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Abstract

Design, Operation and Assessment of Process Systems Integrating

Demand-Side Management Through Mathematical Optimization

With the increasing penetration of intermittent energy resources such as solar and wind

power, the issue of instantaneous mismatch between power generation and power demand

has become increasingly severe and difficult to deal with. Adapting to such an energy

paradigm, electricity markets have become more and more volatile, jeopardizing the sta-

bility of the power grid and potentially causing significant damage to the network. One

solution to address such a challenge is to adopt Demand Response (DR) policies, where

the consumers of electricity will modify or reduce their electricity usage from their nor-

mal consumption patterns responding to the changes in the electricity price or incentives

offered. As one of the largest electricity consumers, the process industry could potentially

benefit from demand response operation, such as lowering the production capacity when

the electricity price is high and raising it when the electricity price is lower. However,

such flexible process operation usually depends on two main factors: fast response to the

price or incentive signals and large capacity allowing flexible operation, both of which will

depend on the underlying process design. While process operation under a volatile elec-

tricity market has attracted a lot of attention from researchers, the design of DR-enabled

chemical processes has received limited scrutiny.

Motivated by above considerations, this dissertation focuses on developing a process

design and analysis framework to integrate process design and process operation, with

the consideration of DR. The first part of the dissertation will focus on developing the

framework to design process networks, allowing varied operating levels, as well as enabling

optimal process flow sheet reconfiguration under different DR scenarios. The second part

of the dissertation will focus on developing the framework and proposing new metrics

to evaluate and quantify the ability and potential of the process to participate in DR

programs (i.e., DR-particibility).
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Chapter 1

Introduction

1.1 Motivation
With the increasing penetration of renewable energy resources such as solar and wind

energy into the power grid, the issue of instantaneous mismatch between power generation

and power demand has become increasingly severe and difficult to deal with. In California,

for instance, where state lawmakers recently re-affirmed the goal of 100% carbon-free

retail electricity by 2045 [2], this issue has become the focus of ongoing debate. As the

diminishing solar power coincides with the peaking electricity demand during the early

evening hours, a 3-hour ramp of 13,000 MW were required on the generation side during

a typical spring day in the year 2020 [3]. This challenge in the California grid system

could be seen in Figure 1.1, where the net load is defined as the total electricity generated

minus the energy generated from solar and wind resources. As one can clearly note, during

the daytime, the net load will go down as the majority of the electricity will come from

solar; however, when the evening arrives and the solar power starts to diminish, there is

a steep increase in the requirement of the net load. Meanwhile, the energy requirement

also peaks around this time. Such a steep ramp threatens the stability of the power grid

and causes electricity over-generation, which usually results in a negative price of power

in the spot market. Also, a steeper ramp might trigger frequent curtailment from the

renewable resources. With more and more solar power becoming available in the grid, the

risk of over-generation will keep growing and thus pose a significant challenge to the grid
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operators.

Figure 1.1. The "Duck Curve" in the California grid system

1.2 Background on electricity markets
In a power grid, electrical energy is generated by power generating resources, sent through

high-voltage transmission lines and then converted to lower voltage, and then distributed

to consumers. In a regulated environment, generation, transmission, and distribution are

managed by one entity, which is referred to as a vertically integrated utility; this utility

holds the monopoly for the supply of electricity. Since the 1990s, the electricity markets

in the United States have become deregulated, resulting in a variety of regulations and

market designs overseen by the Federal Energy Regulatory Commission (FERC). Differ-

ent parts of the power grid system are owned and operated by different participants, and

electricity markets provide a platform for a variety of trading and competition activities

among those participants. As shown in Figure 1.2, there are generally several participants

in the electricity market: the power generators who own the power generation resources

such as solar panels or traditional firepower plants, the transmission line owners who own

the transmission cables and transformers, the distributors, the retailers who purchase

the electricity in bulk from the wholesale market and resell it to the end customers and

large/small electricity consumers. Before the deregulation, from the power generation to

the consumer, this relationship was essentially a vertical line and the whole process was

2



owned by a single party. In a deregulated market, for example, a small-end electricity

customer with household solar panels installed could potentially become both a seller of

the electricity as well as a customer (consumer). Depending on the market structure and

the deregulation level, the roles of the market participants could be very different and

complicated. Thus, to guarantee the operation of the grid and to maintain its reliability,

typically, a grid operator, commonly referred to as the Independent System Operator

(ISO), manages the transmission network and monitors the wholesale market. The elec-

tricity market could be roughly divided into two different markets: a wholesale market

and a retail market. In general, small electricity consumers belong to the retail market

and for large electricity consumers such as the chemical process industries, the electricity

is usually purchased from the wholesale market.

Figure 1.2. Participants in deregulated electricity markets

1.3 Background on demand response and demand-side
management

To mitigate the increasing challenges in the renewable energy penetration, there are gen-

erally two different approaches. The first one is to invest in a large battery system to

store the electricity and utilize the stored electricity when needed. However, the cheap

and easily achievable battery is only recently becoming available to the market, and thus

the purchase price for the battery is often high. It is estimated that the utility-scale bat-

tery cost is around $625/kWh [4], which is still significantly higher than the average price

3



purchased through the market. Another approach is to implement a Demand Response

(DR) strategy. As defined by the FERC [5], DR refers to “changes in electric usage by

demand-side resources from their normal consumption patterns responding to economic

incentives and dynamic pricing structures at times of high wholesale market prices or

when system reliability is jeopardized.” Demand-side management plays an important

role in coordinating energy generation and consumption in the smart grid, where DR is

expected to reduce net peak power demand in the US by about 5% (or about 50GW) over

the next ten years [6].

DR has become increasingly important as a strategy for balancing the power supply

and demand under an ambitious renewable portfolio standard, keeping the electric grid

stable and efficient; deferring upgrades to generation, transmission and distribution sys-

tems; and providing other economic benefits to customers. Energy-intensive industries

could participate in the electricity market through different DR mechanisms, providing

stability to the grid system as well as lowering their operating costs ([7]). Generally, it

is well-recognized that participation in the DR market requires that the specific energy-

intensive process have sufficient operational flexibility, and that the process dynamics

should also be fast enough to respond to the rapidly changing electricity price trends.

One of the current bottlenecks for residential and commercial applications in terms of

their ability to participate in the DR market is the lack of advanced control equipment;

yet for large-end industrial electricity users, the cost of advanced metering to facilitate

DR participation does not appear to be a significant barrier ([8]); rather, DR design is a

critical consideration when decisions for investments are made.

As defined in [9] Demand-side management (DSM) "encompasses systematic activities

at the interplay between system operator and electricity consumer aiming at changing

the amount and/or timing of the consumer’s use of electricity in order to increase grid

performance and consumer benefits. DSM activities on the system operator side involve

the assessment of the need for load adjustment and the creation of financial incentives for

the consumer, while the consumer reacts to these financial incentives and performs the

actual physical load adjustment operations". There are two main DSM categories: the

4



energy efficiency (EE) and the aforementioned DR.

DR services can be usually categorized as either dispatchable or non-dispatchable types

[10]. Dispatchable DR refers to the electricity usage profile adjustment responding to the

DR events, while the non-dispatchable DR refers to the load profile adjustment responding

to the price signals. While in different ISOs, the detailed mechanism or the payment of

the participation of the DR services can be different, the general idea of dispatchable

DR is usually incentive-driven while the non-dispatchable DR is price-driven [11]. In

dispatchable DR, the electricity consumer agrees to participate in certain services to a

certain degree, then, when there is an event, the grid operator will order the electricity

consumer to perform a specific activity, such as decreasing the energy usage. Such a DR

service, from the electricity consumer’s perspective, is "dispatched" to the grid operator.

While such successfully implemented DR services will have an incentive, failing to do so

might incur penalties. Thus, the capability to participate in the dispatchable services

requires careful examination. On the other hand, non-dispatchable DR is a price-driven

process. Usually, the electricity consumer will follow the electricity price variation to

determine the potential operating levels. As when to lower the load consumption or when

to increase, the decision is still made by the electricity consumer. Thus, in general, a

judicious choice of the DR activity can offer significant economic benefits to the process

industries.

1.4 DSM in the process industry
Although DR is a promising approach to increase demand flexibility, the potential peak

reduction from DR programs in the US was only 6.6% of the peak demand in 2015 [5]. The

reason for this is that electricity is a resource whose value for consumers is much higher

than its price. In the industrial category, chemical processes are promising contributors

due to several factors [12]. Firstly, process plants are usually equipped with advanced

meters for control and monitoring purposes that could facilitate the implementation of

DR. Moreover, chemical processes can easily incorporate excess capacity to store excess

product. The economic potential of DR operation or DSM in energy intensive industries
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has been widely recognized through a number of recent studies focusing on various appli-

cations such as air separation [13–15], chlor-alkali production [16, 17], cement and pulping

[18], steel production [13], aluminum smelting [19], and oil refining [20]. Its impact on

the electricity power infrastructure such as combined heat and power plants has also been

studied [21], in addition to studies on concentrated solar power plants [22–24]. A signifi-

cant majority of the earlier work in this area formulated the problem using mixed-integer

linear programming (MILP) models, where the optimal process scheduling sequence that

minimizes the total operating cost under time-varying electricity prices is determined. In

[13] MILP models were developed to account for different operating modes and the mode

transitions that lead to the most cost-effective scheduling policy. Later studies focused

on the integration of the scheduling problem with process dynamics. Tong et al. [25]

introduced a decomposition scheme to perform process scheduling while optimizing the

controller parameters that can manage the scheduling sequence under time-varying elec-

tricity prices. Kelley et al. [15] proposed an MILP scheduling model to account for the

process dynamics using a low-order model. In addition to the studies focusing on oper-

ational strategies, several other studies have focused on electricity contract procurement

or price bidding strategies. For example, Zhang et al. [26] considered the production

scheduling and electricity procurement simultaneously and incorporated the conditional

value-at-risk in the model to study the optimal scheduling problem in the presence of

electricity contracts. Additionally, other DR participation mechanisms have also been

investigated including reserve market [27], and interruptible load problems [28].

The above-mentioned studies supporting DR capabilities for process systems have all

been in the area of the production scheduling and capacity planning; very few attempts

have been made to solve the process design problem with the explicit goal of DSM. As

an example, Pattison and Baldea [29] developed a pseudo-transient steady-state model

to study the optimal design of air separation units operated at different capacities under

varying electricity prices. Cao et al. [30] investigated the design limitations of a cryogenic

nitrogen plant under product demand and electricity price fluctuations using a two-tier

model, where operating points were decided using a dynamic model and the implementa-
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tion was addressed via dynamic optimization. In both of these studies, a framework was

proposed to incorporate process dynamics into the process flow sheet, but the focus was

on the equipment design and the flow sheet was assumed to be fixed. As the design of a

plant or a process would usually have significant impact on its operation, we argue that

in an environment of varying energy prices and resources, as well as product demand, a

fixed plant structure (flow sheet) might be disadvantaged in the sense that it could only

respond to such variations through dynamic shifting of operational levels.

Recently, the operation of a process with direct participation in the short-term market

(e.g., Five-Minute Ahead Market) has gained significant attention among researchers (see,

for example, [24, 31, 32] for frequency control). Participation in the short-term market

requires the fast response from the processes to the price signals. Otashu et al. [33] per-

formed a first-principle optimization-based simulation on a chlor-alkali plant, and noticed

that the open-loop control of the electrolyzers will cause violation of the safety require-

ments, yet there will be economics benefits for such operation. Further investigations are

required to explore the closed-loop operation. Also, model-based bidding strategies for

industrial processes have been investigated (e.g., see [34]). While the above works have

investigated the participation of a fixed plant into the time-varying electricity market,

the flexibility potential on the demand side from the design perspective have not been

addressed. Teichgraeber et al. [35] explored the capacity design of a chlor-alkali plant

under the real-time electricity market (RTM). While the integration of control towards a

short-term market have gained interest, none of the current studies directly addressed the

impact of process design or process dynamics (and the associated costs) on the ability of

the process to participate in DR services.

Incorporating DR objectives directly into the design and operation of chemical pro-

cesses needs to take account of the plant capacity design as well as the intrinsic process

dynamics, which usually introduces significant nonlinearities into the modeling. Further-

more, the design stage is usually at a different time scale compared to the DR operational

decisions, which in general is in hours or even minutes, and thus a multi-scale model is

usually required, often leading to an intractable model, where the impact of design on the
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DR capability is difficult to quantify.

1.5 Objectives and organization of the dissertation
Motivated by the points highlighted in the previous section, the broad objectives of this

dissertation are:

• To address demand-side management considerations explicitly in the process design

problem.

• To develop a flexible framework for process design, integrating process network

reconfiguration under demand-side management.

• To develop a model-based analytical framework for evaluating the cost-effectiveness

of process design alternatives regarding their ability to participate (i.e., particibility)

in Demand Response (DR) services.

The rest of the dissertation is divided in two parts. In the first part, Chapter 2.3

and Chapter 3, we focus on the flexible design of process networks. The objective is

to evaluate the design of a reconfigurable process network that could satisfy the DR

requirements. We implement a mathematical modeling and optimization approach to

evaluate two different power-intensive process networks focusing on flexible design. The

second part of the dissertation, including Chapter 4 and Chapter 5, will focus on the

development of a metric and analysis framework to quantify the process DR particibility,

which is defined as the ability of a process to participate in the DR markets by taking

advantage of the integration of design and the operational levels.

More specifically, the presentation of the material is organized as follows:

Chapter 2 introduces the superstructure optimization and offers a detailed model of

the work-heat exchange network. The work-heat exchange network will then be studied

to demonstrate the concept of the reconfigurable process design under different electricity

price scenarios in a heuristic way.

Chapter 3 presents the flexible design network problem formulation using stochastic

programming and the solution strategy using the progressive hedging algorithm, followed
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by a case study involving a pump network system. A mathematical model that enables

process network reconfiguration under demand-side management is introduced.

Chapter 4 explores a model-based analytical framework that integrates the design,

operation and process control levels to evaluate the cost-effectiveness of process design

alternatives regarding their ability to participate in DR services through the use of supply

curves.

Chapter 5 proposes the innovative usage of levelized cost of electricity (LCOE) as the

quantification metric to evaluate the benefits of a process design to participate in different

time-scale electricity markets. The original concept of the LCOE for the energy systems

is extended in this work to treat chemical processes, usually regarded as power consumers,

as energy storage units similar to batteries.

Finally, limitations of the current study and possibilities for future research are pre-

sented in Chapter 6.
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Chapter 2

Optimal Configuration of Work-Heat
Exchanger Networks (WHEN) in the
Presence of Demand Response
Objectives

In this chapter, we propose a process network design case study incorporating the recon-

figuration of the equipment under different electricity price profile scenarios. Motivated

by an earlier study on the reconfiguration of Heat Exchanger Networks (HENs) under

varying electricity profiles [36], in this work, a case study is carried out using a work-heat

exchanger network (WHEN), which, compared to the original HEN, will directly incor-

porate the electricity intensive equipment in the pressure manipulating units. We first

demonstrate the process synthesis and superstructure-based optimization in Section 2.2,

followed by a review of the literature on the WHEN and its application in Section 2.3. We

then describe the problem in Section 2.4 and state the modeling equations in Section 2.5.

The model will then be studied using different electricity scenarios and a heuristic design

that allows for reconfigurability during DR events using a superstructure formulation that

conceptualizes a DR-enabled process design is presented. The results first appeared in

[37]
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2.1 Motivation
While recent studies on DR have created a new research direction (see 1.4), the above-

mentioned studies supporting DR capabilities for process systems have all been in the area

of production scheduling and capacity planning. Very few attempts have been made to

solve the process design problem with the explicit goal of DSM. As an example, Pattison

and Baldea [29] developed a pseudo-transient steady-state model to study the optimal

design of air separation units operated at different capacities under varying electricity

prices. They discovered that the capacity of the air separation unit should be a dominant

factor to allow extra flexibility in the process design. Later, Cao et al. [30] investigated

the design limitations of a cryogenic nitrogen plant under product demand and electricity

price fluctuations using a two-tier model, where operating points were decided using a

dynamic model and the implementation was addressed via dynamic optimization. In

both of these studies a framework was proposed to incorporate process dynamics into the

process flow sheet, but the focus was on the equipment design, and the flow sheet was

assumed to be fixed. As the design (configuration) of a plant or a process would usually

have significant impact on its operation, we argue that in an environment of varying

energy prices and resources, as well as product demand, a fixed plant structure (flow

sheet) might be disadvantaged in the sense that it could only respond to such variations

through dynamic shifting of operational levels. The key question is: can one design

a process network where, in addition to allowing variable operational levels, the optimal

flow sheet may vary in time and would be accessible through the reconfiguration of process

equipment in real-time?

In an earlier work in our group [36], we first raised the issue of potentially reconfigur-

ing the process flow sheet responding to varying electricity prices and the availability of

renewable energy resources during the day. The proactive reconfiguration of a process flow

sheet was demonstrated using a HEN example and shown to be economically beneficial.

Yet, in that study, the reconfigurable HEN network flow sheets were assumed to exist,

and only the real-time reconfiguration among these was attempted. The study mainly

focused on the operational aspect of the reconfiguration, while the design part is mostly
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not discussed. Meanwhile, the study assumed that the HEN is driven by electricity (e.g.,

assuming heaters and coolers are electrical equipment), which is generally not realistic in

practice.

Motivated by above studies, in this work, we explore the process network design

paradigm where besides the operational level change, the flow sheet could also be avail-

able for reconfiguration. The study will differ from the earlier work by Wang et al.[36]

in following aspects: (i) the design will be directly considered, and (ii) the analysis is

extended to consider a truly electricity-intensive process.

2.2 Process synthesis approaches
Process synthesis is the assembly and interconnection of process units into a network,

which involves both physical and chemical transformations to convert raw material and

energy inputs into the products with the goal of optimizing economic, environmental

and/or social objectives [38]. There are mainly two approaches used to address the process

synthesis problem: (1) hierarchical decomposition approach and (2) optimization-based

modeling approach. The hierarchical approach is represented by Douglas’s five-level de-

cision approach [39], where the economic short-cut evaluations are performed at different

levels to reduce the total number of design alternatives. Usually, such an approach can

generate a near-optimal process design, but it is mainly heuristic and usually ignores the

interconnections between different decision levels, and thus, cannot guarantee the final

design to be the best possible one.

With the growth of computing power and advances in the mathematical programming

algorithms, optimization-based approaches were developed to incorporate the interaction

between different decision layers. Usually, an optimization-based approach involves these

steps: (1) a set of the process alternatives will be postulated, and such process alternatives

are represented as superstructure; (2) the mathematical model will then be formulated; (3)

lastly, the best process flow sheet will be determined by solving the mathematical model.

In general, the best process flow sheet solution has to be incorporated in the superstructure

because configurations that are not as part of the search space will not be found. After the
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superstructure is proposed, the mathematical model will be proposed. Process synthesis

problems typically would be modeled as a discrete/continuous mathematical model solved

through a mixed-integer nonlinear program (MINLP) as follows:

minimize Z = f(x, y)

subject to h(x, y) = 0,

g(x, y) ≤ 0,

X ∈ X, y ∈ {0, 1},

where the objective function f(x, y) subject to the constraints defined by the equalities

h(x, y) (typically mass and energy balance) and inequalities g(x, y), typically the safety

and product requirements or the equipment capacity constraints. The continuous variables

x usually specify the state values such as flow rate, temperature and size of equipment,

while the binary variables y correspond to the selection of the process units. As physical

models and constraints in processes typically are nonlinear in nature, the resulting model

results in the MINLP problem.

In general, due to the mixed-integer decision variables and the highly nonlinear physi-

cal constraints displayed in the superstructure optimization, the resulting model formula-

tion, in most cases, could be difficult to solve and computationally intractable. A myriad

of optimization algorithms has therefore been developed in the Process System Engineer-

ing community, including the outer-approximation approach for the MINLP problem to

obtain the local optimum [40], a global solver like the Branch-and-Reduce Optimization

Navigator (BARON) [41] and the Algorithms for continuous/integer global optimization

of nonlinear equations (ANTIGONE) [42].

2.3 Work-Heat Exchanger Networks (WHENs)
As mentioned earlier, the HEN reconfiguration study under demand response is not realis-

tic when considering the interaction with the electricity market, and one of the extension

of the original work is to consider the so-called work exchanger networks (WENs). Both

HEN and WEN process synthesis based on mathematical modeling have been explored

before. For HEN, since the heuristic pinch analysis proposed by Linnhoff and Flower [43],
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the heat integration has led to an enormous number of successful applications. Yee and

Grossmann [44] later proposed the simultaneous superstructure-based HEN model. Since

then, the work in mathematical modeling of the HEN has witnessed a wide application.

A thorough review on the development of the HEN synthesis could be referred to Furman

and Sahindis [45].

The WEN, based on the idea of work exchange between high-pressure and low-pressure

streams, on the other hand, received less attention than the HEN, which is quite surprising

as work, in general, is much more expensive than heat and pressure manipulation and

typically involves the purchase of electricity. Wechsung et al. [46] combined the pinch

analysis and exergy analysis to maximize the exergy efficiency by integrating both heat

and power for the process. Yet, they did not consider the work exchange between different

pressure streams. This might be partially due to the equipment limitations at that time.

Razib et al. [47] first introduced the idea of single-shaft-turbine-compressor (SSTC) to

enable the work exchange of such process streams and developed the mathematical model

for WEN optimization. An SSTC is similar to a steam turbine running a compressor

via a common shaft. The turbine generates the power to turn the shaft that drives the

compressor. The only difference is that an SSTC derives its energy by depressurizing a

high-pressure process stream instead of a high-pressure stream. The SSTC unit has, in

fact, already been explored in liquefied natural gas (LNG) industry in Qatar [47].

Since then, the synthesis and optimization of WHEN became a focus of research.

Onishi et al. [48] extended the work of Razib et al. [47] by incorporating a HEN into the

WEN model and thus presented a WHEN model. However, their formulation employed

a number of big-M constraints and the equipment cost correlations in their model that

are also highly nonlinear. Huang et al. [49] then addressed the issues in Onishi et al. [48]

and developed a simpler version of the WHEN synthesis framework.

2.4 Problem statement
In this work, we consider a set of high-pressure streams and low-pressure streams, all of

which are gaseous with known mass flows, heat capacities as well as supply states and
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target states. The goal is to synthesize the minimum cost (including both capital cost

and operating cost) network under different electricity prices utilizing different types of

heat exchangers and different type of pressure manipulating equipment such as valves,

compressors, turbines, motors, generators and SSTC. Utilities such as steam, cooling

water and electricity are available. After obtaining the minimum cost network under

different electricity prices, we then explore the synthesis of a reconfigurable network.

2.5 Problem formulation
The development of the WHEN combines the WEN with heat integration. The model is

then formulated as a mixed-integer nonlinear programming (MINLP) problem. A sample

WHEN framwork is demonstrated in Figure 2.1. It combines a HEN model and a WEN

model. The WEN superstructure contains compression and expansion, in which the work

exchange occurs between the high-pressure streams and low-pressure streams.

The modeling of both networks, WEN and HEN, requires two separate models which

are then connected by additional stream constraints. In this work, we implemented the

WEN model presented by Huang et al. [49] and the HEN model from Yee et al. [44].

A sample WHEN process flow sheet could be seen in Figure 2.1, where low-pressure and

high-pressure streams will enter the HEN first and then the WEN, while the no-pressure

change streams will enter the HEN only. HEN will only change the temperature and WEN

will be exclusively for work integration. Thus, the pressure will not be changed in the

HEN; yet in WEN, the temperature of the gaseous streams will be changed accordingly.

Heat
Exchanger
Network
(HEN)

Work
Exchanger
Network

Low Pressure (LP)
stream

(High temperature)

High Pressure (HP)
stream

(Low temperature)

Stage-wise HEN model3
No pressure
change stream

Figure 2.1. WHEN process sample flow sheet

2.5.1 Modeling assumptions

We make the following assumptions:
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• The process is at steady-state.

• Gas streams are assumed to be ideal gas and remain above the corresponding dew

points.

• All pressure manipulating equipment are single stage and centrifugal with provided

known efficiency. Compression and expansion processes are assumed to be adiabatic

and reversible.

• The expansion via valves is assumed to be adiabatic but irreversible with known

Joule-Thomson coefficients.

• The heat capacities of streams are known and assumed to be constant.

• The gaseous streams undergoing expansion are always below their inversion tem-

peratures.

• The process operating conditions do not warrant special equipment design consid-

erations that would make the cost correlations inappropriate.

• The film heat transfer coefficient of each stream is a known to be a constant.

• The pressure drops, and heat losses are negligible for all heat exchangers.

• The purchase cost of mixers and splitters are negligible. The equipment degradation

by flexible operation is also neglected.

• In the HEN, countercurrent heat exchangers are used and isothermal mixing of

streams is assumed.

• There is only one type of (hot or cold) utility at the outlet of the superstructure.

2.5.2 WEN model formulation

The WEN model is formulated as a MINLP problem and responsible for work integration

only. Following the binary decisions for selecting equipment, the equations for calculating

flow rates, temperatures and pressures, as well as an energy balance of the SSTC unit are

presented.
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2.5.2.1 Sets and stages

The goal of WHEN synthesis is to find the optimal network configuration for a specific

number of streams whose states have to be changed in a given process. While liquid and

gaseous streams are considered in the HEN, in the WEN just gaseous streams are allowed,

resulting in two sets.

PC = {s|s is gaseous ∪ PINs 6= POUTs}, (2.1)

NPC = {s|PINs = POUTs}, (2.2)

and s ∈ S where S defines the union of streams. PC denotes the pressure-changed

streams while NPC denotes the no-pressure-changed streams. PINs and POUTs, there-

fore, denote the inlet pressure and outlet pressure of the stream s ∈ S. Furthermore, PC

can be divided into high-pressure streams, HP , and low-pressure streams, LP ; NPC can

be divided into cold no-pressure-changed streams, NPCS, and hot no-pressure-changed

streams, NPHS, given as:

PC = HP ∪ LP, (2.3)

HP = {s|PINs > POUTs}, (2.4)

LP = {s|PINs < POUTs}, (2.5)

NPCS = {s|PINs = POUTs ∪ TINs < TOUTs}, (2.6)

NPHS = {s|PINs = POUTs ∪ TINs > TOUTs}, (2.7)

with TINs and TOUTs specifying inlet temperature and outlet temperature of streams

s. Since an arbitrary number of stages k ∈ K is allowed in both networks, we assign 3 as

the default maximum stage, while K could be specified accordingly.

2.5.2.2 WEN equipment selection

The pressure manipulating equipment is chosen by binary variables (0, 1) where a value

of 0 means that the equipment is not chosen and 1 implies it is used in the specific stage of

the WEN. While for increasing pressure just compressors can be selected, expansion could
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be achieved by using turbines and/or valves. For changing the state of process streams,

at least one stage has to be used. Hence, no bypass is allowed in the first WEN stage.

ys,k = 0, s ∈ PC, k = 1, (2.8)

Here ys,k denotes the binary variable for bypass for stream s at stage k. If a bypass is

selected at a stage, the following stage should be bypassed as well, thus,

ys,k−1 ≤ ys,k, s ∈ PC, 3 ≤ k ≤ Ks. (2.9)

Also, if there is no bypass, at least one of the pressure manipulating equipment has to be

used and thus,

us,k + vs,k + xs,k + ys,k ≥ 1, s ∈ PC, 1 ≤ k ≤ Ks, (2.10)

where us,k, vs,k and xs,k describe binary variables for whether using a utility turbine/compressor,

valve or SSTC turbine/compressor or not for stream s at stage k. Also, at any given stage

only one equipment could be selected and one should avoid a partial bypass, since a partial

bypass will result in mixing two different pressure streams, therefore,

us,k + vs,k + ys,k ≤ 1, s ∈ PC, 1 ≤ k ≤ Ks, (2.11)

xs,k + ys,k ≤ 1, s ∈ PC, 2 ≤ k ≤ Ks, (2.12)

As one might notice, Eqs. 2.11 and 2.12 avoid the partial bypass, but do not prevent the

split of the stream going to two different pressure manipulating units.

For leveling the work exchanged on SSTC axes, a helper motor or generator can be

installed. While the motor is chosen if the workload of the SSTC turbine is lower than

the SSTC compressor load, the opposite is true in case a generator is required.

g + h ≤ 1, (2.13)

where g and h are the binary variables for utilizing generator and helper motor. Finally,

if a generator is used, then at least one SSTC turbine has to be installed; meanwhile, if
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the helper motor is chosen, a SSTC compressor is required.

g + h ≤
∑
s∈HP

Ks∑
k=1

xs,k, (2.14)

g + h ≤
∑
s∈LP

Ks∑
k=1

xs,k. (2.15)

2.5.2.3 Mass balance

The assumption that heat capacities of all process streams are known and constant sim-

plifies the calculation of the flow rates. The flow balance of the inlet is given as,

Fs = ys,k · Fs + FUs,k + FVs,k + FEs,k, s ∈ PC, 1 ≤ k ≤ Ks, (2.16)

where Fs is the total heat capacity flow rate for stream s, ys,k · Fs is the stream bypass

and FUs,k, FVs,k and FEs,k specify the heat capacity flow rate to pass through utility

compressor/turbine, valve and SSTC unit for stream s at stage k.

Meanwhile, one would want to avoid using small equipment and therefore a set of

minimum flow rate constraints are applied as follows:

Fmin
s · us,k ≤ FUs,k ≤ Fs · us,k, s ∈ PC, 1 ≤ k ≤ Ks, (2.17)

Fmin
s · vs,k ≤ FVs,k ≤ Fs · vs,k, s ∈ PC, 1 ≤ k ≤ Ks, (2.18)

Fmin
s · xs,k ≤ FEs,k ≤ Fs · xs,k, s ∈ PC, 1 ≤ k ≤ Ks. (2.19)

2.5.2.4 Stream temperature and pressure

Given the initial and target states of all process streams, their temperature and pressure

values have to be adjusted by using appropriate equipment. For describing the behavior

of these units, the following equations are used. While the initial pressure of the inlet

stream is the same as the inlet into the first WEN stage, since it is assumed to have no

pressure drop in the HEN, the outlet pressure of the last stage equals the target pressure.

Ps,0 = PINs, (2.20)

Ps,Ks = POUTs, (2.21)

where Ps,0 and Ps,Ks are inlet stream pressure and outlet target stream pressure, respec-

tively.
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The stream pressure is also expected to change monotonically. While the pressure of

the HP stream is decreased and therefore is equal to or lower than the subsequent stage,

the pressure of the LP stream should be increased. This set of constraints are given as

follows:

Ps,k + ∆Pmin
s · (1− ys,k) ≤ Ps,k−1, s ∈ HP, 1 ≤ k ≤ Ks, (2.22)

Ps,k + PINs · (1− ys,k) ≥ Ps,k−1, s ∈ HP, 1 ≤ k ≤ Ks, (2.23)

Ps,k −∆Pmin
s · (1− ys,k) ≥ Ps,k−1, s ∈ LP, 1 ≤ k ≤ Ks, (2.24)

Ps,k − POUTs · (1− ys,k) ≤ Ps,k−1, s ∈ LP, 1 ≤ k ≤ Ks, (2.25)

where ∆Pmin
s denotes the minimum requirement of the change in pressure manipulation

for stream s.

Furthermore, the pressure of the process streams within the WEN is bounded by the

initial and target pressures, given as:

min[PINs, POUTs] ≤ Ps,k ≤ max[PINs, POUTs], s ∈ PC, 1 ≤ k ≤ Ks. (2.26)

The temperature of the process streams are changed by flowing through the WEN

equipment with different units calculated as such. In general, when a compressor is

used, the temperature will increase and when a turbine is used, the stream temperature

will decrease. These temperature changes will depend on the efficiency of the pressure

manipulating units and heat capacity ratios.

TMs,k = TIs,k · (1 + ηs · [(
Ps,k
Ps,k−1

)
rs−1
rs − 1]), s ∈ HP, 1 ≤ k ≤ Ks, (2.27)

where TMs,k denotes the outlet temperature of a utility mover for stream s at stage k

while TIs,k denotes the inlet temperature, η is the utility mover efficiency and rs is the

heat capacity ratio for stream s. Similarly, the temperature change for the LP can be

defined as follows:

TMs,k = TIs,k · (1 + 1/ηs · [(
Ps,k
Ps,k−1

)
rs−1
rs − 1]), s ∈ LP, 1 ≤ k ≤ Ks, (2.28)

If a valve is used, the temperature change will be calculated based on the Joule-Thomson

coefficient [50], as follows:

TVs,k = TIs,k + µs · [Ps,k − Ps,k−1], s ∈ HP, 1 ≤ k ≤ Ks, (2.29)

20



where µs is the Joule-Thomson coefficient. Based on the assumption, the mixing of differ-

ent substreams is allowed and assumed to be isothermal, therefore, the outlet temperature

for HP will be given as:

TOs,0 = TINs, (2.30)

F · TOs,k = ys,k · Fs · TIs,k + TMs,k · (FUs,k + FEs,k) + TVs,k · FVs,k, s ∈ HP, 1 ≤ k ≤ Ks

(2.31)

and the outlet temperature for the LP streams is calculated similar to the Eq. 2.28:

TOs,k = TIs,k · (1 + 1/ηs · [(
Ps,k
Ps,k−1

)
rs−1
rs − 1]), s ∈ LP, 1 ≤ k ≤ Ks. (2.32)

2.5.2.5 SSTC energy balance

SSTC is the unit performing the work exchange, and the energy balance on the SSTC

units is achieved by using the inlet and outlet temperatures of the streams in WEN:

∑
s∈HP

Ks∑
k=1

FEs,k · (TIs,k − TMs,k) +WH =
∑
s∈LP

Ks∑
k=1

FEs,k · (TOs,k − TIs,k) +WG, (2.33)

whereWG andWH are the capacity for the generator and the helper motor, respectively.

The power generated by s ∈ PC via the SSTC turbine at stage k is defined as FEs,k ·

(TIs,k − TMs,k). Also, the bound of the capacity of the ancillary equipment is given as:

WG ≤ g ·WGU , (2.34)

WH ≤ h ·WHU , (2.35)

where WGU and WHU are the upper bounds for the generator and the helper motor,

respectively.

2.5.3 HEN model formulation

As the model assumption neglects the pressure drop in the HEN model, the below HEN

model focuses on the stream temperatures only. The HEN model mostly follows the one

proposed in [44], and will be provided here with minor changes.
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2.5.3.1 Sets and stages

In the HEN, similarly, different sets and stages are used. While the number of cold

streams (c ∈ CS) is defined as (NPCS + Ks · HP ), hot streams, h ∈ HS with number

of, NPHS + Ks · LP are considered. Similar to the WEN, HEN will also have stages

where n ∈ ST . This stage can also be arbitrary, the assumption of using counter-current

heat exchanger implies that hot and cold stream inlets are at the first and last stages,

respectively.

2.5.3.2 Overall heat balance

(TINh − TOUTh)Fh =
∑
c∈CS

st∑
n=1

qh,c,n + qcuh, h ∈ HS, , (2.36)

(TOUTc − TINc)Fc =
∑
h∈HS

st∑
n=1

qh,c,n + qhuc, h ∈ CS, , (2.37)

where TINh, TOUTh, T INc and TOUTc specify the inlet, outlet temperatures of the hot

stream and inlet, outlet temperatures of the cold stream, respectively. Fh and Fc specify

the heat capacity flow rate for the hot stream and the cold stream. qh,c,n is the heat

exchanged in the heat exchanger at stage n between stream h and c. qcuh and qhuc are

heat exchanged in the cooling utility and heating utility, respectively.

2.5.3.3 Stage-wise heat balance

Besides the overall heat balance, the heat balance around each HEN stage is achieved.

(th,n − th,n+1) · Fh =
∑
c∈CS

qh,c,n, n ∈ ST, h ∈ HS, (2.38)

(tc,n − tc,n+1) · Fc =
∑
h∈HS

qh,c,n, n ∈ ST, h ∈ HS, (2.39)

where t denotes the temperature for stream at stage n.

2.5.3.4 Temperature constraints

The initial temperatures are assigned since they are known and assumed to be constant.

TINh = th,1, h ∈ HS, (2.40)

TINc = tc,N+1, x ∈ CS (2.41)
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where th,1 and tc,N+1 are known parameters. The change of temperature is monotonous;

therefore, the temperature feasibility constraints are given as

th,n ≤ th,n+1, n ∈ ST, h ∈ HS, (2.42)

ts,n ≤ tc,n+1, n ∈ ST, c ∈ CS, (2.43)

TOUTh ≤ th,n+1, h ∈ HS, (2.44)

TOUTc ≥ tc,1, c ∈ CS. (2.45)

Besides the heat transferred by process streams, heating and cooling utilities can be placed

at the end of a HEN stage. Their loads are calculated by the following:

(th,N+1 − TOUTh) · Fh = qcuh, h ∈ HS, (2.46)

(TOUTc − tc,1) · Fc = qhuc, c ∈ CS. (2.47)

2.5.3.5 Selection of HEN units

The selection of the HEN units, including the process heat exchangers as well as cooling

and heating utility heat exchangers could be achieved by introducing the logical con-

straints as follows:

qh,c,n − Ω · zh,c,n ≤ 0, h ∈ HS, c ∈ CS, n ∈ ST, (2.48)

qhuc − Ω · zhuc ≤ 0, c ∈ CS, (2.49)

qcuh − Ω · zcuh ≤ 0, h ∈ HS, (2.50)

where zh,c,n, zhuc and zcuh denotes the binary variable whether the equipment is selected

as a heat exchanger, heating utility and cooling utility, respectively. As cooling and

heating utility will only be used at the end stage of each stream, the variables do not have

a stage index.

2.5.3.6 Approach temperature

For calculating the areas of installed heat exchangers, temperature approaches have to

be introduced. By coupling these variables with binaries, they, and thus the areas, are

23



activated and deactivated, respectively.

dth,c,n ≤ th,n − tc,n + Γ · (1− zh,c,n), n ∈ ST, h ∈ HS, c ∈ CS, (2.51)

dth,c,n+1 ≤ th,n+1 − t+ c, n+ 1 + Γ · (1− zh,c,n), n ∈ ST, h ∈ HS, c ∈ CS, (2.52)

dthuc ≤ TOUTHU − tc,1 + Γ · (1− zhuc), c ∈ CS, (2.53)

dtcuh ≤ th,N+1 − TOUTCU + Γ · (1− zcuh), h ∈ HS, (2.54)

where, dth,c,n, dthuc and dtcuh specify the approach temperatures in the heat exchanger,

the heating utility and the cooling utility; Γ defines the upper limit temperature difference.

This set of constraints could be explained as when the equipment is used, such that the

binary variable is 1, the approach temperature will be bounded; however, if the binary

variable is 0, Γ, which will be a large variable will deactivate the constraint. This is

a big-M formulation. In the end, as a lower bound, the minimum exchanger approach

temperature (EMAT) can be set to avoid infinite exchanger areas, thus:

dth,c,n ≥ EMAT. (2.55)

2.5.4 Connection between HEN and WEN

So far, HEN and WEN processes are modeled separately, and thus they have to be con-

nected properly by additional equations shown in this section. Since the pressure is

changed in the WEN but not in the HEN, temperatures are used for achieving this. Based

on the description in the process, the process streams are first sent to the first stage of the

HEN, where heat could be exchanged, followed by the first stage of the WEN. The outlet

temperature of the first WEN stage is assumed to be equal to the inlet. Thus, the outlet

of the WEN stream will be the inlet stream to the next stage HEN; while the outlet of

the HEN will be the inlet stream to the WEN at the same stage.

THINh = TOs,k, h ∈ HS, s ∈ LP, k < K, (2.56)

THOUTh = TIs,k, h ∈ HS, s ∈ LP, k ≥ 1, (2.57)

TCINc = TOs,k, c ∈ CS, s ∈ HP, k < K, (2.58)

TCOUTc = TIs,k, c ∈ CS, s ∈ CS, k ≥ 1, (2.59)
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where THIN , THOUT , TCIN and TCOUT specify the inlet, outlet temperatures of

the hot stream and inlet, outlet temperatures of the cold stream, respectively.

2.5.5 Objective function

The goal of WHEN synthesis is the minimization of total annualized cost (TAC). While

capital cost (CAPEX) and operational cost (OPEX) increase TAC, revenues generated

by selling excess electricity back to the grid can be subtracted from TAC.

2.5.5.1 Capital cost

To calculate the CAPEX, fixed capital cost of the equipment as well as cost coefficients

depending on flow rates and work loads for considering different sizes are used. The overall

capital cost for the WHEN is given as follows:

CAPEX = CFG · g + CG ·WG+ CFH · h+ CH ·WH

+
∑
s∈PC

CCs +
∑
s∈HP

Ks∑
k=1

[CF V
S · vs,k + CV

S · FVs,k]

+
∑
s∈PC

Ks∑
k=1

[CFU
s · us,k + CU

s · FUs,k + CFE
s · xs,k + CV

s · FEs,k]

+
∑
h,c,n

[CFh,c · zh,c,n + Ch,c[qh,c,nUh,c/[dth,c,ndth,c,n+1(dth,c,ndth,c,n+1)/2]1/3]βh,c ]

+
∑
h∈HS

[CFh,CU · zcuh

+ Ch,CU [qcuhUh,CU ]/[dtcuh(TOUTh − TINCU)(dtcuh + (TOUTh − TINCU))/2]1/3]βh,CU

+
∑
c∈CS

[CFc,HU · zhuc

+Cc,HU [qhucUc,HU ]/[dthuc(TINHU − TOUTc)(dthuc + (TINHU − TOUTc))/2]1/3]βc,HU

(2.60)

where Uh,c defines the overall heat transfer coefficient, and it is a parameter. As noted,

the equipment costs for the pressure manipulating equipment are linear and could be

expressed as fixed cost plus the cost coefficient times the size of the equipment; the

equipment cost for the heat exchanger is based on the Chen [51]. CFG, CG, are fixed

cost and cost coefficient for the generator; CFH , CH are fixed cost and cost coefficient
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for the helper motor; CCs are fixed cost for WEN final heater and cooler; CF V
s , C

V
s are

fixed cost and cost coefficient for valve; CFU
S , C

U
s are fixed cost and cost coefficient for

utility turbine; CFU
s , C

U
s are fixed cost and cost coefficient for utility turbine/compressor;

CFE
s , C

E
s are fixed cost and cost coefficient for SSTC unit.

Also, the cost for the final heater and cooler installed in the WEN are calculated as:

CCs ≥ CFHU
S + CHU

s · (TOUTs, TOs,Ks), (2.61)

CCs ≥ CFCU
S + CCU

s · (TOs,Ks − TOUTs) (2.62)

2.5.5.2 Operating cost

The total operating cost includes the energy cost of heating and cooling, as well as the

electricity for driving helper motor and utility compressor:

OPEX = COH ·WH +
∑
s∈PC

UCs +
∑
s∈LP

Ks∑
k=1

COU · FUs,k · (TOs,k − TIs,k)

+
∑
h∈HP

COCU · qcuh +
∑
c∈CP

COHU · qhuc, (2.63)

where COH and COU are the appropriate unit costs for the helper ,motor and utility

compressors respectively, and COHU , COCU are the unit cost for hot, colld utility. UCs

is the operating cost of the final heater/cooler. It is also noted that

UCs ≥ COHU · Fs · (TOUTs − TOs,Ks), (2.64)

UCs ≥ COHU · Fs · (TOs,Ks − TOUTs). (2.65)

As the turbines might be used in the network, electricity could be generated from steam

and then sold back to the grid. We define the revenue as:

REV = CE · [WG+
∑
s∈HP

Ks∑
k=1

FUs,k(TIs,k − TMs,k)] (2.66)

where CE is the electricity cost parameter. The above equation describes the work

generated by the end generator (WG), as well as the utility mover at stage k.
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2.5.5.3 Annualized cost

As the objective function, the minimization of TAC is used. Therefore, an annualized

factor is introduced and the operating time per year has to be set.

TAC = f · CAPEX + t · (OPEX −REV ), (2.67)

where f is the annualized factor for the capital cost and t is the operating hour per year.

2.6 Case study
The above model is cast as a non-convex MINLP model, and therefore, obtaining a global

optimum is challenging and not the focus of this study. As observed and reported by

Onishi et al. [48] and Huang and Karimi [49], the global MINLP solver such as BARON

does not provide a satisfactory performance. We obtained the solution by using the

DICOPT solver in GAMS.

Table 2.1. Stream data for case study

Stream TIN[K] TOUT[K] PIN[MPa] POUT[MPa] F[kW/K] H[kW/(m2K)]

HP 103.45 242.3 10 0.1 2.47 0.1

LP 288.15 104.75 7 10 4.10 0.1

NPCS 221.12 244.2 - - 5.70 0.1

HP 383.15 383.15 1- - - 1

Other parameters include EMAT = 5(K), µs = 1.961(K/MPa), η1 = 0.7, η2 = 1.0,

r1 = 1.51 and r2 = 1.352.

2.6.1 Scenarios

To test the WHEN model formulation and confirm the scenario assumptions, the data

of Example 3 in Huang and Karimi [49] are used for evaluating a LNG process. This

case study deals with the work and heat integration between two gaseous and one liquid

process streams, where the stream data can be seen in Table 2.1. For the liquefaction

of natural gas (NG), the feed stream has to be compressed and thus is considered as a

low-pressure (LP) stream in the WEN, while it is regarded as a hot stream in the HEN
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Table 2.2. Cost parameters in the case study

Process unit Fixed Cost Energy

cost(k$) coefficient cost (k$/kWh)

Utility turbine 200 1 electricity price

Utility compressor 250 1 electricity price

SSTC turbine 40 1 -

SSTC compressor 50 1 -

Generator 2 1 electricity price

Helper motor 2 1 electricity price

Valve 2 1 -

Heat exchanger 3 0.03 -

Heater 3 0.03 0.035

Cooler 3 0.03 0.001

Operating time t = 8000h per year

since it is more energy efficient to compress cold streams. In contrast, the liquid nitrogen

used to cool down NG is supposed to be a high-pressure (HP) and cold stream. Liquid

CO2, a side-stream of the LNG process, is considered to be a no-pressure-change stream

(NPCS) to be heated, and is not involved in the WEN. All process data are taken from

Huang and Karimi [49]. This study focuses on a varying electricity price structure to

demonstrate how DR objectives can be met. Furthermore, since selling electricity back to

the grid is allowed and would generate a revenue, the electricity selling price is assumed

to be 50% of the purchase price. For evaluating off-, mid-, and on-peak scenarios, three

different electricity price levels are assumed, with off-peak price at $0.07/kWh, mid-peak

at $0.15/kWh and on-peak at $0.30/kWh. The equipment cost parameters are shown in

Table 2.2.

2.6.2 Results of scenarios

First, the MINLP problem is solved using the fixed electricity price for different price

profile. As a result, the optimal configurations for the different periods are obtained
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as shown in Table 2.3. While an off-peak electricity price leads to the use of a valve

for expanding HP, a utility turbine is chosen for higher prices. Since the utility turbine

is assumed to be much more expensive than a valve, its use has to be economically

compensated by the generated revenue, which is the case when the electricity selling price

is high.

Figure 2.2. WHEN superstructure for off-peak scenario

2.6.2.1 Off-peak

The resulting flow sheet for the off-peak scenario is shown in Figure 2.2. The assumption

of having a low electricity price of $0.07/kWh results in a WHEN superstructure with

TAC of $118,699 which is the highest of the base cases since a valve is used and no

electricity is sold back to the grid. In contrast to the other scenarios, no heater and just

one cooler are used within the HEN. Instead, the overall heat exchanged between the

process streams is around 706.8 kW and thus larger than in the mid- (688.0 kW) and
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on-peak (635.3 kW) scenarios. Another key difference with the other cases is the parallel

use of a SSTC turbine and a valve in the first stage of the WEN. While higher electricity

prices favor a lower workload on the SSTC axis and no use of a valve, at low prices the

cost of a utility turbine is too high to be used. Due to the very low cost for a valve, this

unit is more appropriate in economic terms during the off-peak hours.

Table 2.3. Stream loads for the optimal deterministic configurations

Equipment Streams, stage Load[kW]

Off-peak Mid-peak On-peak

SSTC turbine HP1, s1 216.1 71.2 -

HP1, s2 - - 71.2

SSTC compressor LP1, s1 216.1 71.2 71.2

Valve HP1, s1 0 - -

Utility turbine HP1, s1 - - 621.9

HP1, s2 - 621.9 -

Heat exchanger LP1,HP1,s1 - 338.1 238.0

LP1, HP1, s2 - 46.6 80.9

LP1, HP2, s1 - - 353.0

LP1, HP3, s1 - 288.9 -

LP3, HP1, s2 211.4 - -

LP3, HP2, s2 363.8 - -

LP3, HP4, s1 131.6 - -

Heater HP1 - 190.2 364.2

HP2 - 179.4 -

HP4 - 131.6 131.6

Cooler LP1 - 118.3 120.0

LP2 - - 31.3

LP3 261.2 31.3 -
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Figure 2.3. WHEN superstructure for mid-peak scenario

2.6.2.2 Mid-peak

The resulting flow sheet for the off-peak scenario is shown in Figure 2.3. In contrast to the

off-peak scenario, in the mid-peak case a utility turbine is used instead of a valve. As a

result, excess work is converted to electricity, which can be sold and a revenue is generated.

Therefore, the TAC is slightly decreased to $114,610. Beside the replacement of the valve

by a utility turbine in the first stage of the WEN, the difference in temperatures and the

workload of the SSTC axis are main aspects to be noted. As illustrated in the modeling

section, the energy recoverable in a turbine is increasing with higher temperatures. Hence,

the inlet temperature of the utility turbine is 190.45 K higher compared to the inlet

temperature of the valve in the off-peak scenario, while the outlet temperature is just

19.41 K higher. As a result, since the utility turbine has more than an eight-fold flow rate

of the SSTC turbine, its workload is much higher and the surplus electricity generated
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can be sold back to the grid. Though the equipment cost of this unit is the highest of the

installed equipment, the generated revenue justifies its use.

Figure 2.4. WHEN superstructure for on-peak scenario

2.6.2.3 On-peak

The resulting flow sheet for the off-peak scenario is shown in Figure 2.4. Similar to the

mid-peak scenario, during on-peak hours, a utility turbine for generating a revenue is used.

Since the electricity selling price is $0.15/kWh, the TAC is decreased to a negative value of

$-251,169 while this result has to be considered carefully due to the assumption of having

this price for the entire operating time of 8,000 hours per year. The main adjustment

between the mid- and on-peak scenarios is the arrangement of SSTC and utility turbine,

as well as their workload. Although the configurations for mid- and on-peak processes

look similar (Figure 2.4), their loads and process stream connections are slightly different.

Specifically, in the WEN, the utility and SSTC turbine are in reverse order, and in the
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Figure 2.5. WHEN supra-structure for off-peak scenario

HEN, the number of heaters is higher in the mid-peak scenario. Due to the doubled

electricity purchase and selling price, a WHEN superstructure with a two-stage WEN is

favored, where the entire mass flow of the HP stream is expanded in the utility turbine

and the SSTC turbine subsequently. For generating a high revenue, see Table 4.5, the

target pressure of the HP stream is almost reached in the outlet of the first WEN stage,

while the workload of the SSTC axis remains the same and the overall load of the heat

exchanger within the HEN is adjusted slightly compared with the mid-peak scenario.

Figure 2.6. Gantt chart for equipment commitment in the suprastructure
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Figure 2.7. WHEN suprastructure for on-peak scenario

2.6.3 Reconfigurable WHEN structure with heuristic rule

The deterministic optimization results under different electricity prices result in three dif-

ferent fixed flow sheets with no equipment reconfiguration. We next explore two different

reconfigurable designs that allow the changing of the equipment.

The first design is generated through committing to the purchase of all equipment

under all three configurations and allow for the reconfiguration of the flow sheet among

these available equipment, switching configurations as electricity price changes. From the

CAPEX standpoint, this is the worst-case scenario. We will refer to this as the WHEN

superstructure.

The second design is synthesized in a way that modifies each optimal configuration

in an ad-hoc fashion so that the modified configurations have more common equipment.

When all such equipment are combined, one still has a reconfigurable flow sheet but much
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Table 2.4. Stream loads for the WHEN suprastructure

Equipment Streams, stage Load[kW]

Off-peak Mid-peak On-peak

SSTC turbine HP1, s1 125.7 71.2 71.2

SSTC compressor LP1, s1 125.7 71.2 71.2

Valve HP1, s1 0 - -

Utility turbine HP1, s1 - 584.4 584.4

Heat exchanger LP1,HP1,s1 - 356.2 356.2

LP1, HP1, s2 130.4 21.8 21.8

LP1, HP2, s1 363.8 315.5 315.5

Heater HP1 - 305.1 305.1

HP4 131.6 131.6 131.6

Cooler LP1 - 98.4 98.4

LP2 383.4 31.3 31.3

less capital commitment than the WHEN superstructure. This comes at the expense of

likely increased OPEX during the realization of various electricity price levels. We will

refer to this as the WHEN suprastructure.

The WHEN suprastructure is achieved by fixing the HEN equipment, while the binary

variables of the WEN remain as decision variables. This scenario was used since a single

WEN configuration under a varying electricity price showed high TAC, so one HEN was

assumed to lower the cost. The configuration generated could be seen in Figure 2.5 and

2.7 and the detailed stream results are shown in Table 2.4. And the Gantt Chart for

the equipment commitment is demonstrated in Figure 2.6. Though a slight decrease in

the cost was achieved, it could be different for other electricity price profiles due to the

heuristic nature of this approach. Furthermore, although only the HEN equipment was

fixed under different electricity prices, the WEN configuration is almost the same in mid-

and on-peak periods.
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Table 2.5. Daily cost of all configurations

Cost [$/d] Off-Peak Mid-peak On-peak WHEN Reconfigurable

superstructure synthesis

CAPEX 350 1040 1041 1066 1037

OPEX 6 347 347 295 269

Revenue 0 1069 1063 887 836

Total 356 318 325 474 470

2.6.4 Comparison of all flow sheets

To compare the different design including the non-reconfigurable design obtained in the

deterministic optimization, we perform the simulation by fixing the equipment variables

and calculate the nonlinear programming problem and related cost. The daily electricity

price profile followed the time of use (TOU) electricity price structure, and the following

distribution was assumed: $0.07/kWh for 11 h/d (midnight to 11 am), $0.15/kWh for 7

h/d (11 am to 6 pm) and $0.30/kWh for 6 h/d (6 pm to midnight).

The results of the above calculation are summarized in Table 2.5. As one might note,

all the costs are converted to a daily basis from the annualized cost since the operating cost

is for a 24-hr period. The OPEX cost for off-peak, mid-peak and on-peak configurations

are obtained by assuming the optimal configuration for a specific price is operated for

the whole day. Thus, the cost in Table 2.5 is different from the TAC obtained through

solving the deterministic optimization problem. One can see that when using a single

configuration for the entire day, the mid-peak configuration has the lowest cost, while

the WHEN suprastructure is slightly cheaper compared to the WHEN superstructure.

Although the CAPEX and OPEX for the off-peak configuration are the lowest, the total

cost is higher than the mid-peak and on-peak configurations since no revenue is generated

due to the low electricity selling price.

Also, in contrast to the results obtained before, the on-peak configuration does not have

the lowest total cost since instead of assuming an electricity selling price of $0.15/kWh

for the entire time the profile was applied. It can be observed that the CAPEX and
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OPEX of the mid-peak scenario are slightly lower compared with the on-peak, resulting

in marginally lower average cost of the WHEN per day. Furthermore, since during off-

peak just a single cooler and a valve is used its OPEX are very low in comparison with

the other configurations and no revenue is generated.

2.7 Conclusions
In this chapter, the concept of a reconfigurable design for process flow sheets under varying

electricity profiles was introduced and demonstrated using a WHEN case study. The

preliminary results show that different electricity purchasing and selling prices highly

influence the WHEN configuration, while the use of the single mid-peak configuration

for the entire time yields the lowest TAC. We note that the current results are ad hoc

solutions, and no global optima is presumed to be obtained, meaning that under other

assumptions, the WHEN superstructure could have a lower TAC. Further research needs

to be conducted, focusing on other electricity price profiles, cost data and scenarios using

a broader variety of process streams. While the MINLP problem of work-heat integration

between two gaseous and one liquid process streams is a relatively simple example, a

higher number of streams would result in more complex models, which are difficult to

solve. More importantly, a rigorous solution of the optimal network reconfiguration needs

to be formulated.

The simultaneous synthesis of work and heat exchanger networks is a comparatively

new research field, where no example for applying demand response objectives had been

found in literature. Therefore, this work is considered as a novel approach for evaluating

this superstructure under fluctuating electricity prices. Though different options for in-

creasing the capacity of technologies capable for DR are already a focus of research, the

synthesis of WHEN can be considered as a promising alternative. Since the case study

considers LNG production, for the natural gas industry, the results show the potential

for decreasing its power demand, though all processes using pressure manipulating equip-

ment are assumed to benefit from implementing WHEN. However, due to the high-growth

rate in LNG production and the increase in its capacity in many countries, this sector is
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assumed to be more open to innovative technologies since they are easier to realize in the

planning process of new plants.

The case study showed the economic benefits of a WHEN superstructure using at

least one utility turbine, while the revenue depends on the electricity price. Since many

scenarios have been tested and the mid-peak configuration mostly showed the best per-

formance, this superstructure is favorable, but further research is required. Additional

case studies evaluating a larger variation of electricity prices and assuming different cost

parameters could lead to a better understanding of WHEN under DR objectives, while

the model could be adjusted as well. Beside the use of more accurate cost functions, tem-

perature approaches in the HEN and bounds on equipment, constant parameters like the

Joule-Thomson coefficients and heat capacities of process streams could be replaced by

equations for considering their dependence on state. Furthermore, the overall system re-

sponse to transitions, as well as the dynamic performance, have not been analyzed in this

work due to the complexity of these aspects. While for the assumed discrete electricity

prices three configurations have been obtained and during these periods, i.e., mechanical

stress was neglected, sudden price changes occurring in shorter periods most likely have

a negative impact on the operability and durability of the equipment.

Due to the simplified model formulation in terms of using cost parameters instead of

nonlinear equations, case studies with a larger number of process streams can be eval-

uated. Instead of using a more accurate but complex model, where obtaining feasible

solutions could be challenging, the system presented seems to be eligible for further eval-

uations. Beside other critical price fluctuations, the electricity selling price is a parameter

to be varied, while a smaller step-size of increasing the purchasing price could provide in-

formation about the point where using a utility turbine is favored for generating revenue.
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Chapter 3

A Flexible Design Framework for
Process Systems Under Demand Side
Management

In Chapter 2, a deterministic MINLP superstructure optimization problem was formulated

to study the design under various electricity scenarios and a heuristic process synthesis

with process network reconfiguration is presented. However, the resulting WHEN model

is highly nonlinear and sensitive to the initial guess, making it difficult to model it from

the DSM perspective. Meanwhile, the model used a bottom-up approach to synthesize the

reconfigurable flow sheet and the sequential approach, while demonstrating the concept,

is not desirable for rigorous optimization. In this chapter, we explore the flexible design

problem using a pump network, another electricity-intensive process in various industries,

as the case study. The resulting design problem is formulated as a stochastic programming

problem, in which the uncertainties associated with electricity pricing and production re-

quirements are represented by a set of discrete scenarios with corresponding probabilities.

The problem is solved using Progressive Hedging [52], a heuristic algorithm for coping

with the computational complexity that arise when numerous scenarios is considered. We

first provide a problem overview and pump network design background, followed by a

preliminary discussion on stochastic programming. Modeling details are then presented,

followed by the results and discussion. The results in this chapter first appeared in [53].
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3.1 Problem overview
The minimization of energy consumption costs as well as the total cost of the pump sys-

tems have attracted significant interest in industries with high-energy consumption using

such equipment. Process pumps are considered to be intensive consumers of electrical

power and widely used in almost all industrial processes, accounting for nearly 20% of

the world’s electrical energy demand and range from 25 to 50% of the energy usage in

certain industrial operations [54]. In addition, pumps are considered to be one of the

most promising DR providers in agricultural irrigation applications [55, 56], as well as in

wastewater treatment facilities [57]. The design of a network of centrifugal pumps was first

introduced in [58]. The objective was to select the optimal pump network, where pumps

are connected in either series or parallel configurations, and also determine the optimal

pump operation conditions. This problem formulation took advantage of the superstruc-

ture optimization framework (see 2.2), where the total head (pressure rise) and total flow

rate requirements were specified while the total cost including both capital and operating

costs were minimized. The model was presented as a deterministic mixed-integer non-

linear non-convex programming problem. A noteworthy result from that study was the

articulation of different optimal pump configurations under different pressure and total

flow rate conditions. The original model solved the deterministic problem locally. Later,

Adjiman et al. [59] updated this model with a tighter relaxation for the purpose of ob-

taining a deterministic global optimum. Recently, Li et al. [60] reformulated the problem

to reduce the non-convexity by replacing the original integer variables with pure binary

variables and developed a stochastic programming problem where the uncertainty origi-

nated from the physical parameters. Furthermore, they applied the piecewise Mccormick

relaxation and outer linearization to approximate the original nonlinear non-convex con-

straints with a mixed-integer linear programming problem. The model was then solved

where the first-stage variables were pure binary and the recourse variables (second-stage

decision) were all continuous variables.
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Figure 3.1. The superstructure for a pump network including three different pump
types.

3.2 Stochastic programming
Two major approaches generally used when modeling the uncertainty under the DSM are

stochastic programming [61] and robust optimization [62]. In stochastic programming, the

uncertainty is represented by discrete scenarios given known distribution and decision are

made at different stages. Under the standard two-stage stochastic programming paradigm,

the decision variables in the optimization problem under uncertainty are divided into two

sets. The first-stage decision variables are those decided before the actual realization of the

uncertain parameters. The second-stage variables, or recourse variables, are determined

once the uncertain events coming to be presented. Due to the uncertainty, the cost for the

second-stage is also a random variable. Thus, the objective of the two-stage model is to

choose the first-stage variables such that the sum of the first stage cost and the expected

value of the second stage cost is minimized (maximized). In the robust optimization,

however, the uncertain parameters are specified as a set in which any point is a possible

realization of the uncertainty. It is usually formulated for the entire uncertainty set and

find the best solution for the worst case scenarios.

Generally, a two-stage stochastic programming problem can be modeled using an ex-

tensive formulation as follows:

minimize
∑

f(X) + Eh∈S{Q(X, Yh, θh)}

subject to F (X, h) ≤ 0,

G(X, Y, h) ≤ 0,

X ∈ Rn, Yh ∈ Rm,
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where X is the first-stage decision which is made before the realization of uncertain in-

formation, and Yh denotes the second-stage decision which is made after the realization

of the uncertain parameters. Here, h ∈ S denotes the set of uncertain scenarios and

θ ∈ Θ is the set of uncertain parameters. The uncertain scenarios θh are usually provided

with certain probability distributions, and in practice are presented as a set of discrete

scenarios with their associated probabilities. The function F (X, h) describes the con-

straints that involve only the first-stage decision variables, and the function G(X, Y, h)

describes the constraints that involve both the first-stage and second-stage decisions. The

objective is to minimize the first-stage cost f(X) and the expectation of the second-stage

cost Eh∈S{Q(X, Yh, h)}, or
∑

h∈S whQ(X, Yh, h) after the discretization, where wh is the

probability related to the scenario h.

3.3 Problem formulation
3.3.1 Assumptions

We present here a stochastic mixed-integer nonlinear programming problem with mixed-

integer recourse variables inspired by the model proposed by Li et al. [60]. The problem

presented here, however, includes additional variables and constraints to enable the re-

configurability of the network. As noted earlier, the problem will be cast as a two-stage

stochastic programming problem. The first-stage design variables will be the existence of

the pumps and the network configuration, while the second-stage variables include:

• Scenario-based operating (integer) decision on the pump

• Scenario-based operating (continuous) condition: flow fraction, pump flow rate,

pressure rise, and rotational speed.

It should be noted that one approximation is made in the two-stage framework described

here. The design decisions are made once in the beginning, and we assume that the

second-stage operation is at steady-state. Otherwise, if one were particularly interested

in capturing the dynamics of the process or the evolution of the uncertain information over

time, it might be more natural to adopt a multi-stage stochastic programming framework,
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but this would significantly increase the computational challenge of the problem, and is

left to a future study.

We assume that electricity is purchased from the grid and thus subject to market

fluctuations. In addition, the total flow rate and the pressure rise requirements may vary

in time, thus yielding another source of uncertainty in the operation. It is further assumed

that the probability distributions for these uncertain parameters are available, either

based on historical data or postulation by engineers. The superstructure of the pump

network is depicted in Figure 3.1, where a maximum of 3 parallel pump types (layers) are

considered. The objective is to minimize the total cost of the pump network design as

well as the expected operating cost, while meeting uncertain production requirements in

the presence of uncertain electricity prices.

Based on the above assumptions, the pump network problem is formulated as follows:

3.3.2 Pump performance

The pump performance constraints are described via pump curves. In the original model

[58], the pump power curve Pi,h and the total head curve ∆pi,h were both obtained through

regression and adjusted through the following relations,

Pi,h − αi(
ωi,h
ωmax

)3 − βi(
ωi,h
ωmax

)2ν̇i,h − γi(
ωi,h
ωmax

)ν̇2i,h = 0,∀i ∈ I,∀h ∈ S, (3.1)

∆pi,h − ai(
ωi,h
ωmax

)2 − bi(
ωi,h
ωmax

)ν̇i,h − ci(
ωi,h
ωmax

)ν̇2i,h = 0,∀i ∈ I,∀h ∈ S, (3.2)

Here, the index i denotes the layer (type) of the pump, and I is defined as the set of all

types of pump, while the index h ∈ S denotes the scenarios associated with each realization

of the uncertain parameters, and αi, βi, γi, ai, bi and ci are all regression parameters. It is

worth pointing out that in [60], the parameters ai, bi and ci were considered as uncertain

parameters given that they were estimated through regression techniques and thus were

subject to uncertainty. In contrast, these parameters are considered as known in the

current work, since our focus is on the uncertainty related to demand. It is possible,

however, to generalize the formulation described here to include uncertainty in these

parameters. As can be seen from the above relations, both the power curve and the total
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head curve are related to the rotational speed ωi,h and the flow rate ν̇i,h.

3.3.3 Design configuration constraints

These constraints determine the first-stage design, and are updated based on the model

in Li et al. [60] to incorporate the integer recourse variables for considering the recon-

figuration options. In the model proposed in [60], all integer variables were converted

to binary variables to reduce non-convexity in both the objective function and the con-

straints. This approach is adopted here as well. The number of parallel lines in each pump

layer i is
∑2

j=1 2j−1ynpdj,i , while the number of pumps in each line is given as
∑2

k=1 2k−1ynsdk,i ,

where ynpdj,i and ynsdk,i are binary variables. An additional binary variable yj,k,i is introduced

such that yj,k,i = ynpdj,i y
nsd
k,i . The expression that involves the multiplication of two binary

variables is linearized as,

yj,k,i ≤ ynpdj,i ,∀i ∈ I,∀j, k, (3.3)

yj,k,i ≤ ynsdk,i ,∀i ∈ I,∀j, k, (3.4)

yj,k,i ≥ ynpdj,i + ynsdk,i − 1,∀i ∈ I,∀j, k, (3.5)

3.3.4 Reconfiguration constraints

The design configuration constraints define the first-stage design of the network. From

the modeling perspective, the reconfiguration constraints are captured using the integer

recourse variables.

While the first-stage design should be the same across all the scenarios, the second-

stage pump configuration could be different, allowing flexibility responding to various

uncertain outcomes. Variables ynpj,i,h and ynsk,i,h represent the recourse binary variables,

where
∑2

j=1 2j−1ynpj,i,h denotes the total number of pumps that are operated in parallel

and
∑2

k=1 2k−1ynsk,i,h denotes the total number of pumps that are operated in series under

scenario h. The constraints on the reconfiguration process are given as follows:
2∑
j=1

2j−1ynpj,i,h ≤
2∑
j=1

2j−1ynpdj,i ,∀i ∈ I,∀j,∀h ∈ S, , (3.6)

2∑
k=1

2k−1ynsk,i,h ≤
2∑

k=1

2k−1ynsdk,i , ∀i ∈ I,∀k,∀h ∈ S, (3.7)
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where the total number of pumps that are operated in parallel and the total number

of pumps that are operated in series under scenario h should not be larger than those

for the first-stage design:
∑2

j=1 2j−1ynpdj,i and
∑2

k=1 2k−1ynsdk,i , respectively, allowing the

process reconfiguration depending on different scenarios. The above constraints define

the connection between the first-stage design variables and the integer recourse variables

and should be obeyed across all the scenarios.

The variables zi,h decide whether certain pump types are turned on or off; and the

relation between zi,h and the binary variables ynpj,i,h and ynsk,i,h are given by,

2∑
j=1

2j−1ynpj,i,h ≤ 3zi,h,∀i ∈ I,∀j,∀h ∈ S, (3.8)

2∑
j=1

2j−1ynpj,i,h ≥ zi,h,∀i ∈ I,∀j,∀h ∈ S, (3.9)

2∑
k=1

2k−1ynsk,i,h ≤ 3zi,h,∀i ∈ I,∀k, ∀h ∈ S, (3.10)

2∑
k=1

2k−1ynsk,i,h ≥ zi,h,∀i ∈ I,∀k, ∀h ∈ S, (3.11)

3∑
i=1

zi,h ≥ 1,∀i ∈ I,∀h ∈ S. (3.12)

Again, it should be emphasized that the reconfiguration and design constraints are the

key distinctions from the stochastic model given in [60].

3.3.5 Operating constraints

The operating constraints include all the continuous variables, including the fractional

flow going to the pumps of type (layer) i, xi,h, as the fractions should add up to 1,

3∑
i=1

xi,h = 1,∀i ∈ I,∀h ∈ S. (3.13)

Other continuous variables include the power, Pi,h, the pressure rise, ∆pi,h, and the flow

rate of type i pumps, ν̇i,h, under scenario h. Since the integer variables are reformulated
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using binary variables, P y
j,k,i,h,∆p

y
k,i,h and ν̇yj,i,h are introduced such that:

P y
j,k,i,h = Pi,hyj,k,i, ∀i ∈ I,∀j, k,∀h ∈ S, (3.14)

∆pyk,i,h = ∆pi,hy
ns
k,i,h,∀i ∈ I,∀k,∀h ∈ S, (3.15)

ν̇yj,i,h = ν̇i,hy
np
j,i,j, ∀i ∈ I,∀j,∀h ∈ S. (3.16)

Equations 3.14-3.16 have bilinear terms including the multiplication of a continuous

variable and a binary variable, and could be reformulated as a set of linear constraints:

0 ≤ P y
j,k,i,h ≤ Pmax

i yj,k,i,∀i ∈ I,∀j, k,∀h ∈ S, (3.17)

Pi,h − Pmax
i (1− yj,k,i) ≤ P y

j,k,i,h ≤ Pi,h,∀i ∈ I,∀j, k,∀h ∈ S, (3.18)

0 ≤ ν̇yj,i,h ≤ Vtoty
np
j,i,h,∀i ∈ I,∀j,∀h ∈ S, (3.19)

ν̇i,h − Vtot,h(1− ynpj,i,h) ≤ ν̇yj,i,h ≤ ν̇i,h,∀i ∈ I,∀j,∀h ∈ S (3.20)

0 ≤ ∆pyk,i,h ≤ ∆Ptoty
ns
k,i,h, ∀i ∈ I,∀k,∀h ∈ S (3.21)

∆pi,h −∆Ptot(1− ynsk,i,h) ≤ ∆pyk,i,h ≤ ∆pi,h,∀i ∈ I,∀k,∀h ∈ S. (3.22)

The constraints on flow going through each pump layer are then described as follows:

2∑
j=1

2j−1ν̇yj,i,h − xi,hVtot,h = 1,∀i ∈ I,∀j,∀h ∈ S, (3.23)

where the fraction of the total flow requirement Vtot,h for the scenario h in each layer i

should be equal to the sum of the flows in the lines of layer i. The constraints on pressure

rise are given as

∆Ptot,hzi −
2∑

k=1

2k−1∆pyk,i,h = 0,∀i ∈ I,∀k,∀h ∈ S, (3.24)

where the total pressure rise requirement for scenario h, ∆Ptot,h, should be equal to the

sum of the pressure rise after each pump. Finally, the bounds for all the continuous
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variables are defined as: ∀i ∈ I,∀h ∈ S,

0 ≤ xi,h ≤ 1, xi,h ≤ zi, (3.25)

0 ≤ ν̇i,h ≤ Vtot, ν̇i,h ≤ ziVtot,h, (3.26)

0 ≤ ωi,h ≤ ωmax, ωi,h ≤ ziωmax, (3.27)

0 ≤ Pi,h ≤ Pmax
i , Pi,h ≤ ziP

max
i , (3.28)

0 ≤ ∆pi,h ≤ ∆Ptot,h,∆pi,h ≤ zi∆Ptot,h, . (3.29)

3.3.6 Objective function

The objective function includes the first-stage design cost, which is basically the capital

cost of the different pumps, as well as the expected value of the second-stage operational

cost, which is represented by:

3∑
i=1

Cfix
i

2∑
j=1

2∑
k=1

2j+k−2yj,k,i +
s∑

h=1

wh

3∑
i=1

Ci,h

2∑
j=1

2∑
k=1

2j+k−2P y
j,k,i,h, (3.30)

where Cfix
i is the annualized fixed capital cost of the pump i and Ci,h is the annual

operating cost factor under scenario h. It should be noted that the above formulation

does not include the cost associated with the reconfiguration of the pumps. The transitions

between different configurations take place through re-routing of the flows, which in turn

is achieved through the closing and opening of valves in a prescribed sequence. For

fast processes, as assumed in this work, the transition would be relatively fast, thus not

requiring further consideration. However, if the transition between different configurations

becomes too frequent, then the equipment wear could be a significant issue. In this case,

one could consider adding a penalty or a constraint to prevent excessive transitions (see,

for example, our earlier work in [36]). Based on the previous assumptions, the objective

function is linear since all the integer variables are converted to binary variables. The

flexible pump network design problem is then cast as a two-stage stochastic programming

problem with pure binary first-stage variables, mixed-integer second-stage variables and
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non-convex constraints. The problem formulation is summarized as follows:

minimize Objective Eq.(3.30)

subject to Pump performance Eqs.(3.1), (3.2)

Design Constraints Eqs.(3.3)− (3.5)

Reconfiguration Eqs.(3.6)− (3.12)

Operating Constraints/bounds Eqs.(3.13), (3.17)− (3.29).

3.4 Solution method
Stochastic programming problems are notorious for their formidable computational chal-

lenges that arise due to the scale of the problem. To deal with these challenges, the solution

methods for stochastic programming problems generally try to exploit the special struc-

ture of the problem using decomposition methods. In the current problem formulation,

the equality constraints involving the quadratic and cubic terms in the pump performance

constraints (Eqs. (3.1) and (3.2)) add a non-convex element to the problem. To the best

of our knowledge, there is no existing systematic solution method to handle this class of

problems. Li et al. [60] developed the Non-convex Generalized Benders Decomposition

(NGBD) algorithm to solve the separable stochastic mixed-integer programming problem.

However, as pointed out earlier, the developed algorithm focuses on solving a model with

pure first-stage binary variables and only continuous recourse variables. This algorithm

is not appropriate for the integer recourse variables in our case.

More recently, Li and Grossmann [63] developed an algorithm to rigorously solve

the stochastic mixed-integer convex programming problem with both mixed-integer first-

stage variables as well as mixed-integer recourse variables. The ongoing research in the

stochastic programming community notwithstanding, our aim in the current work is not

to develop a new numerical algorithm, but to demonstrate the concept of a reconfigurable

network design. To this end, we simply leverage existing solution techniques.

A popular heuristic algorithm for solving stochastic programming problems is Pro-

gressive Hedging (PH) [52], which is guaranteed to converge to a global optimum for

convex stochastic programming problems with continuous variables. The PH method
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decomposes a stochastic problem across scenarios by partitioning the original problem

into manageable scenario sub-problems. For the stochastic mixed-integer programming

problem, Gade et al. [64] have shown that PH can also obtain a lower bound solution,

which is similar to solving the Lagrangean sub-problems. One of the advantages of the PH

algorithm is that, different from the Benders decomposition-based solution methods (e.g.,

NGBD and improved Benders decomposition in [60]), PH, based on the augmented La-

grangean decomposition, does not require the decomposed problem to be convex. Thus, it

can always serve as a high-quality heuristic solution method for stochastic mixed-integer

programming problems.

The reconfigurable pump network design problem is now cast as follows:

minimize
∑
h∈S

wh(c
TXh + gTh Yh)

subject to F (X, h) ≤ 0,

G(X, Y, h) ≤ 0,

Xh − X̂ = 0, (Non-anticipativity)

X̂,X ∈ Zn,

Yh ∈ Zp × Rm−p,

where Xh denotes the design vector for the first-stage design under scenario h, and Yh

denotes the recourse variables, including both integer and continuous variables, under

scenario h. This form is also referred to as the scenario formulation since Xh implies

that for different scenarios h, the first-stage decision could be different. However, as this

implication usually violates the fact that first design stage should not depend on different

scenarios, a constraint, called the non-anticipativity constraint, is added to ensure that

all the scenario-dependent decisions Xh will be equal to each other. The term X̂ is

defined as the aggregated term, and the non-anticipativity constraints state that the first-

stage decision should not depend on the scenarios. The PH method is motivated by the

augmented Lagrangean decomposition method, where the non-anticipativity constraints

are dualized and the quadratic terms with a penalty factor ρ are added to the original

objective function in each sub-problem. The scenario formulation then allows the solution
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method to decompose the problem by scenarios. The associated PH algorithm is provided

in Algorithm 3.1. In the initialization step, or iteration 0, all the individual scenario

problems are solved to obtain Xh. During the iterative process, an aggregation of Xh, X̂

is computed. The dual parameter, λ, is then updated using the penalty factor ρ. Next, the

decomposition of the PH is performed with an objective function including the original

objective function, a perturbation with the dual parameters and a quadratic term that

quantifies the deviation of the scenario solution Xh from the aggregation X̂. When X̂

obtained through all the scenarios agree with each other, the algorithm is terminated.

Algorithm 3.1 Progressive Hedging Algorithm
k ← 0, λk ← 0, εph

for all h ∈ S do

Xk
h , Y

k
h = argminx,y(c

TXh + gTh Yh)

end for

while Not convergent do

k ⇐ k + 1

X̂k−1 =
∑

h∈S whX
k−1
h

λk = λk−1 + ρ(Xk−1
h − X̂k−1)

for all h ∈ S do

Xk
h , Y

k
h = argminX,Y (fh(Xh, Yh) + λkhXh + ρ

2
||Xh − X̂k−1

h ||)

end for

if
∑

h∈S wh||Xk
h − X̂k

h || ≤ εph then

Stop Iteration, convergent

end if

end while

When PH is applied to a stochastic mixed-integer problem, it has been observed

that first-stage integer variables often would undergo a so-called variable oscillation and

convergence is difficult to obtain. Such cyclic behavior generally implies a poor choice of

the penalty factor ρ [65], which is generally set as a constant. The performance of the

PH algorithm is generally sensitive to the value of the penalty factor. There are several
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heuristics available for choosing the proper ρ value, but none of these approaches have been

proven to be universally better than others. Many numerical studies on different choices of

the penalty factor have shown that different ρ values would lead to different convergence

rates or even final objective function values [66]. Different ρ selection approaches are also

available. One such approach is to set ρ to be constant for all the first-stage decision

variables, which usually uses a constant value that is proportional to the first-stage cost.

Another approach is the variable-dependent ρ strategy, which is described by Watson

et al. [65], where after the initialization, the penalty factor is calculated based on the

scenario solution,

ρ(l) =
c(l)

Xmax −Xmin + 1
, (3.31)

where Xmax = maxh∈SX
(0)
h and Xmin = minh∈SX

(0)
h for each design variable l in the

penalty vector ρ, while c(l) is the corresponding cost parameter for the variable l. The

benefit of the latter approach is to provide a systematic way to compute an effective ρ

value without information on the problem, and therefore testing different ρ values is not

necessary. Also, it has been shown that the ρ value will strongly influence the quality of

the lower bound solution [67]. Usually, the larger the ρ value, the faster the convergence,

and vice versa. As we seek a heuristic solution for the non-convex problem at hand, the

primal solution obtained by PH should be sufficient; and, therefore, the variable specific

ρ selection approach was chosen to eliminate the test searching for the best ρ values.

In this work, Pyomo, a Python-based optimization language, is used as the optimiza-

tion platform [68] with its stochastic programming extension PySP [67]. PySP implements

the PH algorithm framework and also includes several convergence acceleration heuristics

[65]. At the same time, due to the non-convexity of the sub-problem, the sub-solver cho-

sen is BARON [41, 69] as it is a global optimization solver capable of solving non-convex

problems.

3.5 Results and discussion
In this section, we present the computational results obtained by directly applying the

PH algorithm to the original non-convex MINLP problem. The pump parameters are
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Table 3.1. Pump costs and parameters

Pump Annualized cost($/yr) a b c α β γ

Type 1 2238.7 629 0.696 -0.0116 19.9 0.161 -0.000561

Type 2 882.8 215 2.95. -0.115 1.21 0.0644 -0.000564

Type 3 1156.7 361 0.53. -0.00946 6.52 0.102 -0.000232

based on the original study [59]. The pump costs were converted to U.S. dollars from the

original currency and updated using equipment cost index between 1994 and 2016 [70].

3.5.1 Scenario generation for stochastic programming

In California, there are several electricity price structures that might be available to indus-

trial customers, including time-of-use prices (TOU), the day-ahead market (DAM) and

the real-time market (RTM). In this design problem, we considered each price structure

separately. For the TOU electricity price scenarios, the electricity data were based on

PG&E TOU rate for industrial consumers [71], where five different prices were consid-

ered including summer off-peak, summer partial peak, summer peak, winter off-peak and

winter partial peak. The distribution for the electricity price data was obtained based on

relative time throughout the year. The related prices and probabilities can be found in

Table 3.2.

For both the DAM and the RTM markets, the price data were taken from a pricing

node around Sacramento Valley for the year 2018, and the probability distribution for

each price structure was generated using a simple k -means clustering technique. The

resulting probability distributions are given in Table 3.3 and Table 3.4, respectively.

The pressure rise data were chosen randomly to show the difference between a low-

pressure rise requirement, 100 kPa, and a high-pressure rise requirement, 400 kPa. With-

out loss of generality, both pressure rise probabilities were assumed to be 0.5 and, there-

fore, the expected value of pressure rise is 250 kPa. Five different flow rates were chosen,

ranging from 50 m3/h to 650 m3/h, and the flow rates were assumed to be normally dis-

tributed, and the probability was then calculated, with a mean of 350 m3/h and standard

deviation of 150.0 m3/h. The probability values of the realization h were then calculated

52



following the sampling rule described in [60]. The pressure and flow rate requirements

were taken based on original data [58]. As all three different parameters are assumed

to be independent, the total number of scenarios is 50, 40 and 60, for the TOU, DAM

and RTM problems, respectively. The stochastic programming problem was solved on an

Intel i7 machine with 16 GB memory, and it took 2208s (TOU), 1292s (DAM) and 2310s

(RTM) for the PH algorithm to converge for each problem. We also attempted to use the

global solver BARON to solve the deterministic equivalent problem, but after six hours

the algorithm did not converge and the implementation was then terminated. After six

hours, the optimality gap was still too large. For example, for the TOU problem the lower

and upper bounds were 14881.6 and 483967, respectively; and for the RTM problem the

lower and upper bounds were 24744 and 236298, respectively.

Table 3.2. TOU electricity price scenarios with their probabilities

Scenario Price ($/kWh) Probability

Summer off-peak 0.080 0.3384

Summer partial peak 0.107 0.0753

Summer peak 0.152 0.0904

Winter partial peak 0.101 0.1767

Winter off-peak 0.087 0.3192

Table 3.3. DAM electricity price scenarios with their probabilities

Scenario Price ($/kWh) Probability

Cluster 1 0.024 0.4668

Cluster 2 0.044 0.4367

Cluster 3 0.081 0.092

Cluster 4 0.392 0.003

Remark: The clustering technique implemented in this work is a relatively simple

strategy which is used to showcase some of the extreme scenarios that can arise under

the RTM pricing, which have interesting implications for the DR problem at hand (see

the next section). However, it is well known that clustering algorithms usually exhibit a
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Table 3.4. RTM electricity price scenarios with their probabilities

Scenario Price ($/kWh) Probability

Cluster 1 -0.003 0.067

Cluster 2 0.022 0.458

Cluster 3 0.036 0.331

Cluster 4 0.057 0.120

Cluster 5 0.103 0.017

Cluster 6 0.709 0.007

trade-off between the number of clusters and generality. In the current case, we aimed

to strike a balance between the potential increase in the number of scenarios, on the one

hand, and the increase in the complexity of the stochastic programming problem, on the

other.

3.5.2 Results of stochastic programming

Figure 3.2. The pump network design for TOU, DAM and RTM scenarios. All cases
have the same first-stage solution.

The reconfigurable design obtained after solving the stochastic optimization problem

is shown in Figure 3.2, where the final first-stage design result is displayed. As can be

observed, the final design includes only two pump types, types 1 and 3. Pump type 1

configuration includes 3 pumps connected in parallel, while pump type 3 has 2 pumps

connected in series. The operating configurations for the TOU, DAM and RTM scenarios

are shown in Figure 3.3, where configurations (a)-(c) are the configurations for the TOU

case, configurations (d)-(f) are for the DAM case and configurations (g)-(n) are for the
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Table 3.5. Operating configurations under different scenarios, where the configurations
are labeled in Figure 3.3

.

Pressure Drop(kPa) Vtot(m3/h) TOU DAM RTM

100 50

Price($/kWh) Configuration Price($/kWh) Configuration Price($/kWh) Configuration

0.08

b

0.024

e

-0.003 g

0.107 0.044 0.022

m

0.152 0.081 0.036

0.101 0.392 0.057

0.087 - 0.103

- - 0.709

400 50

Price($/kWh) Configuration Price($/kWh) Configuration Price($/kWh) Configuration

0.08

b

0.024

e

-0.003 g

0.107 0.044 0.022

m

0.152 0.081 0.036

0.101 0.392 0.057

0.087 - 0.103

- - 0.709

100 200

Price($/kWh) Configuration Price($/kWh) Configuration Price($/kWh) Configuration

0.08

a

0.024

d

-0.003 g

0.107 0.044 0.022

m

0.152 0.081 0.036

0.101 0.392 0.057

0.087 - 0.103

- - 0.709

400 200

Price($/kWh) Configuration Price($/kWh) Configuration Price($/kWh) Configuration

0.08

a

0.024

d

-0.003 i

0.107 0.044 0.022

l

0.152 0.081 0.036

0.101 0.392 0.057

0.087 - 0.103

- - 0.709

100 350

Price($/kWh) Configuration Price($/kWh) Configuration Price($/kWh) Configuration

0.08

c

0.024

f

-0.003 h

0.107 0.044 0.022

n

0.152 0.081 0.036

0.101 0.392 0.057

0.087 - 0.103

- - 0.709

400 350

Price($/kWh) Configuration Price($/kWh) Configuration Price($/kWh) Configuration

0.08

a

0.024

d

-0.003 j

0.107 0.044 0.022

l

0.152 0.081 0.036

0.101 0.392 0.057

0.087 - 0.103

- - 0.709
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Table 3.6. Operating configurations under different scenarios, where the configurations
are labeled in Figure 3.3 Continued

.

Pressure Drop(kPa) Vtot(m3/h) TOU DAM RTM

100 500

Price($/kWh) Configuration Price($/kWh) Configuration Price($/kWh) Configuration

0.08

c

0.024

f

-0.003 k

0.107 0.044 0.022

n

0.152 0.081 0.036

0.101 0.392 0.057

0.087 - 0.103

- - 0.709

400 500

Price($/kWh) Configuration Price($/kWh) Configuration Price($/kWh) Configuration

0.08

a

0.024

d

-0.003 j

0.107 0.044 0.022

l

0.152 0.081 0.036

0.101 0.392 0.057

0.087 - 0.103

- - 0.709

100 650

Price($/kWh) Configuration Price($/kWh) Configuration Price($/kWh) Configuration

0.08

c

0.024

f

-0.003 k

0.107 0.044 0.022

n

0.152 0.081 0.036

0.101 0.392 0.057

0.087 - 0.103

- - 0.709

400 650

Price($/kWh) Configuration Price($/kWh) Configuration Price($/kWh) Configuration

0.08

c

0.024

f

-0.003

n

0.107 0.044 0.022

0.152 0.081 0.036

0.101 0.392 0.057

0.087 - 0.103

- - 0.709
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Figure 3.3. Operating configurations under different electricity price structures; the col-
ored solid lines represent the pump being operated, while the black dash lines represent
the pump not operating.

RTM case. It should be noted that there is some duplication in the configurations,

where configurations (a), (d), and (l) represent the same configuration; configurations

(b), (e) and (m) represent the same configuration; and configurations (c), (f) and (n) are

considered identical. The results show that generally different network configurations exist

under different scenarios. Configurations (a), (d) and (l), for example, indicate that only

pump type 1 is being used, while configurations (b), (e) and (m) show only pump type 3.

Notably, configurations (c), (f) and (n) contain both pump types. It is important to point

out that, while some scenarios might have the same network configuration, the continuous

variables under different scenarios (e.g., flow rate through different pump types) can be

different. Also, one might notice that Configurations (c), (f), and (n) are actually the

result using all the pumps in the first-stage design. It is also worth pointing out that for

configurations (h) and (k), there is only one pump for pump type 3 (instead of 2 pumps

like the other configurations). This result is consistent with the constraints in 3.6 and
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3.7, where this possibility is not excluded.

The detailed results are summarized in Tables 3.5 and 3.6. As stated earlier, the design

result does not use any pump type 2 and hence it is not included in the table. The results

are presented in different groups, with each group having different electricity prices, while

the same pressure rise and flow rate requirements are fixed. As shown in Tables 3.5 and

3.6, for all the TOU, DAM and RTM cases, changing the flow rate requirements and/or

the pressure rise will usually trigger a reconfiguration, and even when the configuration

is not changed, the continuous recourse variables usually will be different.

3.5.3 Effect of electricity prices and pressure rise on reconfigura-
tion

The results show that for all the different groups in the TOU and DAM cases, for

example, the group with a low-pressure rise and 50 m3/h flow rate requirement, the

change in electricity price does not change the physical configuration. The observation

that the electricity price by itself does not trigger a configuration change seems to be

consistent with the findings of Zhang et al. [19]. An interesting observation from the

results is the fact that, for certain groups in Tables 3.5 and 3.6, when the electricity prices

and the flow rate requirements remain the same, the increase in the demand for pressure

rise actually results in using fewer pumps.

In the RTM cases, however, as there are scenarios having negative electricity prices,

it can be seen that the configurations under the negative prices are different. Except

for the case where dP = 400kPa and Vtot = 650m3/h, for the rest of the scenarios,

negative electricity price triggers a reconfiguration. For the case where dP = 400kPa and

Vtot = 650m3/h, the physical constraints might prevent the negative price from finding

another configuration, as the configuration (n) is the only feasible configuration. Also, it

can be seen that for different negative prices with different pressure drop and total flow

rate requirements, there are multiple alternative configurations. Intuitively, when the

electricity price becomes negative, which implies the least efficient configuration, more

power consumption could potentially lead to a better economic outcome.
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3.5.4 Value of stochastic solution

The stochastic solution is usually evaluated using the expected value of perfect infor-

mation (EVPI) and/or value of stochastic solution (VSS) [61]. Generally speaking, EVPI

indicates how sensitive the solution is to perfect information – the larger the value of

EVPI the worse the solution, since a small deviation from the perfect information would

result in a large regret. VSS is used as a measure for the benefit brought by the stochas-

tic programming solution compared to its deterministic counterpart. For practical pur-

poses, computing VSS is important because one needs to be clear about whether solving

a stochastic programming problem, which is usually more computationally challenging,

would be worthwhile.

To get the VSS of a specific problem, one first replaces all random variables by the

corresponding expected values, and the resulting deterministic model, which is called the

expected value problem (EV) is solved to obtain the expected value solution:

EV = minimizexf(x, ξ̄), (3.32)

where ξ̄ is the expectation of the random variables ξ. Then the expected value solution,

x̄(ξ̄), which is the solution of the EV problem, will be fixed for the original problem

and resolved under different scenarios. The expected result of using the expected value

solution is defined as:

EEV = Eξ(f(x̄(ξ̄)), ξ). (3.33)

Figure 3.4. Configuration for the expected value deterministic problem.

The objective function value of the original stochastic programming problem, which is

the first-stage design cost plus the expected second-stage cost, is denoted as RP (recourse
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problem). Then, the VSS is defined as:

VSS = EEV− RP. (3.34)

In this pump network design problem, the expected value of random variables for

electricity prices is $0.0944/kWh (TOU), $0.0390/kWh (DAM), and $0.0352kWh (RTM),

respectively; for pressure rise we have 250 kPa and for the flow rate requirement the ex-

pected value is 350 m3/h. The deterministic optimization configuration of the expected

value problem is shown in Figure 3.4, where only type 3 pumps are used, and they are con-

nected using three parallel lines with one pump in each line. The networks corresponding

to all the electricity price scenarios are the same, as all three problems are only different

in the expected value of the electricity price. To get the EEV of the problem, we fix this

configuration for each situation and attempt to resolve the deterministic problem under

each corresponding scenario. However, as one might expect, not all scenarios generate a

feasible solution. In this case, the VSS is declared to be infinite since the EEV cannot be

quantified for the TOU, DAM and RTM cases.

3.5.5 Comparison with the fixed design case

Next, we investigated the design problem without the reconfiguration constraints to

show the potential benefit of a reconfigurable process network design. We formulated

the problem in a similar fashion to the reconfigurable design problem using stochastic

programming, but without the reconfiguration constraints as shown below:

minimize Objective Eq. (3.30)

subject to Pump performance, Eqs. (3.1)− (3.2)

Design Constraints, Eqs. (3.3)− (3.5)

Operating Constraints/bounds, Eqs. (3.13), (3.17)− (3.29)

The stochastic programming problem without reconfiguration is similar to the model

developed in [60], and the problem is solved using the PH algorithm used in this work

without further convexification of the original problem. Interestingly, the resulting first-

stage design is the same as in Figure 3.2. However, the key difference is in the "fixed"
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Table 3.7. The second-stage objective function value for the stochastic programming
problem with and without reconfiguration constraints for different electricity price
structures.

Problem with reconfiguration ($/year) without reconfiguration ($/year)

TOU 32105.33 34790.02

DAM 13277.58 14384.84

RTM 11926.20 12962.06

aspect of the design, where the switching to different configurations is prohibited, and thus

the pump network is operated only under configuration (c), (f) and (n) all the time. The

second-stage objective function values for the stochastic programming problem without

reconfiguration constraints (which are shown in Table 3.7 for the TOU, DAM and RTM

cases) are, anticipated, higher than those of the model with reconfiguration, since the

reconfiguration allows the network structure to change in favor of a lower operating cost.

3.6 Conclusions
This work introduced a framework for process network design that enables process network

reconfiguration under demand-side management. In the proposed framework, a steady-

state stochastic programming model with mixed-integer recourse variables was developed.

It was shown that a proactive reconfiguration can be triggered under different demand-side

requirements and that the reconfigurable design might have potential economic benefits.

While this preliminary study shows promise, there are several issues that remain to be

explored. First, the transition cost between different configurations was not considered.

In fact, using a two-stage stochastic formulation, this feature might be difficult to capture

as the solution of a two-stage stochastic programming problem only yields an operating

decision under certain scenarios. To further explore the transition effect, a multi-scale,

or even a multi-stage, optimization problem has to be developed and solved, where the

transition cost in the model is explicitly accounted for, or a constraint to prevent frequent

configuration changes is added. Second, in the context of pump network design problems,

the assumption that electricity prices and flow rates are independent might not be realistic

in some cases. As one might expect, the process operators may vary the operating flow
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rate according to the electricity prices (e.g., using high flow rate when electricity price is

low and vice versa). However, to remove this assumption one needs to change the flow rate

requirements from random variables (parameters in the stochastic problem) to endogenous

decision variables, and this will lead to having bilinear terms in the resulting model, which

would cause further non-convexity. The problem will then become more challenging since

further relaxation has to be performed to improve computational performance. Finally,

while pressure changing equipment, such as pumps or compressors, are usually considered

as fast-dynamics processes [15], in most applications, however, these equipments will

not be used separately. For example, in an energy-intensive process flow sheet, the pump

network might be connected to other slow dynamics processes such as distillation columns.

Thus, considering a flow sheet design including the network with other processes needs

to be further explored.
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Chapter 4

Assessment of Demand Response
Particibility Potential Through
Load-Shifting Capacity

In this chapter, a model-based analytical framework is proposed to evaluate the cost-

effectiveness of process design alternatives regarding their ability to participate (partici-

bility) in Demand Response (DR) services (such as load shifting under the Day-Ahead

market) through the use of supply curves. In Chapters 2 and 3, the discussion focused on

the process network design and the process network reconfiguration to satisfy the demand

response objective. However, we could only carry out the studies assuming the process

is at steady-state, and therefore ignoring the process dynamics. This is mostly due to

the complexity of the integration of process design and process control. Here, we present

a bottom-up approach to analyze the relation between process design (in our case, the

capital cost of the system) and load shifting potential, through the supply curves. In the

sections that follow, we discuss the framework implemented in this work to analyze the

cost-effectiveness of a certain process design. We define a new metric, namely load-shifting

capacity, to quantify the DR capability of a given process in terms of load shifting. The

load-shifting capacity metric is calculated using a scheduling-based model integrated with

process dynamics. Through the proposed framework, we demonstrate the cost-benefits

of considering DR aspects at the design stage. As a motivating example, the developed
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framework is illustrated using a CSTR-storage model, for which supply curves are gen-

erated under different scenarios. A visualization is provided of the effect of the process

design capacities on the DR capability, as well as the limitations on the load-shifting

capacity of a given process design.

4.1 Motivation
Currently, studies incorporating the design with DSM are quite limited, even though the

process design determines (establishes) how the plant could be operated and whether

the process could be flexible enough during operation. As noted earlier in Chapter 1, two

factors are important when considering the DR participation of a certain process: whether

the process has enough intrinsic dynamics that could respond quickly to the market signal

and whether the process has enough capacity to allow flexible operation. Due to these two

factors, studies in DR are usually limited to specific process industries, such as aluminum,

chlor-alkali or air separation and are also limited to operations rather than considering

the process design. When considering the process design, one question to ask is whether

overcapacity or certain control strategy can help increase the DR participation of a certain

process. One simple way is to model the process operation under the varying electricity

prices and optimize the lowest operating cost; however, through this way, it is difficult to

compare two different designs on how much DR potential each could provide.

The load shift refers to a DR approach that involves moving electrical loads from one

time to another to better match, either, the availability of low-cost power or to “valley

fill” grid-level load requirements (i.e., peak-clipping), while providing equivalent energy

service to the end user [72]. Naturally, a process can serve as a shift resource by adjusting

its consumption pattern. The motivating question here is that can we compare different

design by how much shifting load it could provide? If one could quantify the load-shifting

potential, would it be worthwhile to perform the process design from this perspective?

4.2 Problem overview
The conceptual production system with the set of components considered in this study

is shown in Figure 4.1. The system will be required to satisfy an hourly demand of the
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product, and a storage unit is installed. The plant is also connected to the grid, so it

can purchase electricity in different electricity markets. The key objective in this study

is to evaluate the DR potential for various plant designs as well as for different storage

capacities.

Figure 4.1. A schematic representation of the problem statement

4.2.1 Quantification of load-shifting

We define a metric, the load-shifting capacity, to quantify the DR capability. It is noted

that this metric is used to evaluate the load-shifting capacity only under the RTM, such as

the day-ahead market (DAM) and the five-minute market (FMM). As shown in Figure 4.2,

the blue solid line represents the scheduled operating profile, while the orange dashed line

represents the base load. Theoretically, if the total power consumption remains unchanged

over a period of time, the total production over time should not change. Therefore, the

area under the blue line and the area under the orange line should be nearly equal for a

given period of time. We define the base load at the time t as Eb
t and the real scheduled

load as Es
t ; thus we can quantify the load-shifting capacity as follows:

Eshift =
∑
t

|Eb
t − Es

t |
2

. (4.1)
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As one might notice, this value is equal to the grey area in Figure 4.2. It basically

describes the load that could be shifted to other time spots. Theoretically, over a certain

period of time, if the production requirement does not change and the operation remains

unchanged, the total energy consumption over this period should be unchanged. However,

the load-shifting capacity can be different with a different control strategy.

4.3 Overview of analysis framework
The framework implemented in this study is a bottom-up approach, starting with a first-

principles dynamic model to construct a high-fidelity process operating range and then to

implement the scheduling model to analyze a metric defined as "load-shifting capacity".

The first step in the framework is to generate the feasible region for the operation-

related decision variables. In Figure 4.1, we are referring to the plant part. This is

performed using a first-principles dynamic model for the given process. The specific focus

of this part is to provide the scheduling model with a feasible operating range as well

as the transition profile information. The feasible region not only includes the operating

range but also provides information on whether specific operating adjustments will violate

the system constraints such as safety concerns or production requirements.

The second step is to develop a scheduling-oriented operating model to evaluate the

potential of the load shifting under specific process design or capacity. We defined the

base load of the process and then calculate the load-shifting capacity for each different

design (e.g. with different inventory sizes or different capacity).

The last step in the proposed framework is to construct the supply curve to demon-

strate the "cost-effectiveness" of various design alternatives. The scheduling model under

different design parameters, such as reactor size or inventory capacity, is implemented

repeatedly, and the results are used to construct the supply curve. The supply curve,

which is widely used in the field of economics, is a graphical representation of the corre-

lation between the cost of a good or service and the quantity supplied for a given period.

Typically, the price will appear on the vertical axis of the plot and quantity supplied

will appear on the horizontal axis. In the sections that follow, we discuss the framework
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Figure 4.2. Demonstration of the load-shifting capacity concept, where the blue line
shows the real scheduled production, and the orange dashed line shows the baseline.

implemented in this work to analyze the cost-effectiveness of a certain process design.

We define a new metric, namely load-shifting capacity, to quantify the DR capability of

a given process in terms of load shifting. The load-shifting capacity metric is calculated

using a scheduling-based model integrated with process dynamics.

4.4 Scheduling model
The scheduling model presented herein extends the model proposed in [73]. The objective

function for the operation is defined as follows:

Jschedule = min(Φ1 + Φ2 + Φ3), (4.2)

where

Φ1 = γ

T∑
(Ptπt), (4.3)

Φ2 =
T∑
δrawFt, (4.4)

Φ3 =
T∑
δsSt. (4.5)
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The terms Φ1, Φ2, and Φ3 represent the energy cost, the raw materials cost, and the in-

ventory cost, respectively. The parameter γ is the scaling factor that links the production

to the electricity consumption. The terms Pt, Ft, and St represent the production rate at

the time t, the set-point for the production rate at the time t, and the storage capacity at

the time t, respectively. πt, δraw and δs represent the electricity price at the time t, the

raw material cost and the inventory cost, respectively. We point out here that the energy

cost in this model is assumed to be proportional to the production rate Pt, which is the

same assumption implemented in Tong et al. [73, 74].

4.4.1 Production and transition

The production and transition model is provided as

Pt = Ft(1− ttranst ), (4.6)

where the production rate at the time t, Pt, is set to the production rate set-point, Ft,

times the production duration time, 1 − ttranst , which implies that production over the

transition time is treated as an off-spec product and is not counted towards production

that satisfies the demand. The transition time is defined as:

ttranst = f(xt,∆xt). (4.7)

and it is a function of the state variable xt, at the time t, and the step change ∆xt. It

should be noted that in [74], scheduling was considered between a discrete set of operating

modes which were defined a priori. As a result, the transition time variables were treated

as parameters. However, as the aim of the current scheduling formulation is to deter-

mine the optimal operating mode at any given time, a discretization strategy will not be

practical as the range of possible operating modes could be considered infinite. This will

result in a significant increase in the number of binary variables in the original model, thus

making it intractable. In [75], however, the transition time was estimated using the log

function transformation. But it is worth pointing out that a linearized feedback control

scheme was implemented in that study, and therefore provided a good fit only using the

log function transformation.
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The production rate set-point, Ft should also satisfy the bounds and the ramping

constraint given below

Ft ∈ [Fmin, Fmax] (4.8)

Ft − Ft−1 ≤ δ, (4.9)

where Fmin and Fmax define the minimum and maximum production set-points, and δ

defines the ramping limit.

4.4.2 Inventory constraint

The inventory constraint is expressed as:

St = St−1 + Pt −Dt, (4.10)

where Dt is the demand at time step t. The bounds of the inventory are given as 0 ≤ St ≤

Smax. Satisfying the hourly demand is a hard constraint, and thus the inventory tank is

initially charged with a certain amount of on-spec product S0, which will be defined as

S0 = aSmax, and a and is the percentage of the inventory size to make the DR problem

feasible. Also, to avoid depleting the product, the storage at the end of the time period

is set equal to the initial storage (periodic terminal constraint): ST ≥ S0. It is important

to note that the complexity of the above problem will depend on the transition time

profile [Eq. 4.7], which could be treated as a fixed parameter or as a function. As a

natural extension of the formulation in [73], we remove the fixed parameter assumption

and propose the use of a surrogate model for the transition time.

4.4.3 Definition of the capital cost

The capital cost is calculated as follows:

log10C = K1 +K2log10(A) +K3[log10(A)]2 (4.11)

where C is the capital investment, A is the capacity or size parameter for the equipment,

and K1, K2, K3 are the cost coefficients. The equation and the values of the parameters

are taken from [1].
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Figure 4.3. A non-isothermal CSTR connected to a storage system.

Table 4.1. Cost parameters for the equipment involved in the system from Turton et
al. [1]

Equipment K1 K2 K3

CSTR 4.1052 0.3776 -0.0005

Storage 3.5565 0.3776 0.0905

4.5 Case study
We consider an illustrative case study inspired by earlier works ([74, 75]), where a non-

isothermal CSTR is connected to a storage (inventory) system as shown in Figure 4.3.

While the CSTR is usually not considered as an electricity-intensive process, the nonlinear

dynamics of the system help to illustrate the proposed framework and analysis approach.

The cost parameters of the CSTR system are taken from [1] and is given in the Table

4.1 and the cost plot is given in Figure 4.4. As shown in the figure, the non-isothermal

CSTR will be more expensive than the inventory, and the rate of increase for CSTR is

also faster than that of the inventory.
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Figure 4.4. Capital cost for CSTR and storage

4.5.1 Dynamic process model

The dynamic model of the non-isothermal CSTR is derived from standard material and

energy balances and expressed as:

V
dcR
dt

= F (cf − cR(t))− V k0e
− E

RTR cR(t), (4.12)

ρCpV
dTR
dt

= FρCp(Tf − TR(t)) + ∆HV k0e
− E

RTR cR(t)

+ UAcFc(Tc − TR(t)),

(4.13)

where cR(t) and TR(t) are the reactant concentration and the operating reactor tempera-

ture, respectively; V is the CSTR volume; F is the inlet flow rate; cf is the reactant feed

concentration; k0 is the pre-exponential constant; E is the activation energy; ρ and Cp

are the fluid density and heat capacity, respectively; Tf is the feed temperature; ∆H is

the heat of reaction; U is the overall heat transfer coefficient; Ac is the heat transfer area;

Fc and Tc are the coolant flow rate and temperature, respectively.
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The model is then reformulated in the following dimensionless form:

dc

dt
=

1− c(t)
θ

− k0e−
n
T c(t), (4.14)

dT

dt
=
yf − T (t)

θ
− k0e−

n
T c(t) + α ∗ u(t) ∗ (yc − T (t)), (4.15)

where the below derivation are given:

θ =
V

F
, (4.16)

α =
UAc
ρCpV

, (4.17)

yf =
ρCpTf
∆H

, (4.18)

n =
EρCp
R∆H

, (4.19)

yc =
ρCpTc
∆H

, (4.20)

c =
cR
cf
, (4.21)

T =
ρCpTR
∆H

. (4.22)

Meanwhile, the dimensionless temperature, T , needs to satisfy the constraint:

0 ≤ T (t) ≤ 1, ∀t. (4.23)

In this study, the cooling water flow rate u(t) is used as the only manipulated variable

to control the reactor temperature. The above CSTR model, together with the process

parameters, are taken from [76] and shown in Table 4.2.

As mentioned earlier, the specific control scheme for the system could be designed

differently. For example, in the earlier works ([73, 74]), a PID control scheme was im-

plemented to execute the transitions between the different operating modes. For such a

scheme, however, the transition dynamics are dependent on the choice of the PID tuning

parameters. Given this, and the fact that the aim of the current study is to assess the DR

potential for different design capacities, using a PID controller would require that the PID

settings be adjusted each time the design capacity is varied to ensure that a meaningful

comparison between the various design alternatives is made without the added influence
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Table 4.2. Parameters in the case study

Variables Values

k0 300

α 1.95e-4

n 5

cf 7.6

tf 300

tc 290

yf 0.3947

yc 0.3816

of the controller tuning. To eliminate the dependence on the controller settings, we use

in this study a dynamic optimization-based control scheme that automatically accounts

for the transition effects. An exploration of the influence of different control strategies on

the potential of DR particibility is the subject of other research work.

The objective function for the optimal control problem is given by

obj = Σt[β(c(t)− cs)2 + γ(u(t)− u(t− 1))2], (4.24)

where β and γ are the penalty weights, cs is the target concentration of the desirable

product. The objective function penalizes changes in the control action, as well as con-

centration set-point errors. The above dynamic optimization problem is solved using

Pyomo [77] and using the differential-algebraic equation package [78]. The parameter β

is 1e6 and γ is 1 in this case study. A sample transition profile is shown in Figure 4.5,

where the transition occurs from the steady-state with θ = 60 hr to the steady-state with

θ = 30 hr. As one should note, θ is defined as V
F
.

4.5.2 Transition time space generation

To generate data points for the transition time profiles, the transition between two steady-

states corresponding to different θ values, ranging from 8 to 80 hr, is simulated via dynamic

optimization. The transition time value is then extracted from the resulting profile. Given

that the time constant is defined as θ = V
F
, θ can be varied (for a given reactor volume
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Transition

Figure 4.5. CSTR state and input transition profiles from θ = 60 to θ = 30 hr.

V ) by varying the inlet flow rate F . For different θ values, there will be different steady-

states. Therefore, we vary θ to generate different steady-states, and, thereafter, simulate

the transition profiles from one steady-state to another. As shown in Eq. (4.7), the state

variable would be θt and the step change would be ∆θt correspondingly. The relation

between Ft in Eq. (4.6) and θt would be given as Ft = V
θt
. Also, Fmin and Fmax could be

replaced by: Fmin = V
θmax

and Fmax = V
θmin

.

All the simulations then provide a transition time space to be used subsequently in the

scheduling model. Figure 4.6 shows an example of the transition time space visualization

for a CSTR with a volume of 400 L. To incorporate this information into the scheduling

model, as the constraint in Eq. (4.7), a functional relationship needs to be constructed.
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Figure 4.6. Visualization of the transition time between two steady-states (as a function
of the starting and ending states) for a 400-L CSTR.

One way to construct a sample surrogate model is to utilize piecewise linear constraints.

However, in general, this approach will significantly increase the size of the problem, since

a significant number of binary variables is required to accurately represent the data. In

this work, we formulate the transition time surface using the Big-M reformulation [79].It

is worth to point out that in this work, an open-loop control of a non-linear dynamics

system is implemented. This complicates the transition time space as shown in Figure

4.6. However, in a real application, a closed-loop strategy might be implemented and

thus, linearization of the system is possible.
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Figure 4.7. Visualization of the operating profiles for a 400-L CSTR.

4.6 Results
The scheduling problem with the Big-M transition time reformulation is solved in Pyomo

[77] with the Gurobi solver [80]. In Figure 4.7, a sample scheduling result for the produc-

tion (top plot) and inventory (middle plot) under a representative electricity price profile

(bottom plot) is shown. The representative electricity price is taken from an aggregated

node in California for the first week in 2019. The inventory and production profiles un-

der the provided representative electricity prices are met as expected, i.e., as the price

increases the production rate decreases and vice versa. To construct the supply curve for

a given case, a range of parameters is used in the dynamic and scheduling models. For

the design specifications, the CSTR size and the storage capacity will be considered as
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the design variables. The CSTR size will range from 500 to 800 L, with an incremental

increase of 50 L, while the storage size will range from 100 to 1000 L, with 50 L increments

as well. Also, as described earlier, the power consumption for the process is assumed to

be proportional to the production. Thus, the base power consumption in this study is

proportional to the product demand.

4.6.1 Supply curves under different CSTR sizes

Figure 4.8 shows the supply curves, where the capital cost is plotted as a function of the

daily shifted load, for different CSTR sizes (ranging from 500 to 800 L). The inventory

cost parameter, δs, in this case is set to zero, while the hourly demand, Dt, is assumed to

be constant and set to 50 L/hr. Therefore, for a given CSTR size, the cost in Figure 4.8

can be viewed as a function of the storage size as well.

The supply curve provides a visualization of the limitation of how much load a cer-

tain design choice could potentially shift for a given amount of capital investment. For

example, for the CSTR size of 650 L, increasing the daily load-shifting capacity from

175 kWh to 350 kWh only requires a modest increase in capital investment; however,

beyond 350 kWh the steep increase in the investment cost associated with the storage

size suggests a limitation on the load-shifting capacity. It is intuitive to expect the range

of daily load-shifting capacity to increase as the inventory size is increased. The supply

curves, however, provide additional visual information regarding the limitation on the

load-shifting capacity, implying that for a given CSTR design, while increasing the stor-

age size could help increase the load-shifting capacity (and thus potentially yield profits

from the DR load-shifting), there exists a limit beyond which the investment into addi-

tional storage capacity will no longer be cost-effective. As can be seen from the figure,

this limit increases as the CSTR size increases, suggesting that a larger CSTR enjoys a

wider range of “cost-effective" load-shifting capacities. Over this range, an increase in the

load-shifting capacity requires only a modest increase in the storage investment cost.
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Figure 4.8. Supply curves for different CSTR sizes.

4.6.2 Supply curves under different storage sizes

Figure 4.9 depicts the supply curves for different storage sizes, with the inventory cost,

δs, set to zero and the hourly demand, Dt, set to 50 L/hr. In this case, for a given storage

size, the cost in Figure 4.9 can be viewed as a function of the CSTR size as well. It

can be seen that when the storage size is small, i.e., in the range from 100 to 300 L, the

increase in the CSTR investment exhibits a trend similar to that in the supply curves in

Figure 4.3, where an increase in the CSTR size helps expand the range of load-shifting

capacities, but only up to a limit beyond which further CSTR size increases become no

longer cost-effective. However, for larger storage sizes, i.e., in the range from 400 to 1000

L, the supply curves become parallel to one another, which suggests that after the storage

reaches a certain size limit, to reach the same load-shifting capacity, an increase in the

storage size does not provide any benefit. This is consistent with the trend observed

earlier in Figure 4.8.
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Figure 4.9. Supply curves for different storage sizes.

4.6.3 Supply curves under different inventory costs

So far in the analysis, we have assumed that no cost is associated with storing the product.

To illustrate the limitations imposed by the cost of storing the product on the daily load-

shifting capacity, we present in this part the supply curves for different values of the

inventory cost parameter, δs. The supply curves for this scenario are presented in Figure

4.10. In this case, the hourly demand, Dt, is set to 50 L/hr and the CSTR size is set

to 800 L. The results show that the daily load-shifting capacity is limited by the cost of

storing the product. The case where δs = 0 (i.e., no inventory cost) serves here as the

base case. It can be seen that as the inventory cost increases, the supply curve shifts to

the left, indicating a smaller range of cost-effective load-shifting capacities. The lower

the inventory cost, the higher the capability of load shifting the system could reach. It is

to be noted that when δs = 0, the supply curve becomes almost vertical around a daily

load-shifted value of 450 kWh/Day, which might also mean that the highest load-shifting
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for this system will be capped at around this value.

Figure 4.10. Supply curves for different inventory costs, δs.

4.6.4 Supply curves under different hourly demands

In Figure 4.11, the supply curves for different values of the demand, Dt, are presented.

In this case, the CSTR size is set to 800 L, while the inventory cost parameter δs is set to

zero. It can be seen that as the demand increases, the cost-effective range of load-shifting

capacities increases, and so does the limiting load-shifting capacity. It is also interesting

that with the increase in the demand parameter, the distance between the supply curves

decreases. For example, the supply curve for Dt = 50 L/hr almost overlaps with the

supply curve for the case with Dt = 60. This suggests that given a fixed CSTR size, the

change in demand will no longer have an effect on the capability of load shifting.
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Figure 4.11. Supply curves under different hourly demand values.

4.7 Conclusions
In this chapter, we presented a sequential model-based analytical framework for assess-

ing the potential of a process to participate in DR load-shifting services based on the

cost-effectiveness of various design alternatives. The framework brings together tools

from dynamic modeling, optimal control and operational scheduling, and culminates in

the construction of the system supply curves which quantify the link between the cap-

ital investment of a given design and its DR load-shifting capability. For a conceptual

demonstration of the approach, a non-isothermal CSTR combined with a simple inven-

tory (storage) system was considered as a case study. Future research work will focus on

applying the proposed framework to a more complex and realistic case study, as well as

directly incorporating the load shifting metric into the system design.
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Chapter 5

Evaluating the Benefits of Process
Particibility using Levelized Cost

In Chapter 4, we developed the concept of the load-shifting capacity and the bottom-up

approach to analyze the relationship between cost and load-shifting capacity, integrat-

ing design and operational objectives. In this chapter, we leverage the framework in the

previous chapter to further define the concept of levelized cost of load-shifting capacity,

which we could use to assess the overall cost of different design decisions when partici-

pating in the load-shifting DR services. We first briefly introduce the levelized cost of

energy (LCOE), or levelized cost of electricity, followed by our adapted definition of the

LCOE in terms of the levelized cost of load-shift (LCOL). Then we implement a similar

bottom-up approach to calculate the load-shifting capacity and the levelized cost corre-

spondingly. We illustrate the idea of LCOL by using a case study similar to the one in

Chapter 4 with a discretized scheduling model. Two cases are explored in this study: we

first investigate the difference of the load-shifting capacity between the participation in a

day-ahead market and in a five-minute market; then we look into the effect of replacing

the single reactor with smaller size reactors and compare the load-shifting capacity and

levelized cost of this design decision.

82



5.1 Motivation
5.1.1 Levelized cost of energy

LCOE is a measure of the average net present cost of electricity generation for a generating

plant over its lifetime. It is used for investment planning and to compare different methods

of electricity generation on a consistent basis, and is calculated as the ratio between all

the discounted costs over the lifetime of an electricity generating plant divided by a

discounted sum of the actual energy amounts delivered. By definition, LCOE is generally

applied to the electricity generation unit, such as different renewable generation resources.

Compared to the normal cost metric, it has several characteristic features:

LCOE =

∑n
t=1

It+Mt+Ft

(1+r)t∑n
t=1

Et

(1+r)t

, (5.1)

where n is the total life of the system, r is the discount rate, Et is the electricity generated

in year t, It, Mt and Ft stand for investment expenditure, operation and maintenance and

fuel expenditures in year t, respectively.

While LCOE has been widely used in the energy system design, applying it to the

chemical process design is, to the best of the authors’ knowledge, not reported before.

LCOE, by definition, will need one to provide the anticipated energy generation for a

period of time although the majority of the chemical process, particularly the energy

intensive processes such as chlor-alkali and air separation are actually energy consuming.

Therefore, the term Et in Eq. 5.1 cannot be given. However, if we utilize the load-shift

capacity defined in Chapter 4, we then can use the LCOE as a metric to quantify the

design of a chemical process and using such a metric to compare different process designs

in terms of their DR particibility, or more specifically, load-shift capacity. In this sense,

we can define the below metric levelized cost of load-shift (LCOL) as follows:

LCOL =
I +

∑n
t=1

OMt−Prot
(1+r)t∑n

t=1
Eshift

t

(1+r)t

, (5.2)

where I is the investment capital, OMt is the total operation cost, Prot is the profit by

selling the product and Eshift
t is the load-shift capacity defined in Chapter 4. The equation
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incorporates all elements required to determine the full lifetime cost of a chemical process:

investment, operation and maintenance (OM) as well as the profit of the process divided

by electricity load shifted during the investment period. It assumes all investment costs

are incurred in the first year and sums ongoing costs in each year (n) up to the system

lifetime (N). By utilizing this metric, we can better compare the design and operation of

different processes while having a better understanding of how much DR potential could

a chemical process provide to the grid as a "grid-level" battery. The explanation to the

LCOE could be how much it costs for the generation system to provide 1 MWh electricity

to the system. Thus, if electricity price is higher than that value, it is profitable. As for

the LCOL, a similar explanation could be used that how much it costs for the chemical

process to provide 1 MWh load-shift capacity to the grid system, while currently the grid

does not directly provide payment for such service, one could still compare this metric to

the battery cost. As for the battery, the levelized cost usually suggest how much it costs

to store 1 MWh electricity. Thus, the chemical process can then be compared with the

true battery in terms of the load shifting.

5.2 Problem statement
We assume the capacity of a plant will be determined by two factors, the capacity of the

process, such as reactor volume and distillation column size for the process and the inven-

tory (storage) capacity. Apparently, the capacity of the process will still be the dominant

factor, but the inventory can still have a big impact on the choice of the operational level.

As shown in Figure 4.1, assuming the process will participate in the wholesale electricity

market, with a required hourly demand Dt, one would like to determine the capacity of

the process V̄ and inventory size S̄. A similar bottom-up framework adopted in Chapter

4 will be followed: different process capacity and inventory sizes will be evaluated and

corresponding LCOL will be calculated and compared.

To assess the LCOL under different market conditions, we first define two different

time sets, t ∈ T and st ∈ ST . T := {1, 2, ..., N} denotes the day-ahead market layer,

where the ∆t is 1 hour and ST := {1, 2, ..., NST} specifies the 5-min market layer, where
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∆st is an interval of 5 min. Thus, the overall time set T ∗ can be defined as T ∗ := T ×ST

= {(1, 1), (2, 1), ..., (NST , N)}.

5.3 Model formulation
A model similar to the one presented in Chapter 4 will be implemented, but a MILP

version will be developed to model different market structures. Thus, we define the

production mode m ∈M and equipment e ∈ E.

5.3.1 Scheduling model

Different from the continuous model in Chapter 4, the operating mode m ∈ M is prede-

fined in the discrete model, thus, once the dynamic model is solved, the transient profile

of the system, including the transition time will be defined among different operating

modes. Such an approach that utilizes the offline fixed transition times is common for

capturing process dynamics in the scheduling of the process [81, 82]. The discrete model

is extended based on [74]. Tong et al. [74] claim that the resulting model is a MINLP

problem; yet, with simple convexification of the bilinear term, the problem could be then

converted into a mixed-integer linear programming (MILP) problem.

5.3.1.1 Transition and mode constraints

We define e ∈ E as different equipment sizes, t ∈ T as the discrete time. Then, we have∑
m∈M

ye,tm = 1,m ∈M, (5.3)

where, ye,tm denotes the binary variable of whether reactor e is operating with the mode m

at the time t. This constraint specifies that, at the time t, only 1 mode could be selected.

Additionally, we have

∑
m1∈M

ze,tm1,m2
= ye,tm2

,m1 ∈M, e ∈ E, t ∈ T, (5.4)

∑
m2∈M

ze,tm1,m2
= ye,0m1

,m1 ∈M, e ∈ E, t = T, (5.5)

∑
m2∈M

ze,tm1,m2
= ye,t−1m1

,m1 ∈M, e ∈ E, t > 0, (5.6)
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where ze,tm1,m2
denotes the binary variable that whether there is a transition occurring

from operating mode m1 to m2. Equations 5.4 to 5.6 are a group of transition constraints

that specify the whether there is a transition occurring between mode 1 and mode 2 for

equipment e at the time t. ze,tm1,m2
= 1 is true if and only if a transition from mode m1 to

mode m2 occurs from time step t− 1 to t.

5.3.1.2 Production constraint

The production rate for the plant at the time t is given as follows:

Qt =
∑
e∈E

∑
m1∈M

(ye,t
V e

θem1

)

[
1−

∑
m2,m1∈M

(ze,tm2,m1
· ttem2,m1

)

]
, (5.7)

where Qt is the total production rate at the time t and ye,t V
e

θem1

defines the production

rate of equipment e at mode m1. The terms in the bracket define the total production

time which will be 1 minus the transition time ttem2,m1
times the transition binary variable

ze,tm2,m1
, with units of hour. It is noted that, when expanding the equation, one may have

a bilinear term that involves two binary variables, ye,t and ze,tm2,m1
. Thus, we perform

convexification as:

yze,tm1,m2
≤ ym2 ,m1,m2 ∈M, e ∈ E, t ∈ T, (5.8)

yze,tm1,m2
≤ ze,tm1,m2

,m1,m2 ∈M, e ∈ E, t ∈ T, (5.9)

yze,tm1,m2
≥ ye,tm2

+ ze,tm1,m2
− 1,m1,m2 ∈M, e ∈ E, t ∈ T, (5.10)

where yze,tm1,m2
is the convexified term that will replace the ye,t · ze,tm2,m1

. Then we define

F e,t =
∑
m∈M

ye,tm · V e

θem
. (5.11)

With the above definition and convexification, Eq. 5.7 can be replaced by the following

convex linear constraint:

Qt =
∑
e∈E

[F e,t −
∑
m2∈M

(
∑
m1∈M

yze,tm1,m2
· ttem1,m2

· V
e

θem2

)]. (5.12)

86



5.3.1.3 Inventory constraint

The inventory constraint includes the storage St, production Qt and the hourly demand

Dt and is defined as

St = St−1 +Qt −Dt, t > 0, (5.13)

The storage will be limited by the design size:

St ≤ Smax. (5.14)

5.3.1.4 Objective function

The objective function of the scheduling problem is similar to the one in Chapter 4,

however, the power function will be adapted to satisfy the new assumption as well as the

time interval difference.

Jschedule = min(Φ1 + Φ2 + Φ3), (5.15)

where

Φ1 =
∑
e∈E

∑
t∈T

∑
st∈ST

·πtst · P
e,t
st , (5.16)

Φ2 =
T∑
δrawFt, (5.17)

Φ3 =
T∑
δsSt. (5.18)

P e,t
st is the power consumption for equipment e at time interval (t, st), as this variable

should be related to the detailed process, it will be given in Eq. 5.24 below. Also, πtst
is the electricity price for the interval (t, st). For the DAM case, the price should be the

same within the interval t ∈ T ; thus, we could have πt∗st = πt
∗ , where st ∈ ST . However,

this is not true for the FMM case.

5.4 Case study
5.4.1 Dynamic model & power consumption

In Chapter 4, one key assumption in the power consumption is that the power is propor-

tional to the production rate. However, this assumption, while has been used in literature

[73, 74] is no longer valid when considering different markets. Assuming that the power
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consumption is proportional to the production rate suggests that either in a DAM or an

FMM, as long as the production mode is set at the beginning of the time step, the power

consumption will be fixed for the time step. Apparently, under this assumption, when

there is a mode switch, overshooting in the cost will not be captured by the DAM. Thus,

we modified the assumption, similar to the work in Beal et al. [75] that the cooling power

is used instead of the power consumption.

Next we provide the derivation of the power expression used in this chapter. We have

a cooling flow temperature dynamics as follows for the case study:

dTc
dt

=
Fc
Vj

(Tc,in − Tc) +
UAc

ρcVjCp,c
(T − Tc), (5.19)

where, Tc is still the cooling temperature, Fc is the cooling flow rate, Vj is the jacket

volume, Tc,in is the cooling inlet temperature, ρc and Cp,c are cooling flow density and

heat capacity, respectively. Now, given the system’s power consumption is indeed the

cooling power:

∆Hcooling = ρcCp,cFc(Tc − Tc,in). (5.20)

According to the dynamic model, there are few important implicit assumptions. First,

Tc is a parameter and therefore does not change. Thus, we could then assume dTc
dt

is 0 at

a given steady-state. This might suggest the Tc,in is changing. Therefore,

Fc
Vj

(Tc − Tc,in) =
UAc

ρcVjCp,c
(T − Tc). (5.21)

Combining Eqs. (5.20) and (5.21), we can see:

∆Hcooling = UAc(T − Tc). (5.22)

Therefore, Eq. 5.22 could be rewritten as

∆Hcooling = α∆HV u(T − yc). (5.23)

Apparently, as α and ∆H are parameters, the cooling load will scale with the CSTR

volume.

Based on the assumption, we can then derive the power consumption as

P e,t
st = γ(V )

∑
m2∈M

∑
m1∈M

yze,tm1,m2
· uem1,m2,st

· (T em1,m2,st
− T ∗), (5.24)
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where P e,t
st is the power consumption at interval st, yze,tm1,m2

is the relaxed binary variable

and uem1,m2,st
specifies the power related variable. γ(V ) is the scaling factor where γ(V ) =

α∆HV .

Figure 5.1. Base power consumption for different sizes of the CSTR for production
demand at 50 L/h

Then, to calculate the base power of the process, we first specify the base θ under a

specific product demand for the CSTR size V . For example, for the CSTR size 500L, to

satisfy the hourly demand of 50L/hr, θ is 10hr. This θ will then be used to calculate the

power values, which will be used as the base power for a CSTR size of 500L. Based on

the methodology, a sample base power consumption for different sizes of the CSTR for

production demand at 50L/h is shown in Figure 5.1, where the base power consumption

increases with the increase in the reactor size.

5.4.2 Transition profiles

The feasible operating modes for the CSTR process are specified in Table 5.1. Similar

to the case study in Chapter 4, the minimum of the parameter θ is 8 and its maximum

is 80. The transition times, tt, from different operating modes, are given in Table 5.2.

The selection of the modes can be arbitrary. As the scheduling model is an MILP model

depending on the number of operating modes, the increase in the number of modes will

increase the complexity of the model. Also, since we want to use the same transition

profile for all the CSTR sizes, we choose to fix the range of the θ values. With different
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sizes of the CSTR, since θ values are fixed for different modes, the operating flow rate or

the production rate F t will be different. However, the θ will define the transition profiles

and thus, we have different feasible operating ranges under different designs. One could

also consider varying the operating flow rate from F to F instead of from θ to θ, and in

such a scenario, the dynamic profiles will be different as the volume V changes and θ is

varied for different designs, increasing the number of dynamic optimization results. In

this study, we assume the fixed θ for all different CSTR sizes. The selection of the θ values

for different modes are based on a reactor size of 400L, then from flow rate 400
80

to 400
8
, flow

rates are equally sampled and then converted back to the θ values. Therefore, varying

θ can definitely be realized under this framework. Similar to Chapter 4, the dynamic

profiles are generated through Pyomo [77] and the differential-algebraic equation package

([78]).

Table 5.1. Feasible operating modes for the CSTR

mode 0 1 2 3 4 5 6 7 8 9

θ 8. 8.889 10. 11.4286 13.3333 16. 20. 26.6667 40. 80.

Table 5.2. Transition times for the open-loop CSTR from θm1 to θm2

θ mode 0 1 2 3 4 5 6 7 8 9

0 0.0000 0.0000 0.0383 0.0550 0.0700 0.0833 0.1000 0.1217 0.1600 0.3383

1 0.0000 0.0000 0.0000 0.0400 0.0583 0.0750 0.0933 0.1167 0.1550 0.3300

2 0.0150 0.0000 0.0000 0.0000 0.0433 0.0633 0.0833 0.1083 0.1483 0.2450

3 0.0267 0.0183 0.0000 0.0000 0.0000 0.0467 0.0717 0.0983 0.1383 0.2367

4 0.0383 0.0317 0.0217 0.0000 0.0000 0.0000 0.0533 0.0833 0.1267 0.2250

5 0.0500 0.0450 0.0383 0.0283 0.0000 0.0000 0.0000 0.0617 0.1083 0.2067

6 0.0633 0.0600 0.0550 0.0483 0.0367 0.0000 0.0000 0.0250 0.0817 0.1800

7 0.1117 0.1050 0.0750 0.0700 0.0633 0.0517 0.0267 0.0000 0.0383 0.1383

8 0.1533 0.1483 0.1400 0.1317 0.0967 0.0900 0.0783 0.0517 0.0000 0.0700

9 0.2433 0.2383 0.2283 0.2200 0.2100 0.1967 0.1817 0.1433 0.1183 0.0000
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Figure 5.2. DAM electricity price at a CAISO Node in 2018

Figure 5.3. RTM electricity price at a CAISO Node in 2018

5.4.3 Seasonal representation

The LCOL calculation intrinsically considers a long-term design and operation up to

years, yet the electricity prices are at the level of 1 hour and 5-min intervals. To adapt to
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this multi-scale problem, we instead leverage a seasonality of the electricity price [83, 84].

Electricity prices for both DAM and FMM are separated into four different seasons, and

then averaged over the period of that season. Sample seasonal electricity price profiles

for both DAM and FMM in 2018 of a node in the CAISO market are shown in Figures

5.2 and 5.3. As one might notice in the DAM, the summer season has high average prices

while the spring usually has lower prices, and even negative prices. While in the FMM,

it is more difficult to tell whether the patterns are different from season to season. The

scheduling and operation problem will then be solved for each market under each season,

and the operating cost and the shifted load will then be calculated correspondingly.

5.5 Results and discussion
The scheduling model is solved using the Gurobi solver [80]. We explored two cases using

the above-mentioned model:

• Single CSTR under different markets

• Two CSTRs with different sizes under different markets

We also have two assumptions:

• We assume an extreme case where the material cost and the inventory cost are 0.

• We assume a period of 2 years in calculating the LCOL and a discount rate of 5%.

Indeed, while the assumption with 0 material and inventory cost could be extreme, under

such a scenario, a process could be treated exactly like a battery with only the electricity

involved in the LCOL calculation. We also ignore the profit of selling the potential

product here, so LCOL will only involve the electricity consumption cost as well as the

load-shifting capacity.

5.5.1 Optimization results for a single CSTR

To verify the optimization result, the results for the CSTR size of 500L and storage size

of 250L and the CSTR size of 700L and storage size of 250L under FMM are shown in

Figures 5.4 and 5.5, respectively. In both figures, the upper row shows the production
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levels in different seasons, while the lower rows show the power consumption. The red

dotted lines specify the base power consumption for the corresponding CSTR size. As one

can see, for the 700L CSTR, the load-shifting activity is indeed more frequent than that

of the 500L CSTR. The loads shifted are also shown in Table 5.3. Also, for both cases, it

is worth pointing out that the power consumption tends to fluctuate between the system

minimum and maximum, as one might expect, the load-shift capacity, by definition will

be maximized.

Table 5.3. Weekly power shifted for CSTR = 500 L and 700 L under different seasons

Weekly power shifted (MW) CSTR = 500L CSTR = 700L

Spring 79.5974 166.1959

Summer 80.3108 172.0224

Fall 78.0487 175.3420

Winter 79.1334 175.3995

Figure 5.4. Production level and power consumption for CSTR size 500L and storage
size 250L

5.5.2 Comparing DAM and FMM for a single CSTR

One of the key observations when comparing the LCOL of the same design under DAM

and RTM is provided in Figure 5.6, where the LCOLs are plotted against the discounted
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Figure 5.5. Production level and power consumption for CSTR size at 500 L and
storage size at 250 L

shifted energy over the year. The dotted lines specify the FMM, while the normal lines

specify the DAM. As can be seen, the dotted lines are below the normal lines, suggesting

that the LCOL when scheduling under the FMM are lower than that of the DAM. Using

the FMM for scheduling can lower the LCOL. Meanwhile, one notes that the LCOL, with

the increasing of the shift power, will first decrease and then increase. This increase is

also extremely steep. This has two implications: firstly, there exists a limitation for a

CSTR capacity in both markets, even with the different storage sizes. The limitation of

the load-shift capacity is determined by the reactor capacity. Secondly, one could lower

the LCOL while maximizing the load-shift capacity per year as well. Besides, when the

CSTR size is increased from 500 to 600 L, we notice a significant drop in the LCOL cost

as well as a right shift in the shift power in the plot. This trend, however, starts to fade

away with increasing CSTR sizes.

5.6 Optimization results for multiple CSTRs
Instead of using one single CSTR, in this case study, we assume one can split the single

CSTR into two smaller CSTRs. In general, this will increase the capital cost; however,

different sizes might potentially increase the operating flexibility. In this case, we set the

base case to be the single CSTR with the size of 1000 L, with an hourly demand for
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Figure 5.6. LCOL for different sizes of CSTR under different markets

100L/h. The scheduling optimization results are shown in Figures 5.7, 5.8, 5.9 and 5.10,

corresponding to spring, summer, fall and winter seasons. A sample daily operation for

different seasons are shown in these figures. The first row of the figures specifies the CSTR

operation level; the second row denotes the inventory for different setups and the last row

indicates the power consumption with the dotted line as the base power consumption. It

is interesting to see that whatever setup is used, the large CSTR (red line) is always kept

at very high operation levels.

Average weekly load-shift capacity and the LCOL cost for different CSTR sizes, set

up with 100, 300 and 500 L storage capacities under the FMM are shown in Table 5.4.

One might notice the single CSTR setup across all the designs have the lowest LCOL,

and also the LCOL is much smaller compared to other dual setup. This suggests in this

case study, that the CSTR capital cost might be dominant and thus one will not see any

potential benefits from operating multiple equipment. For the dual CSTR setup, when

the storage size is small, the equal size setup (500, 500) has the lowest LCOL, with a
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Figure 5.7. Sample daily CSTRs operation under FMM, inventory and power consump-
tion in spring for different CSTR setup with storage of 300 L

Figure 5.8. Sample daily CSTRs operation under FMM, inventory and power consump-
tion in summer for different CSTR setup with storage of 300 L
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Figure 5.9. Sample daily CSTRs operation under FMM, inventory and power consump-
tion in fall for different CSTR setup with storage of 300 L

Figure 5.10. Sample daily CSTRs operation under FMM, inventory and power con-
sumption in winter for different CSTR setup with storage of 300 L
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value of $97.8707/MWh at the storage size of 100L.

Table 5.4. Different sizes CSTR setup with 100, 300, 500 L storage under FMM

CSTR setup (L) Storage size (L) Average Weekly load-shift (MWh) LCOL ($/MWh)

Single CSTR 100 305.1605 30.7808

Dual(500, 500) 100 108.5747 97.8707

Dual(400, 600) 100 104.4295 101.2443

Dual(300, 700) 100 88.0899 118.5822

Dual(200, 800) 100 67.9027 150.5959

Single CSTR 300 332.6213 29.2561

Dual(500, 500) 300 138.7289 80.0287

Dual(400, 600) 300 137.6324 80.3697

Dual(300, 700) 300 133.0519 82.2696

Dual(200, 800) 300 126.5644 84.7929

Single CSTR 500 344.3666 29.7029

Dual(500, 500) 500 153.2955 76.1950

Dual(400, 600) 500 152.0802 76.5572

Dual(300, 700) 500 150.9928 76.3449

Dual(200, 800) 500 151.2491 74.8051

Apparently, in this case study, a single CSTR setup favors the lower LCOL cost and, in

general, a higher load-shift capacity. This could be due to a few factors. First, the capital

cost of the single CSTR is much cheaper than the dual setup and this could contribute

significantly to the LCOL calculation. Meanwhile, the case study use a fixed θ mode

and thus the transition profiles are also fixed. Whether small equipment can have faster

dynamics and therefore make up the capital lost also could be better investigated with

selecting a proper control scheme.

5.7 Conclusions
In this work, an optimization-based analytical framework is proposed to assess the po-

tential of a chemical process to participate in load shifting. While the approach is a
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bottom-up sequential approach, it is successfully implemented to evaluate the levelized

cost of load-shift capacity, namely LCOL. Utilizing the metric, a chemical process could

be viewed as a grid battery and compared with the energy generation unit or the bat-

tery to see how valuable the load-shifting process can provide. The designs under two

different cases: (i) comparing different markets while the LCOL is showing the benefits

of participating in the FMM in the scheduling and (ii) comparing different size CSTRs

in terms of particibility. The case study in this work favors using a single CSTR for

the DR-participation. One potential direction would be to utilize the LCOL metric to

compare the true battery connected system to the chemical process system. Indeed, one

implication from the LCOL could be expressed as the chemical process, and how much

it costs for the process to provide 1 MWh energy shift services. Such metrics could also

be helpful for the grid operator to design better electricity market products to incentivize

customer participation. A key feature of the proposed assessment approach is that it

provides the flexibility to address other different factors, such as same equipment but

different control paradigms in closed-loop manner. Also, besides the participation in the

wholesale market, other incentive-based DR services could also be compared. Meanwhile,

process design problem could also be targeted using the LCOL as the objective function

to favor a process design that could provide better load-shift capacity with a lower cost

to the grid.
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Chapter 6

Conclusions and Recommendations for
Future Work

In this chapter, the conclusions and limitations of this dissertation are addressed. Poten-

tial future research directions are also discussed.

6.1 Conclusions and Limitations
The primary focus of the dissertation has been divided into two parts. The first part

focused on the development of the optimization framework for the flexible design that

allows for process network reconfiguration when meeting the demand side management

constraints. Both heuristic and systematic approaches are attempted and applied to two

different energy-intensive processes. The second part focused on developing a bottom-

up approach to integrate the process design, operation, and control levels and to define

a novel metric to evaluate the process particibility in the electricity markets. The key

contributions of the dissertation are summarized below.

(1) Addressed the topic of incorporating the demand-side management into the process

design, which still remains as a topic that requires further research.

(2) The proposed flexible framework for the process design integrating the process

network reconfiguration under demand-side management has shown that a proactive re-

configuration can be triggered under different demand-side requirements and that the

reconfigurable design might have potential economic benefits under certain scenarios.
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(3) Proposed a model-based analytical framework for evaluating the cost-effectiveness

of process design alternatives with respect to their ability to participate (particibility)

in Demand Response (DR) services. A new metric, namely the load-shifting capacity is

defined to quantify the process shift capacity. A novel approach in modeling the chemical

process as a "grid-level" battery and evaluate the economics value by using the levelized

cost is developed.

However, although such research is beneficial in moving forward in incorporating the

demand-side management and process design, many shortcomings and challenges still re-

main. The contributions of this work are mostly theoretical innovations such as the con-

cept of reconfiguration and levelized cost in load-shifting. In the reconfiguration study, the

reconfiguration is mostly between different steady-states and thus the dynamics involved

in this transition are not considered. However, accounting for the process dynamics in

the reconfiguration can be computationally demanding. In the levelized cost study, on

the other hand, the integrated approach is sequential and might not be optimized and

therefore would also need a better integrated approach. Moreover, the application in the

study is quite illustrative, while enough for a conceptual study, a realistic energy-extensive

process might be needed to better justify this approach. These limitations will be the

subject of future research work.

6.2 Future research
With the increasing penetration of renewable resources into the power grids, the power

grid will witness significant changes in the next decades. With the energy system changing,

the field of chemical process design might witness a paradigm shift as well. In this work

process network reconfiguration and the LCOL approach are offered as two methods

that are considered to better adaptation to the smart grid. Yet, in both approaches

presented in this dissertation, the simultaneous process design, operation, and control are

not addressed as this is considered non-trivial due to the nature of the resulting Mixed-

Integer Dynamics Optimization (MIDO) problem. Future development in the area of

computational methods might be desired thereafter to address these issues. Moreover,
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the LCOL approach provided a new perspective to evaluate the process design, where

chemical processes are treated as a "grid-level" battery. However, besides the load-shift

capacity, one could look into other metrics that could better capture the shorter-term

performance such as the frequency control market. Also, the dynamics of the process

can be explored using this metric to evaluate the best control paradigm to benefit the

load-shifting operation.
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