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ARTICLE

An Artificial Intelligence-guided signature reveals
the shared host immune response in MIS-C and
Kawasaki disease
Pradipta Ghosh 1,2,11✉, Gajanan D. Katkar1,11, Chisato Shimizu 3,4,11, Jihoon Kim5, Soni Khandelwal6,

Adriana H. Tremoulet3,4, John T. Kanegaye 3,4 & Pediatric Emergency Medicine Kawasaki Disease Research

Group*

Multisystem inflammatory syndrome in children (MIS-C) is an illness that emerged amidst

the COVID-19 pandemic but shares many clinical features with the pre-pandemic syndrome

of Kawasaki disease (KD). Here we compare the two syndromes using a computational

toolbox of two gene signatures that were developed in the context of SARS-CoV-2 infection,

i.e., the viral pandemic (ViP) and severe-ViP signatures and a 13-transcript signature pre-

viously demonstrated to be diagnostic for KD, and validated our findings in whole blood RNA

sequences, serum cytokines, and formalin fixed heart tissues. Results show that KD and MIS-

C are on the same continuum of the host immune response as COVID-19. Both the pediatric

syndromes converge upon an IL15/IL15RA-centric cytokine storm, suggestive of shared

proximal pathways of immunopathogenesis; however, they diverge in other laboratory

parameters and cardiac phenotypes. The ViP signatures reveal unique targetable cytokine

pathways in MIS-C, place MIS-C farther along in the spectrum in severity compared to KD

and pinpoint key clinical (reduced cardiac function) and laboratory (thrombocytopenia and

eosinopenia) parameters that can be useful to monitor severity.
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Multisystem inflammatory syndrome in children1 (MIS-
C; initially named Pediatric Inflammatory Multisystem
Syndrome Temporally associated with SARS-CoV-2,

PIMS-TS)2 is a rare but severe condition that occurs in children
and adolescents ~4–6 weeks after exposure to SARS-CoV-2. First
reported in April 2020 in a cluster of children in the United
Kingdom3, followed by other regions of the world4, the syndrome
is characterized by fever, and variably accompanied by rash,
conjunctival injection, gastrointestinal symptoms, shock, and
elevated markers of inflammation and antibodies to SARS-CoV-2
in the majority of patients. Myocardial dysfunction and coronary
arterial dilation may resemble those seen in another uncommon
childhood condition, Kawasaki Disease (KD). KD is an acute
inflammatory disorder predominantly seen in young children.
Since it was first described in Japan5 in 1967, KD has emerged as
the most common cause of pediatric acquired heart disease in the
developed world6. Little is known about the definitive triggers of
KD; what is most widely accepted is that KD is largely an immune
response to a plethora of infectious or environmental stimuli
including viruses, fungi (e.g., Candida sp.), and bacteria7–9. The
host genetic background appears to shape this idiosyncratic
inflammatory response to an environmental antigen exposure9.

On May 14, 2020, the CDC published an online Health
Advisory that christened this condition as Multisystem Inflam-
matory Syndrome in Children (MIS-C) and outlined a case
definition10. Since then, as the COVID-19 pandemic spread
across many countries, cases of MIS-C soared, with features of
shock and cardiac involvement requiring ionotropic support [in
the critical care setting]. But distinguishing MIS-C from KD, KD
shock syndrome11, and other severe infectious or inflammatory
conditions remains a challenge. The need for early diagnostic and
prognostic markers of disease severity remains unmet; such
markers could objectively guide decisions regarding the appro-
priateness of the level of care and the timing of initiation of life-
saving supportive and therapeutic measures.

As for the immunopathogenesis of MIS-C, limited but key
insights have emerged rapidly, most of which focus on the dif-
ferences between MIS-C and KD. For example, Gruber et al. 12,
and Consiglio et al. 13, showed that the inflammatory response in
MIS-C differs from KD with respect to T cell subsets13. These
conclusions were generally supported by two other studies, by
Vella et al. 14, and Ramaswamy et al. 15 who also showed that
severe MIS-C patients displayed skewed memory T cell TCR
repertoires and autoimmunity characterized by endothelium-
reactive IgG. Finally, Carter et al. 16, reported activation of
CD4+CCR7+ T cells and γδ T cell subsets in MIS-C, which had
not been reported in KD, which made them conclude that MIS-C
may be a distinct immunopathogenic illness. While these studies
further our understanding of MIS-C and the major conclusions of
these studies are comprehensively reviewed elsewhere17, it is
noteworthy that each of these studies had some notable limita-
tions— (i) in Gruber et al. 12, most of the MIS-C subjects were on
immunomodulatory medications when samples were drawn; (ii)
in Vella et al. 14, absence of contemporaneously analyzed healthy
pediatric samples which were not available during the early phase
of the pandemic; (iii) in Carter et al. 16, KD subjects were not
concurrently studied and the authors themselves acknowledged
that such side-by-side immunophenotyping of MIS-C and KD
would be necessary to draw conclusions convincingly regarding
similarities and differences between these two syndromes; (iv)
absence of validation studies in independent cohorts in them all.

We recently showed that a 166-gene signature is conserved in
all viral pandemics (ViP), including COVID-19, and a subset of
20-genes within that signature that classifies disease severity18. In
the absence of a sufficiently large number of COVID-19 datasets
at the onset of the COVID-19 pandemic, these ViP signatures

were trained on only two datasets from the pandemics of the past
(influenza and avian flu; GSE47963, n= 438; GSE113211,
n= 118) and used without further training to prospectively
analyze the samples from the current pandemic (i.e., COVID-19).
The ViP signatures appeared to capture the ‘invariant’ host
response, i.e., the shared fundamental nature of the host immune
response induced by all viral pandemics, including COVID-19.
Here we used the ViP signatures as a starting computational
framework to navigate the syndrome of MIS-C that is still a
relatively poorly understood entity, but none-the-less recognized
as an immunologic response to viral exposure. More specifically,
we sought to interrogate concurrently the quality and quantity of
the shared and unique features in MIS-C and KD. Our results
show that the nature of the host immune response in MIS-C is
similar to that in the pre-pandemic syndrome of KD, i.e., both are
characterized by a IL15/IL15RA-centric cytokine storm; however,
MIS-C is farther along in the spectrum of disease severity.

Results
A gene signature seen in COVID-19 is also induced in KD, and
tracks disease severity. We sought to define the host immune
response in KD and compare that to COVID-19 using an artificial
intelligence (AI)-based approach. To this end, we took advantage
of a recently identified analysis of the host immune response in
COVID-19 in which over 45,000 transcriptomic datasets of viral
pandemics were analyzed to extract a 166-gene signature18

(summarized in Fig. 1a). Because publicly available tran-
scriptomic datasets from SARS-CoV-2-infected patients were still
relatively few at the onset of the pandemic, the rigor of analysis
was increased through the use of an informatics approach, i.e.,
Boolean equivalent correlated clusters (BECC19 Fig. 1a) that can
identify fundamental invariant (i.e., universally conserved) gene
expression relationships underlying any biological domain; in this
case, the biological domain of ‘respiratory viral pandemics’ was
selected. Unlike some of the mainstream computational approa-
ches (e.g., differential expression, Bayesian, and correlation net-
work analyses, etc.) that are geared to identify the entire spectra of
host immune response, BECC exclusively focuses on Boolean
equivalent relationships to identify potentially functionally related
gene sets that are part of the invariant spectrum of the host
response. The resultant 166-gene ViP signature, developed from
just two training datasets of pandemics of the past, was found to
be conserved in all viral pandemics and outbreaks, including
prospective studies on all COVID-19 datasets. The signature
reflected the shared fundamental nature of the host immune
response to multiple infectious triggers (Fig. 1b summarizes the
types of pathogens that were found to induce the ViP
signatures18). More specifically, the nature of the host immune
response was found to be predominantly IL15/IL15RA-centric
and enabled the formulation of precise therapeutic goals and
measurement of therapeutic efficacy. At a molecular level, the ViP
signatures were distinct from interferon-stimulated genes
(ISGs20,21), in that, they revealed the broader and fundamental
nature of the host immune response, shared between diverse
pathogens and tissue/cell types. This included some tell-tale
expected (Type I Interferon and cytokine signaling) and some
unique (cellular senescence, exhaustion, chromatin silencing,
regulation of apoptosis) pathway enrichments18. The latter, i.e.,
the unique pathways, were specifically enriched in a 20-gene
subset of the ViP signature, which we called severe (s)ViP sig-
nature; this signature was trained on a large dataset of Influenza
A/B-infected adult patients annotated with clinical severity18. The
sViP signature predicted disease severity in COVID-19 (respira-
tory failure, need for mechanical ventilation, prolonged hospita-
lization and/or death)18. Consequently, the ViP signatures, but
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not ISGs, were found to be prognostic of disease severity in
cohorts of COVID-19 datasets18.

Because no KD and/or MIS-C samples were used previously in
training the model that led to the discovery of the ViP
signatures18, we used these signatures as is, without further
training, as quantitative and qualitative frameworks for measur-
ing the immune response in publicly available historic cohorts of
KD predating COVID-19. Both ViP and sViP signatures were

upregulated in blood and tissue samples derived from patients
with KD compared to healthy controls (ROC AUC for
classification of KD vs. healthy ranged from 0.8 to 1.00 across 7
independent cohorts; Fig. 1c, left), and that such induction was
limited to the acute phase of KD and downregulated during
convalescence (ROC AUC for classification of KD vs. healthy
ranged from 0.6–0.8 for ViP and 0.8–1.00 for sViP across 4
independent cohorts; Fig. 1c, middle).
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The strength of association between ViP/sViP signatures and
acute KD was also preserved in datasets comprised of KD samples
prospectively collected before and after IVIG treatment, and
treatment response was annotated as responder (R) or non-
responder (NR) (Fig. 1c, right). First, sex had no impact on the
induction of signatures (ROC AUC 0.6 in Males vs. Females).
Second, although the ViP/sViP signatures did not predict
treatment response to IVIG (ROC AUC 0.5–0.6 in pre-
treatment samples R vs. NR; GSE63881 and GSE9864), they
were reduced in all responders compared to non-responders
(ROC AUC 0.8–0.9 in post-treatment samples R vs. NR;
GSE18606). Finally, in a study22 in which the intervention was
a combination of IVIG with the intravenous methylprednisolone
(IVMP), both ViP signatures were reduced post-Rx (ROC AUC
0.9; GSE16797), and the signatures performed equally well in
both pre-treatment and post-treatment samples in differentiating
responders from non-responders (ROC AUC 0.7–0.8). These
findings suggest that while the IVIG-IVMP combination regimen
reduced the signatures effectively among all patients (n= 17),
responders induced the ViP signatures to a lesser extent than
non-responders. The 20-gene sViP signature consistently out-
performed the 166-gene ViP signature in its ability to classify
samples across all cohorts tested (Fig. 1c).

We next confirmed that both the ViP signatures are induced in
acute KD (at presentation, ≤10 days of illness) compared to
convalescent KD (day 289–3240 of Illness) in a large new cohort
of consecutive patients (n= 105) who were diagnosed with the
disease prior to the onset of the COVID-19 pandemic (Cohort 1;
Supplementary Data 1) (Fig. 1d). Again, the sViP signature
outperformed the ViP signature in sample classification (ROC
AUC 0.91 vs. 0.74). In an independent cohort (Cohort 2, n= 20,
Supplementary Data 1; Fig. 1e) prospectively enrolled in the
current study after the onset of the COVID-19 pandemic, the ViP
signatures could differentiate the acute from subacute (~10–14 d
after discharge; ~day 17–25 of Illness) KD samples. As before, the
20-gene sViP signature outperformed the 166-gene ViP signature.

Finally, we tested the association between sViP signatures and
markers of disease severity. Because CAA diameter is a predictor
of coronary sequelae (thrombosis, stenosis, and obstruction)23,24

and subsequent major adverse cardiac events (unstable angina,
myocardial infarction, and death25), we used the development of
coronary artery aneurysms (CAA) as a marker of disease severity.
We found that both ViP signatures differentiated acute KD with
giant CAAs (defined as a z-score of ≥10 or a diameter of
≥8 mm26,27) from convalescent KD samples (ROC AUC 0.95 and
0.97 for ViP/sViP signatures, respectively; Fig. 1f). The ViP
signature effectively subclassified acute KD patients with giant
aneurysms (CAA-giant) from to those with either no aneurysms

(CAA−; p value= 0.0027) or small aneurysms (CAA-small; p
value = 0.0013). Similarly, the sViP signature effectively classified
acute KD patients with giant aneurysms (CAA-giant) from to
those with no aneurysms (CAA−; p value 0.033). Such an analysis
was not possible in Cohort 2 (Supplementary Data 1) because of
the smaller cohort size and absence of subjects with giant CAAs.

We conclude that ViP signatures are induced in acute KD, and
track disease severity, i.e., risk of developing giant CAAs, much
like we observed previously in the setting of adult COVID-1918.
Because ViP signatures represent the host immune response to
diverse pathogens (Fig. 1b), upregulation of ViP signatures in KD
is consistent with the hypothesis that KD is triggered by multiple
infectious triggers7,28,29, some of which may be viral in
nature30–32.

Comparison of patients with MIS-C and Kawasaki disease. Ten
children were included who met the CDC definitions for MIS-C,
with detectable anti-SARS-CoV-2 nucleocapsid IgG antibodies
[Abbott Architect™] and undetectable virus by polymerase chain
reaction (PCR; see Table 1). The MIS-C and KD cohorts had
notable differences. Although sex and ethnicity were not different,
the median age was higher (8.8 years) in the MIS-C cohort than
in KD (Table 1), which is in keeping with our original report
describing this syndrome in June 20202. Left ventricular ejection
fraction (LVEF) was reduced in the MIS-C cohort (p= 0.006),
consistent with multiple prior reports33–35. While all patients had
evidence of a marked inflammatory state, the MIS-C cohort had
significant cytopenias, including low total WBC, absolute lym-
phocyte, absolute eosinophil, and platelet counts, with elevation
of C-reactive protein level significantly above those observed in
the KD cohort (Table 1). Most patients (90%) received intrave-
nous immunoglobulin (IVIG) and 70% were treated with intra-
venous corticosteroids. One patient received anakinra, and three
received infliximab. All patients made a full recovery. In all cases,
blood was collected for serum before the initiation of any
treatments.

ViP/sViP signatures place MIS-C and KD on the same host
immune continuum, but MIS-C as farther along the spectrum
than KD. We next analyzed whole blood-derived transcriptome
and serum cytokine arrays in the current cohort of subjects with
KD (Cohorts 2 and 4) and MIS-C (Fig. 2a). When MIS-C and
acute KD groups were each compared to the control (subacute
KD) samples, both ViP (Fig. 2b) and sViP (Fig. 2c) signatures
were found to be induced at significantly higher levels in MIS-C
samples compared to acute KD. However, when MIS-C and acute
KD were compared to each other, we found that the ViP

Fig. 1 A Viral Pandemic (ViP) signature that is induced in COVID-1918, is induced also in epidemic outbreaks of KD. a Schematic displays the
computational approach (BECC) and rigor (diversity and number of datasets) used to identify the 166-gene ViP and a subset of 20-gene severe (s)ViP
signatures, and the subsequent experimentally validated inferences and impact of the same in a recent study18. The numbers in gray circles denote the total
number of datasets analyzed in each category. b Schematic displays the various pathogenic triggers that induce ViP signatures (many of which are triggers
also for KD) and the prominent induction of IL15/IL15RA as an invariant nature of the cytokine storm. c Bubble plots of ROC-AUC values (radii of circles are
based on the ROC-AUC) demonstrating the strength of classification and the direction of gene regulation (Up, red; Down, blue) for the classification based
on the 20-gene severe ViP signature (top) and 166-gene ViP signature (bottom) in numerous publicly available historic datasets. ViP signatures classified
KD vs. healthy children (left), acute vs. convalescent KD (middle) and treatment response in the setting of combination therapy with IV steroids (MP
methylprednisone) and IV IgG alone (IVIG), but not IVIG alone. Numbers on top of bubble plots indicate number of subjects in each comparison group.
d, e Bar (top) and violin (bottom) plots display the classification of blood samples that were collected during acute (AV), sub-acute (SA; ~10–14 days post-
discharge) and convalescent (CV; 1 year post-onset) visits from two independent KD cohorts (d; Historic Cohort 1; e; Prospective Cohort 2) using ViP (left)
or sViP (right) signatures. f Bar (top) and violin (bottom) plots display the sub-classification of blood samples in Cohort 1 based on coronary artery
aneurysm (CAA) status using ViP (left) or sViP (right) signatures. Welch’s two sample unpaired two-sided t-test is performed on the composite gene
signature score to compute the p values. In multi-group setting each group is compared to the first control group and only significant p values are displayed
on the right. Additional pvalues are displayed on the left.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30357-w

4 NATURE COMMUNICATIONS |         (2022) 13:2687 | https://doi.org/10.1038/s41467-022-30357-w |www.nature.com/naturecommunications

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63881
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9864
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18606
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16797
www.nature.com/naturecommunications


signatures could not distinguish between these samples, indicat-
ing that both conditions share a similar host immune response.
Heatmaps of patterns of expression (Fig. 2d, e) demonstrate that
most of the individual genes contributed to the elevated ViP and
sViP signatures observed in MIS-C samples. These genes included
IL15 and IL15RA (highlighted in red; Fig. 2d), both components
within the cytokine pathway that was previously demonstrated to
be consistently elevated in the lungs of patients with fatal
COVID-19 and in SARS-CoV-2 challenged hamsters18.

Taken together, these analyses led to two key conclusions: (i)
that the host immune response, as detected in a qualitative
manner using the ViP signatures, is similar in KD and MIS-C and
has a IL15/IL15RA shared component; (ii) that the degree of such
host immune response, as measured quantitatively using the ViP
signature scores, is more intense in MIS-C than KD. These
findings are consistent with the fact that MIS-C is a host immune
response to SARS-CoV-2 exposure, and we previously showed
that the interaction of viral spike protein with the host entry
receptor, ACE2 is critical for the induction of ViP signatures18.
Findings are also in keeping with prior work36 showing that
serum levels of IL15 is significantly elevated in acute KD, ~10-fold

compared with subacute-KD and normal controls, and that such
increase correlated with the concomitant increase in serum
TNFα.

A KD-specific signature independently confirms that KD and
MIS-C are syndromes on the same host immune response
continuum. To circumvent an over-reliance on one set of sig-
natures (i.e., ViP/sViP), we next analyzed a KD-specific 13
transcript diagnostic signature37 that was previously shown to be
effective in distinguishing children with KD from all other febrile
conditions. During validation, the 13-transcript signature mir-
rored the certainty of clinical diagnosis, i.e., it differentiated
definite, highly probable, and possible KD from non-KD with
ROC AUCs of 98.1% (95% CI, 94.5–100%), 96.3% (95% CI,
93.3–99.4%), and 70.0% (95% CI, 53.4–86.6%), respectively
(Fig. 2f). Unlike the ViP signatures, which has a typical enrich-
ment of interferon and cytokine pathways with a prominent
presence of IL15/IL15RA, the KD-signature is comprised of a set
of non-overlapping genes, some of which relate to major central
hubs within the tumor necrosis factor (TNFα) and interleukin 6

Table 1 Characteristics of patients with Kawasaki disease (KD) and MIS-C analyzed in this study.

Demographic and clinical parameters KD MIS-C p

CAA− (n= 10) CAA+ (n= 10) MIS-C (n= 10)

Age, yrsa 2.2 (1.8–3.7) 1.8 (1.2–3.5) 8.8 (5.7–11.1) 0.0002
Illness dayb 6 (5–7) 6 (5–7) 4 (3–4) NS
Male, n (%) 6 (60) 8 (80) 6 (60) NS
Ethnicity, n (%)
Asian 1 (10) 1 (10) 0 NS
African American 1 (10) 1 (10) 2 (20)
White 3 (30) 2 (20) 1 (10)
Hispanic 4 (40) 3 (30) 6 (60)
>2 races 2 (20) 5 (50) 1 (10)
Zmax 1.0 (0.7–1.2) 3.1 (2.7–3.3) 1.9 (1.5–2.2) 0.0002
LVEF, median (IQR, range) 67 (65–68, 56–76) 70 (62–75, 56–79) 58 (55–62, 31–65) 0.006
Lab data
WBC, 103/µL 12.6 (11.6–18.3) 15.8 (13.0–18.5) 11.1 (5.5–11.7) 0.01
ANC, /µL 9159 (6904–106830 11319 (8896–12539) 8172 (4437–10071) NS
ALC, /µL 2576 (1739–3658) 2924 (2379–5075) 939 (803–1019) 0.0002
AEC, /µL 184 (104–529) 378 (322–588) 122 (0–231) 0.04
ZHgb −1.4 (−2.3–0.1) −1.5 (−1.8 to 0.6) −2.2 (−2.7 to 0.7) NS
PLT, 103/mm3 330 (278–396) 363 (338–396) 177 (106–228) 0.002
ESR, mm/h 55 (30–64) 68 (58–76) 44 (36–59) NS
CRP, mg/dL 6.1 (4.8–12.2) 5.9 (4.0–8.0) 21 (19.6–23.8) 0.01
BNP, pg/mL ND ND 33 (19.7–23.6) NA
Ferritin, ng/mL ND ND 323 (223–960) NA
Troponin, ng/mL ND ND 0.02 (0.01–0.13) NA
D-dimer, µg/mL ND ND 1.94 (1.24–2.40) NA
SARS-CoV-2 testing
PCR positive ND ND 1 (10) NA
IgG positivec ND ND 10 (100) NA
Treatment, n (%)
IVIG×1 10 (100) 10 (100) 8 (80) NS
IVIG×2 0 1 (10) 1 (10) NS
Infliximab 4 (40) 10 (100) 3 (30) 0.003
Anakinra 0 1 (10) 1 (10) NS
Cyclosporine 0 1 (10) 0 NS
Steroids 0 0 7 (70) 0.0001

Table displays the demographic, clinical and laboratory parameters collected on the KD and patients with MISC-C enrolled into the study. Zmax Maximum Z score (internal diameter normalized for body
surface area) for the right and left anterior descending coronary arteries. Laboratory data are pre-treatment. Troponin was measured in nine patients with MIS-C. D-dimer was measured in eight patients
with MIS-C. p-values were calculated by Kruskal–Wallis test for continuous variables among three groups and Chi-test for categorical variables.
LVEF left ventricular ejection fraction, WBC white blood cell count, PLT platelets, AEC absolute eosinophil count, ANC absolute neutrophil count, ALC absolute lymphocyte count, CRP C-reactive protein,
ESR erythrocyte sedimentation rate, BNP brain natriuretic peptide, ZHgb hemoglobin concentration normalized for age, NS not significant, NA not applicable, ND not done.
aMedian (Interquartile range (IQR) unless specified.
bIllness Day 1= first day of fever.
cSARS-CoV-2 nucleocapsid IgG positive n= 9 and SARS-CoV-2 peptide array n= 1.
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(IL6) pathways37. When we applied this signature to the historic
cohort 1 (Fig. 2g) and to our current cohort (Cohort 2; Fig. 2h),
we found that the KD-specific 13 transcript signature could not
distinguish between MIS-C and KD in either cohort. Further-
more, a correlation test demonstrated that the two non-
overlapping signatures, sViP and KD-13, both of which are sig-
nificantly induced in KD and MIS-C (Fig. 2c) are independent of

each other (Supplementary fig. S1). This suggests that these two
signatures reflect two fundamentally distinct and unrelated bio-
logical domains within the host immune response; whether their
diagnostic/prognostic abilities may have an additive benefit
remains to be explored.

The similar extent to which KD and MIS-C induced the KD-13
signature in two independent cohorts further supports our
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observation with ViP/sViP signatures that KD and MIS-C share
fundamental aspects of host immune response with each other.
That KD and MIS-C samples share ViP/sViP signatures with
COVID-19 implies that the three diseases represent distinct
clinical states on the same host immune response continuum.

The sViP signature can recognize severe form of MIS-C that
presents with myocardial dysfunction. Next, we asked if the
sViP signature can track disease severity in MIS-C. Because of the
limited number of ‘severe’ cases in our MIS-C cohort, we pro-
spectively analyzed two recently accessible MIS-C cohorts
(GSE16648915 and GSE16702838). While both datasets analyzed
PBMCs from MIS-C subjects, and both studies used the presence
of myocardial dysfunction as basis for severe disease, each study
used a slightly different criterion for classification of disease
severity (Fig. 3a). de Cevins et al. 38, classified MIS-C as severe
when the patients presented with elevated cardiac troponin I and/
or altered ventricular contractility by echocardiography, and
clinical signs of heart failure requiring ICU support. Ramaswamy
et al. 15, classified MIS-C as severe if they were critically ill, with
cardiac and/or pulmonary failure. In both cohorts, sViP was able
to classify severe MIS-C (with myocardial dysfunction; MYO+)
from mild-moderate disease (who recovered or presented without
myocardial dysfunction; MYO-) (Fig. 3b, c); while the p value was
significant in GSE166489 (Fig. 3b), a similar trend was conserved
in GSE16702838 (Fig. 3c). These findings show that the sViP
signature can identify severe MIS-C who are at risk to develop
myocardial dysfunction, just as it did in the case of KD subjects
who are at risk of developing giant CAAs (Fig. 1f) and similar to
its prior performance in identifying adults with COVID-19 who
are at risk of respiratory failure, mechanical ventilation, pro-
longed hospitalization and/or death18.

Taken together with the prior findings, we conclude that the
20-gene sViP signature captures a core set of genes that are
expressed in the setting of an overzealous (prolonged or intense,
or both) host immune response in all three diseases—KD, MIS-C
(this work) and COVID-1918—despite the fact that each present
with distinct clinical features of severity.

Because all three conditions represent diseases of the immune
system that share an ‘infectious trigger’, we asked if the ViP/sViP
signatures are also induced in the setting of other diseases of the
immune system. To this end, we analyzed numerous publicly
available datasets, ranging from immunosuppressed states (as
negative control), infectious diseases (both viral and bacterial; as
positive control), and autoimmune diseases (Fig. 3d), and
assessed the ability of ViP/sViP signatures to classify control
and diseased samples in each dataset. Because the ViP/sViP
signatures are able to detect the shared core fundamental host
immune response in cell/tissue agnostic manner18, we tested
diverse samples ranging from whole blood to bronchoalveolar
lavage fluid (Fig. 3d). The ViP/sViP signatures performed as

anticipated in the negative and positive control datasets, i.e.,
neither signature was induced in immunosuppressed conditions,
e.g., malignancies, pregnancy, post-transplant immunosuppres-
sion, but both were induced in infectious diseases, e.g., sepsis,
HIV, RSV, and tuberculosis (left; Fig. 3d). In the case of the
autoimmune diseases, the ViP/sViP signatures were induced in
some, but not others. The signatures were induced in those
conditions that have multifactorial triggers, including potential
contributions from infections; for example, mechanistic studies
have identified viral link in many of them (EBV-linked
autoimmune diseases39 such as JIA, SLE, IBD). The signatures
were not induced in other conditions where the disease triggers
remain mysterious (e.g., sarcoidosis) or where the disease is
driven by specific mutations, e.g., Neonatal onset multisystem
inflammatory disease (NOMID) that is due to mutant NLRC3
and macrophage activation syndrome (MAS) that is due to
mutant NLRC4). These findings lend further support to our
finding that ViP/sViP signatures are induced and perform well to
identify severe MIS-C, which shares infection as a trigger, much
like KD and COVID-19. Intriguingly, numerous infectious and
autoimmune diseases shared the IL15/IL15RA-centric cytokine
response, which is in keeping with prior observations40.

Whole blood transcriptomes and cytokine panels reveal subtle
differences between MIS-C and KD. We next compared the
whole blood transcriptomes from KD and MIS-C subjects
(Fig. 3e) using a more conventional approach, which involved
principal component analysis (PCA; Fig. 3f) in conjunction with
hierarchical agglomerative clustering. The PCA analysis showed
that 7 of 10 samples in both KD and MIS-C groups formed
distinct clusters (circles in Fig. 3f), whereas 3 in each group were
outside their respective clusters (yellow and cyan, Fig. 3f). Because
agglomerative clustering is the most common type of hierarchical
clustering used to group objects in clusters based on their simi-
larity, we next sought this approach to assess grouping of KD and
MIS-C samples (Fig. 3g) which also revealed two distinct clusters
like PCA. Differential expression analysis was performed with the
7 MIS-C and 7 KD that formed distinct clusters in PCA and
hierarchical clustering (Supplementary Data 3). Reactome path-
way analyses of the genes upregulated in MIS-C revealed inter-
feron and cytokine signaling (Fig. 3h, top), whereas the genes
downregulated in MIS-C mostly enriched pathways concerning
the complement cascade and phagocytosis, among others (Fig. 3h,
bottom). When we analyzed the overlap between the 166-gene
ViP signature and the up- or downregulated list of DEGs in MIS-
C, we found that 11 genes overlapped between the ViP signature
and upregulated genes in MIS-C (Fig. 3i). However, there was no
overlap between the ViP signature and the downregulated genes.
These analyses further emphasize the similarities between KD and
MIS-C with more extreme features in MISC.

Fig. 2 A KD-specific 13 transcript signature37 shows that KD and MIS-C are indistinguishable, but ViP/sViP signatures place MIS-C as farther along
the spectrum than KD. a Schematic displays the workflow for patient blood collection and analysis by RNA Seq (this figure) and cytokine array by
mesoscale (Figs. 4 and 5). b, c Bar (top) and violin (bottom) plots display the classification of blood samples that were collected during collected during
acute (AV) and sub-acute (SA; ~10–14 days post-discharge) visits of KD subjects and from patients diagnosed with MIS-C. The p value for comparison
between acute KD (AV) and MIS-C (M) is displayed in red font. d, e Heatmaps display the patterns of expression of the 166 genes in ViP (d) and 20 gene
sViP (e) signatures in the KD and MIS-C samples. The only cytokine–receptor pair within the signature, i.e., IL15/IL15RA, are highlighted on the left in red
font in (d). f Schematic displays the 13-transcript whole blood signature (no overlaps with ViP signature genes) previously demonstrated to distinguish KD
from other childhood febrile illnesses37. g and h Bar (top) and violin (bottom) plots display the classification of blood samples that were collected during
acute (AV) and convalescent (CV) visits from two independent KD cohorts (g; Historic Cohort 1; e; Prospective Cohort 2) using 13-transcript KD signature.
FC, febrile control. See also Supplementary Fig. S1 for co-dependence analysis of ViP and KD-13 signatures. Welch’s two sample unpaired two-sided t-test
is performed on the composite gene signature score to compute the p values. In multi-group setting each group is compared to the first control group and
only significant p values are displayed. The p value for comparison between acute KD (AV) and MIS-C (M) is displayed in red font.
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We next analyzed a set of 10 serum cytokines using meso scale
discovery electrochemiluminescence (MSD-ECL) ultra-sensitive
biomarker assay. A panel of 10 target cytokines was prioritized
based on a review of the literature for the reported presence and/
or relevance of each in either KD and/or MIS-C. An unsupervised
clustering of just these 10 cytokines was sufficient to differentiate
acute KD and MIS-C from one-year convalescent KD samples

(Fig. 4a; Cohorts #2 and #3, Supplementary Data 1, Supplemen-
tary Data 2); the convalescent samples served as baseline ‘healthy’
controls in this case. Regardless of their degree of elevation in the
acute setting, all cytokines were virtually undetectable in
convalescent samples (Supplementary Fig. S2, Supplementary
Data 2). While most cytokines were induced indistinguishably in
acute KD and MIS-C (Fig. 4a, b, top), notable exceptions were
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TNFα, IFNγ, IL10, IL8 and IL1β, all of which were elevated to a
greater extent in MIS-C compared to KD (Fig. 4b, bottom), either
significantly (TNFα, IFNγ; Fig. 4b) or trended similarly, but failed
to reach statistical significance (IL10, IL1β, IL8). Gene set
enrichment analyses (GSEA) on the transcriptomic dataset for
each of the differentially expressed cytokines (Fig. 4c) showed
that the gene sets for those pathways were also induced in MIS-C
at levels significantly higher than KD (Fig. 4d–h).

Taken together, these findings suggest that FDA-approved
therapeutics targeting TNFα and IL1β pathways may be beneficial
to treat MIS-C. The IL-1 receptor is expressed in nearly all tissues
and its antagonism by anakinra, a recombinant form of IL-1Ra41,
prevents receptor binding of either IL-1α or IL-1β. Similarly,
infliximab, a chimeric antibody to TNFα, has been repurposed for
COVID-1942–44, and our analyses suggest that this agent holds
promise as a treatment for MIS-C.

Integrated analyses of ViP/sViP signatures, cytokine profile,
and clinical laboratory parameters reveal unique features of
MIS-C and indicators of disease severity. We next sought to
understand how similar host cytokine responses can trigger two
distinct clinical syndromes, and how such responses may drive
features of clinical severity. To this end, we first carried out an
agglomerative hierarchical clustering of the MIS-C and acute KD
samples using both cytokine profiling (MSD) and clinical/
laboratory parameters. This analysis, coupled with correlation
tests (Supplementary Fig. S3) revealed several intriguing obser-
vations: (i) visualization by heatmap showed that compared to
KD, MIS-C patients had higher cytokine levels and more severe
pancytopenia (Fig. 5a); (ii) although platelet counts (PLT), but
not absolute eosinophil counts (AEC) were significantly reduced
in MIS-C compared to KD (Fig. 5b), there was a strong positive
correlation between PLT and AEC in MIS-C, but not KD (Fig. 5c;
left) and strong negative correlations of PLT with IL15 in both
KD and MIS-C (Fig. 5c; right) and with MIP1α in MIS-C, but not
KD (Fig. 5d); (iii) this is consistent with the fact that IL15 and
MIP1α were found to have a strong positive correlation in MIS-C,
but not KD (Fig. 5e). These findings suggest that MIS-C has key
distinguishing features of thrombocytopenia and low eosinophil
counts, and that both features are negatively correlated with the
serum levels of IL15, a key feature of the ViP signature. These
findings also held true when we analyzed the two clinical para-
meters, PLT and AEC, against ViP/sViP signatures, as well as a
specific IL15/IL15RA composite transcript score from whole
blood RNA Seq dataset. We found that PLT and AEC negatively
correlated with ViP (Fig. 5f; top), sViP (Fig. 5f; middle) and a
IL15/IL15RA composite score (Fig. 5f; bottom) in MIS-C, but

such correlations were restricted only to PLT in acute KD. These
findings indicate that MIS-C, but not KD, has at least two distinct
and interrelated clinical features, thrombocytopenia and eosino-
penia, that appear to be related to the degree of induction of ViP
signatures and a IL15-predominant cytokine induction. Findings
also suggest that MIP1α is a key contributor to the immune
response in MIS-C and that its levels are closely and positively
related to the levels of IL15.

These findings reveal key similarities and differences among
MIS-C, KD and COVID-19. Thrombocytopenia, which was more
pronounced in MIS-C and correlated significantly with IL15 and
IL15/IL15RA composite transcript score in both KD and MIS-C,
has also been reported in COVID-19 and postulated because of
various mechanisms45–49. In the case of KD, thrombocytopenia
has been found to be associated with disease severity50. Similarly,
in the case of COVID-19, a large meta-analysis confirmed that
~12% of hospitalized patients have thrombocytopenia, which
represents a sign of disease severity and poor outcomes45.
Thrombocytopenia carried a 3-fold enhanced risk of a composite
outcome of intensive care unit admission, progression to acute
respiratory distress syndrome, and mortality (odds ratio [OR],
3.49; 95% CI, 1.57–7.78), and a subgroup analysis confirmed a
significant association with mortality (OR, 7.37; 95% CI,
2.08–26.14). Eosinopenia appears to be a notable shared feature
between MIS-C and COVID-1951, but not KD. These findings are
consistent with the fact that KD is known to present with higher
(not lower) eosinophil counts, Th2 cytokines IL-4, IL-5, and
eosinophil cationic protein (ECP)52–56. As in the case of
thrombocytopenia, persistent eosinopenia after admission corre-
lated with COVID-19 severity and low rates of recovery57.

ViP/sViP signatures track the severity of two distinct cardiac
phenotypes in MIS-C and KD. We next analyzed the relation-
ship between ViP signatures and the prominent and unique
cardiac phenotype in MIS-C reported by others33–35 and
observed also in our cohort (Fig. 6a), i.e., a significantly reduced
LVEF that can present with cardiogenic shock necessitating
ionotropic support. We found that sViP signature scores, but not
ViP or IL15/IL15RA composite scores correlate significantly with
LVEF (Fig. 6b–d), indicating that LVEF may belong to the
domain of clinical indicators of disease severity in MIS-C
(alongside platelets and AEC), but it may not be directly related
to the IL15-centric cytokine signaling. In KD, the ViP and sViP
signatures were tested earlier (Fig. 1f) and found to distinguish
patients with giant CAA from convalescent samples with ROC
AUC > 0.95. A IL15/IL15RA composite score performed similarly
in distinguishing those samples (Fig. 6e). We hypothesized that

Fig. 3 Performance of ViP/sViP signatures on independent MIS-C datasets and on diverse tissues and in diverse diseases of the immune system.
a–c Severe (s)ViP signature can classify severe MIS-C based on in two independent studies (GSE16648915 and GSE16702838). Schematic in a summarizes
the definition of severe MIS-C. b, c Classification of blood samples in two cohorts of MIS-C subjects, based on the need for ICU management due to the
presence (MYO+) or recovery in the absence (R or MYO−) of myocardial dysfunction using sViP signature. Welch’s two sample unpaired two-sided t-test
is performed to compute the p values. d Bubble plots of ROC-AUC values (radii of circles are based on the ROC-AUC) and the direction of gene regulation
(Up, red; Down, blue) in publicly available datasets using 4 gene signatures: the 166-gene ViP signature, the 20-gene sViP signature, the KD-13 signature,
and finally the IL15/IL15RA composite score. Numbers on top of bubble plots indicate number (n) of control vs. disease samples in each dataset.
Abbreviations: PBMCs peripheral blood mononuclear cells, Mac macrophages, WB whole blood, MTb M. tubercutosis, Flu Influenza, HIV human
immunodeficiency virus, RSV respiratory syncytial virus, JM juvenile myositis, sjia systemic juvenile idiopathic arthritis, SLE systemic lupus erythematosus,
IBD Inflammatory bowel disease, COPD chronic obstructive pulmonary disesase, JDM juvenile dermatomyositis, MS multiple sclerosis, BAL
bronchoalveolar lavage, NOMID neonatal onset multisystem inflammatory disease, MAS macrophage activation syndrome, NLRC4 NLR Family CARD
Domain Containing 4. e Schematic showing the experimental design for studying differentially expressed genes (DEGs) in between KD and MIS-C subjects.
f, g PCA (f) and a clustered heatmap analysis (g) of KD (green, f) and MIS-C (orange, f) samples are shown based on top 2242 genes according to mean
absolute deviation identified using StepMiner algorithm88. Source data are provided. h Reactome pathway analysis of the DEGs between seven KD and
seven MIS-C subjects in f (marked on the PCA). i Venn diagram between 166-gene ViP signature against the DEGs. Number of genes are indicated for
each group in the Venn diagram. 11 overlapping genes between ViP signature and up-regulated in MIS-C are listed at the top.
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the ViP signatures may be related to two distinct cardiac phe-
notypes in severe disease: the signatures in KD may signify the
nature of the vasculitis that drives the formation of CAAs,
whereas the same signature in MIS-C may signify the degree of
cardiomyopathy that impairs contractility (Supplementary
Fig. S4a). Because we were unable to acquire cardiac tissues from
MIS-C-related autopsies, we carried out immunohistochemical

analyses on cardiac tissues from a case of fatal KD. We found that
both IL15 and IL15RA were expressed in the cardiomyocytes and
coronary arterioles amidst extensive fibrosis, as detected using
Masson’s trichrome stain (Supplementary Fig. S4b).

Together, these findings suggest that the IL15/IL15RA induc-
tion we see in COVID-19, KD and MIS-C may have distinct
sources and/or target end organs: We previously showed
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prominent induction of IL15/IL15RA in the lung alveoli of fatal
COVID-19 patients18, and here we show it in the coronary
arteries and cardiomyocytes in KD. However, the latter claim has
some notable caveats: (i) it is based on one fatal KD and no MIS-
C tissue, hence, may not be representative of what happens in
every KD heart; (ii) the induction of IL-15/IL-15R may be
consistent with systemic hyperinflammation, but immune cell
infiltration in the heart was not evident; (iii) because IL-15 has
been implicated in a wide range of cardiovascular diseases58 and
was previously shown to be implicated in cardiomyocyte
survival59 during oxidative stress, alternative explanations other
than hyperinflammation could be at play. Thus, further studies
are required to determine if the findings in KD and MIS-C can be
generalized and to determine what may be the impact of IL-15/IL-
15R expression in the heart.

Discussion
Using a combination of publicly available KD datasets and newly
recruited cohorts of KD and MIS-C subjects (summarized in
Fig. 7a) and a set of gene signatures we report an unexpected
discovery regarding the host immune response in these diagnoses.
Our findings show that two distinct clinical syndromes, KD,
which predates the current pandemic by 6 decades, and the novel
COVID-19, share a similar profile of host immune response. The
same host immune response is seen also in MIS-C, a new disease
that co-emerged with COVID-19, which has some overlapping
features with KD (i.e., clinical presentation, pediatric, etc.), and
yet is an immune response to the virus that causes COVID-19
(Fig. 7b). We assessed the quality and intensity of the host
immune response in these syndromes with a powerful and
unbiased computational tool, the ViP signatures18. Challenging to
our previous understanding of MIS-C as post-infectious syn-
drome, recent studies have revealed a prolonged presence of viral
replication60 and dendritic cell exhaustion caused by the persis-
tence of the antigen61. The use of this computational tool was
rationalized because MIS-C is triggered by exposure to a virus
and therefore, the induction of the ViP signatures in the acute
phase, followed by their reduction during convalescence was
anticipated. Previously we had demonstrated the usefulness of the
ViP signatures to define and measure the host immune response
in COVID-19, identify the site/source of the cytokine storm, track
disease severity, objectively formulate therapeutic goals and track
the effectiveness of emerging drugs/biologics18. We now show
that the same ViP signatures can objectively demonstrate the
shared immunophenotypes between all three syndromes
(COVID-19, KD and MIS-C), which features an upregulation of
the IL15/IL15RA pathway. That a 13 transcript KD-specific sig-
nature that was previously shown to distinguish KD from other
non-KD febrile illnesses37 failed to distinguish KD from MIS-C,
further confirmed that KD and MIS-C share similar molecular

markers of disease and hence, are fundamentally similar at the
molecular level (summarized in Fig. 7b). Findings were confirmed
also using conventional approaches (PCA and hierarchical
agglomerative clustering followed by DEG analyses). Taken
together, these results are in keeping with what has been observed
by Consiglio et al. 13, who found KD and MIS-C to be clustered
together in a PCA analysis of plasma proteins. These findings
suggest that the two clinical syndromes not just share common
clinical features (e.g., rash, fever, etc.), but may also share prox-
imal pathways of immunopathogenesis.

Despite the high-level broad similarities, the ViP signatures
also helped identify key differences in clinical/laboratory para-
meters that may help distinguish MIS-C from KD. First, although
the ViP signatures placed KD and MIS-C on the same host
immune continuum, the degree of host immune response in MIS-
C is significantly higher than KD by all measures tested (i.e., ViP,
sViP, IL15/IL15RA and KD-13 signatures and direct measure-
ment of serum cytokines). Higher ViP signatures in MIS-C
tracked three major clinical and/or laboratory parameters (see
Fig. 7b): (i) degree of thrombocytopenia in severe cases (all three
diseases); (ii) eosinopenia (in COVID-19 and MIS-C, but not KD)
and (iii) impaired cardiac contractility (unique to MIS-C; but not
KD); (iii) an integrated analysis of serum cytokines and tran-
scriptomics revealed that the proinflammatory MIP1α, TNFα,
and IL1 pathways are significantly induced in MIS-C compared to
KD. In light of these findings, a rational approach to MIS-C
treatment would be to combine the FDA-approved drugs
anakinra41 and infliximab42–44. In fact, during the preparation of
this manuscript a new study has already shown favorable out-
come in MIS-C with the use of Infliximab62. Furthermore, our
findings are consistent with the recently released guidelines by the
American College of Rheumatology for initial immunomodula-
tory treatment of MIS-C63; it is noteworthy that these guidelines
were released while this work was under review.

Finally, our findings reveal a pattern of MIS-C-defining
molecular features (IL15/IL15RA, MIP1α, TNFα, and IL1 path-
ways) and clinical and laboratory parameters (thrombocytopenia,
eosinopenia, and reduced myocardial function). For example,
MIP1α elevation shows strong correlations with clinical features
of disease (low PLT, high IL15 and low AEC) in MIS-C, but not
KD. This suggests two things—(i) that despite shared proximal
proximal pathways of immunopathogenesis (i.e., IL15/IL15RA-
centric cytokine storm), the immunopathogenesis of KD and
MIS-C may diverge distally; and (ii) that IL15/IL15RA, eosino-
penia and thrombocytopenia may be inter-related phenomena in
the setting of infection and inflammation. Platelets, besides their
role in hemostasis, they are known to participate in the interac-
tion between pathogens and host defense64–66. Persistent
thrombocytopenia carried higher mortality in sepsis67,68, and in
COVID-1969,70. Our analysis revealed a direct and unusually

Fig. 4 Serum cytokine arrays and whole blood transcriptomes reveal the severity and nature of the cytokine storm in MIS-C that distinguishes it from
KD. a Heatmap displays the results of unsupervised clustering of sub-acute and acute KD (KD-SA, KD-AV; n= 10 each) and MIS-C (n= 10) subjects using
the cytokine profiles determined by mesoscale (MSD). Red= cytokines differentially expressed between MIS-C and KD. See also Supplementary Fig. S2 for
violin plots for individual cytokines. b Source data are provided as a Supplementary Data 2. Violin plots display the shared (top panels; IL15, MIP1a, IL2, IL6
and VEGF) and distinct (bottom panels; IFNγ, IL1β, IL8, IL10, and TNFα) features of the cytokine storm in MIS-C vs. KD subjects. Statistical significance was
determined by one-way ANOVA followed by Tukey’s test for multiple comparisons. c Schematic shows the process used to integrate serum cytokine array
results with whole blood RNA Seq data; cytokines that were differentially expressed in MIS-C were used to inform GSEA of the corresponding pathways.
d–f Gene set enrichment analysis (GSEA pre-ranked analysis) of three pathways derived from MSigDB: SANA TNF SIGNALING UP (d), TIAN TNF
SIGNALING VIA NFkB (e), and SANA RESPONSE TO IFNG UP (f) demonstrate the significance of TNF (d, e) and IFNG (f) pathway activation in MIS-C.
g, h Down-regulated genes after IL1B (g) and IL10 (h) stimulation were derived from differential expression analysis of GSE44722 (n= 269 genes), and
GSE61298 (n= 208 genes) respectively. GSEA pre-ranked analysis to test the significance of IL1B and IL10 pathway is performed like panels d–f using the
down-regulated genes. GSEA pre-ranked analysis computes nominal pvalue and FDR using an empirical phenotype-based permutation test procedure. No
adjustments were made for multiple comparisons because of single hypothesis testing. Source data are provided as a Source Data file.
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strong correlation between thrombocytopenia and eosinopenia in
MIS-C. Eosinophils, on the other hand, as reviewed elsewhere71,
have important antiviral properties, attributed to their granular
proteins (e.g., eosinophil-derived neurotoxin, cationic protein)
that display antiviral activities against single-stranded RNA
viruses. Eosinophils can also support viral clearance72. Eosino-
penia, in the setting of acute infection, has been found to be a

direct response to infectious stimuli73, TLR4 ligands and che-
motactic factors74, and has been considered a reliable diagnostic
marker of infection75 in critically ill patients and a predictor of
mortality75–77. Of relevance to the pediatric syndrome MIS-C,
eosinopenia is encountered in about a 1/3rd of the pediatric
COVID-19 subjects78. It is noteworthy that eosinopenia (defined
as an eosinophil count <15 cells/µL and an eosinophil
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Fig. 5 An integrated analysis of mesoscale (cytokine) data, ViP/sViP transcriptomic signatures and laboratory and clinical parameters reveals
features that are unique to MIS-C. a Heatmap displays the results of hierarchical agglomerative clustering of acute KD (KD-AV; n= 10) and MIS-C
(n= 10) subjects using the cytokine profiles determined by mesoscale (MSD) and the laboratory features. Source data are provided as a Source Data file.
b Violin plots display PLT (platelet) and AEC (absolute eosinophil counts) in KD and MIS-C (unpaired two-sided Student’s t-test used to test significance).
c–e Correlation test (two-sided test of the slope of the regression line compared to zero) between AEC and PLT (c; left) and IL15 and PLT (c; right), and
MIP1α and PLT (d) and MIP1α and IL15 (e) are shown, and significance was calculated and displayed using GraphPad Prism 9. Significance: ns: non-
significant, ****p < 0.0001. See Supplementary Fig. S3 for all possible correlation tests between clinical and cytokine data in KD, MIS-C and COVID-19.
f Correlation tests between PLT (left) or AEC (right) on the Y-axis and gene signature scores on the X-axis [either ViP (top), sViP (middle) or a IL15/IL15RA
composite (bottom)] were calculated and displayed as scatter plots using python seaborn lmplots with the p-values. The confidence interval around the
regression line is indicated with shades. g Schematic summarizing the findings in MIS-C based on laboratory and RNA seq analysis.
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Fig. 6 ViP/sViP signatures correlate with two distinct cardiac phenotypes in MIS-C and KD. a Violin plots display the left ventricular ejection functions
(LVEF) in KD and MIS-C patients. Statistical significance was determined by unpaired two-sided Student’s t-test. b–d Correlation tests (two-sided test of
the slope of the regression line compared to zero) between LVEF (Y-axis) and gene signature scores on the X-axis [either ViP (b), sViP (c), or a IL15/IL15RA
composite (d)] are displayed as a scatter plot and significance was calculated and displayed as in Fig. 5f. The confidence interval around the regression line
is indicated with shades. e Bar and violin plots show how a IL15/IL15RA compositive score varies between KD samples. The score classifies KD-AV with
giant CAAs from control (KD-CV) samples with a ROC AUC 0.95. Welch’s two sample unpaired two-sided t-test is performed on the composite gene
signature score to compute the p values. In multi-group setting each group is compared to the first control group and only significant p values are displayed.
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percentage < 0.25%) is a known poor prognostic factor for
admissions into the pediatric ICU (hazard ratio [HR]: 2.96;
P= 0.00879). It is possible that the two related clinical/laboratory
parameters (low PLT and AEC) may be useful indicators of
disease severity and prognosis in MIS-C and may guide decision-
making in therapy and level of care in the hospital setting.

The strength of our study lies in the concurrent analysis of KD
and MIS-C samples, our access to relatively large and indepen-
dent cohorts of patients (in the case of KD), our ability to include
age-matched pediatric healthy controls and febrile controls (non-
KD and non-MIS-C, both pre-pandemic), and that all samples
were drawn prior to the initiation of treatment. In doing so, this

study overcomes some of the limitations of prior studies12,14,16.
Another strength is the use of a set of ViP signatures (that were
validated in COVID-19)18 and a KD-diagnostic signature37 as the
computational framework to compare the two syndromes. Last,
but not the least, the multi-omics approach used here on samples
obtained from the same patients allowed us to predict and vali-
date the prominent upregulation of one shared cytokine pathway
(i.e., IL15) at both transcript and protein level. Notable limita-
tions of our study include a relatively small sample size of MIS-C
subjects (n= 12), limited number of publicly available MIS-C
datasets for independent validation, and our inability to access
cardiac tissue from KD and MIS-C subjects. Future studies on
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emerging datasets will enable rigorous validation of the analysis
presented here.

Methods
Kawasaki disease (KD), multisystem inflammatory syndrome in children
(MIS-C), febrile control (FC) subjects. All KD subjects met the American Heart
Association (AHA) criteria80 for complete or incomplete KD and subjects in this
study were enrolled before the SARS-CoV-2 pandemic. Demographic and clinical
data including echocardiography data and laboratory values were prospectively
collected and entered into an electronic database. Coronary artery Z-scores were
classified according to the AHA 2017 guidelines as follows: normal <2.0; dilated,
2 ≤ Z < 2.5; aneurysm: 2.5 < Z < 10.0; and giant aneurysm, ≥10.0.

All MIS-C patients met the case definition from the Centers for Disease Control
and Prevention. Subjects were enrolled prospectively with collection of acute, pre-
treatment samples. Demographic and clinical data including echocardiography
data and laboratory values were prospectively collected and entered into an
electronic database.

Febrile control patients had fever of at least three days duration and at least one
mucocutaneous feature of KD including rash, conjunctival injection, or mucosal
erythema. All were enrolled prior to the onset of the pandemic.

The final diagnosis for the control patients was adjudicated by a pediatric
infectious disease specialist (J.C.B.) and by a pediatric emergency room physician
(J.K.) at least 2 months after initial presentation when testing results and clinical
outcome were known. The final diagnoses of the 30 FC were defined by PCR or
viral culture and included the following infections: 12 adenovirus, 5 EBV, 2
metapneumovirus, 3 rhinovirus, 3 influenza, 2 parainfluenza, 2 RSV, and 1 measles.

The characteristics of patient cohorts that were part of this study are included in
Supplementary Data 1. The study protocol was reviewed and approved by the
institutional review board at UCSD (UCSD # 14020). Written informed consent
from the parents or legal guardians and assent from patients were obtained as
appropriate. For all the deidentified human subjects, information including age,
gender, and previous history of the disease, was collected from the chart following
HIPAA guidelines. The study design and the use of human study participants was
conducted in accordance with the criteria set by the Declaration of Helsinki.
Patients were not compensated for their participation in this study.

Collection of blood samples and RNA isolation. Whole blood was collected into
PAXgene® tubes (PreAnalytiX) for RNA and into red top tubes for serum before
the initiation of any treatment (illness day ≤10) for the KD, MIS-C and FC subjects
(illness day <15 for some FC subjects) and at the clinic visit (day 17–25 of Illness
for subacute and day 289–3240 of Illness for late convalescent) for the KD subjects.
RNA was extracted following manufacturer’s instruction (PAXgene Blood miRNA
Kit). Serum was separated immediately by centrifugation and stored at −80 °C
until use.

Tissue samples. We obtained formalin-fixed, paraffin-embedded tissues from a 4-
year-old female who died 9 months after KD onset due to thrombosis of giant
aneurysms. Written consent was obtained from the parents. The tissue sampling
protocol was reviewed and approved by the Institutional Review Board at UCSD
(UCSD# 180587).

ViP and severe (s)ViP signatures. ViP (Viral Pandemic) signature is derived
from a list of 166 genes using Boolean Analysis of large viral infection datasets
(training datasets: GSE47963, n= 438; GSE113211, n= 118). This 166-gene sig-
nature was conserved in all viral pandemics, including COVID-19, inspiring the
nomenclatures ViP signature18. A subset of 20-genes classified disease severity
called severe-ViP signature using an additional cohort (GSE101702, n= 159)18. To
compute the ViP signature, first the genes present in this list were normalized
according to a modified Z-score approach centered around StepMiner threshold
(formula= (expr-SThr)/3*stddev). The normalized expression values for every
probeset for 166 genes were added together to create the final ViP signature. The
severe ViP signature is computed similarly using 20 genes. The samples were
ordered finally based on both the ViP and severe-ViP signature. A color-coded bar
plot is combined with a violin plot to visualize the gene signature-based
classification.

Data analysis. Several publicly available microarrays and RNASeq databases were
downloaded from the National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO) website81–83. Gene expression summarization
was performed by normalizing Affymetrix platforms by RMA (Robust Multichip
Average)84,85 and RNASeq platforms by computing transcripts per millions
(TPM)86,87 values whenever normalized data were not available in GEO. We used
log2(TPM+ 1) as the final gene expression value for analyses. GEO accession
numbers are reported in figures, and text. KD/MIS-C RNASeq datasets were
processed using salmon. Batch correction was performed using ComBat_seq R
package.

StepMiner analysis. StepMiner is a computational tool that identifies step-wise
transitions in a time-series data88. StepMiner analysis is used to identify the
threshold to convert continuous gene expression values into Boolean values (High/
Low). StepMiner performs an adaptive regression scheme to identify the best
possible step up or down based on sum-of-square errors. The steps are placed
between time points at the sharpest change between low expression and high
expression levels, which gives insight into the timing of the gene expression-
switching event. To fit a step function, the algorithm evaluates all possible step
positions, and for each position, it computes the average of the values on both sides
of the step for the constant segments. An adaptive regression scheme is used that
chooses the step positions that minimize the square error with the fitted data.
Finally, a regression test statistic is computed using Eq. (1)

F stat ¼
∑
n

i¼1
ð bXi � �XÞ2=ðm� 1Þ

∑
n

i¼1
ðXi � bXiÞ

2
=ðn�mÞ

ð1Þ

where Xi for i ¼ 1 to n are the values, bXi for i ¼ 1 to n are fitted values. m is the
degrees of freedom used for the adaptive regression analysis. �X is the average of all
the values: �X ¼ 1

n �∑n
j¼1Xj: For a step position at k, the fitted values bXl are

computed by using Eq. (2)

1
k
� ∑

n

j¼1
Xjfor i ¼ 1 to k and

1
n� kð Þ � ∑

n

j¼kþ1
Xjfor i ¼ kþ 1 to n ð2Þ

Boolean analysis. Boolean logic is a simple mathematic relationship of two values,
i.e., high/low, 1/0, or positive/negative. The Boolean analysis of gene expression
data requires the conversion of expression levels into two possible values. The
StepMiner algorithm is reused to perform Boolean analysis of gene expression
data89. The Boolean analysis is a statistical approach which creates binary logical
inferences that explain the relationships between phenomena. Boolean analysis is
performed to determine the relationship between the expression levels of pairs of
genes. The StepMiner algorithm is applied to gene expression levels to convert
them into Boolean values (high and low). In this algorithm, first the expression
values are sorted from low to high and a rising step function is fitted to the series to
identify the threshold. Middle of the step is used as the StepMiner threshold. This
threshold is used to convert gene expression values into Boolean values. A noise
margin of 2-fold change is applied around the threshold to determine intermediate
values, and these values are ignored during Boolean analysis.

Boolean equivalent correlated clusters (BECC) analysis. BECC analysis19 is
based on Boolean Equivalent89 relationships, pair-wise correlation and linear
regression analysis. BECC analysis identified ViP and severe-ViP signature using
the BooleanNet statistic18.

Heatmaps, hierarchical agglomerative clustering, PCA, differential expression
analysis. Gene expression values were normalized according to a modified Z-score
approach centered around StepMiner threshold (formula=(expr- SThr)/3*stddev).
The samples were ordered according to average of the normalized gene expression
values in the largest cluster along the Boolean path. The heatmap use red colors for
the high values, white colors for the intermediate values and blue colors for low
values. Gene names for few selected genes are highlighted on the left to show their
expression patterns. Rows and columns are ordered based on hierarchical
agglomerative clustering using python seaborn (version 0.10.1) clustermap func-
tion. Dendrograms are displayed for both rows and columns. Principal component
analysis (PCA) was performed using sklearn PCA algorithm. PCA and hierarchical
clustering algorithm is performed on top genes based on mean absolute deviation.
StepMiner threshold was used first on the mean absolute deviation numbers to find
high values and a second StepMiner threshold was performed to split the high
values into top genes based on mean absolute deviation. Differential expression
analysis was performed using DESeq2 in R with adjusted pvalue threshold of 0.1
and log2 fold change threshold of 0.5.

Statistical analyses. Gene signature is used to classify sample categories and the
performance of the multi-class classification is measured by ROC-AUC (receiver
operating characteristics area under the curve) values. A color-coded bar plot is
combined with a density plot to visualize the gene signature-based classification.
All statistical tests were performed using R version 3.2.3 (2015-12-10). Standard t-
tests were performed using python scipy.stats.ttest_ind package (version 0.19.0)
with Welch’s two sample t-test (unpaired, unequal variance (equal_var= False),
and unequal sample size) parameters. Multiple hypothesis correction were per-
formed by adjusting p values with statsmodels.stats.multitest.multipletests (fdr_bh:
Benjamini/Hochberg principles). The results were independently validated with R
statistical software (R version 3.6.1; 2019-07-05). Differential expression analysis
was performed in DESeq2 in R. Pathway analysis of gene lists were carried out via
the Reactome database and algorithm90. Reactome identifies signaling and meta-
bolic molecules and organizes their relations into biological pathways and pro-
cesses. Kaplan–Meier analysis is performed using lifelines python package version
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0.14.6. Violin, Swarm and Bubble plots are created using python seaborn package
version 0.10.1. Principal component analysis (PCA) was performed using sklearn.
The source code for Boolean analysis framework is available at https://github.com/
sahoo00/BoNE and https://github.com/sahoo00/Hegemon.

RNA sequencing. For polyA capture: Total RNA was assessed for quality using an
Agilent Tapestation 4200, and samples with an RNA Integrity Number (RIN)
greater than 8.0 were used to generate RNA sequencing libraries using the TruSeq
Stranded mRNA Sample Prep Kit with TruSeq Unique Dual Indexes (Illumina, San
Diego, CA). Samples were processed following manufacturer’s instructions, mod-
ifying RNA shear time to five minutes. Resulting libraries were multiplexed and
sequenced with 100 basepair (bp) paired end reads (PE100) to a depth of
approximately 50 million reads per sample on an Illumina NovaSeq 6000. Samples
were demuxltiplexed using bcl2fastq v2.20 Conversion Software (Illumina, San
Diego, CA). For ribosomal/globin depletion: Library preparation and sequencing of
30 million 75 or 100 bp paired end reads was conducted using the Illumina’s
TruSeq RNA Sample Preparation Kit, ribosomal and globin RNA depletion was
performed using the Illumina® Ribo-Zero Gold kit and HiSeq 4000 at The Well-
come Center for Human Genetics.

Human serum cytokines measurement. Human serum cytokines measurement
was performed using the V-PLEX Custom Human Biomarkers from MSD plat-
form. Human serum samples fractionated from peripheral blood of KD and MIS-C
patients (all samples collected prior to the initiation of treatments) were analyzed
using customized standard multiplex plates as per the manufacturer’s instructions.

Immunohistochemistry. Formalin-fixed, paraffin-embedded heart tissue sections
from COVID19 and KD patients were stained anti-human IL15 receptor A poly-
clonal antibody (11:200 dilution; proteintech®, Rosemont, IL, USA; catalog# 16744-
1-AP) and anti-human IL15 monoclonal antibody (1:10 dilution; Santa Cruz
Biotechnology, Inc., Dallas, TX, USA; catalog# sc-8437) after heat-induced antigen
retrieval with Tris buffer containing EDTA (pH 9.0). Sections were then incubated
with respective HRP-conjugated secondary antibodies followed by DAB and
hematoxylin counterstain (Sigma-Aldrich Inc., MO, USA; catalog# MHS1), and
visualizing by Leica DM1000 LED (Leica Microsystems, Germany).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. All data is available in the main text or
the Supplementary materials. The GEO datasets generated in this work can be accessed at
GSE178491. Publicly available datasets used: GSE109351; GSE73464; GSE15297;
GSE68004; GSE18606; GSE9863; GSE63881; GSE73577; GSE16797; GSE166489;
GSE126124; GSE166489; GSE167028; GSE11545; GSE116946; GSE100150; GSE147608;
GSE122552; GSE79970; GSE149050; GSE153781; GSE148810; GSE75023; GSE27864;
GSE21835; GSE57253.

Code availability
The software codes are publicly available at the following links: https://github.com/
sahoo00/BoNE91 and https://github.com/sahoo00/Hegemon92.
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