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1. Introduction

[1] We would like to thank Renard et al. [2009] (hereafter
referred as RKK2009) for their commentary on how hydro-
logic input errors are treated in Integrated Bayesian Uncer-
tainty Estimator (IBUNE) by Ajami et al. [2007] (hereafter
referred as ADS2007). To our knowledge, two of the co-
authors of this commentary were the first to develop a sta-
tistically principled approach to explicitly address the effects
of rainfall input errors on the identification of a rainfall-runoff
model. As a matter of fact, our approach for dealing with
rainfall input errors was inspired by the work presented by
Kavetski et al. [2003], who developed the Bayesian Total
Error Analysis (BATEA) to account for uncertainties not only
in model parameters and streamflow observations, but also in
rainfall inputs. Both BATEA and IBUNE explicitly consider
input errors by applyingmultipliers to the rainfall data values.
As pointed out by RKK2009, there are differences in these
two approaches. In BATEA, the multiplier for each individ-
ual storm is treated as an independent parameter and needs to
be estimated along with other model parameters. In IBUNE,
the rainfall multipliers are random realizations of a Gaussian
distribution, whose mean and variance need to be estimated
along with other model parameters. Kavetski et al. [2003]
demonstrated the appealing theoretical properties of BATEA
and tested it on a simple rainfall-runoff model using syn-
thetic data. As pointed out by RKK2009, however, BATEA is
computationally expensive because the dimensionality of the
model identification problem is equal to n +Nt, where n is the
number of rainfall-runoff model parameters andNt is the total
number of individual storms. Depending on the length of
rainfall data, Nt can go as high as several hundred or more,
making practical implementation of BATEAvery difficult. In
contrast, IBUNE introduces only two additional parameters,
the input error mean (m) and variance (sm

2 ); that is, the dimen-
sionality of the IBUNE as presented in ADS2007 is equal to
n + 2.

[2] In RKK2009, a statistical account is first provided to
explain how input uncertainty is treated in a Bayesian
framework. Then, an extensive mathematical description of
two alternative interpretations of the IBUNE, based on the
commentators’ understanding of the IBUNE is presented.
In IBUNE-A, a new set of random deviates are sampled from
a Gaussian distribution, N(0,1), whenever the two hyper-
parameters related to rainfall errors, m and sm

2 are sampled
along with other rainfall-runoff model parameters. The
Gaussian deviates are then modified by m and sm

2 to obtain
normally distributed rainfall multipliers. In IBUNE-B, a
Markov Chain Monte Carlo (MCMC) sampler is used to
sample the full Bayesian posterior at each time step, includ-
ing both the rainfall-runoff model parameters as well asm and
sm
2 . They proceed to provide the results of their comparison

of the two alternative IBUNE algorithms with the BATEA
algorithm. RKK2009 concluded that the IBUNE had various
drawbacks: IBUNE-A has convergence problems because
the likelihood function is a random variable, and IBUNE-B
has no efficiency advantage over BATEA because the full
Bayesian posterior of the rainfall multipliers needs to be
calculated. Additionally, RKK2009 contend that IBUNE is
limited because it requires the variance of input errors be con-
strained to a small range. Unfortunately, most of RKK2009’s
interpretations of IBUNE reflect neither the original intent
of IBUNE formulation nor the actual IBUNE algorithmic
implementation. The commentators had obviously spent an
inordinate amount of efforts (nearly 20+ pages) focusing on
their own interpretations, instead of addressing our original
formulation (of which we had shared with them the original
MATLAB code). In IBUNE-A, RKK2009 interpreted ‘‘multi-
pliers drawn from the same Gaussian distribution’’ as using
a completely new set of Gaussian deviates whenever the
likelihood function is evaluated. This implies that the multi-
plier at each time step is conditioned on a newly sampled
random value, in addition to being conditioned on the ran-
domly sampled m and sm

2 . This naturally results in the value
of the likelihood function being a random variable and,
consequently, leads to nonconvergence of the algorithm.
[3] In their interpretation B of IBUNE (IBUNE-B),

RKK2009 adhere to the original rationale behind BATEA
formulation, i.e., IBUNE-B would sample the full Bayesian
posterior probability space, just as in BATEA. It is not sur-
prising that IBUNE-B would not achieve the desired effi-
ciency. Meanwhile, IBUNE-B provides a relatively poor
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approximation of the target posterior distribution compared
to BATEA. The reason is that in their IBUNE-B interpreta-
tion, the input errors’ mean and variance are held constant
over the entire data period, while those parameters are storm-
dependent for BATEA. What RKK2009 essentially did was
to make IBUNE-B retain the computational inefficiency of
BATEAwhile keeping a simpler input error model structure
than BATEA.
[4] In the next sections, we clarify the correct interpreta-

tion of IBUNE and answer some of the specific points raised
byRKK2009.We also elaborate on the limitations of IBUNE.

2. Correct Implementation of IBUNE
and Computational Efficiency of IBUNE

[5] The goal of original ADS2007 IBUNE has been to
account for total uncertainty in rainfall-runoff modeling,
including rainfall data, model parameters, and model struc-
ture, in addition to uncertainty in streamflow data. In treating
the rainfall data uncertainty, we aimed to keep the essence of
BATEA’s treatment of input uncertainty while improving its
computational efficiency for practical use. Toward this goal,
our original formulation is similar to IBUNE-B formulation
with a fixed pool of presampled standard Gaussian deviate
vectors as described in section 5.5 of RKK2009. ADS2007
IBUNE treats the multiplier at a given time step as a normally
distributed random variable with unknown m and sm

2 . The
presampled multipliers are generated and used in the follow-
ing manner: (1) Presample M standard Gaussian (N(0,1))
deviate vectors, (W(k)) = (w(k))t , k = 1,. . ., M, t = 1,. . ., T,
where M is the number of MCMC samples and T represents
total number of time steps (M should be selected large enough
so it approximates a standard normal distribution well); (2)
Sample a set of m*(i) and sm

2 *(i) values, along with other
rainfall-runoff model parameters q*; (3) Apply m(i) and sm

2(i)

to the ith Gaussian deviate vector (w(i))t=1,. . .,T to obtain the

multiplier (F(i)) = m*(i) + (w(i))t=1,. . .,T � sm*(i); (4) Calculate
Bayesian likelihood and posterior; (5) Accept or reject the

sampled parameter set (including m*(i), sm
2 *(i) and other

rainfall-run off model parameters) based on the MCMC
algorithm.
[6] Motivated by the main goal of developing a procedure

useful for practical applications, the algorithm described above
is much more computationally efficient than the BATEA
algorithm because of its reduced dimensionality (n + 2 versus
n +Nt). The efficiency is achieved at the expense of assuming
that the presampled fixed pool of Gaussian deviates are ade-
quate approximation of the Gaussian distribution, and m and
sm
2 are constant over the entire data period.

3. Constraint on Input Error Variance

[7] RKK2009 pointed out that for IBUNE to work prop-
erly, the input error variance needs to be constrained to a
relatively small range, i.e., m 2 [0.9, 1.1] and sm

2 2 [10�5,
10�3] (RKK2009, section 6). Our own study suggested that
the range for m and sm

2 can be relaxed a little more, i.e., m 2
[0.8, 1.2] and sm

2 2 [10�5, 10�2]. Note that if we assume m =
1, and sm

2 = 0.01, it implies that there is a �33% chance that
the rainfall multiplier is outside [0.9, 1.1], and there is a�5%

chance that the multiplier is outside [0.8, 1.2]. Therefore, the
range of potential rainfall multipliers is not trivially small.
Nevertheless, we do realize and acknowledge this potential
limitation. In fact, we conducted a synthetic study in order
to test IBUNE’s capability to recover the ‘‘true’’ input error
parameters and rainfall-runoff model parameters. We found
that when the rainfall input was perturbed with a relatively
small variance (i.e., sm

2 � 0.01), IBUNE converges nicely to
the ‘‘true’’ parameters even with a short calibration period
(500 days). However, imposing a rainfall error with a
relatively large variance would result in biased estimates
of the ‘‘true’’ parameters. Therefore the tradeoff facing us is
whether IBUNE with a constrained input error variance is
better than the alternative which does not consider input error
at all. Our study shows that the former is better. Furthermore,
since IBUNE multipliers are not storm-dependent and can
be calibrated in advance using historical data, it gives IBUNE
an advantage over BATEA in applications to real-time fore-
casts to account for the input error uncertainty.

4. Caveat of the IBUNE Approach

[8] We stress again that ADS2007 IBUNE was developed
with the intention to address explicitly the total uncertainties
in the rainfall-runoff modeling process. It is not our intention
to convey the message that IBUNE has no drawbacks or
limitations. As a matter of fact, IBUNE is ultimately limited
by the additive error assumption used in its formulation;
that is, all errors are assumed additive and are manifested
in streamflow observations. This is in contrast to BATEA,
which is not limited by this assumption, at least with respect
to input errors. In making this concession, however, IBUNE
has gained computational efficiency over BATEA. Even as
computational resources continue to advance, there is still a
tradeoff to be made by hydrologic modelers between com-
plexity and efficiency.
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