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Abstract—With the advancement of exascale computing, the
amount of scientific data is increasing day by day. Efficient data
access is necessary for scientific discoveries. Unfortunately, the
I/O performance is not improved, like the CPU and network
speed. So, I/O operations take longer time than data generation
or analysis. Asynchronous I/O has been proposed to extenuate
the I/O bottleneck by overlapping I/O and computation time.
However, multiple small write operations can diminish the ben-
efits of asynchronous I/O, as the I/O time becomes significantly
longer than the compute time, with little time to overlap with.
To overcome these issues, we present an optimization technique
to merge small contiguous write operations. We integrated our
solution into the HDF5 asynchronous I/O VOL connector and
demonstrated the effectiveness of merging HDF5 write operations
automatically and transparently without requiring any code
change from the application.

I. INTRODUCTION

As exascale high-performance computing (HPC) systems
become available in the coming years, new challenges for sci-
entific data management emerge. With the increasing compu-
tation power, an unprecedented amount of data is expected to
be generated [1]. Storing and accessing such large amounts of
data efficiently remains a difficult task, as the I/O operations’
efficiency often limits the overall application performance and
scientific productivity. Scientific Applications such as earth-
quake simulations [2]–[4] and cosmological simulations [5]
involve massive amounts of data write operations. The ever-
increasing volumes of data need to be stored, shared, analyzed,
and visualized, and poor I/O performance can hamper such
workflow and reduce scientific productivity.

To speed up the data access efficiency, asynchronous I/O
has been proposed and shown to be an effective approach [6]–
[9]. The total application runtime can be significantly reduced
by overlapping the I/O with sufficient computation time.
However, the existing asynchronous I/O approaches execute
the I/O operations on background threads [9] or dedicated
server processes [6]. If an application is performing a large
number of small write requests, the I/O time can still be very
long and may exceed the computation time that it can overlap

with, resulting in partially hidden I/O time and limited overall
performance improvement. Additionally, longer I/O time can
lead to increased resource contention among the computation,
communication, and asynchronous I/O operations, and slows
down the application [10].

To address this issue, we propose to optimize the asyn-
chronous I/O by merging multiple small write operations into
fewer large and contiguous writes, which could be much faster
when writing to the parallel file system. The asynchronous I/O
frameworks enable such optimization as they can accumulate a
number of operations in a queue before executing them. With
the asynchronous VOL connector [9], a background thread
is launched together with an application. I/O operations are
intercepted and converted into asynchronous tasks, which are
then added to a task queue. The background thread monitors
the application’s activity and only triggers the I/O operations
when the application is performing non-I/O operations. By
inspecting the queued I/O tasks, we can extract the offsets
and sizes of the write requests, and merge those that can
form a larger contiguous chunk. This is especially useful for
applications that produce time-series data, with each writer
appending a small amount of data to the previously written
datasets. To minimize the impact on the application, we have
(a) developed a highly efficient algorithm that detects and
merges compatible write operations and (b) integrated it into
the HDF5 asynchronous I/O VOL connector. Our work is fully
automatic and transparent, with no requirement to change the
application’s code as long as they use the asynchronous I/O
VOL connector.

In summary, our method makes the following contributions:
• We propose an I/O optimization strategy that merges

multiple small write operations into fewer and larger
contiguous writes.

• Our solution supports up to 3-dimensional data and
supports merging out-of-order write operations.

• We demonstrate the effectiveness of our solution com-
pared with existing work using benchmarks with various
workloads at different scales.



The rest of the paper is structured as follows. We review
related literature in Section II. We provide the background of
the asynchronous I/O framework in Section III, and explain
the implementation of the merge operation in Section IV. In
Section V, we describe the experimental setup and present the
parallel I/O results of the experiments. Finally, we conclude
the paper in Section VI.

II. RELATED WORK

Merging I/O operations has been used to save I/O time in
different fields. We briefly cover its use in distinct contexts.

Hard-Disk Drives (HDDs) are commonly used with various
optimizations to provide the necessary throughput and low
latency for mail, web, file, database, and backup/archive
data services, as well as for desktop environments where
instant responsiveness is desired. In order to meet the ever-
increasing performance requirements of big data analysis
software, internet-scale online services, and other diverse
application classes, Yu et al. [11] presented reordering or
merging requests in a request queue to maximize the amount
of data within a single I/O request.

In Deep Learning (DL) and cloud computing platforms,
file systems are an essential component. However, in DL
datasets, many small files can lead to a performance penalty
when using Hadoop Distributed File System (HDFS). To
address the issue, Zhu et al. [12] propose Pile-HDFS (PHDFS),
which incorporates a new file aggregation method to improve
performance where I/O units combine small files based on
their correlation.

Performance variability in solid-state drives (SSDs) is a
common issue caused by garbage collection (GC). Com-
mercial off-the-shelf SSDs may experience unexpected drops
in throughput when workloads have a higher percentage of
writes. This is because GC is triggered to clean invalid pages,
producing free space, but incoming requests may be pending
in the I/O queue, delaying their service until GC is finished.
This problem is particularly severe for bursty write-dominant
workloads commonly found in server-centric enterprise or
HPC workloads. To address this issue, Lee et al. [13]
propose merging I/O requests with internal GC I/O requests
and demonstrating a significant performance improvement.

The rapid increase in genomics data has significantly in-
creased the computational and data-intensive nature of search-
ing sequence databases. Lin et al. [14] explore the computa-
tion and I/O scheduling for irregular, data-intensive scientific
applications in the context of genomics sequence search.
They report that a lack of coordination between computa-
tion scheduling and I/O optimization can negatively impact
performance. They propose integrated scheduling to improve
sequence-search throughput by coordinating computation load
balancing and high-performance non-contiguous I/O.

Mobile devices are becoming increasingly integrated into
people’s daily lives, and system responsiveness is crucial for
maintaining a positive user experience. Despite advancements
in technology, mobile devices still experience unpredictable
delays. Wu et al. [15] found that improper merging operations

in the I/O scheduler layer significantly contribute to these
delays. To reduce system latency caused by large merged
requests, they propose a new dynamic merging/splitting-based
I/O scheduling approach to enhance system responsiveness.

I/O deduplication is widely used for conserving storage
space and reducing I/O load. This technique benefits various
systems, including storage servers in data centers, personal
devices, and field-deployed sensing systems. Moreover, a
deduplication system uses metadata, including information
about mapping logical blocks to physical blocks, the number
of references to physical blocks, and unique identifiers for
blocks (fingerprints), to ensure consistency in storage even
after system failures occur. I/O deduplication is an effective
way to save storage space and decrease the number of costly
flash writes. By implementing soft updates-style metadata
write ordering, storage data consistency can be maintained
without incurring additional I/O. Moreover, the anticipatory
I/O delay optimization is particularly effective for increasing
the chances of merging metadata when working with a strong
I/O persistence model [16].

I/O is a major bottleneck for data-intensive scientific ap-
plications in high-performance computing (HPC) systems
and leadership-class machines, I/O is a significant bottleneck
for data-intensive scientific applications. These systems may
struggle to handle the high volume and intensity of I/O
requests, leading to bottlenecks. I/O forwarding is used to
aggregate and delegate I/O requests to storage systems to ad-
dress this issue. Ohta et al. [17] present a method for merging
I/O requests and scheduling their delegation to parallel file
systems, resulting in improved application I/O throughput.

Decentralized file systems have been plunged for the load
asymmetry of different nodes and the scalability issues. Due
to the absence of a metadata server in decentralized file
systems, clients and servers need to send more RPC requests
to control the metadata processing, which badly impacts the
I/O performance, and also causes traffic imbalance due to
increased RPC latency. An et al. [18] proposed an I/O scheme
to reduce the number of RPC requests. Instead of a single
RPC request at a single time, they queued the RPC requests
and merged them into a larger RPC request, thus skipping
huge RPC overhead.

Inspired by the above-mentioned research papers, we ap-
plied the idea of merging multiple write operations into one to
improve the I/O performance. Our work is based on the HDF5
asynchronous I/O VOL connector [8], which accumulates a
number of write operations in a queue, and allows us to check
for contiguous writes and merge the compatible ones.

III. BACKGROUND

This section briefly discusses how high-level interfaces such
as HDF5 can be used with asynchronous I/O and our merge
optimization to improve I/O performance.

A. HDF5

The Hierarchical Data Format (HDF) [19] provides a
system for organizing and storing data, including an abstract



data model and storage format. The HDF5 library offers a
programming interface that implements these abstract models,
as well as a method for efficiently transferring data between
stored representations. HDF5 is a widely used high-level I/O
library in many scientific domains [20]–[22]. HDF5 relies on
the user to define where the data should be written, using the
data space creation and hyperslab or point selection.

B. HDF5 Virtual Object Layer (VOL)

HDF5 provides the Virtual Object Layer (VOL) [23] in-
terface, an intermediary for all HDF5 API calls that might
access objects in a file. These calls can be redirected to an
external VOL connector that can change the I/O behavior,
which provides the architecture support for performing I/O
operations asynchronously. The external VOL connectors are
dynamic link libraries, and can be loaded by the HDF5 library
through an environment variable during runtime,

C. HDF5 Asynchronous I/O VOL connector

Asynchronous I/O is proposed as a solution to reduce
the I/O time. It performs I/O while allowing other tasks to
proceed before the I/O operation is completed. The existing
asynchronous I/O VOL connector [8], [9] supports queuing
several I/O tasks and then executing them in background
threads so that the application’s main process can proceed
without waiting for their completion.

With the HDF5 asynchronous I/O VOL connector, every I/O
operation creates a task object. The task object holds all the
information needed for the execution, including a copy of I/O
parameters, a function pointer to execute the operation, data
pointers, and internal states like its dependency and execution
status. The background thread’s execution engine added the
task to a queue, which manages the task dependency and is
hidden from the user. After a task is created, the corresponding
function returns to the application without blocking it. The
execution engine decides which task will be executed and
passes the task’s information to the background thread for
execution.

The asynchronous I/O may take the same or longer time
(due to overhead) than synchronous I/O. To further improve
the I/O performance and take advantage of the queued tasks
in an asynchronous I/O framework, we propose a new opti-
mization that can merge multiple compatible write operations
into fewer contiguous writes, as writing the same amount of
data in multiple operations are much slower than writing them
in one or a few write requests.

IV. WRITE REQUEST MERGE

We have developed an efficient algorithm that detects and
merges small write operations to improve the asynchronous
I/O performance, as described in Algorithm 1. Currently, it
supports up to 3-dimensional data, but it can be extended to
support higher-dimensional data with the same logic. Addi-
tionally, it can also be applied to merge read requests.

To check whether two write requests can be merged, we
need to extract their data selection information first. This

Algorithm 1: Data selection merge
Data: W0(off0[], cnt0[]),W1(off1[], cnt1[])
Result: merged write, W2(off2[], cnt2[])
if dimension==1 then

if off0[0] + cnt0[0] == off1[0] then
off2[0] = off0[0]
cnt2[0] = cnt0[0] + cnt1[0]

end
end
if dimension==2 then

if off0[0] + cnt0[0] == off1[0] then
if off0[1] == off1[1] and cnt0[1] == cnt1[1]

then
off2[] = off0[]
cnt2[1] = cnt0[1]
cnt2[0] = cnt0[0] + cnt1[0]

end
end
if off0[1] + cnt0[1] == off1[1] then

if off0[0] == off1[0] and cnt0[0] == cnt1[0]
then

off2[] = off0[]
cnt2[0] = cnt0[0];
cnt2[1] = cnt0[1] + cnt1[1]

end
end

end
if dimension==3 then

if off0[0] + cnt0[0] == off1[0] then
if off0[1] == off1[1] and cnt0[1] == cnt1[1] and
cnt0[2] == cnt1[2] and off0[2] == off1[2] then

off2[] = off0[]
cnt2[0] = cnt0[0] + cnt1[0]
cnt2[1] = cnt0[1]
cnt2[2] = cnt0[2]

end
end
if off0[1] + cnt0[1] == off1[1] then

if off0[0] == off1[0] and cnt0[0] == cnt1[0] and
cnt0[2] == cnt1[2] and off0[2] == off1[2] then

off2[] = off0[]
cnt2[0] = cnt0[0];
cnt2[1] = cnt0[1] + cnt1[1]
cnt2[2] = cnt0[2];

end
end
if off0[2] + cnt0[2] == off1[2] then

if off0[1] == off1[1]and cnt0[0] == cnt1[0] and
cnt0[1] == cnt1[1] and off0[0] == off1[0] then

off2[] = off0[]
cnt2[2] = cnt0[2] + cnt1[2]
cnt2[0] = cnt0[0]
cnt2[1] = cnt0[1]

end
end

end

can be done within the HDF5 VOL layer by retrieving the
dataspace selection information (offset and count arrays) from
an HDF5 dataset write function call. For example, Fig. 1 (a)
shows three 1D data writes W0, W1, and W2, with offset
values 0, 4, 6 and count values 4, 2, and 3, respectively.

Algorithm 1 shows how we compare the offset (off []),
and count (cnt[]) values of two writes to detect and merge



compatible requests. For 1D data, we check if the end offset
of W0 is equal to the start offset of W1. If it is true, W0
and W1 are considered to be contiguous and can be merged
into a larger one, W0′. W0′ has the same offset value as W0,
but a larger count value equals the summation of cnt0[0] and
cnt1[0]. To reduce the memory overhead, we replace the data
selection of W0 with the newly merged W0′ and remove the
merged write request W1. The data buffer also needs to be
merged by concatenating the buffers of the two write requests.
We found that performing two memcpy operations per merge
can take a significant amount of time, especially if many write
operations can be merged and the total data size grows. We
devised an optimization to extend the larger buffer with the
new merge size using memory reallocation (realloc) and only
perform one memcpy from the smaller buffer to the new buffer.
For example, Fig.1 (a) shows three writes W0 (offset 0 and
count 4), W1 (offset 4 and count 2), and W2 (offset 6 and
count 3). Since the end offset of W0 and the start offset of W1
are the same (which is 4), then W0 and W1 are contiguous and
can be merged. Furthermore, W1 and W2 also are contiguous
because the end offset of W1 is the same as the start offset
of W2 (which is 6). By performing two merges, the three
write requests become one contiguous write, W0′. The offset
of W0′ is copied from W0 (which is 0), and its count value
is the summation of W0,W1,W2 (which is 4 + 2 + 3 = 9).
When merging W0 and W1, we extend W0’s buffer size to
be 4+2 = 6, then copy the 2 elements from W1 to the end of
the extended buffer. Since W2 is also contiguous with W0′,
with 3 elements, we can further extend the merged buffer to
a size of 6 + 3 = 9 and copy 3 data elements to the end of
the buffer. Overall the merged write will have an offset of 0
and a count of 9. Data of write W0 is copied by the memcpy
function with offset 0 and count 4.

For 2D data, the contiguous data check depends on off []
and cnt[] values, each with 2 elements. In the beginning, we
need to check the write operations W0 and W1 are contiguous
in any of the 2 dimensions. If the end offset value of W0
is equal to the start offset value of W1 in any dimension,
then that dimension is the merge dimension. We need to
check further whether the offset and count values of another
dimension are the same, if so, we can say the two writes
are contiguous. For example, in Fig.1 (b) shows three writes
W0 (offset 0, 0 and count 3, 2), W1 (offset 3, 0 and count
3, 2), and W2 (offset 6, 0 and count 2, 2). Since the end offset
of W0 and the start offset of W1 are the same in the first
dimension (which is 3), and the count and offset values of
another dimension are identical (offset is 0 and the count is
2), then W0 and W1 are contiguous. Furthermore, W1 and
W2 also are contiguous because the end offset of W1 is the
same as the start offset of W2 (which is 6), and the offset
and count values of the other dimension are also matched (the
offset is 0 and the count is 2). The three write requests can
then be merged into one, W0′. W0′ has offset values copied
from W0 (0, 0), and count values from W0 except in the
merged direction, which is the summation of the count values
(3+3+2 = 8). Different from the 1D case, we can not always

extend one buffer and copy the other buffer to the end, as the
two buffers may be interleaved in the merged buffer unless
the merge dimension is the last dimension.

For 3D data, the contiguous write requests are checked by
comparing the off [] and cnt[] values, each with 3 elements.
Similar to the 2D case, we check if W0 and W1 are contigu-
ous in any of the three dimensions. We check each dimension
by comparing the end offset W0 with W1’s start offset; if they
match, we say that it is the merged dimension. After that,
we check further two other dimensions. If both dimensions
offset and count values are equal, we can consider them as
contiguous data, and they can be merged. The newly merged
write W2 will have the same offset values from W0, and
the count of the merged dimension will be changed by the
summation of the count value of W0 and W1, with other
dimensions equal to W0. We perform the memcpy operations
to reconstruct the merged buffer by calculating the target
locations of the data elements in each buffer. This can be
calculated using W2 dimensions and offset and counts from
W0. For example, Fig. 1(c) shows that W0 has a count of
3, 3, 3, and the offset is 0, 0, 0. The merged W0′ will copy the
values to 0, 0, 0. For the W1 memcpy, we need to calculate the
new offset values using the offset of W0 (0, 0, 0) and count
(3, 3, 3) values of W0, and it becomes 3, 0, 0. If the merge
happens in the last dimension, then we can extend the size of
one buffer to the merged size by realloc function and copy the
data from the other buffer to the extended space, which saves
time.

Fig. 2 shows how our proposed method works within the
HDF5 asynchronous I/O VOL connector. Three write oper-
ations are in the asynchronous task queue named W0, W1,
and W2. Our merge optimization checks the contiguousness
of two write operations based on their offset and count values.
When 2 write operations can be merged (e.g. W0 and W1),
we replace W0 (or W2, depending on which one has a
larger buffer size) with the newly merged data selection and
concatenated buffer, and remove W2 from the Async Task
Queue. We continue to check whether the newly merged W0′

can be merged with any other write request in the queue, e.g.
W2. This process is repeated until no tasks in the queue can
be merged. By performing a multi-pass of the data selection
merge operations, we can merge multiple write requests even
if they are out-of-order (e.g. the starting offsets of W0, W1,
W2 are in non-increasing order). The time complexity of
our algorithm is O(N2), where N is the number of write
requests in the queue. For append-only applications, the time
complexity is reduced to O(N), as the offsets of write requests
would be in increasing order, and a new write request can
always be merged with the one existing task in the queue.
We have tested the experiment up to 3D cases. Our algorithm
can be extended to a higher number of dimensions, similar
to the extension from 2D to 3D in Algorithm 1. In our
proposed merge algorithm, we expect a time complexity of
O(N) to be the typical case, as scientific applications rarely
perform out-of-order writes. Moreover, we provide the same
consistency guarantee as the asynchronous I/O, as we do



(a) 1D data merge

(b) 2D data merge

(c) 3D data merge

Fig. 1: Example of different write request merges, where (a)
shows three 1D writes (W0, W1, W2) merged into one (W0′),
(b) shows three 2D writes (W0, W1, W2) merged into one
(W0′), and (c) shows two 3D writes (W0, W1) merged into
one (W0′) based on the offset values.

not merge overlapping writes from the same process. In our
experiments, we found that merging write operations are most
effective when the original write sizes are less than 1MB.

V. EVALUATION

A. Experimental Setup

We have evaluated the performance of our proposed merge
optimization for the asynchronous I/O VOL connector us-
ing synthetic benchmarks that mimic the I/O patterns from
scientific applications that produce time-series data. The
experiments are conducted on the Cori supercomputer at
the National Energy Research Scientific Computing Center
(NERSC). Cori is a Cray XC40 supercomputer with 1630 Intel
Xeon “Haswell” nodes, each containing 32 cores and 128GB
of memory. It also has a shared Lustre storage system with
248 OSTs. The default Lustre stripe size is 1MB and stripe
count is 1.

Async Task 
Queue

W0

W1

W2

Check 
Contiguous?

Yes

Check 
Contiguous?

Merge Write,
W0'+W2=W0"

Main Thread idle

Write W0, W1
No

Async Task
Excution

Yes

No  Write W0',
W2

Merge Write,
W0+W1=W0'

Yes

Fig. 2: Write merge optimization for asynchronous I/O. The
components in the shaded area are the new additions we
implemented on top of the HDF5 ASYNC I/O VOL connector.

To demonstrate the effectiveness of our proposed op-
timization, we performed extensive benchmark evaluation
with different data dimensions, write sizes, and the number
of nodes/processes. We compared the performance of the
merge-enabled asynchronous I/O VOL connector, vanilla asyn-
chronous I/O without merge optimization, and synchronous
HDF5 write. Since our goal is to measure the I/O performance
improvement, we do not include any compute time between
the writes, and thus the measured time for the two methods
that use asynchronous I/O includes both the I/O time and the
asynchronous I/O overhead, while the time for synchronous
HDF5 is I/O time only. In our experiments, we set a time
limit of 30 minutes per job, and some of the large-scale runs
without using the merge optimization exceed this limit and
are shown as bars with stripes. In our experiments, we have
enough memory to merge all write requests into a single one.
And the actual asynchronous write operation is triggered at
file close time in our benchmark code.

B. Parallel I/O Performance

We compare the results using three workloads with 1D, 2D,
and 3D data. For every dimension scenario, each process issues
1024 write contiguous requests with sizes ranging from 1KB
to 1MB. We performed these operations using 1 to 256 Cori
Haswell nodes and 32 MPI ranks per node. The data from all
processes are written to one HDF5 dataset. Figures 3, 4, and
5 show the comparison between merge-enabled Asynchronous
VOL (w/ merge), vanilla Asynchronous VOL (w/o merge),
and synchronous HDF5 write (w/o async), respectively. The



(a) 1 node (b) 2 nodes (c) 4 nodes

(d) 8 nodes (e) 16 nodes (f) 32 nodes

(g) 64 nodes (h) 128 nodes (i) 256 nodes

Fig. 3: Comparing write time in 1D datasets with different numbers of nodes, each with 32 ranks. “w/ merge” means using
merge optimization with asynchronous I/O VOL, “w/o merge” means using asynchronous I/O VOL without merge optimization,
and “w/o async vol” means synchronous HDF5 write. The bars with stripes are cases that exceed the 30-minute time limit.

comparison shows that the merge-enabled asynchronous I/O
offers significant performance improvement. In every case,
the comparison figures show that our implementation provides
better performance than the other two.

Figure 3 compares the results for all the 1D cases. When
1KB data is written at a time by each process, merge-enabled
asynchronous I/O is 30× faster than vanilla asynchronous
I/O, and more than 10× faster than synchronous HDF5 write.
The vanilla asynchronous I/O is slower than the synchronous
HDF5 because there is no computation to overlap the I/O
time, and the asynchronous I/O overhead is comparable to
the individual small-size write time. When running with the
same number of nodes, the speed-up of the data writes by
merge-enabled asynchronous I/O decreases as the data size
increases. For 1MB data, merge-enabled asynchronous I/O is
2.5× faster than vanilla asynchronous I/O whereas about 2×
faster than synchronous HDF5. As mentioned previously, we
fixed the time limit to a maximum of 30 minutes. If any job
takes more than 30 minutes, we plot that case as a 30-minute
stripe bar. From 32 to 256 nodes, for 1MB data, both vanilla
asynchronous I/O and synchronous HDF5 writes exceed the
time limit, whereas merge-enabled asynchronous I/O took less

than 10 minutes. When the write size per node is fixed,
the speed-up increases as we increase the number of nodes.
For 256 nodes, merge-enabled asynchronous I/O shows about
130× improvement in write operations than vanilla merge-
enabled asynchronous I/O for 1KB and 2KB data. However,
for 32KB data, merge-enabled asynchronous I/O improves
20× more than vanilla asynchronous I/O and 12× more than
synchronous HDF5 write.

In 2D data writes shown in Figure 4, when each process
writes 2KB data at a time, the merge-enabled asynchronous
I/O is 25× faster than vanilla asynchronous I/O and more
than 9× faster than synchronous HDF5. For 1MB data, merge-
enabled asynchronous I/O shows the best performance with 16
nodes, which is 11× faster than vanilla asynchronous I/O and
about 9× faster than synchronous HDF5 write. Similarly to 1D
data, we have a job time limit of 30 minutes. With 1MB data
writes between 32 and 256 nodes, both vanilla asynchronous
I/O and synchronous HDF5 exceed the time limit, shown as
striped bars in Figure 4. The merge-enabled asynchronous I/O
took less than 9 minutes for cases. Besides, for 256 nodes,
the merge-enabled asynchronous I/Os VOL shows about 55×
improvement in write operations than vanilla merge-enabled



(a) 1 node (b) 2 nodes (c) 4 nodes

(d) 8 nodes (e) 16 nodes (f) 32 nodes

(g) 64 nodes (h) 128 nodes (i) 256 nodes

Fig. 4: Comparing write time in 2D datasets with different numbers of nodes, each with 32 ranks. “w/ merge” means using
merge optimization with asynchronous I/O VOL, “w/o merge” means using asynchronous I/O VOL without merge optimization,
and “w/o async vol” means synchronous HDF5 write. The bars with stripes are cases that exceed the 30-minute time limit.

asynchronous I/O for 1KB data. Additionally, with 256 nodes
and 128KB data, merge-enabled asynchronous I/O improves
54× more than vanilla asynchronous I/O and 44× more than
synchronous HDF5 write.

Figure 5 shows the results for 3D data writes. With 128
nodes and 4096 MPI ranks, each writes 1KB data, the merge-
enabled asynchronous I/O is about 70× faster than vanilla
asynchronous I/O, and more than 33× faster than synchronous
HDF5 write. For 2KB data write, with 256 nodes, the best
performance with merge-enabled asynchronous I/O is 100×
faster than vanilla asynchronous I/O. For 256KB data, the
merge-enabled asynchronous I/O shows the best performance
with 16 nodes, which is 25× faster than vanilla asynchronous
I/O and 18× faster than synchronous HDF5 write. Like 1D
and 2D data, in 1MB data writes between 16 and 256 nodes,
both vanilla asynchronous I/O and synchronous HDF5 writes
exceed the 30 minute time limit, which is shown as striped
bars in Figure 5. In contrast, merge-enabled asynchronous I/O
takes less than 8 minutes for all cases.

Overall, our experiments show that the merge-enabled
asynchronous I/O offers significant performance in all cases
compared to the vanilla asynchronous I/O and the synchronous

I/O. Higher speedup (up to 130×) is observed when the write
size is small (a few KB). When there is a large number of
writers (more than 32 nodes, 1024 MPI ranks), both the vanilla
asynchronous I/O and the synchronous I/O take more than
30 minutes. In contrast, the merge-enabled asynchronous I/O
finishes in less than 10 minutes.

VI. CONCLUSION AND FUTURE WORK

Our findings indicate that merging small write operations
can effectively reduce the I/O time. We have developed an
optimization strategy to merge write requests in the HDF5
asynchronous I/O VOL connector. We demonstrate the effec-
tiveness of our solution by comparing the I/O performance
among the merged-enabled asynchronous I/O with vanilla
asynchronous I/O and the synchronous HDF5 I/O. Our results
can achieve up to 130× speedup compared with vanilla
asynchronous I/O.

Our future work includes evaluating the merged-enabled
asynchronous I/O with more benchmark workloads and real
scientific applications, as well as extending it to other asyn-
chronous I/O libraries.We will explore methods to perform
merge operations under different consistency models and op-



(a) 1 node (b) 2 nodes (c) 4 nodes

(d) 8 nodes (e) 16 nodes (f) 32 nodes

(g) 64 nodes (h) 128 nodes (i) 256 nodes

Fig. 5: Comparing write time in 3D datasets with different numbers of nodes, each with 32 ranks. “w/ merge” means using
merge optimization with asynchronous I/O VOL, “w/o merge” means using asynchronous I/O VOL without merge optimization,
and “w/o async vol” means synchronous HDF5 write. The bars with stripes are cases that exceed the 30-minute time limit.

timize the algorithm to reduce the time complexity for the
worst case.

Moreover, multiple clients writing over the same data in
distributed systems can also lead to consistency problems
which can be addressed in the future work.
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