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Automated detection and localization of bowhead whale sounds
in the presence of seismic airgun surveys
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Katherine H. Kim, Susanna B. Blackwell, and Charles R. Greene, Jr.
Greeneridge Sciences, Inc., 6160-C Wallace Becknell Road, Santa Barbara, California 93117

Christopher S. Nations and Trent L. McDonald
Western EcoSystems Technology, Inc., 2003 Central Avenue, Cheyenne, Wyoming 82001

A. Michael Macrander
Shell Exploration and Production Co., 3601 C St. Suite 1000, Anchorage, Alaska 99503

(Received 29 April 2011; revised 31 January 2012; accepted 10 March 2012)

An automated procedure has been developed for detecting and localizing frequency-modulated

bowhead whale sounds in the presence of seismic airgun surveys. The procedure was applied to

four years of data, collected from over 30 directional autonomous recording packages deployed

over a 280 km span of continental shelf in the Alaskan Beaufort Sea. The procedure has six sequen-

tial stages that begin by extracting 25-element feature vectors from spectrograms of potential call

candidates. Two cascaded neural networks then classify some feature vectors as bowhead calls, and

the procedure then matches calls between recorders to triangulate locations. To train the networks,

manual analysts flagged 219 471 bowhead call examples from 2008 and 2009. Manual analyses

were also used to identify 1.17 million transient signals that were not whale calls. The network out-

put thresholds were adjusted to reject 20% of whale calls in the training data. Validation runs using

2007 and 2010 data found that the procedure missed 30%–40% of manually detected calls. Further-

more, 20%–40% of the sounds flagged as calls are not present in the manual analyses; however,

these extra detections incorporate legitimate whale calls overlooked by human analysts. Both man-

ual and automated methods produce similar spatial and temporal call distributions.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.3699247]

PACS number(s): 43.30.Sf, 43.60.Np, 43.30.Wi, 43.80.Nd [KGF] Pages: 3726–3747

I. INTRODUCTION

In 2007 and 2008, the Shell Exploration and Production

Company (SEPCO) conducted a series of seismic explora-

tion surveys in the Beaufort Sea during the late summer and

early fall in relatively shallow arctic waters off Alaska. In

order to evaluate the potential impact of airgun sounds on

bowhead whales (Balaena mysticetus) during their westward

fall migration, SEPCO commissioned Greeneridge Sciences,

Inc. to deploy at least 35 “Directional Autonomous Seafloor

Acoustic Recorders” (DASARs) (Greene et al., 2004), di-

vided among five sites over a 280 km swath in the coastal

Beaufort Sea. Whale sounds were recorded over at least 35

days, covering times before, during, and after local survey

activities for both years. The study complements past and

present acoustic studies of bowheads in the Arctic (Clark

and Ellison, 2000; Moore et al., 2006; Blackwell et al.,
2007; Delarue et al., 2009). The same deployments were

also conducted in 2009 and 2010, when no large-scale airgun

surveys occurred nearby; however, signals from more distant

airgun surveys were present, along with signals generated by

shallow hazard surveys.

Every year the acoustic data contained hundreds of

thousands of whale calls. The scale of the dataset, combined

with a need for timely analysis, motivated the development

of methods for automatically detecting, classifying, and

localizing bowhead whale sounds, even during active seis-

mic surveys. This paper describes the multi-stage automated

algorithm that has been developed to process these multi-

year data sets.

After reviewing relevant details of the DASARs and

their deployment in Sec. II, Sec. III reviews previous work

on automated bowhead whale call detection and describes

the characteristics of bowhead whale sounds and interfering

acoustic sources, including seismic airguns and other marine

mammals. Section IV presents the six-stage algorithm in

detail, and Sec. V presents the results of processing four sea-

sons of data with the algorithm. Section VI discusses the

observed false alarm rates of the automated procedure and

considers whether a portion of these “excess calls” are

actually legitimate whale calls overlooked by the manual

analyses. A detailed comparison of the performance of the

automated vs the manual results is reserved for a companion

paper, as the methods for evaluating the statistical similarity

a)Author to whom correspondence should be addressed. Electronic mail:

athode@ucsd.edu
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between two temporal-spatial distributions require consider-

able exposition.

II. EQUIPMENT

A. DASAR description

The acoustic data were recorded on DASARs (Greene

et al., 2004), autonomous acoustic recording packages

equipped with an omnidirectional acoustic pressure sensor

(�149 dB re V/1 lPa) and two horizontal directional sensors

capable of measuring the north-south and east-west compo-

nents of acoustic particle velocity, an arrangement that per-

mits the azimuth of bowhead whale sounds to be measured

from each DASAR. All time series are sampled at 1 kHz and

have a maximum usable acoustic frequency of 450 Hz. The

GPS-synchronized time is noted to within a second when-

ever each DASAR is started and stopped. In addition, shortly

after the deployment and before the recovery of every

DASAR, a calibrated frequency-modulated signal is sequen-

tially broadcast at roughly 4 km range from three to six posi-

tions around each DASAR. These playback start times are

also time-stamped with GPS data, which are used to correct

each DASAR’s clock drift during post-processing. Coinci-

dent bearings to calls are combined to localize them using

the methods discussed in Sec. IV G. The bearing uncertainty

of the DASARs, derived by comparing the acoustic intensity

measured along orthogonal directions, is around 15�–20� for

signals with signal-to-noise ratios (SNR) of 5 dB or less, and

1�–2� for signals with SNR greater than 10 dB.

B. Deployment geometry and timelines

During the 2007 through 2010 field seasons, between 35

and 40 DASARs were deployed across a 280 km swath off

the Alaskan North Slope, on the continental shelf in water

depths between 20 and 53 m. The deployments were grouped

into “sites,” labeled 1–5 traveling from west to east (Fig. 1).

Most sites contained seven DASARs deployed in a triangular

grid with 7 km separating the DASARs. The southernmost

DASAR was labeled “a,” and the northernmost labeled “g,”

and the label “DASAR 5g” refers to DASAR data collected

at site 5, location g. In general, the mean depth at each site

increased from south to north, and among sites increased

from west to east. For example, the deepest DASAR at sites

1–5 sat at 23, 32, 41, 41, and 53 m depth, respectively.

The data analyzed here were recorded during the dates

reported in Table I. There was significant local airgun survey

activity in 2007 and 2008, during dates also reported in

Table I. In 2009 and 2010, there were fewer or no local airgun

surveys, but up to three distant seismic surveys were present,

similar to the number of distant surveys also detected in 2008.

III. BACKGROUND

A. Bowhead whale call diversity and previous
automation research

The primary challenge in automating the passive acous-

tic detection and localization of bowhead whale calls is cop-

ing with the diversity of their calls. The complete repertoire

of bowhead whales is highly variable and difficult to

FIG. 1. (Color online) Stereographic

projection of Directional Autono-

mous Seafloor Acoustic Recorders

(DASARs) deployment geometries in

the Beaufort Sea, 2008. The DASARs

at each site are roughly 7 km apart.

The deployments in other years are

similar, except that the five unlabeled

DASARS arranged as a trapezoid

near site 1 are absent. GPS tracks of

the seismic vessel Gilavar are shown

whenever airguns are firing between

September 8 and October 8, 2008.

TABLE I. Significant dates discussed in paper.

Year

Deployment

dates [total days]

Dates of significant

airgun survey activity [sites]

Dates used to train neural

networks [total days,

time of day, network trained]

Dates used for manual validation in

Fig. 10 [total days, time of day]

2007 Aug. 21–Oct. 11 [51] Sept. 17–Oct. 3 [3 & 4]a None Aug. 8; Sept. 4, 5, 12, 17, 25, 29; Oct. 2

[8 days, midnight–noon]

2008 Aug. 19–Oct. 3 [45] Sept. 3–12 [1] Sept. 13–28 [3 & 4]

Sept. 30–Oct. 8 [1]a

Aug. 21, 28; Sept. 6, 13, 21, 29

[6 days, midnight–noon, first network]

Same as training data

2009 Aug. 19–Oct. 6 [48] Distant only Aug. 27; Sept. 3, 8, 12,b 14, 18, 25, 30

[8 days, midnight–noon, second network]

Same as training datac

2010 Aug. 6–Oct. 6 [61] Distant only None Aug. 15, 21, 29; Sept. 5, 13, 27

[6 days, midnight–noon]

aUp to three distant surveys also logged during all dates.
bParticular focus on pinniped sounds logged between 0500 and 0700 on site 2.
cFigure 11 uses data from noon to midnight.
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organize into discrete classes. A large portion of their calls

consists of frequency-modulated (FM) sounds between 25

and 500 Hz, which vary substantially in modulation pattern

and frequency range (Clark and Johnson, 1984) and can con-

tain concurrent higher-frequency sidebands. The first four

spectrograms in Fig. 2 display examples of these bowhead

whale calls.

Other types of signals include “pulsed-tone” and

“amplitude/frequency-modulated (AM/FM)” calls, both of

which appear as multiple frequency-modulated contours in

spectrograms where the FFT length of the spectrogram is

greater than the pulse interval or modulation rate (Clark and

Johnson, 1984). Under such conditions, pulsed-tonal signals

appear as closely spaced “combs” of contours 50 Hz or less

apart, and AM/FM signals display one or two sidebands with

similar frequency separations. Sometimes an individual ani-

mal will generate long sequences of similarly-modulated

sounds, which in fall seasons have been labeled “call

sequences” (Clark and Johnson, 1984; Blackwell et al.,

2007). Bowhead “songs” (e.g., Stafford et al., 2008; Delarue

et al., 2009) have not been detected during the fall Beaufort

migration discussed here.

In subsequent discussion it becomes convenient to

define a “local,” “global,” and “total” bandwidth of an FM

or AM call with sidebands or harmonics. The “local” band-

width is the frequency range of the most intense FM compo-

nent of a received call measured over a short duration of

time, typically the FFT length used to create a spectrogram.

The “global” bandwidth is the frequency range traversed by

the midpoint of a given FM band throughout a call. For

example, in Fig. 2(b), the lowest frequency component of

the harmonic call descends from 162 Hz down to 75 Hz over

1 s, and so this component has a global bandwidth of 87 Hz.

The “total” bandwidth is the difference between the maxi-

mum and minimum frequency attained by any harmonic or

sideband throughout the entire duration of a call, and thus

defines the vertical dimension of a “bounding box” that

could be placed around a complete call on a spectrogram.

FIG. 2. (Color online) Spectrograms of bow-

head and airgun sounds from the Beaufort Sea

(256 pt FFT, 90% overlap): (a) two bowhead

whale calls covering different frequency ranges

during relatively high ambient noise conditions,

DASAR 2g, 2008; (b) downswept whale call

with harmonics, multipath, and reverberation,

DASAR 2f, 2008; (c) “n-shaped” bowhead

whale call with harmonics, DASAR 2f, 2008;

(d) same call as (b), recorded on DASAR 2a,

2008;(e) distant airgun signal, DASAR 5g,

2008; (f) distant airgun signal, DASAR 2e,

2009; (g) strong airgun signal, DASAR 3g,

2008, generated at 21 km range. Intensity levels

are in units of dB re 1 lPa2/Hz.
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Thus, in Fig. 2(b), the total bandwidth of the fundamental

and first harmonic is slightly greater than 200 Hz.

Some of the earliest attempts to automatically detect

marine mammal sounds used bowhead whale calls, but rela-

tively little public peer-reviewed literature exists. In 1993,

Weisburn et al. used a matched filter and an early version of

a hidden Markov model (HMM) (Rabiner, 1989) to distin-

guish 114 bowhead sound samples from other transient

sounds and white Gaussian noise. Several years later,

Mellinger et al. compared the performance of spectrogram

correlation methods, HMM, neural networks, and matched

filtering when applied to a subclass of sounds called

“endnotes,” culled from bowhead call sequences recorded

off Barrow, AK (Mellinger and Clark, 2000). After deter-

mining that spectrogram correlation methods had a higher

performance than an HMM, the authors conducted a more

extensive comparison between the spectrogram correlation

method, a neural network, and a matched filter. Their neural

network used 192 inputs that contained the time-frequency

bins of an 11� 21 spectrogram grid centered around the call

in question. Mellinger et al. concluded that the neural net-

work had the highest overall performance in terms of com-

bining the error rate between “false alarms” and “missed

calls,” but that the spectrogram correlation approach

required less training data and was more intuitive to under-

stand than the neural network.

Neural networks were again applied to bowhead endnotes

by Potter et al. (1994); here, the entire spectrogram was also

used as an input into a three-layer network, and the neural net-

work demonstrated a better overall performance than spectro-

gram correlation methods. More recently, Mouy et al. (2008)

presented results that used Gaussian mixture models (GMM)

to distinguish bowhead calls from other biological signals in

the Chukchi Sea, using band-averaged cepstral coefficients

and Daubechies wavelets to extract relevant features to input

into the GMM. When testing the classifier on the original

training data set, they found that classification based on ceps-

tral coefficients correctly identified 80% of a sample size of

275 calls, with a 2% false alarm rate. Heimlich et al. (2009)

has also applied a variety of classifiers to data collected in the

Beaufort Sea in 2007 and 2008.

B. Seismic survey signals and other interfering
transients

Another fundamental challenge provided by this data set

is the presence of concurrent signals that are not bowhead

whale sounds but are also variable in terms of duration,

bandwidth, and frequency modulation. The most common

type of interference arises from airgun surveys, which

include not just the local SEPCO surveys but also distant

seismic survey activity in the Arctic basin. At times, up to

three seismic surveys were detected simultaneously

[Fig. 3(a)]. The airgun pulses produced during seismic sur-

veys occur at regular intervals (typically between 10 and

15 s) and contain energy distributed over the entire DASAR

analysis band of 10–450 Hz.

While designed to be repetitive and reproducible, the

far-field signature of an airgun array is azimuthally depend-

ent, and the time-frequency structure of its signal alters sub-

stantially as it propagates long distances through shallow

water, morphing from pulses into extended FM downsweeps.

FIG. 3. (Color online) (a) Airgun

examples from three simultaneous

seismic surveys in the Arctic,

DASAR 5g, 2008, visible at 3, 7.5,

and 13 s. (b) Examples of bearded

seal and other biological signals,

DASAR 2e, 2009. Intensity levels

are in units of dB re 1 lPa2/Hz.
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Indeed, a single airgun shot can split into three or four sepa-

rate downsweeps due to geometric dispersion effects in the

waveguide, with each propagating mode yielding a different

FM downswept structure. While this structure can be

exploited to estimate source range (D’Spain et al., 1995;

Thode, 1999; Wiggins et al., 2004), these multipath effects

are a nuisance for automated detection because the structure

of the received signal from a nearby survey can vary consid-

erably over time as the range to the survey varies. Figures

2(e) and 2(f) illustrate examples of distant airgun signals,

while Fig. 2(g) illustrates a relatively close airgun pulse gen-

erated 21 km from a DASAR. Note how the two modal

arrivals in Fig. 2(g) persist substantially longer than the

higher-frequency pulsed arrival and how their global band-

widths and slopes are similar to those of bowhead whale

calls.

Another source of interference is provided by other bio-

logical sounds [Fig. 3(b)], including sounds produced by

bearded seals (Erignathus barbatus), walrus (Odobenus
rosmarus divergens), and possibly ringed seals (Phoca
hispida) and gray whales (Eschrichtius robustus). Whereas

bearded seal calls are usually higher in frequency than most

bowhead calls and readily distinguishable [at least by ear

(Risch et al., 2007)], walruses and bowhead whales can be

difficult to distinguish even by trained listeners.

Ship noise is a third, but rare, form of interference. Unlike

bowhead calls, ship noise is generally more continuous; how-

ever, this noise is also typically non-stationary and can gener-

ate acoustic fluctuations that can appear as transient signals.

IV. AUTOMATED PROCEDURE

A. Overview

The complete post-processing automated procedure is

subdivided into six stages, plus a data preprocessing stage

that converts the raw acoustic data into a form more amena-

ble for automated analysis (Fig. 4). The first four stages are

applied independently to data from each DASAR, and con-

sist of (1) applying an “event detector” to flag any potential

transient event of interest, (2) applying an “interval filter”

that removes from further consideration a significant fraction

of airgun pulses from distant and close range airgun surveys,

(3) running an image processor that extracts 25 descriptive

features from an equalized spectrogram of candidate detec-

tions, and (4) exploiting two cascaded feed-forward neural

networks to winnow candidate detections based on their

feature values. The remaining stages combine the neural

network outputs from all DASARs at a site by (5) matching

detected calls between DASARs and (6) computing the posi-

tion of the whale by triangulating the geographic bearings

computed from the matched call sets.

The fourth stage, which uses neural networks, required

training data provided by manual analyses in order to adjust

the network weights and output thresholds. The training data

were obtained by running the first three stages on subsets of

acoustic data from 2008 and 2009 that had been reviewed

manually for bowhead whale calls. A comparison of the

automated results with the manual data divided the auto-

mated results into appropriate “whale” and “non-whale”

classes, producing the training sets. Section IV E 1 details

the construction of these large-scale training sets, while also

discussing some subtleties that arose. Once the networks had

been trained and their weights fixed, all stages were then

applied to the complete four-year acoustic data sets.

Each of the following sections describes the six stages

in more detail. Table II summarizes the parameters used

across all stages. These parameters have not been systemati-

cally optimized; the parameters for the first two stages (event

detection and interval filtering) were estimated using local

(direct-search) optimizations on selected days of 2008 data,

FIG. 4. (Color online) Schematic of

automated detection, classification,

and localization algorithm for one

site.
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the first data set available when the procedures were first

being developed. The parameters for the image processing

and cross-DASAR call matching stages were estimated via

trial-and-error work on selected 2008 data sets as well. The

parameters for the localization stage were adopted from pa-

rameters reported in (Greene et al., 2004).

B. Event detection

The first automated stage simply seeks to flag any tran-

sient “event” that occurs in the acoustic data, using a version

of the cell averaging/clutter map constant false alarm rate

detector (CFAR) (Nitzberg, 1986; Levanon, 1988), also

known as an “energy detector” in the bioacoustics literature

(Mellinger, 2002). First, a running spectrogram is created,

using fast Fourier transforms (FFTs) of 256 samples

(0.256 s) overlapped 50%. (Note that the spectrograms in

Figs. 2 and 3, 5, and 6 are computed using 90% overlap to

provide greater visual clarity.)

Next, a set of “detection functions” D(fn,t) is created by

integrating the FFT output over a set of 37 Hz frequency

bands fn between 10 and 450 Hz, with 50% overlap between

the detection bands. Whenever a new FFT sample is

acquired at time ti, the set of detection functions is updated.

The new value of each detection function, divided by the

current value of a “background noise equalization” function

B(fn,t), is compared to a threshold of 6 dB (or 6.3 in terms of

linear signal-to-noise ratio). If the new value exceeds the

threshold, then the detector is “triggered,” a new event is

flagged, and the equalization function is not updated. If the

new value does not exceed the threshold, then the equaliza-

tion function is updated via the following expression:

B fn; tiþ1ð Þ ¼ 1� að ÞD fn; tiþ1ð Þ þ aB fn; tið Þ: (1)

The value of a is defined such that the contribution of a new

sample to B will decay to 5% of its original contribution in

24 s, yielding a¼ 0.982. Thus, the equalization function B
becomes a running exponentially weighted average of the

“smoothed” background noise levels, with an adaptive

response of about half a minute. Once a single detection

function has been triggered, the triggering of additional

detection functions at other bandwidths will not initiate new

events. Once all detection functions triggered by an event

have fallen below the threshold, the duration of the event is

derived. If the event’s duration is longer than 100 ms, it is

logged for further analysis. A new event is prohibited from

being flagged until 50 ms have elapsed since the end of the

previous event.

The reason a set of narrowband detection functions is

used, instead of a single broadband detection function, is

that the former approach should permit a larger SNR thresh-

old to be defined, emphasizing the detection of locally nar-

rowband signals vs signals that have energy distributed

across a wide bandwidth at the same time (i.e., locally broad-

band pulse). Note also that a single event may actually har-

bor one or more distinctive signals from multiple sources, if

the received signals overlap in time at that DASAR, even if

they do not overlap in frequency.

TABLE II. Parameters and values used in the algorithm.

Event detection (Sec. IV B)

Parameter Value [range]

FFT length 256 samples

Percent overlap 50%

Minimum frequency 25 Hz

Maximum frequency 500 Hz

Equalization time 24 s

Detector bandwidth 37 Hz

Detector bandwidth overlap 50%

SNR threshold 6 dB

Minimum time between events 50 ms

Event duration [0.1–6] s

Interval detection (Sec. IV C)

Interval range [5–42] s

Number of interval tests per candidate interval 20

Bearing tolerance 15�

Minimum match fraction 8/20¼ 0.40

Timing tolerance of kth interval
ffiffiffi
k
p

(s)

Maximum deviation from adjacent intervals permitted 0.4 s

Fraction of adjacent intervals that must lie

within maximum deviation

7/20¼ 0.35

Image processing (Sec. IV D)

Thresholding

Min SNR of ridge peak 13 dB

Maximum bandwidth 250 Hz

dB difference between ridge peak and edge 3 dB

Contour threshold 10 dB

Morphological processing

Minimum time-bandwidth product 1 s Hz (8 pixels)

Ridge closing element bandwidth 11 Hz

Ridge closing element duration 40 ms

Contour closing element bandwidth 20 Hz

Contour closing element duration 100 ms

Crude feature filtering Permitted range

Ridge duration [0.15–6.0] s

Global contour bandwidth [0–300] Hz

Maximum contour frequency [20–400] Hz

Minimum contour frequency [5–500] Hz

Segment splicing

Maximum time gap 100 ms

Maximum frequency gap 20 Hz

Overtone matching

Minimum overlap 25%

Maximum band separation 50 Hz

Neural network Processing (Sec. IV E)

Number of networks 2

Input features 25

Hidden units 10 each

Default network output thresholds for both networks [�0.8; 0.8]

Cross-DASAR call linking (Sec. IV F)

Image correlation threshold 0.42

Physically permissible time window 67 s

Bearing estimation and localization (Sec. IV G)

Bootstrap sample size for bearing uncertainty estimate 100

Huber localization tuning constant 1.5
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C. Interval filtering

The second automated stage seeks to determine whether

a set of events occurs at regular intervals from a consistent

direction and thereby can be flagged as a sequence of airgun

pulses. The goal of this stage is to remove the numerous,

low-intensity, short-duration, airgun pulses from distant air-

gun surveys that are ubiquitous among the acoustic records

during the Beaufort Sea summer [e.g., Fig. 3(a)]. This stage

begins by marching through every first-stage event and com-

putes its geographic bearing, using the methods to be dis-

cussed in Sec. IV G. For a particular “current” event, the

program searches 5 to 40 s into both the past and future for

the presence of any other events that arrived within 15� of

the azimuth logged for the current event. (This 30� swath is

needed to guarantee detection of most pulses from distant

airgun surveys; bearing estimates from these surveys have

FIG. 5. (Color online) Key steps in

the image processing stage, demon-

strated on the harmonic whale call

in Fig. 2(c), along with an airgun

pulse after 4 s: (a) Original spectro-

gram (256 pt FFT, 90% overlap); (b)

“ridge image” of equalized spectro-

gram using 13 dB ridge threshold;

(c) “contour image” of equalized

spectrogram using 10 dB SNR con-

tour threshold; (d) labeled ridge

image after morphological opening,

closing, and connected-component

labeling; (e) contour image after

morphological opening and closing;

(f) final “transients” indicated by the

large white boxes, comprised of

ridge segments linked using the

methods described in Secs. IV D 4

and IV D 5. Note how the harmonics

of the bowhead whale call at 2 s

have been successfully “linked.”

FIG. 6. (Color online) Same as

Fig. 5, but with steps performed on

the strong airgun signal shown in

Fig. 2(g). The small white box in (d)

highlights a ridge component that

would have been flagged as a bow-

head call had it not been linked to

the main pulse arrival through the

shared contour segment in (e). The

small white box in (f) indicates a

ridge segment that was not linked to

the airgun pulse via a common

shared contour segment in (e).
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standard deviations of around 20�). These other events, if

they exist, provide a set of “candidate” pulse intervals to

test. Each candidate interval is individually tested by search-

ing for the presence of other events at ten intervals into the

future and past, relative to the current event. A candidate

interval is awarded a “hit” if an additional event with an

appropriate bearing is present within
ffiffiffiffi
K
p

s of a given candi-

date interval prediction, where K is the number of pulse

intervals being projected either forward or backward in time

from the current event. If a “hit” is logged, the candidate

pulse interval estimate is recalculated to incorporate the

measured detection time of the new event, thereby reducing

the variance of the pulse interval estimate. If eight or more

of the 20 candidate interval test times yield “hits,” then the

current event is flagged as an airgun pulse and assigned the

candidate pulse interval. The program then advances to

the next event, relabeling it as the current event, and repeats

the entire procedure.

During times of heavy bowhead whale call activity,

such as during bowhead whale call sequences, or during

times when several bowhead whales are calling from the

same azimuth, whale calls can be assigned a pulse interval;

however, these assigned intervals usually have values that

differ substantially from nearby interval values, because

even call sequences do not display the degree of timing regu-

larity exhibited by airgun pulses. Therefore, after a first pass

through all events, the procedure checks that an interval

assigned to an event lies within 0.4 s of at least seven out of

20 intervals assigned to nearby events. Events that pass this

consistency check are flagged as airgun pulses and removed

from further consideration.

While the parameters of this stage have been set with

the goal of minimizing the rejection of true whale calls

rather than eliminating all airgun pulses, Sec. V A will illus-

trate how this relatively simple stage can still remove

between 25% and 75% of airgun signals before executing

the more computationally expensive stages.

D. Image processing and feature extraction

The third automated stage, image processing and feature

extraction, is the workhorse of the algorithm, requiring nearly

80% of the total processing time. There is a growing literature

on using image processing and other techniques to extract fea-

tures from frequency-modulated signals (Sturtivant and Datta,

1995; Datta and Sturtivant, 2002; Lammers et al., 2003;

Oswald et al., 2007; Roch et al., 2007; Asitha et al., 2008;

Madhusudhana et al., 2008; Top, 2009), but this area is still

an active research topic (Lampert and O’Keefe, 2010a,b), and

methods for handling sidebands remain underdeveloped (Hel-

ler and Pinezich, 2008).

During this stage a time series stored from the output

file generated by the event detector and interval filter is read

into memory and converted into a spectrogram, using a 256-

point FFT and 90% overlap between samples. In the follow-

ing discussion the spectrogram will often be described as an

“image,” stored in a matrix with the rows designating fre-

quency and the columns designating time, with a “pixel”

being a specific time-frequency element in the spectrogram.

This complex stage has multiple steps: (1) spectrogram crea-

tion and equalization; (2) generation of two binary images

via “ridge” and “contour” thresholding; (3) morphological

processing; (4) connected component labeling; (5) binary

and SNR-weighted feature extraction; (6) ridge segment

splicing and harmonic/sideband linking; and (7) contour/

ridge association and final feature vector assembly. Figures

5 and 6 illustrate some of the key steps using the whale call

and the close-range airgun pulse illustrated in Figs. 2(c)

and 2(g), respectively. An excellent introduction into many

of the techniques used in this stage, including thresholding

techniques and morphological processing, can be found in

Gonzalez and Woods (2002).

1. Spectrogram equalization and double-thresholding

After the spectrogram of each event is generated, it is

equalized using the stored values of the equalization function

B [Eq. (1)], producing an equalized image Beq with pixel val-

ues in units of SNR. The application of Gaussian and other

low-pass spatial filters to Beq was initially explored

(Gillespie, 2004), but spatial filtering was found to yield lit-

tle or no improvement in performance, as subsequent mor-

phological processing methods achieved the same goal.

This equalized continuous-scale image is converted into

two binary images using two different thresholding methods.

Due to the equalization process the thresholds can be

expressed in terms of SNR. The ridge threshold approach

cycles through each Beq column, seeking local maxima with

respect to frequency whose values are at least 13 dB SNR.

The threshold then selects all vertical (frequency) pixels con-

tiguous to each local maximum that lie within 3 dB of that

maximum. The result is a “ridge image” [Figs. 5(b) and 6(b)]

that traces high-resolution ridges of frequency-modulated nar-

rowband signals. The contour thresholding method simply

selects all pixels with values greater than 10 dB SNR

[Fig. 5(c) and 6(c)]. The Niblack thresholding method

described in the work of Asitha et al. (2008) is not used in

this work, because no reliable a priori knowledge exists of

what percentage of a typical spectrogram would consist of

noise, and this percentage is strongly time-dependent.

There are two motivations for using the parallel thresh-

olding methods. The first is to produce a larger set of poten-

tial features to extract from a spectrogram, since contrasts

between features extracted from the two binary images can

be useful for discriminating bowhead calls from other sig-

nals. For example, a tonal FM bowhead call should yield

similar local bandwidths when subjected to the different

methods [e.g., Figs. 6(b) and 6(c)], while broadband impul-

sive sounds, such as airgun signals, can yield different meas-

urements. The ridge image of an impulsive sound will

contain many narrowband fragments that lie over local max-

ima in the pulse spectrum, while the “contour image” will

consist of a single broadband segment; thus, the ridge and

contour bandwidths will be substantially different. The sec-

ond motivation arises from the use of the contour image to

link components of the ridge images together, providing a

simple form of contextual-based processing. This last moti-

vation is explained in more detail in Sec. IV D 5.
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2. Morphological processing and connected
component labeling

A morphological opening procedure (Gonzalez and

Woods, 2002; Asitha et al., 2008) is first applied to each

image to remove components comprised of eight pixels or

less, which corresponds to a time-bandwidth product (or

spectrogram “area”) of 1, given the chosen spectrogram pa-

rameters. Because calls often vary in intensity over their du-

ration, the binary ridge image of the call is often split into a

set of disconnected components. Thus, a morphological clos-

ing operation is next applied to both images, filling small

gaps between components by using a rectangular structural

element that spans 11 Hz bandwidth and 40 ms of time (or 3

frequency pixels and 2 time pixels in the spectrogram). Fig-

ures 5(d) and 6(d) and 5(e) and 6(e) display the results of the

morphological operations on both types of binary images.

Finally, “eight-connected” components in both images

(i.e., collections of pixels that adjoin each other horizontally,

vertically, and/or diagonally) are labeled using a run-length

encoding procedure, followed by the construction of an

adjacency matrix to compute the “equivalence classes”

(Haralick and Shapiro, 1992). The net result is the transfor-

mation of the binary image into a “labeled” image [Figs.

5(d) and 6(d)], where each set of connected components, or

“segment,” has been assigned a unique integer. The follow-

ing text will refer to a “ridge segment” as a segment derived

from the ridge image, etc., with the white box in Fig. 6(d)

illustrating an example of a ridge segment that superficially

resembles a FM bowhead whale call. Ridge segments that

are less than 0.15 s or greater than 6 s are discarded at this

point. The labeled image becomes fundamentally important

in Sec. IV F, where whale calls are matched between

DASARs.

3. Binary and SNR-weighted ridge feature extraction

Various features can now be extracted from each ridge

image segment, and Table III lists these features, subdivided

into two categories. Binary features are derived from the bi-

nary images alone, while SNR-weighted features are

obtained by using the binary image to mask the equalized

spectrogram Beq, and then computing features using the SNR

values of Beq as weights.

Binary features include each segment’s area (related to

the time-bandwidth product), duration, and global band-

width. Other segment features include (i) the median local

bandwidth, which is the median of the set of local band-

widths measured across each column of the segment, (ii) the

eccentricity, which is defined as the eccentricity of an ellipse

that has the same normalized second central moments as the

segment, (iii) the orientation, which is the angle between the

ellipse’s major axis and the horizontal, and (iv) the solidity,

a quantitative measure of compactness, defined as the ratio

between the area of the segment (i.e., the number of pixels)

and its convex hull. A heuristic definition of the last term is

the convex area (in pixels) that would lie within a rubber

band placed around the segment. Thus an image of a ring

has low solidity, while a filled circle has high solidity. In

principle, a moderately frequency-modulated bowhead call

would be expected to have a high solidity and eccentricity,

and relatively low orientation and median local bandwidth.

A highly frequency-modulated (“n” or “u”-shaped) call seg-

ment will have lower solidity and eccentricity.

The SNR-weighted features use weights w defined from

the masked equalized spectrogram Beq as follows:

wðf ; tÞ � Beqðt; f Þ �min Beq f ; tð Þ
� �

; (2)

where the global minimization is performed with respect to

all time/frequency values of Beq. The local mean frequency

is then

�f tð Þ ¼
ðf2

f1

w f ; tð Þf df

,ðf2

f1

w f ; tð Þ df ; (3)

where f1 and f2 are the lower and upper frequencies of a bi-

nary segment at time t, with t¼ 0 defined as the start of the

segment. The weighted minimum and maximum frequencies

of a segment are simply the minimum and maximum values

obtained by Eq. (3) over the duration of a given segment,

and the weighted start and end frequencies are the values of

Eq. (3) at the start and end of the segment. While the slope

and curvature of a segment can also be inferred from the

local mean frequency, they are not used here, due to the high

variability in bowhead whale call modulation structure. The

median weighted local bandwidth (MWLB) of a segment is

defined as

MWLB ¼ median 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðf2 tð Þ

f1 tð Þ
wðf ; tÞ f � �f tð Þ½ �2df

ðf2 tð Þ

f1 tð Þ
w f ; tð Þ df

vuuuuuut

0
BBBB@

1
CCCCA; (4)

TABLE III. Feature inputs into neural networks.

Binary features, (primary) ridge segment

with largest time-bandwidth product

Binary features,

linked ridge segments

Orientation (deg.) Total minimum frequency (Hz)

Eccentricity Total maximum frequency (Hz)

Solidity Total duration (s)

Duration (s) Total SNR (dB)

Median local bandwidth (Hz) Total SEL (dB re 1 lPa2-s)

Time-band product (s-Hz)

Number of overtones

(sidebands, harmonics)

Band spacing (Hz)

SNR-weighted features, (primary)

ridge segment with largest

time-band product

Binary features: contour

segment associated

with primary ridge segment

Median weighted local kurtosis Time-bandwidth product (s-Hz)

Median weighted local bandwidth (Hz) Global bandwidth (Hz)

Weighted minimum frequency (Hz) Duration (s)

Weighted maximum frequency (Hz) Median local bandwidth (Hz)

SNR (dB) Minimum frequency (Hz)

SEL (dB re 1 lPa2-Hz) Maximum frequency (Hz)
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where the median is taken with respect to all time samples of

the segment. The MWLB is a more robust estimate of the

local bandwidth than the binary local bandwidth. Finally, the

median weighted kurtosis (MWK) is defined as

MWK¼median

ðf2 tð Þ

f1 tð Þ
wðf ; tÞ f � �f tð Þ½ �4df

,ðf2 tð Þ

f1 tð Þ
w f ; tð Þ df

MWLB=2ð Þ4

0
BBBB@

1
CCCCA;

(5)

where the median is taken with respect to all time samples of

the segment.

4. Ridge segment splicing and linking

While the morphological closing operation in Sec. IV D 2

merges small ridge segments together, additional steps are

necessary to “splice” together short breaks in calls. If

the weighted end frequency of one ridge segment lies within

0.1 s and 20 Hz of the start of a second segment, both seg-

ments are assigned the same integer in the labeled image, and

their features are merged and/or recomputed as necessary.

Ridge segments can also be related via harmonics, pulsed

tone frequency combs, and AM sidebands. These “parallel”

segments are “linked” whenever segments overlap in time by

more than 25% and the median of the separation of their local

mean frequencies is less than 50 Hz. These criteria are repre-

sentative of high-SNR harmonic bowhead signals. Unlike

spliced segments, the features of parallel segments are not

merged; they retain unique integers in the labeled image, but

are now identified as part of the same “transient“ event.

Figure 5(f) demonstrates how the “parallel” ridge segments of

a harmonic bowhead whale call in Fig. 5(d) have been linked

together (indicated with a white box) using parallel linking

criteria.

Seven new features are extracted from the complete

linked transient: the number of linked segments, the “total”

frequency minimum and maximum of the transient, the

“total” transient duration, the mean frequency separation

between the segments, and the total transient signal-to-noise

ratio (SNR) and sound exposure level (SEL) (Madsen,

2005), also known as “energy flux density.” The inclusion of

the last two features is important; for example, the duration

and bandwidth of a given whale call typically shrink as SNR

decreases, so the measured bandwidth and duration of the

same whale call will change depending on receiver distance

[e.g., Figs. 2(b) and 2(d)]. A classifier needs to incorporate

measured received levels and SNR in order to account for

this effect.

5. Contour/ridge linking and feature vector assembly

The previous two steps (feature extraction and segment

splicing/linking) are only performed on the ridge image in

order to reduce processing time. In this step, linked ridge

segments are associated with their corresponding contour

segments, and previously unlinked ridges that share a

common contour segment are now linked into a single tran-

sient, thereby changing the “total” minimum and maximum

frequencies, “total” duration, and SNR and SEL estimates.

Further features are extracted from the contour segment

encompassing the primary ridge segment (Table III). Sub-

plots (d), (e), and (f) in Figs. 5 and 6 demonstrate how the

contour image of airgun pulses can be used to link ridge seg-

ments arising from the same pulse. For example, five distinct

ridge segments in Fig. 6(d) (including the bowhead-like con-

tour highlighted by the white box) cannot be linked via the

approaches presented in the previous subsection. However,

Fig. 6(e) shows that the five segments share a common con-

tour segment, and so they become linked together (assigned

the same color) within the white bounding box in Fig. 6(f).

However, the second small white box in Fig. 6(f) indicates a

ridge segment that was not associated with the large airgun

contour segment, and thus will pass on to subsequent stages

as a transient separate from the other ridge segments. In gen-

eral, contour segments not associated with ridge segments

[Figs. 5(e) and 6(e)] have no impact on the final image

[Figs. 5(f) and 6(f)]. Thus the (e) subplots are only used to

consolidate the ridge segments in the (d) subplot, and are not

used to add additional segments to the transient.

Having successfully linked appropriate segments into a

common transient, the program then conducts some simple

“feature filtering” to remove ridge segments that are clearly

associated with close-range airgun signals. As illustrated in

Fig. 6(e), these signals tend to produce contour segments

with large global bandwidths, low contour segment mini-

mum frequencies, and high contour segment maximum fre-

quencies. Thus, if a contour segment exceeds some simple

thresholds set for these features, then all ridge segments

linked to that contour [e.g., segments in the large white

bounding box in Fig. 6(f)] are eliminated. The program

thereby eliminates dispersed airgun multipath arrivals that

otherwise resemble bowhead FM sweeps. These simple

steps, along with restrictions on the minimum and maximum

detection durations, can eliminate anywhere between 10 and

30% of the total events passing through the image processing

stage. The final output of the image processing stage is a set

of transient detections, with each transient comprised of a set

of spliced and linked ridge segments and one contour seg-

ment, the features associated with every segment, the ‘total’

features associated with the transient as a whole, and a la-

beled image of all linked ridge segments. The net effect is

that although a single event detection from the first stage is

often decomposed into numerous ridge segments, four dis-

tinct methods are used during the image processing stage to

attempt to consolidate these segments into smaller groups of

transient detections: morphological closing, segment splic-

ing, harmonic/sideband linking, and linking ridge segments

that share a common contour segment.

Finally, the image processing stage assembles a feature

vector from the 25 features listed in Table III. The selected

features include those extracted from the ridge segment with

the greatest time-bandwidth product, features of the contour

segment associated with the transient set, and “total” fea-

tures of the complete transient such as the total duration,

total bandwidth, the SNR, and the SEL.
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E. Feature filtering: neural network processing

The feature vectors emerging from the image-

processing step have already been subjected to some simple

thresholding. However, many of the features are coupled,

and a more sophisticated nonlinear classifier is needed. In

the fourth stage of the algorithm, two cascaded multilayer

feed-forward neural networks (Rumelhart, 1986; Rumelhart

et al., 1986; Bishop, 1995; LeCun et al., 1998; Duda et al.,
2001; Bishop, 2006), also commonly called “multilayered

perceptrons,” process feature vectors from each individual

DASAR. The first network makes a binary decision whether

a vector represents a “biologic” vs “non-biologic” signal,

while the second network makes a binary decision as to

whether a vector is a “bowhead” call or “other biologic”

sound. The reasoning behind using two networks instead of

one is provided in the next subsection, which describes the

development of the training sets.

The motivation for using multilayer perceptrons is that,

in principle, these networks can reproduce any arbitrary clas-

sification scheme (Hecht-Nielsen, 1989; Kùrková, 1992).

These networks have been applied to bowhead whale calls

(Potter et al., 1994; Mellinger and Clark, 2000), as well as pri-

mate sounds (Pozzi et al., 2010), certain killer whale sounds

(Deecke et al., 1999), insects (Ganchev and Potamitis, 2007),

and blue whales (Bahoura and Simard, 2010).

With the exception of Bahoura and Simard (2010), the

approach used in this effort differs from previous applica-

tions of neural networks on whale calls (Potter et al., 1994)

in that here the networks are applied to extracted features of

the calls, instead of the raw spectrogram time-frequency

pixel values used in most previous efforts. Thus, instead of

hundreds of raw input variables provided by a spectrogram,

the inputs to the network are reduced to just 25 descriptive

variables. The application of principal component analysis

(PCA) to further reduce the dimensionality of the feature

vector yielded no performance improvement.

The application of the neural network stage can be di-

vided into three parts: (1) the assembling of an appropriate

data set to “train” the networks, (2) the selection of an appro-

priate architecture and training protocol for the two net-

works, and (3) the application of the trained networks to

novel feature vectors.

1. Creation of training data sets

A neural network requires a set of “training” examples

from all desired output classes. Greeneridge Sciences’ ana-

lysts reviewed acoustic data and recorded the times of occur-

rence of bowhead whale sounds, as well as the frequency

band, duration, bearing, and general “shape” of the signal.

The analysts used a program that displayed 60 s spectro-

grams for all DASARs simultaneously at a given site, and

permitted analysts to listen to sound selections, as well as to

estimate the quality of bearings obtained from the selection.

An analyst could then use all this information to draw

“bounding boxes” around the same call, as detected on dif-

ferent DASARs, and then localize the call. The availability

of such manual analyses was an important resource for the

automated processing of the SEPCO data sets, but three

practical issues had to be resolved: which subsets of data to

manually analyze, how to generate training examples of

non-whale detection, and how to account for inconsistencies

in the treatment of biological signals other than bowhead

calls.

A typical DASAR deployment lasts approximately

45–60 days, but time and budget constraints limit manual

analyses to 10%–20% of the data record. Six to eight non-

contiguous days, roughly evenly spaced over time, were

selected that displayed different levels of whale, local air-

gun, and distant airgun activity. The manual analysts would

then review DASAR data from all sites for each day. The

first 12 h of each day were used to train the algorithm, while

the final 12 h of each day were reserved for evaluating algo-

rithm performance.

The next issue was deciding how to generate training

samples of transient events not associated with bowhead

whale calls. Manually logging every transient event would

have been prohibitively expensive. Instead, the first three

stages of the automated procedure were used to derive this

training data set. The first 12 h from each analyzed day were

processed through the event, interval, and feature-extraction

stages to produce a large collection of feature vectors. Each

automated transient a was then compared with a manual

analysis record m to determine the “time overlap”:

tovlapða;mÞ ¼
min td;a; td;m

� �
�max t0;a; t0;m

� �
max td;a; td;m

� �
�min t0;a; t0;m

� � ; (6)

with t0,x and td,x being the start and end time of transient x. A

similar “frequency overlap” was defined using the minimum

and maximum frequencies obtained by the automated and

manual results. If an automated detection had at least 50%

overlap in time and frequency with a manually logged bow-

head detection, its corresponding feature vector was assigned

as belonging to the “true” class; otherwise, the feature vector

was assigned to the “false” class. If multiple automated

results matched the overlap criteria with the same manual

detection, the automated result with the greatest time overlap

was selected. This approach assumes that manual analysts

flag every bowhead whale call, even relatively weak and

brief ones. Later, in Sec. VI, this assumption is revealed to

be incorrect.

A related issue concerned the treatment of other biologi-

cal sounds by the manual analysts. The original training data

were collected in 2008, and originally a single neural network

was used to analyze the data. In 2009 it became clear that sin-

gle network was not effectively discriminating between bow-

head, bearded seal, and walrus calls. The primary reason for

this difficulty was the relatively small proportion of non-

whale biological sounds in the 2008 data. The solution was to

ask highly experienced analysts to generate a second training

dataset with a high proportion of pinniped calls relative to

bowhead calls, using the relatively pinniped-rich 2009 data

set. A second network was then trained to distinguish between

pinnipeds and whale calls, which could then be applied to fea-

ture vectors surviving the first neural network. Thus manually

analyzed data from both 2008 and 2009 were used to train the
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neural network stage. Specific dates used for the training data

are provided in Table I.

2. Architecture and training protocol

Both neural networks are standard feed-forward net-

works consisting of (i) one input layer, (ii) one hidden layer

of ten units, each using a hyperbolic tangent sigmoid activa-

tion function with biasing, and (iii) a two-unit output layer

using linear transfer functions. Convergence tests indicated

no improved performance using more than ten units per hid-

den layer. Each input variable in the training set was normal-

ized such that the mean and standard deviation of the input

distribution was 0 and 1, respectively (LeCun et al., 1998).

The appropriate network weights and biases were

derived using a scaled conjugate gradient backpropagation

stochastic training method (Moller, 1993) with a mean-

squared error performance function. A “cross-entropy” per-

formance function was also examined (Bishop, 1995), but no

discernable performance improvement was noted. Out of all

the samples available from the training data, 60% were used

to adjust the network weights in batch training mode, 20%

were held in reserve to evaluate when to stop training the

network, and 20% were held to validate the final network on

completely novel inputs, to confirm that the network had not

been over-optimized on the data set. There is no general con-

sensus on how the training data should be divided between

training, evaluation, and validation, but the 60/20/20 split

used here is the default value recommended by commercial

software packages such as MATLAB.

For every feature vector each network produces a scalar

output that ranges between �1 and þ1, with more positive

values indicating a greater likelihood of the feature vector

arising from a whale call. Each network was assigned a

threshold such that feature vectors generating outputs more

negative than the threshold were rejected.

A transient that survives passage through both neural

networks, along with its associated feature vector, is now

defined as a “call” in subsequent discussion. A set of calls

detected on different DASARs that likely arise from the

same source event is defined as a “call set.” The estimated

position derived from a call set is defined as a “call local-

ization” or simply a “localization.”

F. Cross-DASAR call matching

Up to this stage each DASAR has been processed inde-

pendently, but at the fifth stage, calls between DASARs are

matched to produce “call sets” as a precursor to final local-

ization. The challenge of this stage is identifying and

“matching” the same call detected on DASARs separated by

several kilometers in water depths of less than 50 m. As dis-

cussed in Sec. III, at these water depths, acoustic signals

with frequency content less than 500 Hz experience substan-

tial geometric dispersion and bottom absorption, which alters

the phase structure of the signal and often eliminates weaker

sidebands and harmonics at larger ranges [e.g., Fig. 2(b) vs

2(d)]. Thus, phase-based techniques, such as matched filter-

ing and/or signal cross-correlation, which work well for

matching signals detected between deep water hydrophones

in places like U.S. Navy test ranges (Ward et al., 2000; Mor-

rissey et al., 2006; Ward et al., 2008), did not perform well

in this environment for most bowhead whale calls, as the

peak normalized correlation coefficient was often less than

0.3, even for signals arising from the same source. More

complex strategies are required for recognizing a common

origin between calls detected at two different DASARs. The

problem is exacerbated by the fact that bowhead calls can

occur so frequently that a given detection on one DASAR

can potentially be matched with several other detections on

the second DASAR, within the physically permissible time

window that encompasses the travel time of a sound between

the two locations.

The eventual strategy employed for cross-DASAR match-

ing used spectrograms, which only retained the magnitude of

the signal spectra, and converted the matching problem into one

of comparing images. By rejecting phase information, much

precision is lost in estimating the relative arrival time of a signal

on different sensors, but a compensating advantage of DASARs

is that their localization method does not require relative arrival

times, as is the case for conventional omnidirectional hydro-

phones. Thus, cross-DASAR matching only requires the ability

to recognize the same signal on different instruments with a rel-

ative timing precision on the order of a second.

A call set is constructed by first defining an “anchor:” a

particular DASAR that contains a call that is to be matched

against other “target” DASARs. The stage begins by designat-

ing the southernmost DASAR (a) as the anchor, and designat-

ing a call from this DASAR as the “anchor call.” The

maximum travel time that is physically possible between the

anchor and the two closest target DASARs is computed, and

calls on a target DASAR that lie within the permissible time

window relative to the anchor call are flagged as “candidates.”

Due to the triangular arrangements of the DASARs at a site,

the two closest DASARs are always about 7 km apart, yield-

ing a time window of 4.6 s. This window is expanded to 7 s in

Table II to account for time misalignments between DASARs.

During times of frequent calling or seismic activity, multiple

candidates on a target DASAR are often available for each

anchor call, and some criteria for evaluating the similarity

between two calls are required.

Calls detected on different DASARs could not be

matched simply by comparing their total frequency minima,

maxima, or duration; some form of template matching was

required. In principle the forward Hausdorff distance

(Rucklidge, 1996) would be an ideal tool for matching a par-

tial image to a complete image, but attempts to implement

the method were slow and inaccurate. Eventually a variant

of the spectrogram correlation method (Mellinger and Clark,

2000) was used, by exploiting the labeled images generated

by the image processing stage.

Specifically, the ridge segment with the largest time-

bandwidth product (pixel count in the spectrogram) on the

anchor call is flagged, and a binary image A(i,j) consisting of

that one segment is created, with i being a row (frequency)

index, and j being a column (time) index. A similar target bi-

nary image T(i,j) is created for each candidate call on the tar-

get DASAR. The “min-norm distance coefficient” CA,T is

defined such that
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CA;T ¼ 1�
max

k

X
i;j

Aði; jþ kÞTði; jÞ
( )

min
X

i;j

Aði; jÞ;
X

i;j

Tði; jÞ
( ) ; (7)

where k is the discrete time offset between the images, and

the second term in Eq. (7) can be defined as a “min-norm

correlation coefficient.” In other words, after discovering the

time offset that creates the greatest overlapping area (rough

time-bandwidth product) between the images, the min-norm

correlation coefficient is that maximum overlapping area

divided by the area of the smaller segment. The min-norm

distance coefficient is then simply the min-norm correlation

coefficient subtracted from one. Note that the standard defi-

nition of a correlation coefficient would use the geometric

mean of the two areas in the denominator; using that defini-

tion here would penalize a typical situation where substantial

differences in area exist between the two segments.

Equation (7) is computed for every candidate target call,

and values greater than 0.42 are rejected. Surviving candi-

date calls are then subjected to a reciprocal check by com-

puting Eq. (7) between each candidate call and all physically

permissible anchor calls, and confirming that the original

anchor call provides the lowest value of Eq. (7) for each can-

didate call. If not, that candidate is rejected. Thus a “two-

way” match is established between the anchor and target

call, preventing a call from participating in multiple matched

sets. If multiple candidates pass these tests, then the candi-

date call with the lowest value from Eq. (7) is finally

accepted. The program then designates a new anchor call

and repeats the entire process. With a little bookkeeping,

Eq. (7) needs to be only executed once for a given anchor-

target call pair.

Once all calls on the anchor DASAR have been matched

to calls on the two closest DASARs, then the role of anchor

is assigned to the next southernmost DASAR (B), and two

additional DASARs that lie north of B (C, D) are the new

targets. Since all calls on the B DASAR have previously

been matched to the A DASAR, a match between a B call

and C call will automatically result in a match between C

and A, if the B call has been previously matched to an A

call. Since the role of anchor is shouldered by all DASARs,

calls can eventually be matched between distant DASARs,

even if the structure of the signal changes substantially over

the aperture of the system, since the actual comparisons are

only conducted between adjacent DASARs.

As shown in Sec. V B, the cross-DASAR matching stage

can play a prominent role in eliminating false detections.

G. Bearing estimation and localization

Once the call sets have been established, the sixth stage

estimates a bearing for every call in that set, using methods

nearly identical to previously-published methods used to

locate bowhead whales from DASARs (Greene et al.,
2004). Along with the bearing estimate, the uncertainty of

the measurement is also quantified by modeling the bearing

estimation likelihood function as a Von Mises distribution

and estimating the concentration parameter j (which is

analogous to the standard deviation of a Gaussian distribu-

tion), by conducting 100 bootstrap samples of the time

series.

Finally, the localization stage uses the bearings from

each call set to estimate a robust maximum-likelihood posi-

tion of the animal, along with the 90% confidence ellipse

(Lenth, 1981a; Greene et al., 2004). A robust method is

needed to reduce vulnerability to directional outliers, which

are bearing estimates that deviate substantially from the

bearing to a tentative location estimate. These outliers can

arise from interference with other discrete signals or from

incorrect matches within the call sets, and often arise during

manual analysis as well. The maximum-likelihood method

used here uses an “M-weighting” approach, where the con-

tributions of each bearing to the localization estimate are ini-

tially given the same weight. After an initial solution is

obtained, the weights are recomputed by inserting the esti-

mated value of j and the mismatch between the measured

bearing and current maximum-likelihood estimate into a

“Huber” weighting function (Huber, 1964; Lenth, 1981b)

with a tuning parameter of 1.5. The new weights are used to

compute a new maximum-likelihood position. After a few

iterations the weights of directional outliers are reduced sub-

stantially, provided that 2 to 3 other DASAR bearings

roughly converge. The final output is a location, bounded by

a 90% confidence ellipse.

V. RESULTS

A. Neural network training datasets, bulk processing
runs, and threshold test runs

As discussed in Sec. IV E 1, two separate neural net-

works were trained. In 2008, all five sites were manually an-

alyzed on the days listed in Table I, with the first 12 h of

each day providing the training sets for the first network.

There were 141 796 automated transients (as defined in

Sec. IV D 5) that satisfied the time and overlap criteria of

Eq. (6) for a manually logged whale call, and will be desig-

nated as “whale transients.” In addition, using the same crite-

ria, 1 153 506 automated transients were not associated with

manually logged whale calls, and will be designated as

“excess transients.” Figures 7 and 8 show two-dimensional

histograms of the distributions of the minimum frequency

and duration of whale and excess transients that comprise

the first training set. Clearly, some separation between the

classes can be obtained from these two parameters alone:

substantial numbers of non-whale transients are less than

0.5 s long and have minimum frequencies below 25 Hz.

The manual analysts also generated 50 934 call sets

from the 2008 data, where a “call set” has been defined in

Sec. IV E as a set of calls detected on different DASARs

which likely share a common origin. Call sets are the final

outputs of the automated procedure before localization. Out

of all the manually obtained call sets, 42 637 had two or

more calls and 35 643 were localized successfully.

The training set for the second network was generated

from the 2009 data (Table I), yielding 77 675 whale transi-

ents and 20 467 pinniped transients.
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Several frequently used terms in this section are now

defined. An “excess call fraction” (also known as “false dis-

covery rate,” or one minus the “precision”) is the fraction of

total automated transients that are excess transients, not

whale transients. Thus, the initial training data for the first

network had an excess call fraction of 0.89. Next, the

“missed call fraction” (also known as one minus the “recall”)

is defined as the fraction of manually detected calls on indi-

vidual DASARs that do not correspond to any automated

transient, using the 50% time and frequency bandwidth over-

lap criteria of Eq. (6). Similar terms must be defined for call

sets. A call set obtained manually is considered missed by

the automated method if it shares fewer than two DASARs

in common with every automated call set, using the criteria

from Eq. (6). Thus, a “missed call set fraction” can be

defined as the fraction of manually analyzed call sets that are

missed by the automated method. A given automated call set

is considered an “excess set” if it shares fewer than two

DASARs with any manually derived call set; consequently,

an “excess call set fraction” is the fraction of automated call

sets that do not correspond with any manually derived call

set. Defining these terms separates the question of accurate

localization of call events from the question of whether calls

on different DASARs were correctly matched.

FIG. 7. (Color online) Distributions

of the duration (s) and minimum fre-

quency (Hz) of 141 796 whale call

feature vectors obtained in 2008

from all sites, used to train the first

neural network. (a) Marginal distri-

bution for total minimum frequency;

(b) 2D distribution of both parame-

ters, with the intensity scaled to the

log number of calls in a bin; (c) mar-

ginal distribution for total duration.

FIG. 8. (Color online) Same as

Fig. 7, but showing the distributions

of 1 153 506 feature vectors not

associated with whale calls, used to

train the first neural network. The

first bin in (c) has about 610 000

samples, but the y-axis is limited to

200 000 samples to improve the visi-

bility of the rest of distribution.
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Once the networks had been trained, four years of acous-

tic data obtained between 2007 and 2010 were processed two

different ways: using a “bulk processing” approach, and using

a “threshold test” approach.

For the bulk processing runs, the complete algorithm

was applied to all days of acoustic data obtained between

2007 and 2010, using the parameter values in Table II, which

were estimated from trial and error tests on portions of the

2008 data. The bulk processing runs all used the same neural

network thresholds, which were fixed using a criterion that

only 10% of whale transients in the training data could be

rejected by a given network. This criterion was an initial

estimate as to what fraction of the total whale calls could be

safely eliminated without significantly altering the final tem-

poral and spatial distributions of the calls. The thresholds

thus derived for both networks were �0.8 and 0.8, respec-

tively; this combination (�0.8, 0.8) will be designated the

“default thresholds.” When the training data sets are applied

to the networks using these default thresholds, the respective

excess call fractions of the cascaded network outputs are 0.6

and 0.01. The first network thus reduces the excess call frac-

tion of the training set by 33% (1�0.6/0.89) at the cost of

rejecting 10% of transients associated with manually

detected calls in the training data. Stated another way, the

first network cuts the number of excess transients per

manually detected call from 8 [0.89/(1�0.89)] to 1.5 [0.6/

(1�0.6)]; a five-fold reduction.

Next, a series of “threshold test” runs were executed.

The initial four stages of the algorithm (no cross-DASAR

matching or localization) were applied to the subset of days

that had been manually analyzed from each of the four years

(Table I), using 121 different combinations of threshold val-

ues for the neural networks. These runs were compared with

the manual analyses in order to examine the tradeoff

between excess call fraction and missed call fraction.

The 2007 and 2010 manual analyses contain no data

that were used to train the algorithm, while the 2008 and

2009 analyses do contain data used to train the neural net-

work stage. No attempt was made to optimize other parame-

ters of the algorithm listed in Table II.

B. Example of bulk processing using default network
thresholds

Figure 9 displays how the various stages of the algo-

rithm strip away the initial event detections during bulk

processing of the 2008 season. Both heavy whale acoustic

activity and close-range airgun surveys occurred during this

season. Each subplot represents a different site, and the auto-

mated outputs from all the DASARs at that site are summed

to produce the total number of detections surviving each

stage at that site per day. As mentioned in Sec. IV D, the

image processing stage can subdivide an “event” from the

first stage into multiple “transients.” If this stage outputs

more transients than the initial input events, then the num-

bers of detections in the first two stages of Fig. 9 were

increased accordingly for visual consistency. In Sec. VI this

figure will be used to examine the relative importance of var-

ious stages in winnowing detections.

C. Comparing manual and automated performance
before localization stage

Figure 10 compares the “bulk processing” and

“threshold test” runs with manually analyzed results from

the dates shown in Table I. The top subplot shows the com-

bined performance from all five sites, while Figs. 10(b) and

10(c) show the performance at a single site both close to and

far from local seismic airgun activity in 2007 and 2008 (sites

3 and 5, respectively). Each year of data is represented by a

different symbol (e.g., diamond for 2010).

Each subplot shows three different comparisons between

the manual and automated data. First, Fig. 10(a) shows that,

across all sites, the missed call percentages range between

30% (2007 and 2009) and 40% (2008), with excess call per-

centages between 30% (2009 and 2010) and 55% (2007).

Recall that, in the bulk processing runs, the default thresholds

were set such that 20% of the “whale transients” would be

removed by the fourth stage alone, so a missed call percentage

of at least 20% is expected.

The relative impact of cross-DASAR matching (fifth)

stage can be seen by comparing the large filled symbol to the

corresponding small filled symbol: the missed call set frac-

tion increases by a few percentage points relative to the

missed call fraction, while the excess call set fraction shows

a corresponding decrease relative to the excess call fraction.

The final comparison is shown by the curves connecting

the hollow symbols displayed in Fig. 10, which consolidate

the results of the threshold test runs. Threshold pairs that pro-

duce the same missed call fraction (to within 60.05) have

been grouped together, and the threshold pair from that group

that yields the lowest excess call fraction is plotted in the fig-

ure. Thus, the curves display the performance of the first four

stages when the optimal network threshold combinations are

used. The default thresholds used in the bulk processing runs

are close to optimal for 2009 and 2010, as their corresponding

small filled symbols lie close to their associated optimal per-

formance curves. The default thresholds are suboptimal for

2007 and 2008, as the small filled symbols for those years lie

well above their corresponding curves. The optimal perform-

ance curves are similar for three of the four years. The year

2007 shows a higher excess call fraction for a given missed

call fraction, for reasons to be discussed in Sec. VI.

D. Example of whale call spatial distributions from
manual and automated processing

Figure 11 shows the spatial distribution of all whale

calls localized between noon and midnight over the dates in

2009 listed in Table I. The top subplot maps the call distribu-

tions of the manual analyses, while the bottom shows the

corresponding automated call distributions using the default

network thresholds, which are shown to be close to optimal

for 2009 in Fig. 10(a). As the manual results shown here

were taken from the last 12 hours of each day, none of them

were used to train the neural networks or adjust the parame-

ters in Table II, because the primary author only had access

to the first 12 hours of each day when training the software.

This figure shows gross similarity between the manual and

automated analyses over these coarse spatial scales.
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A detailed evaluation of the statistical similarities

between the manual and automated call localization distribu-

tions over four years requires temporal-spatial statistical

analyses that lie beyond the scope of this paper. However,

Fig. 12 shows some gross statistics of the call locations for

both the manual and automated processing. The left column

shows the number of DASARs that contribute to a given call

location, and the right column shows a measure of the loca-

tion uncertainty in terms of an “effective radius,” or the ra-

dius of a circle that shares the same area as the 90%

confidence ellipse. Figure 12 shows that the automated loca-

tions generally have fewer DASARs contributing to their

locations, and fail to locate 13% of call sets, vs 5% for the

manual results. However, automated locations derived from

2 or more DASARs display a positional uncertainty very

similar to the manually analyzed locations.

The distribution of manually analyzed calls in Fig. 12(a)

seems unusual, in that manually analyzed data from

DASARs deployed for other studies (e.g., Blackwell et al.,
2008), find that calls localized with many DASARs are

relatively less common than calls localized with fewer

DASARs, as is shown in the automated result, and as would

be expected from the sonar equation. By contrast, Fig. 12(a)

shows a relatively even distribution of calls across

DASARS, and a relatively high number of call locations that

used seven DASARs (vs six DASARs).

This pattern seems to arise from systematic differences

between the 26 manual analysts used to generate the manual

dataset. In particular, three analysts generated 49% of all

seven-DASAR localizations. One might argue that the three

analysts happened to analyze days of low ambient noise lev-

els and high call volumes; however, sites 3 and 5 produced

90% of the seven-DASAR locations, and site 4 only 10% of

these kinds of locations, even when using the same days, and

thus the same ambient noise conditions for all sites. Differ-

ent analysts, however, analyzed different sites on the same

FIG. 9. (Color online) Progression of the bulk 2008 processing through each automated stage. Each subplot (a) through (e) represents sites 1–5, respectively.

The output of each stage for all DASARs at a given site has been added together. The vertical extent of each color/shade indicates the number of events that

have been removed on that date by the corresponding stage. Substantial local seismic survey activity took place near sites 3 and 4 between September 18 and

28. Starting from the top, the colors/shades show detections removed by interval filter (gray), image processing stage (orange), neural network stage (yellow),

cross-DASAR matching (cyan), and localization (light blue). The dark blue area (bottom shaded area) shows final call counts.
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day, with more experienced analysts often assigned to days

and sites with heavier call activity. We thus tentatively con-

clude that different manual analysts tend to link different

numbers of calls together, and the aggregate effect is to flat-

ten out the distribution shown in Fig. 12(a).

VI. DISCUSSION

A. Relative importance of various stages during bulk
processing

The bulk processing output in Fig. 9 provides insight

into the relative contributions of the processing stages. As

expected, the neural network stage (yellow) generally plays

the prominent role in winnowing candidate detections,

reducing the number of transients by at least a factor of 4.

Other stages also provide assistance in discriminating bow-

head whale calls from other transients. For example, the

interval filtering stage can strip up to 90% of initial events

detected by the first stage during times of heavy seismic ac-

tivity, as can be seen in Fig. 9 between September 21 and 28

on sites 3 and 4.

Both Figs. 9 and 10 show that the cross-DASAR match-

ing stage can also play an important role in reducing excess

call detections. For example, Fig. 9 reveals that the acoustic

environment at site 1, the shallowest of the sites, substan-

tially differs from the others. On average this site produces

twice as many event detections as the others, and few of the

events are associated with airguns. During at least half of the

2008 deployment, over 90% of the site 1 “calls” that survive

the neural network stage cannot be matched to at least one

other DASAR, making the call-matching stage at least as im-

portant as the neural network stage in removing extra detec-

tions from this site. A random review of spectrograms

from DASARs at Site 1 show the presence of numerous low-

level transient narrowband pulses, uncorrelated between

DASARs, consistent with what can be deduced from the

algorithm’s performance. The origin of these pulses is uncer-

tain; they may be biological in origin or may arise from con-

stant mechanical disturbances of the DASAR sensors in this

shallow, high-current region.

B. Sensitivity of neural network performance to
training set size and feature selection

Another practical question of interest is how small the

training set could be while still reproducing the performance

curves shown in Fig. 10. The original training data set from

2008 was sampled randomly without replacement, generat-

ing smaller training samples that contained 0.1, 1, 10, 20,

and 50% of the number of feature vectors of the final 1.3

million-example training set (141 796 whale examples and

1.153 million false examples). The ratio of false to true

whale samples was kept constant (such that the 10% training

set contained 14 180 whale examples and 115 350 false

examples, etc.). Three independent training sets from each

size category were subsampled from the large training data

set.

Every sub-sampled set was then used to train an addi-

tional neural network, using the same architecture and train-

ing protocol for the original network, and using the same

pseudo-random number sequence to initialize the weights. In

particular, 60% of the subsample was used to train the net-

work, 20% was used to determine when to stop training, and

20% was used to validate performance, as discussed in

Sec. IV E 2. The resulting performance curve was then com-

pared to the performance curve of the first network only.

The analysis found that a network trained with 10% the size

of the original training set converged to virtually the same

performance curve as a network trained with the entire set.

There is another aspect to the story, however.

A frequent criticism of neural networks is that they

are “black boxes” that provide no insight into the relative

FIG. 10. (Color online) Comparison between manual analyses and fourth-

and fifth-stage automated results, conducted on dates listed in Sec. V A.

Data from 2007 (circles), 2008 (squares), 2009 (triangles), and 2010 (dia-

monds) are shown. Manual analyses from 2008 and 2009 were used to train

portions of the automated classifier. The solid small blue symbols indicate

the fourth-stage (neural network) automated performance, expressed in

terms of excess call fraction (also known as “false discovery rate,” or one

minus the “precision”) and missed call fraction (also known as one minus

the “recall”), using default network thresholds discussed in Sec. V A. The

large solid symbols indicate the corresponding performance of the fifth-

stage (cross-DASAR matching) automated results, expressed in terms of

excess call set fraction and missed call set fraction, using default network

thresholds. The curves connecting hollow symbols show the neural network

performance using optimized network thresholds, as discussed in the text.

Subplots are comparisons between (a) all sites; (b) site 3 only (close to air-

gun surveys in 2007 and 2008); and (c) site 5 only (distant from airgun sur-

veys). The legend indicates the number of individual call detections

obtained by manual analyses for each year.
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importance and interactions of the feature vectors’ compo-

nents. To address this concern, an additional series of neu-

ral networks was trained using 10% of the original

training data set, after removing a portion of the feature

space from the training vectors. The following groups of

parameters from Table III were systematically removed

from the training sets as a block: those related to duration

(three parameters), minimum frequency (three parame-

ters), maximum frequency (three parameters), bandwidth

(four parameters), SEL/SNR (four parameters), orientation

(one parameter), eccentricity (one parameters), solidity

(one parameter), time-bandwidth product (two parame-

ters), kurtosis (one parameter), and presence of harmonics

(one feature). Thus for a “duration” scenario, the three pa-

rameters in Table III related to signal duration are

excised, and the remaining 22 features were used to train

the network.

For each group of excised parameters, the three sub-

sampled training sets were used to train three networks, in

order to determine whether the relative contributions of the

feature space were consistent. Each of the trained networks

used a unique sequence of psuedo-random numbers to assign

the initial weights, and these same sequences were used

when testing reduced feature sets on a particular network.

That way, random fluctuations in how the initial weights

were seeded could be held fixed during the comparisons.

As expected, no one feature dominated the performance;

indeed, the three sets of trained networks apparently

achieved similar performance while assigning different rela-

tive marginal weights to the feature vectors. The relative im-

portance of the features became much more consistent when

the analysis was repeated with 20% of the training dataset.

Under those circumstances the feature sets associated with

both duration and SNR/SEL reduced the excess call fraction

(for a given missed call fraction) by 0.02–0.03, the orienta-

tion feature reduced the fraction by 0.01–0.03, and the rela-

tive importance of the other parameters seemed to be

roughly equal, with their relative impacts varying between

the three networks, even when 20% of the total training set

was sampled.

FIG. 11. (Color online) Top: Spatial distribution of 19 125 whale call locations obtained by manual analysis of the last 12 h of 8 non-contiguous days in 2009.

Bottom: distribution of 18 063 whale call locations computed by automated detection algorithm over the same time periods. No manual data from the top sub-

plot were used to train the software.
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In summary, only 10% of the original training set (tens

of thousands of whale calls and hundreds of thousands of

false examples) seems required to reproduce the gross per-

formance curve of the primary neural network, but at least

20% of the original training set is needed to obtain a consist-

ent internal representation of the weights, in terms of relative

feature contributions.

C. Interpreting excess call fraction

Figure 10(a) shows how the cascaded networks produce

excess call fractions between 0.3 and 0.6 during the thresh-

old test runs, with values in 2007 and 2008 greater than those

in 2009 and 2010. The optimal performance curves also

reveal a similar trend, with 2007 exhibiting greater excess

call fractions than later years, across all missed call

fractions.

It is tempting to suggest that the local airgun surveys in

2007 and 2008 are responsible for the higher excess call

fractions during those years, but Fig. 10(c) shows that the

discrepancy between years exists at sites relatively distant

from the airgun surveys as well. Furthermore, a day-by-day

review of the results found that the automated excess call

fraction decreases during days that local airgun surveys are

present, and the missed call fraction increases. An alternative

explanation for the observed differences between years

is that the manual analysis procedure has become more

standardized over time. For example, in 2007, the first year

of the large-scale SEPCO study, manual analysts often used

evidence of localization convergence to assess whether a

detection was a whale call, and would reject weak SNR sig-

nals that did not seem to contribute substantially to the local-

ization. The DASAR sensors used in 2007 also had less

accurate bearing estimation capability than subsequent years.

(The DASAR sensors were improved in 2008 and remained

unchanged through 2010.) Detections with inferior localiza-

tion performance (e.g., due to low SNR or inaccurate bear-

ings which resulted in poorer convergence characteristics),

were typically ignored by the manual analysts. Thus some

valid whale calls would have been unmatched with the man-

ual results, producing an excess call count.

Again, the issue of missed manual call detections arises

when comparing the results in Fig. 10(a) to the spatial distri-

bution maps in Fig. 11. In 2009 call sets generated using the

default network thresholds show an excess call set fraction

of 0.18 and missed call fraction of 0.3. One would thus

expect that the total number of automated call localizations

in 2009 would be 83% (0.7� 1.18) of the number of man-

ually analyzed localizations (19 125 in Fig. 11), or 15 873

automated localizations. In fact, 18 063 automated locations

are found (95% of the number of manual detections).

Furthermore, there is an unexpectedly good correspon-

dence between the gross spatial distributions of the automated

and manual results, given the excess call set fractions shown

FIG. 12. Statistics of whale call locations for manual and analyzed positions shown in Fig. 11. Left column: Distribution of number of DASARS used to local-

ize calls in (a) manual and (b) automated analysis. The “no sol” category indicates percentage of call sets that yield no localization solution (e.g., no crossed

bearings, or failure to obtain bearings from enough DASARS). Right column: Distribution of area of 90% confidence ellipse for call locations, expressed in

terms of radius of a circle of equivalent area, for (c) manual and (d) automated analysis. Italicized x-axis labels are in units of km; otherwise, units are meters.

The right column only uses positions derived from two or more DASARs.
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in Fig. 10. This apparent discrepancy was consistent across all

years and led to further suspicions that at least some of the

excess call sets were indeed true whale calls that had some-

how not been matched with a manual result.

To examine this speculation, the manual and automated

locations were compared in greater detail in Fig. 13, during a

period of heavy whale calling activity. Figure 13(c) plots the

localizations derived from the excess call sets and demon-

strates how closely the resulting spatial distribution corre-

sponds to the manual distributions in both Fig. 13(a) and

13(d). The similarity between the distributions in Fig. 13

indicates that the excess call fractions shown in Fig. 10

incorporate actual whale calls missed by the manual ana-

lysts, and not just false alarms.

A manual review of the results shown in Fig. 13(c)

reveals two primary reasons for the existence of automated

call sets unassociated with the manual call sets. First, the

original manual analysis missed substantial numbers of brief

and/or weak calls: 53% of the localizations in Fig. 13(c)

arise from whale calls that were not detected on any DASAR

by the original manual analysis. It is not surprising that the

manual analysis is biased against brief calls, as analysts typi-

cally review 60 s of acoustic data at a time in a spectrogram,

a time scale large enough that weak calls less than a second

long could be missed. Second, an additional 25% of the

localizations in Fig. 13(c) correspond to matched-call sets

that actually contain some calls flagged by the manual ana-

lysts on individual DASARs, using the 50% overlap criteria

defined in Eq. (6). The automated matched call sets, how-

ever, use different combinations of DASARs than those used

by the manual analysts. The automated algorithm seems bi-

ased against high SNR calls that generate substantial

amounts of reverberation, which are exactly the calls which

manual analysts excel at flagging. The analysts, in turn,

tended to ignore the weaker examples of a given call on

more distant DASARs. Manual and automated matched call

sets were thus found that shared fewer than two DASARs in

common, even though they were localizing the same call

event, as could be inferred by comparing the modulation pat-

terns, bearings, and relative timing of the calls in both

matched sets. Finally, the remaining 22% of the automated

locations in Fig. 13(c) seem to be true false alarms, in that

they are localizations of signals that are clearly not whale

calls, or localizations of signals that clearly do not arise from

a common source event. Thus in summary, over 75% of the

excess call sets shown in Fig. 13(c) are likely to be legiti-

mate whale positions.

Similar logic lies behind the explanation for the 230

locations missed by the automated algorithm, shown in

Fig. 13(d). Slightly over 20% of the missed manual call sets

are actually localized by the automated algorithm, but the

algorithm produced call sets using different DASARs than

the corresponding manual call set. Of the remaining missed

manual locations, 79% were detected on three or fewer

DASARs, and 48% were detected on just two DASARs. By

contrast, 54% of all the manual localizations used three or

fewer DASARs, and 30% used two DASARs. Thus, calls

that are present on fewer DASARs are more likely to be

missed by the automated algorithm.

Similar trends were observed in other years. Therefore,

the excess call fractions shown in Fig. 10 likely overestimate

the true “false alarm” rate, so the performance curves in

Fig. 10 should be considered an upper bound on the underly-

ing false alarm fraction. Rather than considering manual

analyses as “ground truth,” these findings suggest that both

manual and automated processing miss legitimate calls,

FIG. 13. (Color online) Detailed

comparison between manual and

automated call set spatial distribu-

tions for site 2, August 28, 2008,

between midnight and 4 a.m. (a)

Spatial distribution of manual call

sets that match an automated call

set. A “match” between an auto-

mated and manual call set occurs

when they share at least two

DASARs in common. (b) Spatial

distribution of automated call sets

that match the call sets shown with

(a). There are more locations plotted

here than in (a) because a manual

call set encompassing four or more

DASARs may match two two-

DASAR automated call sets. (c)

Spatial distribution of “excess” auto-

mated call sets that do not match

any manual call set; (d) manual call

sets that do not match any automated

call sets.
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complicating the challenge of comparing large-scale datasets

generated by both techniques.

VII. CONCLUSION

An automated detection, classification, and localization

scheme for bowhead whale calls has been applied to four

years of data from large spatial arrays of 35 autonomous

recorders. In two of those years, substantial numbers of

close-range airgun signals were also present. Image process-

ing methods, neural network classifiers, and spectrogram

correlation methods were combined to detect and localize

arbitrarily modulated bowhead whale calls. Hundreds of

thousands of whale calls and over a million false samples

were used to train the networks, using data from two of the

four years (2008 and 2009). The input features used here are

not conditioned spectrogram time-frequency bins, but are

smaller sets of quantitative features extracted through the

image processing techniques. Only 10% of the training set

seemed required to obtain the observed performance, but at

least 20% of the training set is needed to produce a consist-

ent pattern in the relative weighting of the features, with fea-

tures related to duration, SNR, and orientation having the

largest marginal impact on classifier performance. The opti-

mized performance curve from the reliable validating data

year (2010) indicates that the networks did not have to be

retrained with new data; simply adjusting the output thresh-

olds with new data was sufficient. While neural networks

were effective and easy to implement, other standard

pattern-recognition classifiers should presumably work.

The large-scale spatial and temporal distributions of the

calls are similar for manual and automated methods

(Fig. 11), despite the excess call set fractions displayed by

the automated algorithms in Fig. 10. Various lines of evi-

dence (e.g., Fig. 13) suggest that the manual analyses miss

legitimate whale calls, inflating the apparent false detection

fraction. This interpretation, if true, helps explain the rela-

tively poorer performance of the algorithm in 2007, a year

when manual analysis procedures and instrument hardware

were in the process of being standardized. It also suggests

that automated missed call and call set fractions could be

decreased further by adjusting the appropriate network

thresholds, with little deterioration in the quality of the

resulting call set spatial distributions.

The algorithm could be improved in several ways. None

of the parameters in Table II have been systematically opti-

mized, other than the neural network thresholds. The merg-

ing of widely separated harmonic components into a single

“transient” event could be improved further (e.g., Heller and

Pinezich, 2008). There are also indications that each site

should have its own dedicated neural network, trained with

data from that site, instead of applying a common network

trained with data from all sites. Site 1, in particular, seems to

experience a different acoustic environment from the other

sites and may benefit from a dedicated neural network, or at

least a different set of network thresholds.

The algorithm also shows vulnerability to the presence of

ships, which tend to generate numerous short FM-type signals

in equalized spectrograms. Adding additional features into the

classifier that characterize the frequency spectrum of the am-

bient noise background, including cepstral or entropy-based

(Burg spectrum) measures (Erbe and King, 2008), could miti-

gate the impact of vessel noise.
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