further, in
sensitivity analyses, we consistently found ICERs for screening
starting at age 40 years were below the $100 000 per QALY
gained threshold (and above this threshold for all other strate-
gies evaluated) across models, which provides some additional
assurance of the robustness of our conclusions.

In summary, our findings suggest that early initiation of an-
nual breast cancer screening with mammography and MRI
starting at age 40 years may reduce half of breast cancer deaths
among survivors of childhood leukemia and sarcoma without a
history of radiation and would be cost-effective. These findings
could help inform screening guidelines for these high-risk sur-
vivors. At this time, our findings are most relevant to women
with a sporadic (nonfamilial) primary leukemia or sarcoma and
can aid efforts to improve secondary breast cancer prevention
among survivors of childhood cancer.
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