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Genetic interaction analysis of point mutations enables 
interrogation of gene function at a residue-level resolution:
Exploring the applications of high-resolution genetic interaction mapping of point 

mutations

Hannes Braberg1),2), Erica A. Moehle3), Michael Shales1),2), Christine Guthrie3), and Nevan 
J. Krogan1),2),4),*

1)Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 
CA, USA

2)California Institute for Quantitative Biosciences, QB3, San Francisco, CA, USA
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Abstract

We have achieved a residue-level resolution of genetic interaction mapping – a technique that 

measures how the function of one gene is affected by the alteration of a second gene – by 

analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, 

and outline key applications for the approach, including interrogation of protein interaction 

interfaces and active sites, and examination of post-translational modifications. Genetic interaction 

analysis has proven effective for characterizing cellular processes; however, to date, systematic 

high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which 

limits the resolution of gene function analysis and poses problems for multifunctional genes. Our 

point mutant approach addresses these issues, and further provides a tool for in vivo structure-

function analysis that complements traditional biophysical methods. We also discuss the potential 

for genetic interaction mapping of point mutations in human cells and its application to 

personalized medicine.
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Introduction

A central challenge in the post-genomic era has been to functionally annotate the genetic 

features identified in the genome sequencing efforts. Budding yeast has long been a model 
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organism for genetics, and since the systematic identification of its genes [1], a large effort 

has been made to determine how these genes function in the biology of the organism. The 

first comprehensive screen to this end used high-throughput reverse genetics to determine 

the effects of single gene deletions on cell growth on a genome-wide scale [2]. The resulting 

dataset provided insights into the importance of individual genes, but did not address the 

interplay between them. Indeed, to map these functional connections and determine the roles 

that genes play in pathways requires investigation of combinations of gene disruptions. To 

this end, large-scale efforts were undertaken to map genetic interactions, which describe 

how the function of a given gene is affected by the presence or absence of a second gene 

[3-13]. Genetic interactions have proven highly effective for determining gene functions and 

identifying groups of genes that encode proteins in the same pathway or complex. Negative 

genetic interactions (synthetic sick/lethal interactions, SSL) arise when two mutations 

together cause a stronger growth defect than expected based on the growth phenotypes of 

the individual single mutations (Fig. 1A). These are often observed for genes that encode 

proteins that act in separate pathways carrying out the same function (Fig. 1B). Conversely, 

we define positive genetic interactions as occurring between pairs of mutations where the 

double mutant is healthier than expected, based on the growth defects conferred by the two 

single mutants individually (Fig. 1A). Positive interactions often arise between factors that 

act in the same non-essential pathway and/or belong to the same non-essential complex (Fig. 

1B), as has been shown in several organisms, including budding yeast [3], fission yeast [14] 

and mammalian cells [15].

In the early 2000s, two approaches were developed to identify genetic interactions on a large 

scale in budding yeast: synthetic genetic arrays (SGA) [5, 6] and diploid based synthetic 

lethality analysis on microarrays (dSLAM) [4, 16]. However, the readouts were limited to 

negative interactions and thus only surveyed a subset of the genetic interaction spectrum. To 

address this limitation, an extension of the SGA approach was developed that allowed for 

quantitative measurement of both negative and positive genetic interactions. This technique, 

termed epistatic miniarray profile (E-MAP) [10, 17, 18], enabled the quantitative collection 

of genetic interaction profiles, which describe how a given mutant is affected by a large 

number of secondary mutations. Since these genetic profiles report on phenotypes in 

numerous different mutant backgrounds, they provide highly specific readouts that allow 

precise identification of sets of genes that have similar effects on cell physiology. E-MAPs 

have proven invaluable for interrogating a large number of cellular processes, including the 

early secretory pathway, chromosome function, kinase signaling, RNA processing, plasma 

membrane function, and lipid biology [3, 9-13].

To date, the vast majority of genetic interaction screens have surveyed deletions of non-

essential genes or hypomorphic alleles (or “knockdowns”) of essential genes. While 

effective for functional interrogation on a whole-gene level, many proteins carry out 

multiple functions and are difficult to assess, as the observed phenotype of a deletion or 

knockdown is caused by disruption of all the protein’s functions. Moreover, for proteins that 

carry out a single function, the whole-gene approach fails to provide information about the 

active domains or regions. Some larger screens have included different alleles of the same 

gene, and a few such allelic variants have exhibited different genetic profiles [3, 8]. 

However, these alleles mainly served as substitutes for deletions of essential genes (e.g. 

Braberg et al. Page 2

Bioessays. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



temperature-sensitive alleles), and were not designed to interrogate the function of specific 

regions or residues of the encoded proteins [3, 8]. To address the limitations of whole-gene 

disruptions, we have enhanced the precision of the E-MAP approach by generating a point 

mutant E-MAP (pE-MAP). It was unclear at the outset whether individual point mutations 

would generate robust enough genetic profiles to provide functionally meaningful 

information. Fortunately, our initial pE-MAP increased the resolution of genetic interaction 

profiling and facilitated the functional interrogation of specific protein domains, interfaces, 

and even single amino acid residues [19].

In our primary study, we used the pE-MAP approach to functionally dissect RNA 

polymerase II (RNAPII), a 12-subunit protein machine responsible for all protein-coding 

gene expression [19]. We generated a series of 53 single point mutations distributed across 

the 5 subunits that are essential and unique to RNAPII (not shared with RNAPI or RNAPIII) 

[20], and screened these against a library of 1,200 deletion and hypomorphic allele strains, 

selected to represent all major biological processes. The resulting pE-MAP comprised 

approximately 60,000 interactions that provided insights into RNAPII structure and function 

at a residue-level resolution. This map enabled us to assign functions to domains of RNAPII, 

and revealed connections between specific regions of the enzyme and other protein 

complexes. Furthermore, the resolving power of the genetic profiles distinguished between 

two sets of RNAPII active site mutants, which we subsequently validated as having distinct 

phenotypes: one set increased transcription rate and exhibited an upstream shift in 

transcription start site selection, and the other decreased transcription rate and shifted 

transcription start downstream. Because of the tight coordination between transcription and 

mRNA processing that has been observed [21, 22], we further analyzed these two mutant 

categories on splicing-sensitive microarrays, and discovered a negative correlation between 

splicing efficiency and RNAPII transcription rate. Finally, we used patterns of genetic 

interaction scores as a tool for identifying novel positivelyand negatively-acting 

transcription factors [19].

The pE-MAP technique will be of immense value for future structural and functional 

interrogations of macromolecular machines, and could ultimately be used to map the effects 

of point mutations on disease states and drug responses inhuman cells [23]. We here 

describe how to interpret point mutant genetic interactions, and outline what we believe will 

be key applications for the method.

Interpretation of genetic interactions is complex due to their high 

information content

Pairs of point mutations can exhibit genetic interactions that differ from the standard 
expectation based on deletion interactions

Interpretation of genetic interactions is complex by virtue of the measured readout. In 

contrast to other assays that directly measure a specific quantity – such as presence of a 

physical interaction between two proteins – genetic interactions are quantified based on 

basic cellular features, such as growth rate. Herein, lies the power of the genetic interaction: 

by measuring how combinations of gene alterations affect fundamental in vivo features, we 
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acquire knowledge about how the genes function together in a system-wide context. To 

better interpret these interactions, it is helpful to outline typical relationships that would give 

rise to positive or negative interactions. For pairs of gene deletions, a common interpretation 

of a negative interaction is that the removed genes act in parallel pathways that share a 

common function (Fig. 1B). Conversely, positive interactions typically arise for pairs of 

genes that act in the same serial pathway, frequently for genes that encode proteins that are 

members of the same physical complex (Fig. 1B).

The underlying assumption of these models is that the deletion of a gene fully disrupts the 

pathway or complex in which its gene product operates. However, point mutations are less 

prone to cause complete disruption of function, and this can give rise to more complex 

interpretations of certain types of genetic interactions. For instance, consider two subunits of 

a non-essential complex, both of which are necessary for complex formation. Deletion of 

either subunit will fully disrupt complex formation, and deletion of both subunits will thus 

give rise to a positive genetic interaction (epistasis). Introduction of a moderately 

destabilizing point mutation in either subunit will only partially impede complex function, 

and a positive interaction will be observed in the case of deletion of the other subunit. 

However, in contrast, two point mutations in different subunits are likely to exhibit a 

negative interaction, resulting from a combined severe destabilization of complex formation. 

An analogous situation may arise for point mutations in pairs of proteins that act in the same 

pathway (Fig. 1C). In particular, we expect strong negative interactions when either of the 

point mutations alone weakens a common interaction interface and the double mutant 

completely disrupts the interface (Fig. 1D). Importantly, the models discussed here are not 

universal, but merely examples of common relationships that may lead to the specified 

interaction types.

Genetic interactions are often more informative when analyzed in sets than individually

While a single genetic interaction is highly informative, the complete genetic interaction 

profiles are often even more revealing [3, 7]. These report on the mutant phenotype in a 

large number of secondary mutant backgrounds, which results in a twofold advantage over 

single interactions: first, the large information content provides a much more detailed and 

comprehensive comparison than a single interaction; and second, the signal-to-noise ratio 

increases significantly with the multiple data points. Comparison of the complete genetic 

interaction profiles between pairs of point mutants thus provides a robust measure for 

functional similarity between them (Fig. 1E) [19]. It has further proven fruitful to define 

modules of similar genes or mutations and compare the aggregate interactions or profile 

similarities between different modules (Fig. 1F) [12, 14, 19, 24, 25]. On a whole-gene level, 

such modules can be defined by functional annotations such as Gene Ontology terms [26], 

or by co-complex memberships [27-29]. Point mutations in a single protein can instead be 

grouped by protein domain or sub-domain. We have also found that clustering of mutations 

based on the similarity of their genetic profiles can be highly effective for classifying 

functional modules [14]. The grouping of mutants into modules provides a more intuitive 

representation of these large datasets, and allows for application of statistical tests to assign 

significance to connections. We fruitfully exploited these benefits to generate a map linking 

individual RNAPII residues to defined protein complexes based on similarity of genetic 
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profiles. We identified connections to not only the transcriptional apparatus but to distinct 

complexes, including the kinetochore and the Rpd3C(L) histone deacetylase complex [19].

Finally, interpretation of genetic interaction patterns can be significantly aided by utilizing 

previously characterized features. For example, a strong positive interaction between a 

charge-altering point mutation and the deletion of a different protein could suggest a 

physical interaction between the mutated residue and the protein. Structural context would 

inform whether the residue is surface-accessible for binding, thereby helping to interpret the 

interaction.

pE-MAPs allow for interrogation of diverse features of macromolecular 

assemblies

Screening of mutations in select protein regions facilitates mapping of protein interaction 
interfaces and active sites

In our initial application of pE-MAP technology, we chose to interrogate a protein machine 

with known structure and generally understood function. The RNAPII structure has been 

determined at different states, several binding partners have been identified, and its active 

site has been mechanistically characterized [30-38]. By leveraging previously characterized 

structural and functional features, we could readily interpret the genetic interaction patterns 

of individual mutants. In the future, these interpretations could be instructive to guide both 

the choice of residues to mutate and the types of mutations to create. For example, residues 

involved in physical interactions are likely to be exposed on the protein surface, and 

mutating an interaction interface residue can adversely affect binding affinity strongly [39]. 

Thus, for a protein with known structure, screening a panel of surface mutations likely to be 

disruptive for binding (e.g. by preventing a hydrogen bond or a charge-charge interaction) 

could be a targeted way to identify potential binding partners in vivo (Fig. 2A).

Similarly, knowledge of active site locations can be utilized to tailor mutations that are 

likely to alter the activity of the protein being examined (Fig. 2B). An example of this is the 

series of transcription rate-altering point mutants (RNAPII active site mutations) that 

interacted with genes that encode transcription factors. As deletion of a positive transcription 

factor slows down transcription, we expected positive genetic interactions with fast active 

site mutants and negative interactions with slow mutants. By screening for this pattern, we 

could thereby predict positive transcription factors and found that Sub1 is a positive 

transcription factor that plays a role in start site selection. Similarly, negative transcription 

factors could be predicted by searching for the opposite pattern [19]. Some catalytic 

machines that would be interesting to study in this way are the proteasome, the ribosome, 

and different DNA polymerases.

Selective design of the mutational space allows for characterization of functional roles of 
post-translational modifications

Prior knowledge about properties of individual residues can also be utilized to design 

mutations that alter these in specific and predictable manners. In this respect, the realm of 

reversible post-translational modifications (PTMs) would be particularly interesting to 
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explore. PTMs, such as protein phosphorylation, ubiquitination and acetylation, play 

important roles in controlling the functions and/or cellular localizations of proteins. Over the 

last few years, improvements in mass-spectrometry have made it possible to discover 

thousands of PTM sites in a single study [40]. Recently, a collection of 200,000 PTM sites 

in 11 eukaryotes was compiled, along with predictions of the functional relevance of these 

different sites and modifications based on evolutionary conservation [41]. pE-MAP 

screening of mutations that either prevent or mimic these PTMs should prove instructive for 

determining the functions that they serve (Fig. 2C). In a related fashion, the Boeke lab has 

generated a vast library of systematic point mutations of histones H3 and H4 in budding 

yeast [42]. The histones comprise the core components of nucleosomes, which maintain the 

structure of compacted DNA and play roles in transcription control and DNA metabolism. 

Histone function is in large part regulated by PTMs of specific residues and interactions 

with other proteins [43]. The Boeke library contains alanine substitutions for all residues, as 

well as specific substitutions of modifiable residues with the aim of mimicking 

constitutively modified or unmodified states [42]. A pE-MAP of the alanine substitutions 

should shed light on interactions with other proteins, and screening the substitutions of 

modifiable residues would help categorize the functional roles of the PTMs. Other proteins 

whose functions are governed by post-translational modifications should be fruitful targets 

for pE-MAP screens.

In principle, any macromolecular assembly can be interrogated via pE-MAPs, and the 

mutational space can be designed to address any functional aspects of interest. Notably, the 

method is not limited to proteins, but could be applied to RNA machines as well. The 

ribosome and the spliceosome are made up of both non-coding RNAs and numerous 

proteins, and point mutations could be introduced in either of these components for 

interrogation via pE-MAP screening.

pE-MAPs elucidate structure-function relationships in vivo

In our screen of RNAPII, we found a high correlation between the genetic profile similarity 

of pairs of mutations and the spatial distance between the mutated residues. This relation 

held true both for residue pairs residing in the same RNAPII subunit, and for those in 

different subunits [19]. In other words, the functional similarity between residue pairs 

gleaned from a pE-MAP is higher for residues that are close to each other in space than for 

those that are far apart. The pE-MAP profiles could thus, in principle, be used to gain 

structural information about a protein with unknown structure. This would prove particularly 

valuable for e.g. membrane proteins, which are difficult to characterize using traditional 

structural biology methods [44] (Fig. 3A). While pE-MAP profiles alone are not sufficient to 

carry out de novo structure predictions, they should be effective when constrained by data 

from experiments such as chemical crosslinking. Over the last few years, great progress has 

been made in modeling structures of macromolecular assemblies using approaches that 

integrate data types from several different sources. A combination of comparative protein 

structure models, electron microscopy and proteomics data was used to structurally 

characterize the 26S proteasome [45], and a model of the nuclear pore complex (NPC) was 

generated using numerous data types, including stoichiometry data from protein 

quantification, proximities from subcomplex purifications and overall shape from electron 
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microscopy (EM) [46, 47]. Recently, a software package named The Integrative Modeling 

Platform (IMP) was specifically developed for modeling macromolecular assemblies by 

integrating different types of data [48]. Genetic interaction profiling could be particularly 

valuable for this type of modeling, as the readouts are highly independent from traditional 

structural biology data types, such as X-ray crystallography, NMR, chemical crosslinking or 

EM. Importantly, the pE-MAP data are collected in the natural state of a living cell, and can 

thus be especially effective for eliminating artifacts introduced in biophysical assays, such as 

crystal contacts [49, 50] (Fig. 3B).

The complementarity of pE-MAP data to that from traditional structural biology techniques 

could also be harnessed for charting different conformational states of proteins. Protein 

structure is dynamic in nature, and while the different states are often similar, several 

machines, such as the heat shock protein chaperones [51], function via major conformational 

rearrangements of their domains. Point mutant genetic profiles could here be of value to 

detect residue pairs that are far apart in a previously characterized conformation but are in 

close proximity in a different, unknown, conformation. In a similar vein, the pE-MAP 

approach should be suitable for identifying residues that are functionally dependent in a 

fashion not directly evident from a characterized structure. A particularly fruitful subject to 

investigate in this fashion is allosteric regulation, where perturbation of a certain protein site 

can activate or inhibit an active site located in a different region of the protein structure [52] 

(Fig. 3C). The potential to identify allosteric sites is especially appealing because the 

targeting of allosteric ligand binding sites on G protein-coupled receptors is an emerging 

field in drug discovery [53]. Finally, in the event of complete lack of structural information, 

the genetic interaction profiles can be used to define functional domains of a protein. In this 

fashion, an illustrative map of a protein could be devised based on the functional 

characteristics of its residues rather than their spatial locations (Fig. 3D). Such a map will be 

partially indicative of structure, but more importantly will allow for a representation of the 

processes in which different domains are involved.

pE-MAP analysis in human cells has potential as a powerful tool for 

personalized medicine

The vast majority of genetic interaction screens have been carried out in model organisms, 

such as yeast [3, 8, 10, 14, 25], bacteria [54, 55], worms [56, 57], and flies [58]. However, 

recently, two methods have been developed in mammalian cells which mirror early yeast 

genetic interaction mapping by simultaneously reducing the expression of pairs of genes by 

RNA interference (RNAi) [15, 59]. Genetic interaction mapping in mammalian cells opens 

up a realm of possibilities for charting alleles that are associated with disease states or that 

affect drug responses [15, 59]. While RNAi knockdowns will prove effective for surveying 

the effect of whole-gene depletions in this respect, the vast majority of genetic variation in 

the human population is on the level of single-nucleotide polymorphisms (SNPs) [60]. Some 

point mutations can lead to dysfunctional protein products or lowered expression levels, and 

these could be well approximated by RNAi knockdowns. However, a point mutation in a 

gene can also alter the function of the encoded protein, and in this scenario, a simple 

knockdown cannot accurately portray the natural variation of SNPs in the human population.
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With genome editing technology, it has become possible to introduce specific point 

mutations into investigator-specified locations in the human genome [61, 62], and with the 

repurposing of CRISPR/Cas9 for use in cell culture [63, 64], it is now possible to create 

systematic point mutations in human cells in a high-throughput fashion [65, 66]. 

Incorporation of this methodology into the mammalian genetic interaction approaches 

should in the near future allow for the generation of human pE-MAPs. This ability will be 

valuable for assessing how disease states vary in mutational backgrounds designed to 

represent the variability found in human populations. With increasingly cost-effective 

genome sequencing, the ability to build databases of alleles enriched in human populations 

and disease conditions is soaring [60, 67, 68]. Human pE-MAPs can provide instrumental 

knowledge for meeting the grand challenge of understanding how and why these alleles 

affect the risk and progression of disease. The heterogeneous genetic makeup of the human 

population has also been shown to affect how different individuals respond to 

pharmaceuticals [69]. By adding drugs to mammalian pE-MAP screens, we will be able to 

chart efficacy and side effects in different genetic backgrounds, providing instrumental 

information for personalized medicine. Finally, recent advances in high-content microscopy 

allow the mammalian E-MAP approaches to be extended to simultaneously study several 

cellular features, using organelle specific stains or fluorescent reporters [15, 70]. The ability 

to measure how nearly any cellular readout is affected by drugs or mutations in a tailor-

made genetic background will prove uniquely powerful for understanding how different 

populations react to disease and drugs.

Conclusions and outlook

The quest of charting the functions of genes has become a major scientific challenge in the 

post-genomic era. Genetic interaction mapping has proven highly effective to this end, and 

has typically been employed on a whole-gene level [7]. However, several aspects of gene 

function analysis require interrogation at a higher resolution, and the pE-MAP approach for 

quantitatively measuring genetic interactions between point mutants helps address this issue 

[19]. We have here outlined what we believe will be key applications of pE-MAP, including 

its use in concert with biophysical methods to further our understanding of in vivo structure-

function relationships. While these applications will often rely on the design of specific 

mutations to test a hypothesis, the method can also be applied to examine the effects of 

naturally occurring genetic variants. Accordingly, the extension of pE-MAP into human 

cells will allow us to study the effect of genetic variation on disease and drug responses [15, 

59]. We thus believe that the pE-MAP method will play an important role in understanding 

basic cellular machinery and could ultimately be invaluable for advances in personalized 

medicine.
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Figure 1. 
Interpretation of genetic interactions. A: A genetic interaction arises when the fitness of a 

double mutant deviates from that expected from the two single mutants. Positive genetic 

interactions are observed for pairs of mutations where the double mutant exhibits better 

growth than expected from the single mutants, while negative interactions arise when the 

double mutant is sicker than expected (synthetic sick) or dead (synthetic lethal). B: For 

deletion-deletion or point mutant-deletion pairs, negative interactions commonly arise 

between genes that encode proteins that act in parallel pathways. Conversely, positive 

interactions are observed between genes whose products function in the same pathway or 

belong to the same complex. C: Certain relationships that exhibit positive interactions 

between deletion-deletion or deletion-point mutant pairs can instead give rise to negative 

interactions for point mutant-point mutant pairs. Specifically, genes that encode proteins that 

function in the same pathway or complex may exhibit either negative or positive 

interactions, depending on the severity of the individual point mutations. D: A strong 

negative genetic interaction is observed for a pair of point mutations that individually (aB or 

Ab) weaken a common interaction interface and together (ab) fully disrupt the interface. E: 
A genetic interaction profile reports on a mutant phenotype in a large number of secondary 

mutant backgrounds. Hierarchical clustering of genetic profiles categorizes mutants based 

on functional similarity. A subset of a previously published E-MAP [3] is shown to illustrate 

how members of the same complex cluster together based on their genetic profiles. The 

similarity tree on the left describes the hierarchical organization of the profiles, and genes 

and complexes are listed on the right. F: The grouping of related mutations into modules can 
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strengthen and simplify the interpretations of genetic interactions. In this example, three 

point mutations in the same protein domain are grouped into one module, while the deletions 

of different subunits of a known protein complex form another module. Members of the 

same module are expected to interact genetically with each other and exhibit similar genetic 

profiles. The protein domain is functionally linked to the complex if several members of 

each module exhibit strong genetic interactions (top) or high profile similarities (bottom) 

with the other module.
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Figure 2. 
Design of point mutation space. A: To explore protein interaction interfaces, point mutations 

should be designed to disrupt potential interactions. For example, polar amino acid residues 

can be mutated to non-polar in order to prevent hydrogen bonding. Similarly, an uncharged 

residue can be substituted for a charged residue to disrupt a charge-charge interaction. B: 
Active site mutations can be introduced to directly alter the activity of a studied protein. 

Mutation choices in an active site will vary depending on the specific mechanism to be 

altered. C: The functions of post-translational modification sites can be interrogated by 

generating mutations that mimic constitutively modified or unmodified states.
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Figure 3. 
In vivo interrogation of protein structure-function relationships. A: Residues that are close to 

each other in space exhibit more similar genetic interaction profiles than residues that are far 

apart. A membrane protein with an unknown or poorly characterized structure is depicted. 

Genetic profile similarities can be used to generate a map of spatial relationships between 

the residues, facilitating the construction of a coarse model of the protein. B: X-ray 

crystallography of a dimer structure has given rise to two possible binding interfaces, one of 

which is biologically relevant and one of which is artificial as a result of crystal packing. 

Genetic profile similarities can help identify the biologically relevant interface, as mutations 

of the residues that are close in vivo will exhibit more similar genetic profiles than those that 

are close due to crystal contacts. C: High similarity of genetic profiles between residues in 

vastly different regions of the same protein may be a strong indicator of an allosteric 

relationship. D: As an alternative approach to a structural model of a protein, a functional 

map can be assembled based solely on genetic relationships with members of characterized 

complexes, pathways or processes. Line colors indicate genetic profile similarities.
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