
UC Berkeley
UC Berkeley Previously Published Works

Title
THE PARADOX OF SOURCE CODE SECRECY

Permalink
https://escholarship.org/uc/item/8dd6f3gb

Journal
CORNELL LAW REVIEW, 104(5)

ISSN
0010-8847

Author
Katyal, Sonia K

Publication Date
2019

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8dd6f3gb
https://escholarship.org
http://www.cdlib.org/

KATYAL FORMATTED 6/24/19 11:31 PM

101

THE PARADOX OF SOURCE CODE SECRECY

Sonia K. Katyal†

INTRODUCTION .. 102
 I. SOURCE CODE SECRECY AND COPYRIGHT 109

A. Code: An Introductory (and Incomplete) History
 .. 111

B. The Birth of Source Code Secrecy 114
C. The Copyrightability of Software 117

1. Early Accommodations of Trade Secrecy ... 119
2. Copyrighting Code................................... 122

D. The Continuing Overlap Between Copyright and
Trade Secrecy ... 125

 II. THE SHIFTING BOUNDARIES OF SOFTWARE
PATENTABILITY ... 129
A. Patentability vs. Secrecy 131
B. The Rise and Fall of Software Patentability ... 136

1. The Opening of the Window of Patentability
 .. 137

2. Narrowing the Window of Patentability 141
 III. TRADE SECRECY AS DESTINATION 145

A. The Lingering Monopoly of Trade Secrecy 146
B. Judicial Accommodation in Kewanee 149
C. Rethinking Complementarity in Software 151

 † Haas Distinguished Chair and Chancellor’s Professor of Law, University of
California at Berkeley. Many, many thanks to the following for comments and
conversation: Ken Bamberger, Ash Bhagwat, Andrew Bradt, Ari Chivikula, Ryan
Calo, Christian Chessman, Danielle Citron, Jim Dempsey, Rochelle Dreyfuss,
Charles Duan, Jeanne Fromer, Jim Gibson, Tait Graves, Ken Goldberg, Sue
Glueck, James Grimmelmann, Zachary Hecht, Molly van Houweling, John
Hamasaki, Gautam Hans, Chris Hoofnagle, Brett Kaufman, Neal Katyal, Logan
Koepke, Joshua Kroll, Prasad Krishnamurthy, Amanda Levandowski, David
Levine, Mark Lemley, Peter Menell, Robert Merges, Deirdre Mulligan, Tejas
Narechania, Helen Nissenbaum, Claudia Polsky, Julia Powles, David Robinson,
Andrea Roth, Bertrall Ross, Simone Ross, Pamela Samuelson, Sharon Sandeen,
Andrew Selbst, Jason Schultz, Jonathan Simon, Vincent Southerland, Erik
Stallman, Katherine Strandburg, Joseph Turow, Rebecca Wexler, Felix Wu, and
John Yoo. A very sincere thanks to my colleague Bob Cooter, whose question at
a workshop sparked this Article, and the organizers and participants of the
Conference on Trade Secrets & Algorithmic Systems held at New York University
Law School in November, 2018. Joe Cera, Renata Barreto, Andrea Hall, and
Aniket Kesari provided extraordinary research assistance.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

102 CORNELL LAW REVIEW [Vol.104:PPP

 IV. DUE PROCESS IN AN AGE OF DELEGATION 156
A. The Rise of Closed Code Governance 157
B. The Constitutional Cost of Secrecy............... 162
C. The New Secrecy: Information Insulation 166

 V. TOWARD CONTROLLED DISCLOSURE 170
A. Strategies Towards Transparency 174

1. Reforming Intellectual Property: Channeling
and Election Doctrines 174

2. Reforming Copyright: Deposit and
Demarcation Possibilities 178

3. Reforming Contract Law and Procurement 180
4. Reforming Governance: Open Code Strategies

 .. 184
B. Strategies Towards Disclosure 190

1. Reforming Trade Secrecy: Identification and
Filtration .. 190

2. Reforming Discovery: Towards Controlled
Disclosure .. 195

CONCLUSION .. 200

INTRODUCTION
In October of 2017, before a jam-packed hearing at City

Hall in New York, Council Member James Vacca listened to a
series of testimonies that outlined two dramatically divergent
visions for the future of technology, open data, and
governance.1 “This is the largest attendance a technology
meeting has ever had,” Vacca apparently said. “How am I
going to top this next month?”2 The occasion for the hearing
was a bill with a lengthy (and seemingly snooze-worthy) title:
“A Local Law to amend the administrative code of the city of
New York, in relation to automated processing of data for the
purposes of targeting services, penalties, or policing to
persons.”3 Essentially, the bill required all agencies that use

 1 Jessica McKenzie, Hearing on Algorithmic Transparency Reveals Rift in NYC
Tech Community, CIVIC HALL (Oct. 19, 2017),
https://civichall.org/civicist/hearing-algorithmic-transparency-reveals-rift-nyc-
tech-community [https://perma.cc/S9XF-7T3G]; see Roshan Abraham, New
York City Passes Bill to Study Biases in Algorithms Used by the City,
MOTHERBOARD (Dec. 19, 2017, 9:52 AM),
https://motherboard.vice.com/en_us/article/xw4xdw/new-york-city-
algorithmic-bias-bill-law [https://perma.cc/6GLX-NTSG].
 2 McKenzie, supra note 1.
 3 Agenda of Hearing on Automated Decision Systems Used by Agencies, NEW
YORK CITY COUNCIL (Oct. 16, 2017, 1:00 PM),
http://legistar.council.nyc.gov/MeetingDetail.aspx?ID=564867&GUID=956747

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 103

algorithms or other automated processing to publish their
source code for public investigation.4 On a more abstract level,
the bill would force the government to share its processes of
automated government decision making and become
essentially open source, reversing a long-standing trend
toward opacity.5

For many who care about the future of democratic
transparency, the proposal represented the culmination of
their objective to situate the future of artificial intelligence (AI)
within the parameters of democratic governance.6 Almost
immediately, however, the bill ignited a firestorm of debate that
touched on the core of the underlying conflict between private
property, the role of the government, and accountability. While
nearly everyone applauded the impetus towards government
transparency, some critics warned that increased disclosure
would expose city systems to significant security risks, causing
serious unintended consequences due to the proposal’s
breadth.7

8C-C9F4-4EDE-89F2-947E95A94ACD&Options=&Search
[https://perma.cc/R2UE-QZ8K] (follow “Agenda” hyperlink).
 4 It also required agencies to provide outputs to the user. See Int. No. 1696–
2017, NEW YORK CITY COUNCIL (OCT. 16, 2017, 1:00 PM),
http://legistar.council.nyc.gov/MeetingDetail.aspx?ID=564867&GUID=956747
8C-C9F4-4EDE-89F2-947E95A94ACD&Options=&Search
[https://perma.cc/R2UE-QZ8K].
 5 McKenzie, supra note 1.
 6 Id. See also Benjamin Herold, ‘Open Algorithms’ Bill Would Jolt New York
City Schools, Public Agencies, EDUC. WK. (Nov. 8, 2017, 12:43 PM),
http://blogs.edweek.org/edweek/DigitalEducation/2017/11/open_algorithms_
bill_schools.html [https://perma.cc/SFL9-3XCN] (noting the bill’s potential
impact on the use of educational algorithms).
 7 See, e.g., Don Sunderland, Deputy Comm’r for Enter. and Sol.
Architecture, Dep’t of Info. Tech. and Telecomms., Testimony of the Department
of Information Technology and Telecommunications on Int. 1696, A Local Law to
Amend the Administrative Code of the City of New York, in Relation to Automated
Processing of Data for the Purposes of Targeting Services, Penalties, or Policing
to Persons (Oct. 16, 2017),
https://www1.nyc.gov/assets/doitt/downloads/pdf/DoITT%20Testimony%20I
nt%201696%20FINAL.pdf [https://perma.cc/S6CR-LACH] (discussing before
the Committee on Technology perceived flaws in the bill); see also Julia Powles,
New York City’s Bold, Flawed Attempt to Make Algorithms Accountable, NEW
YORKER (Dec. 20, 2017), https://www.newyorker.com/tech/elements/new-york-
citys-bold-flawed-attempt-to-make-algorithms-accountable
[https://perma.cc/NVU8-AMWY] (acknowledging the potential harms that this
legislation could have for contractual and proprietary interests). In the end, the
Council passed a law creating a task force of experts to investigate New York
City’s use of algorithms, a move that represented a significant narrowing of the
bill’s original goals. See Devin Coldewey, New York City Moves to Establish
Algorithm-Monitoring Task Force, TECHCRUNCH (Dec. 12, 2017),
https://techcrunch.com/2017/12/12/new-york-city-moves-to-establish-

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

104 CORNELL LAW REVIEW [Vol.104:PPP

Although concerns about government transparency are
relatively straightforward, this Article argues that the issues
raised by this debate underscore a growing divergence between
the foundational tenets of intellectual property and its tension
with AI. Ground zero for this conflict has become the murky,
messy intersection between software, trade secrecy, and public
governance. Today, algorithms are pervasive throughout
public law, employed in predictive policing analysis, family
court delinquency proceedings, tax audits, parole decisions,
DNA and forensic science techniques, and matters involving
Medicaid, other government benefits, and educator
evaluations.8 And their results are often inscrutable, even
though their results can demonstrate significant risk of bias.9
In one example, ProPublica analyzed the recidivism risk scores
of over 7,000 people arrested during a two-year period in
Broward County, Florida, and found that only twenty percent
of those predicted to commit future crime actually did so, and
that the formula appeared to inaccurately flag black
defendants as future criminals at twice the rate of white
defendants.10

At their core, these automated systems often implicate

algorithm-monitoring-task-force/ [https://perma.cc/22LV-V2VU].
 8 See AI NOW INSTITUTE, LITIGATING ALGORITHMS: CHALLENGING GOVERNMENT
USE OF ALGORITHMIC DECISION SYSTEMS 5 (2018),
https://ainowinstitute.org/litigatingalgorithms.pdf [https://perma.cc/KZ52-
PZAH] (noting these areas of use); see also Danielle Keats Citron, Open Code
Governance, 2008 U. CHI. LEGAL F. 355, 356−57 (detailing government uses of
automated decision making); A Local Law in Relation to Automated Decision
Systems Used by Agencies Testimony, NEW YORK CITY COUNCIL (Aug. 24, 2017)
(Statement by Joshua North, Legal Aid Society), at 80−81, available at
http://legistar.council.nyc.gov/LegislationDetail.aspx?ID=3137815&GUID=437
A6A6D-62E1-47E2-9C42-
461253F9C6D0&Options=ID%7cText%7cOther%7c&Search=1696
[https://perma.cc/4QLT-7X6M] (listing the ways algorithms are used in the
criminal justice system for bail, predictive policing, DNA, family court, juvenile
representation in delinquency proceedings, parole proceedings, and sex offender
registration); AARON RIEKE, MIRANDA BOGEN & DAVID G. ROBINSON, PUBLIC
SCRUTINY OF AUTOMATED DECISIONS: EARLY LESSONS AND EMERGING METHODS 3
(2018) (noting that the government uses algorithms to screen immigrants and
allocate social services).
 9 See generally Andrew D. Selbst & Solon Barocas, The Intuitive Appeal of
Explainable Machines, 87 FORDHAM L. REV. 1085 (2018) (noting issues of opacity
in decision making).
 10 See Julia Angwin, Jeff Larson, Surya Mattu & Lauren Kirchner, Machine
Bias, PROPUBLICA (May 23, 2016), https://www.propublica.org/article/machine-
bias-risk-assessments-in-criminal-sentencing [https://perma.cc/EXU9-2JF9].
For a different perspective on the ProPublica study and related matters, see
Arthur Rizer & Caleb Watney, Artificial Intelligence Can Make Our Jail System
More Efficient, Equitable and Just, 23 TEX. REV. L. & POL. 181, 210–13 (2019).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 105

central issues of due process, criminal (and civil) justice, and
equal protection.11 Yet, because their inner workings are often
protected as trade secrets, they can remain entirely free from
public scrutiny.12 In all of these cases, for example, the source
code that underlies and governs automated decisionmaking is
hidden from public view, comprising an unregulated “black
box” that is privately owned and operated.13

This Article argues that the constitutionally inflected
conflict that we now face is, in no small part, attributable to
the failure of our system of intellectual property law to
definitively address the boundaries of software protection and
its implications for source code secrecy. As Pamela Samuelson
recently put it, software protection has waxed and waned
through copyright and patent protection at different points, at
times extending the boundaries of protection, and at other
times constricting it.14 As a result, these uncertain and porous

 11 See Rizer & Watney, supra note 10, at 197; see also NEW YORK CITY
COUNCIL, supra note 8, at 81 (Statement by Joshua North).
 12 See Rebecca Wexler, When a Computer Program Keeps You in Jail, N.Y.
TIMES (June 13, 2017), https://www.nytimes.com/2017/06/13/opinion/how-
computers-are-harming-criminal-justice.html [https://perma.cc/G7GF-JGM4]
(“The root of the problem is that automated criminal justice technologies are
largely privately owned and sold for profit. The developers tend to view their
technologies as trade secrets.”). See generally Rebecca Wexler, Life, Liberty, and
Trade Secrets: Intellectual Property in the Criminal Justice System, 70 STAN. L. REV.
1343 (2018) (discussing this problem) [hereinafter, Wexler, Life, Liberty, and
Trade Secrets].
 13 See generally FRANK PASQUALE, THE BLACK BOX SOCIETY: THE SECRET
ALGORITHMS THAT CONTROL MONEY AND INFORMATION (2015) (discussing this
problem). For more on the issue of opacity in machine learning, see generally
ROB KITCHIN, THE DATA REVOLUTION: BIG DATA, OPEN DATA, DATA INFRASTRUCTURES
AND THEIR CONSEQUENCES (2014) (analyzing and summarizing the use of big data,
open data, and data infastructures); Mike Ananny, Toward an Ethics of
Algorithms: Convening, Observation, Probability, and Timeliness, 41 SCI. TECH. &
HUM. VALUES 93 (2015) (discussing the ethical dilemmas in networked
information algorithms); Jenna Burrell, How the Machine ‘Thinks’: Understanding
Opacity in Machine Learning Algorithms, 3 BIG DATA & SOC’Y 1 (2016) (considering
opacity in regards to the social consequences of algorithms related to personal
and trace data); Danielle Keats Citron & Frank Pasquale, The Scored Society: Due
Process for Automated Predictions, 89 WASH. L. REV. 1 (2014) (arguing for due
process safeguards in the use of algorithms for those who are adversely
impacted); Kate Crawford, Can an Algorithm Be Agonistic? Ten Scenes from Life in
Calculated Publics, 41 SCI. TECH. & HUM. VALUES 77 (2016) (discussing the use of
political theory to help understand how algorithms operate in public life);
Nicholas Diakopoulos, Algorithmic Accountability: Journalistic Investigation of
Computational Power Structures, 3 DIGITAL JOURNALISM 398 (2015) (considering
how the hidden nature of algorithms reinforces societal power structures and
biases); Tarleton Gillespie, The Relevance of Algorithms, in MEDIA TECHNOLOGIES:
ESSAYS ON COMMUNICATION, MATERIALITY, AND SOCIETY 167 (Tarleton Gillespie et
al. eds., 2014) (discussing how algorithms define and produce knowledge).
 14 Pamela Samuelson, Staking the Boundaries of Software Copyrights in the

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

106 CORNELL LAW REVIEW [Vol.104:PPP

boundaries, subject to inconsistency, variation, and
indeterminacy, have basically ushered in a system where the
most risk-averse option, rationally, is to rely on trade secrecy
to protect source code, and to limit disclosure to the public as
a result.

But this reliance on source code secrecy does not come
without a price. Today, it appears that algorithms, rather than
elected officials, are becoming a primary source of governance,
hidden from view.15 Computer software appears in almost
everything—computational biology, 3D printing, automobiles,
home appliances, and much more.16 But its dominance in the
public sector of governance and AI, as I and others have
argued, has become a significant source of concern, in part due
to the issue of privatization.17 In a world of delegated
decisionmaking, the consistent power of closed code has a
number of deleterious results for the public.18

This Article argues that source code carries a paradoxical
character that is peculiar to software: the very substance of
what is secluded often stems from the most public of origins,

Shadow of Patents, 71 FLA. L. REV. (forthcoming 2019) (manuscript at 5),
https://ssrn.com/abstract=3250496 [https://perma.cc/8TWY-Y8DM].
 15 For foundational perspectives on the view of code as governance, see
generally LAWRENCE LESSIG, CODE AND OTHER LAWS OF CYBERSPACE (1999)
(analyzing how cyberspace has changed regulation); Joel R. Reidenberg, Lex
Informatica: The Formulation of Information Policy Rules Through Technology,
76 TEX. L. REV. 553 (1998) (suggesting that legislators need to understand
information technology in order to regulate); James Grimmelmann, Note,
Regulation by Software, 114 YALE L.J. 1719 (2005) (analyzing the impact of
regulation on software); Kenneth A. Bamberger, Technologies of Compliance: Risk
and Regulation in a Digital Age, 88 TEX. L. REV. 669 (2010) (discussing the power
that regulation of software gives to computer programmers to determine
compliance with minimal transparency). For an interesting, more recent account
of the prospects of code regulation, see Paul Ohm & Blake Reid, Regulating
Software When Everything Has Software, 84 GEO. WASH. L. REV. 1672 (2016).
 16 Manny Schecter, The Changing Trade Secret and Patent Equilibrium,
TECHCRUNCH (June 20, 2016), https://techcrunch.com/2016/06/20/the-
changing-trade-secret-and-patent-equilibrium/ [https://perma.cc/C9EL-
HHQ9].
 17 See generally Sonia K. Katyal, Private Accountability in the Age of Artificial
Intelligence, 66 UCLA L. REV. 54 (2019).
 18 Of course, it is important to note that there are many other areas of
potential accountability and transparency aside from source code, including
training data, data models, implementation guidelines, and even the business
decisions that affect design and development. See Whittaker et al., AI Now Report
2018, AI NOW INST. 11 (Dec. 2018) (listing these areas in addition to source code).
While this Article primarily focuses on the intersection between trade secrecy and
source code, these other areas (particularly the secrecy of training data) are
important areas for future research as well. See Erik Stallman and Sonia Katyal,
Contracting for Transparency (abstract on file with author).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 107

and often produces the most public of implications. And it is
the shortcomings of intellectual property law that have made
this possible.

In this Article, I argue that the law of software has been
willing to entertain a unique—and paradoxical—overlap
between copyright, patent, and trade secrecy, even though the
three regimes have somewhat opposing public goals.
Copyright and patent law are oriented towards a spectrum that
values dissemination and the circulation of ideas. In contrast,
trade secrecy is motivated by opacity and seclusion. Yet
software law has openly tolerated—indeed invited—a regime of
opposites by enabling developers to commit to all three
simultaneously, even though their underlying values can be at
cross purposes. While this overlap of protection in software
seems, at first glance, to be a good thing for the proprietary
software industry, it has proven deleterious for the larger
public in the context of automated decision making,
particularly citizens who are now increasingly governed by an
invisible hand that they can no longer investigate or question.19
But, as I argue, this overlap may also be deleterious for other
innovators as well.

Almost twelve years ago, in a brilliant article, James
Gibson identified the risks to democracy that inhere in closed
code, particularly regarding its potential to encroach upon our
everyday lives without transparency or accountability.20 Those
fears are no longer speculative; they have become an everyday
reality for criminal defendants and others who are swept up by
the specter of automated government decision making.21 As a
result, it is entirely possible to imagine a world where all of us
face some form of automated regulation—all without detection,
in part because the code is closed from public view and
investigation.22

 19 See generally VIRGINIA EUBANKS, AUTOMATING INEQUALITY: HOW HIGH-TECH
TOOLS PROFILE, POLICE, AND PUNISH THE POOR (2017) (arguing that government use
of automated data further disenfranchises the poor); SAFIYA UMOJA NOBLE,
ALGORITHMS OF OPPRESSION: HOW SEARCH ENGINES REINFORCE RACISM (2018)
(discussing the way algorithms in search engines perpetuate oppression and
create new kinds of racial profiling); CATHY O’NEIL, WEAPONS OF MATH
DESTRUCTION (2016) (noting that although algorithms are seen as neutral because
of their mathematical basis, they perpetuate discrimination).
 20 James Gibson, Once and Future Copyright, 81 NOTRE DAME L. REV. 167,
190 (2005).
 21 NEW YORK CITY COUNCIL, supra note 8, at 80−81 (Statement by Joshua
North).
 22 See David Lyon, Surveillance as Social Sorting: Computer Codes and Mobile
Bodies, in SURVEILLANCE AS SOCIAL SORTING: PRIVACY, RISK, AND DIGITAL

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

108 CORNELL LAW REVIEW [Vol.104:PPP

While many software scholars have focused on issues
regarding copyright and patent protection, I argue that a
greater focus on trade secrecy—and specifically source code
secrecy—is gravely overdue in these current circumstances.23
In this Article, I investigate an overlooked paradigm associated
with source code, one that stems from the current failures of
both private and public law to incentivize disclosure, leading
to a domain where source code is largely dominated by trade
secrecy. In both abstract and practical terms, this failure to
incentivize disclosure has produced significant public law
implications, ones that we are now grappling with due to the
rise of AI.

To understand further the origins of source code secrecy
and its implications, however, we need to look back through
the complicated history of legal protection for software. In the
first half of this Article, focusing primarily on intellectual
property law, I describe the dominance of trade secrecy over
source code, attributing it to a complex, dyadic relationship
between law and the marketplace over the last several decades.
As I describe, the specific qualities of software, with its short
shelf life and abstract qualities, seem at first glance to be an
imperfect fit for patent and copyright protection. Yet both
areas of law were extended to protect software after some
period of reluctance, leading to a regime where these different
areas of law were essentially treated as complementary to trade
secret protection.

Despite the extension of copyright and patent protection
over software (or perhaps because of it), software garnered a
unique position within the law: it remains one of the few
spheres to enjoy concurrent protections from trade secrecy,
copyright law, and patent law. Yet, this state of affairs has
produced dramatic implications for both the surrounding
software industry and the public, who have become
increasingly dependent on mass market software.

In the second half of the Article, I examine the implications
of this shift towards mass market software for the public
interest. Here, I examine the increasing rise of “closed code

DISCRIMINATION 13, 13 (David Lyon ed., 2003),
http://www.felfel.is/sites/default/files/2016/Lyon,_D._(2003)._Surveillance_an
d_social_sorting%26_computer_codes_and_mobile_bodies%20(1).pdf
[https://perma.cc/G7RQ-XKWJ].
 23 It bears mentioning that this Article is written mostly for a non-tech expert
audience. For a related and excellent study of the role of trade secrecy in criminal
proceedings, see Wexler, Life, Liberty, and Trade Secrets, supra note 12.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 109

governance,” which involves government’s delegation of core
government functions to private, automated decision making.24
As I show, the consequences of this reliance on automation are
particularly significant for marginalized groups who are often
governed by closed code without a formidable ability to
challenge or address their situation due to trade secrecy.

This Article has five parts. In Parts I and II, after a brief
introduction to software and source code, I outline how both
administrative and common law decisions have invited the
coexistence of copyright and trade secrecy, allowing software
to be widely disseminated and yet consistently underscored by
source code secrecy at the same time.25 In Part III, turning to
software patentability, I argue that the shifting boundaries of
protection have produced a more complicated story. Since the
boundaries of software patentability have also narrowed, trade
secrecy becomes an even more attractive default avenue for
protection, essentially displacing all other possibilities.

In Part IV, turning towards public law, I examine the civic
implications of source code secrecy. Here, I argue that closed
source code produces a dilemma for public transparency in an
age of AI. At a time when so many government functions are
being delegated to private companies, the rise of trade secrecy
raises critical questions of accountability and oversight. In the
final parts of this Article, I address how governments—and
courts—can address this problem, both through common law
and regulatory reform.

In Part V, I make a case for limiting source code secrecy in
certain contexts, offering an architecture of what I call
“controlled disclosure.” The Article concludes with a brief
discussion of ways to offer greater transparency for source
code and automated decisionmaking through reforming areas
of intellectual property, contract law, and discovery. Here, I
argue that the particular significance of source code
necessitates a more granular set of efforts by legislators and
courts towards transparency. Finally, returning to the City
Council law that opened this paper, I offer a modest set of
possibilities to engage greater norms towards disclosure in
cases of significant public interest.

I

 24 See Citron, supra note 8, at 360.
 25 Schecter, supra note 16, at 190.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

110 CORNELL LAW REVIEW [Vol.104:PPP

SOURCE CODE SECRECY AND COPYRIGHT
Over twenty years ago, Lawrence Lessig famously

proclaimed, “Code is law.”26 That statement, at the time, was
largely taken to suggest that computer code regulated human
conduct in the same way that law regulated human conduct.27
Today, however, many years later, we see that Lessig’s
observation was more than just a metaphor for regulating
human behavior. In our modern age of algorithms, it is literally
the case that code is law, and that law is code, because our
government has delegated so many of its functions to
automated decision making.28 Yet to understand both the rise
of trade secrecy, and its significant implications for democratic
transparency, we must start with studying the history of code,
its emergence and its relationship to other areas of intellectual
property.

Since the onset of the computer age, the law has struggled
to find a way to protect software through intellectual property
principles, and it has rarely reached a consistent conclusion.
At various times, different types of legal protection—copyright,
patent, trade secret—have all dominated the landscape,
leaving software law to become an area of considerable
murkiness. In an influential article, now–Justice Stephen
Breyer expressed concerns about the harm that might result
from copyrighting software, reasoning that copyrighting code
would increase transaction costs and impede the sharing of
information that characterized the industry’s expansion.29 If
parties had to license content from others, Breyer argued that
they would expend efforts on designing around protected code,
wasting precious resources to avoid litigation.30

As Breyer’s observations suggest, software’s integration
with hardware, coupled with the absence of protections in
copyright and patent law, led to an initial focus on trade
secrecy and contract law for protection, what some have
described as the first phase of software protection under
intellectual property law.31 Later, as mass market licenses

 26 LESSIG, supra note 15, at 5.
 27 Id.
 28 See Citron, supra note 8, at 360; Ohm & Reid, supra note 15, at 1673
(noting how physical functionality of devices has become replaced by code).
 29 Stephen Breyer, The Uneasy Case for Copyright: A Study of Copyright in
Books, Photocopies, and Computer Programs, 84 HARV. L. REV. 281, 348 (1970).
 30 Id.
 31 See Bradford L. Smith & Susan O. Mann, Innovation and Intellectual
Property Protection in the Software Industry: An Emerging Role for Patents?, 71 U.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 111

entered the picture, leading to greater separation between
hardware and software, copyright law became an increasingly
attractive engine for protection, facilitated in no small part by
a cadre of commentators and Congressional leaders who urged
greater propertization, ushering in a second phase of
protection.32

Afterward, in the early 2000s, software entered yet another
shift, one that has been described as a third phase of
protection, attributable to the limited scope of copyright
protection and the increasing attractiveness of software
patenting.33 At first, this third phase seemed to offer
developers some certainty of protection by enabling parties to
pursue patentability in addition to the other options.34
Copyright law protected software; patent law protected
computer hardware and, increasingly, new processes and
structures embodied in software.35

Today, due in no small part to the narrowing of software
patentability and other forces, I would argue that we see that
software’s relationship to intellectual property law is now
engaged in yet another revision. This fourth phase (if it can
even be described as such) demonstrates a robust reliance on
the backdrop of trade secrecy at the cost of more
disclosure-oriented regimes like copyright and patent law. As
I show in the Parts below, copyright and patent developments
in software did little to incentivize disclosure, making trade
secrecy even more attractive as a default mode of protection.

A. Code: An Introductory (and Incomplete) History
On a very basic level, a computer can perform a variety of

different functions depending on the software it is fed.36 These
instructions to the computer are comprised of binary digits—
ones and zeroes—and encode, step by step, a series of
directions to the computer’s physical hardware. This chain of
ones and zeroes is called a computer’s “object code” and is

CHI. L. REV. 241, 242 (2004) (describing various phases of the software industry’s
development, starting with contract law).
 32 See id. at 242, 245.
 33 Id. at 242.
 34 MARK A. LEMLEY, PETER S. MENELL, ROBERT P. MERGES & PAMELA
SAMUELSON, SOFTWARE AND INTERNET LAW 3 (3d ed. 2006).
 35 Id. at 3 (concluding in 2006 that “the main contours of legal protection for
computer technology are relatively clear”).
 36 Gibson, supra note 20, at 174.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

112 CORNELL LAW REVIEW [Vol.104:PPP

largely unreadable by humans.37
The first programming languages were originally motivated

by the desire to replace the painstaking nature of specialized
code with mathematical formulas.38 Fortran, the first widely
known computer language, was introduced by IBM in 1957.39
Eventually, programmers began to develop other kinds of
computer languages, like BASIC, Pascal, and C.40 These
high-level languages, while still largely intelligible to only the
most skilled programmers, came to be known as “source code,”
in part because they abstract away from the object code.41
While the definition of object code seems relatively
straightforward, source code can be defined in both broad and
narrow terms.42 But it essentially comprises everything that

 37 Id.
 38 Niklaus Wirth, A Brief History of Software Engineering, 30 IEEE ANNALS
HIST. COMPUTING 32, 32–33 (July–Sept. 2008).
 39 Id.
 40 Gibson, supra note 20, at 174. This summary of software history is
admittedly all too brief. For various perspectives on the history of computing, see
generally Thomas Haigh, Historical Reflections: The Tears of Donald Knuth, 58
COMMS. ACM 40 (2015); Martin Campbell-Kelly, The History of the History of
Software, 29 IEEE ANNALS HIST. COMPUTING 40, 40 (Oct.–Dec. 2007); Donald E.
Knuth & Louis Trabb Pardo, The Early Development of Programming Languages,
in A HISTORY OF COMPUTING IN THE TWENTIETH CENTURY 197 (N. Metropolis et al.
eds., 1980); STEVE LOHR, GO TO: THE STORY OF THE MATH MAJORS, BRIDGE PLAYERS,
ENGINEERS, CHESS WIZARDS, MAVERICK SCIENTISTS AND INCONOCLASTS—THE
PROGRAMMERS WHO CREATED THE SOFTWARE REVOLUTION (2001); GLYN MOODY,
REBEL CODE: INSIDE LINUX AND THE OPEN SOURCE REVOLUTION (2001); James W.
Cortada, Researching the History of Software from the 1960s, 24 IEEE ANNALS
HIST. COMPUTING 72, 73 (Jan.–Mar. 2002); JEAN E. SAMMET, PROGRAMMING
LANGUAGES: HISTORY AND FUNDAMENTALS (1969); HISTORY OF PROGRAMMING
LANGUAGES (Richard L. Wexelblat ed., 1981); Thomas Ball, A Brief History of
Software- From Bell Labs to Microsoft Research, 2009 IEEE Int’l Working Conf.
Mining Software Repositories (May 16, 2009); Christof Ebert, A Brief History of
Software Technology, 25 IEEE SOFTWARE 22, 22, Nov./Dec. 2008).
 41 Gibson, supra note 20, at 174.
 42 A typical description of source code in litigation is the following:

source code, object code (i.e., computer instructions and data
definitions expressed in a form suitable for input to an assembler,
compiler, or other translator), any text written in any high-level
programming language defining firmware and/or software
functionalities implemented on an integrated circuit, microcode,
register transfer language (“RTL”), firmware, and hardware
description language (“HDL”), as well as any and all notes,
annotations, and other comments of any type related thereto and
accompanying the code. For avoidance of doubt, this includes
source files, make files, intermediate output files, executable files,
header files, resource files, library files, module definition files,
map files, object files, linker files, browse info files, and debug files.

David Maiorana, Diagrams Not Considered Source Code Under Modified Protective
Order, JONES DAY (Nov. 10, 2017), http://jonesdayitcblog.com/source-code-
modified-protective-order/[https://perma.cc/VSV3-3M6B].

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 113

matters in software. Source code represents the commands
that control a computer program, comprising a series of
alphanumeric characters that are legible to humans.43 Since
computers only understand object code, use of a compiler is
necessary to translate the source code into assembly code,
which is an intermediate-level language; an assembler then
translates the assembly code into object code.44

But source code is much more than just lines of
commands—it comprises the lifeblood of software, embodying
both the potential of the creativity that produces the code and
the functionality that the code achieves. Although it mainly
generates ready-to-use binaries, source code is essential for a
variety of other practical reasons.45 From a developer’s
perspective, it is generally considered much more versatile and
informative than object code, since access to the source code
usually ensures that the system administrator can better tailor
the software to particular requirements.46 Having access to the
source code also means that it is easier to fix bugs, determine
error rates, respond to viruses, or locate other forms of
malicious content.47 It is also a core source of information to
ensure interoperability, enhances learning for both new and
experienced programmers, and assists with the purposes of
software reusability.48

Yet because source code and software are often
synonymized and treated alike in the case law and literature,
it is often hard to realize, on a more granular level, that much
of the case law involving source code involves something that
is generally secret. The public prominence of software often
overshadows its private, secret source code. However, the best
way to figure out how a program actually works, particularly
to assess its reliability and accuracy, is to start by reading the

 43 Christian Chessman, Note, A “Source” of Error: Computer Code, Criminal
Defendants, and the Constitution, 105 CAL. L. REV. 179, 181 (2017).
 44 Gibson, supra note 20, at 175; see also Glenn J. MacGrady, Protection of
Computer Software—An Update and Practical Synthesis, 20 HOUS. L. REV. 1033,
1036 (1983) (explaining the conversion of source code into
machine-readable/loadable instructions). Note, however, that many computer
languages today, Javascript being one example, are not compiled to object code
but are interpreted instead.
 45 See Source Code Definition, LINUX INFO. PROJECT,
http://www.linfo.org/source_code.html [https://perma.cc/UAP6-PR22] (last
updated Feb. 14, 2006).
 46 Id.
 47 Id.
 48 Id.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

114 CORNELL LAW REVIEW [Vol.104:PPP

source code.49

B. The Birth of Source Code Secrecy
If we are to understand the rise of secrecy in software,

then, we must start at the place where mass market software
began. One of the biggest shifts in computing took place in the
late 1950s when computers, which had previously only been
available to research institutions and universities, began to
enter the world of business.50 Initially, many companies
developed software in house, to keep up with the demands of
customization.51 This meant that most agreements were
governed by contract law and, relatedly, trade secrecy, rather
than other forms of intellectual property protection. Yet, over
time, software development firms began to recognize that more
and more clients were demanding the same sorts of projects,
and they began to develop programs for a wider market.52 As
computing capacity began to expand, more attention came to
be paid to the value of automation and structured
programming.53

Around this time, the field of computer science began to
emerge, largely out of the recognition that programming
languages did not fit either the domain of mathematics nor
electronics.54 In 1975, software developers showed that high
level languages could be used on microcomputers, reducing
the need for expensive, sophisticated compilers.55 Around this
time, more and more software firms began to emerge to satisfy
the more general purpose needs of their customers.56 Thus,
the market for software began to expand from custom
programming to the development of products that required
very little customization.57 At that point, as expert Niklaus
Wirth describes, “[s]uddenly, there was a mass market.
Computing went mainstream.”58

The computer industry grew by leaps and bounds from the
1960s to the 1970s, so that by the end of the 1970s, almost

 49 Chessman, supra note 43, at 182.
 50 Wirth, supra note 38, at 32.
 51 LEMLEY ET AL., supra note 34, at 3.
 52 Id.
 53 Wirth, supra note 38, at 33.
 54 Id.
 55 Id.
 56 LEMLEY ET AL., supra note 34, at 31.
 57 Id.
 58 Wirth, supra note 38, at 35.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 115

one hundred percent of Fortune 500 companies used
computers.59 By the end of the 1970s, almost fifty percent (or
more) of the software used by organizations consisted of
commercially available packages.60 Although most developers
had been relying on simple contract law (coupled with
confidentiality provisions) to govern disputes, given the
increased mass market potential, the industry turned to
copyright law to seek protection.61 But their efforts became
complicated by the increasing complexity of the process of
software development. In the 1960s and 1970s, for example,
the industry began to actively differentiate the designing of
software from the development of code; computer scientists
focused on design principles first and then on writing
computer code second.62

As software became more complex, the role of the software
engineer started to look less and less like a traditional “author”
of the code.63 The advent of software engineering dramatically
increased the complexity of programs, bringing both
modularization and structure, but it also contributed to a
growing division between what came to be known as “literal”
versus “nonliteral” forms of protection.64 By diverging from the
literal, code-based characteristics of software from the
previous era, these programs opened the door to more
challenges under copyright protection because they toed a fine
line between idea and its expression, and thus were vulnerable
to merger-related challenges.65

What emerges, then, from this (admittedly brief and
incomplete history) is that software increasingly became more
than just a program, it began to comprise also the design,
involving more abstract ideas as a result of this complexity,
rather than just code.66 As software systems grew in
complexity, the concept of modularization began to take on

 59 Cortada, supra note 40, at 73.
 60 Id.
 61 LEMLEY ET AL., supra note 34, at 32.
 62 See Wirth, supra note 38, at 32-33; see also Michael S. Mahoney, What
Makes the History of Software Hard, IEEE ANNALS HIST. COMPUTING, July–
September 2008, at 8 (describing the emergence of software engineering).
 63 See Wirth, supra note 38, at 34-35.
 64 At the lowest level of abstraction is the source or object code of a computer
program, its literal element. A higher level of abstraction involves things like
design features (its “architecture”), which constitute nonliteral elements. See
LEMLEY ET AL., supra note 34, at 35 (noting this distinction).
 65 See id.
 66 See id.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

116 CORNELL LAW REVIEW [Vol.104:PPP

greater significance, and the rise of the personal workstation
led, in no small part, to the development of the concept of
object orientation, which led to the creation of windows,
buttons, toolbars, icons, and menus.67 By the mid-1980s,
enormous advances in hardware led to a massive rise in
computing power, blending the fields of computer and
communications technologies with the advent of the Internet.68

During the last decade, of course, perhaps the most
attention has been focused on the development of AI, which is
a field that develops computer systems to perform tasks
normally performed by humans, including those that implicate
learning and decision making.69 AI has grown significantly in
recent years, in no small part due to the development of
machine learning, which relies on developing algorithms that
can create analytical models from data, without relying on a
human to program a solution.70 Before the advent of machine
learning, software developers had to manually code a variety of
functions into a system; today, machine learning can do all of
this much more efficiently.71 In addition, advances in
processing speed and power, and the emergence of specialized
processing devices like graphical processing units have
enabled the use of artificial neural networks in a variety of
embedded technologies and home devices.72

All of these developments, while great for the software
industry, have posed complexities for intellectual property law,
which has maintained relatively porous boundaries around
areas of software protection. These shifts also usher in a kind
of inescapable hybridity between literal and nonliteral forms of
software protection.73 As one commentator explains:

 67 Wirth, supra note 38, at 37.
 68 Id. In the last few decades, computer-aided software engineering (CASE)
provides automated assistance in software design and development.
 69 Digital Decision-Making: The Building Blocks of Machine Learning and
Artificial Intelligence, 115th Cong. 2 (2017) (statement of Dario Gil, Vice President,
AI and Quantum Computing, IBM).
 70 Id. at 2. For an explanation, see Nizan Geslevich Packin & Yafit Lev-Aretz,
Learning Algorithms and Discrimination, in RESEARCH HANDBOOK ON THE LAW OF
ARTIFICIAL INTELLIGENCE 88 (Woodrow Barfield & Ugo Pagallo eds., 2018) (noting
that “machine learning is nonparametric and does not involve devising any
particular mathematical model in advance”).
 71 Digital Decision-Making: The Building Blocks of Machine Learning and
Artificial Intelligence, supra note 69, at 2 (statement of Dario Gil, Vice President,
AI and Quantum Computing, IBM).
 72 Id.
 73 Joseph G. Arsenault, Software without Source Code: Can Softwawre
Produced by A Computer Aided Software Engineering Tool Be Protected?, 5 ALB.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 117

[S]oftware is a very cumbersome expression of an idea. If
asked about details of a software system by a mid-level
manager, a programmer would never hand that manager
pages of computer code, but instead, would choose an
intermediate level of the design, perhaps a combination of
some dataflow diagrams and some text description, to
express her idea. . . . The design expresses the idea and the
code expresses the idea; in the modern software engineering
environment, the two are inextricably tied. The design
represents the code and, as demonstrated above, the design
is the code.74

As a result, software in and of itself is a chimera: it can be
classified so narrowly that it can fall into multiple categories of
intellectual property protection; or, it can be classified so
broadly that it fits into none of them at all. And the law has
supported this variance with its own shifting boundaries of
intellectual property protection.

C. The Copyrightability of Software
In the early years of software development, particularly

from the 1960s to the 1980s, programmers regularly shared
source code, in part since much of the core aspects of
computer operating systems were developed in an academic
setting or in central corporate research labs with a great deal
of autonomy.75 In these settings, highly cooperative software
development projects emerged, with little effort made to
establish the boundaries of intellectual property ownership or
to restrict reuse.76

Soon after the introduction of high-level programming
languages like FORTRAN and others, software developers
began to turn to contract law, along with copyright, patent, and
trade secret law to protect their work.77 Early programmers
wrote software much like authors wrote manuscripts: they
would come up with an idea and write down the program
necessary to make the idea come to fruition.78 A program,
therefore, comprised a sequence that ran from the beginning

L.J. SCI. & TECH. 131, 143 (1994) (questioning whether the software design is
copyrightable, and if so, at what level it is protectable).
 74 Id. at 156.
 75 Josh Lerner & Jean Tirole, The Simple Economics of Open Source 200 (Nat’l
Bureau of Econ. Research, Working Paper 7600, 2000),
http://www.nber.org/papers/w7600.pdf [https://perma.cc/6ES3-LB5R].
 76 Id.
 77 Gibson, supra note 20, at 176.
 78 Arsenault, supra note 73, at 142.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

118 CORNELL LAW REVIEW [Vol.104:PPP

to its end, and the programmer would write and rewrite the
code until it accomplished its task.79 In such cases, protection
against verbatim copying was usually enough to protect the
information.80

Although the original Copyright Act understandably made
no reference to computer programs,81 the Copyright Office in
the mid-1960s began to allow registration—concluding that
computer programs were readable, written works of
authorship, but noting that the registrations could only issue
under its “rule of doubt.”82 Yet this move represented a first
bold step towards hybridizing copyright and trade secret
protection in mass market software. As Diane Zimmerman
explains,

[t]his [mass-market] change led those in the software
industry to see the advantage in trying to take advantage of
copyright while retaining the benefits of trade secrecy. The
use of copyright would enable them to distribute copies of
their works in object code (that is, computer-readable) form
to the public backed up by the threat of sanctions for
infringement At the same time, developers wanted to
maintain the economic value of their programs and ward off
competition by keeping the expression that embodied the
design of these programs—their source code—a secret.83
Both objectives, Zimmerman writes, were achieved by

convincing Congress to adopt a rule of doubt,84 suggesting that
the Copyright Office deferred to the courts’ judgment.85 Later,
Congress established a National Commission on New
Technological Uses of Copyrighted Works (CONTU), which
concluded that copyright was the most appropriate form of
protection for computer programs.86 As Peter Menell has

 79 Id. at 144.
 80 Id. at 149.
 81 Richard Raysman, Protection of Proprietary Software in the Computer
Industry: Trade Secrets as an Effective Method, 18 JURIMETRICS J. 335, 337–38
(1978).
 82 48 FR 100, at 22, 951–52 (May 23, 1983); Jay Dratler, Jr., Trade Secret
Law: An Impediment to Trade in Computer Software, 1 SANTA CLARA COMPUTER &
HIGH-TECH. L.J. 27, 42, n.64 (1985) (observing that object code was protected
almost entirely by copyright law until the early 1980s).
 83 Diane Leenheer Zimmerman, Trade Secrets and the ‘Philosophy’ of
Copyright: A Case of Culture Clash, in THE LAW AND THEORY OF TRADE SECRECY: A
HANDBOOK OF CONTEMPORARY RESEARCH 299, 301 (Rochelle C. Dreyfuss &
Katherine J. Strandburg eds., 2011).
 84 Id.
 85 LEMLEY ET AL., supra note 34, at 35.
 86 Samuelson, supra note 14, at 11.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 119

explained, at the time that CONTU was created, neither patent
nor copyright had played a key role yet because the industry
had developed mostly in reliance on trade secret protection and
contract law instead.87

In these early days, computers were so specialized that
they were not sold through traditional retail channels, and
since hardware and software were often bundled together,
there was only a minimal need to consider separate protection
for software.88 For hardware, patent protection ensured an
adequate reward for the cost of innovation.89 Thus, at least
initially, contract law and trade secrecy provided much of the
necessary protection against misappropriation, leading one
leading commentator to conclude in 1978 that “[t]rade secret
protection is, without question, the most effective current
means of protecting valuable computer software,” noting that
one of the greatest drawbacks to patent and copyright was the
requirement of disclosure.90 During this period, companies
relied heavily on secrecy and contract law; for example, in
1983, IBM started to include restrictions on the distribution of
its source code for its operating systems, and also to require
licensees to agree to refrain from reverse engineering.91 In the
years afterward, many more companies followed suit. But as
the mass market for software began to develop, it became
clearer and clearer that developers needed other forms of
protection as well.92

1. Early Accommodations of Trade Secrecy
Throughout the history of intellectual property’s

relationship with software, concerns about the secrecy of
source code have carried a special significance, given the
potential overlap between trade secrecy and copyright.
Initially, the Copyright Office required deposit of the full source
code, just as it did for every other copyrighted work. Yet this
proved to be a powerful initial deterrent to copyrightability,
since trade secret law had already been the default

 87 Peter S. Menell, The Challenges of Reforming Intellectual Property Protection
for Computer Software, 94 COLUM. L. REV. 2644, 2652 (1994).
 88 LEMLEY ET AL., supra note 34, at 33. For an interesting discussion of the
source of the distinction between hardware and software, see James
Grimmelmann, The Structure and Legal Interpretation of Computer Programs 18
(2019) (draft on file with author).
 89 LEMLEY ET AL., supra note 34, at 33.
 90 Raysman, supra note 81, at 350.
 91 Dratler, supra note 82, at n.64.
 92 LEMLEY ET AL., supra note 34, at 4.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

120 CORNELL LAW REVIEW [Vol.104:PPP

mechanism.93 Because of the fear of disclosure, only about
1,200 copyright registrations were issued between 1966 and
1978.94 During this period, most of the registered programs
belonged to the largest computer hardware manufacturers,
who were in a better position to copyright programs and to
disclose the nature of the programs to the public, because they
stood to make more profit from selling hardware than
software.95

Nevertheless, the choice to extend copyright protection to
software, at that point, seemed like a speculative gamble in
order to protect a nascent field of technology.96 As the leading
casebook on the topic explains:

As CONTU recognized, it was impossible in 1978 to
establish a precise line between copyrightable expression of
computer programs and the uncopyrightable processes that
they implement. Yet the location of this line—the
idea/expression dichotomy—was critical to the rough
cost-benefit analysis that guided CONTU’s
recommendation. Drawing the line too liberally in favor of
copyright protection would bestow strong monopolies upon
those who develop operating systems that become industry
standards and would thereby inhibit other creators from
developing improved programs and computer systems.
Drawing the line too conservatively would allow
programmers’ efforts to be copied easily, thus discouraging
the creation of all but modest incremental advances.97
As a consequence of reviewing the results of the first few

years of software protection, in 1989, Congress decided to
facilitate a remarkable break from its previous system: it
decided to forego the deposit requirement for source code and
set up a new system to respect the secrecy of source code
instead.

Federal sources indicate that Congress decided to do so
after receiving a number of comments that argued for the
establishment of “special deposit procedures to mitigate the

 93 Id. at 34.
 94 Id.
 95 Raysman, supra note 81, at 338.
 96 LEMLEY ET AL., supra note 34, at 33. See Note, Copyright Protection of
Computer Program Object Code, 96 HARV. L. REV. 1723, 1724 (1983)
(recommending protection).
 97 LEMLEY ET AL., supra note 34, at 35. See also Peter S. Menell, An Epitaph
for Traditional Copyright Protection of Network Features of Computer Software, 43
ANTITRUST BULL. 651, 654 (1998) (recognizing the role of courts in maintaining
the proper boundaries of copyright law).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 121

alleged uncertainties associated with depositing material
containing trade secrets in a public office.”98 One additional
constituency that was particularly focused on gaining dual
protection involved standardized test preparers, who desired
the ability to reuse their questions over multiple rounds of
testing, but still keep the questions secret.99 As the Register of
Copyrights, Ralph Oman explained around that time:

The Office originally asked for [protectability of] source code,
because that best represents the copyrightable authorship.
But many copyright owners say that the source code version
of a program contains valuable trade secrets. . . . So the
Office gave special relief to allow registration without
disclosing trade secrets. Usually, we accepted an
abbreviated deposit or a deposit with the trade secret
material blocked out.100
There were other, strategic reasons that weighed in favor

of a dual system. As Zimmerman explains,
By securing the source code behind a wall of secrecy,
owners could get remedies for breach where access to the
product was granted only sparingly and conditionally. But
designers of software for PCs could not be sure that courts
would treat their programming devices and choices as
“secrets” once thousands, even millions, of copies of the
programs embodying them were being sold (albeit in the
impenetrable form of object code). Being able to claim
copyright was a kind of legal insurance policy against the
risk that a court might refuse to recognize the existence of
trade secrets in software distributed to the public at large.101

The Copyright Office, rather than Congress, decided to step in
to solve the problem. Instead of requiring total deposit of the
source code, then, the Copyright Office decided to require
registrants to file the first and last twenty-five pages (or
equivalent) of source code with the trade secret sections
blocked out, so long as they were “proportionately less than
the material remaining, and the deposit reveals an appreciable
amount of original computer code.”102 In one of the few court

 98 Registration of Claims to Copyright Deposit Requirement for Computer
Programs Containing Trade Secrets and for Computer Screen Displays, 54 Fed.
Reg. 13,173, 13,173 (Mar. 31, 1989) (to be codified at 37 C.F.R. pt. 202).
 99 Zimmerman, supra note 83, at 311.
 100 Ralph Oman, Software as Seen by the U.S. Copyright Office, 28 IDEA 29,
30 (1987).
 101 Zimmerman, supra note 83, at 311.
 102 Registration of Claims to Copyright Deposit Requirement for Computer
Programs Containing Trade Secrets and for Computer Screen Displays, supra

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

122 CORNELL LAW REVIEW [Vol.104:PPP

challenges to address these special deposit requirements, the
Seventh Circuit held that these specialized rules did not
require public disclosure, and the Copyright Office was well
within its purview of discretion in designing specialized rules
for secret, copyrighted material.103

Yet this shift towards accommodation, I would argue,
represented a contradiction in terms. The deposit
requirements were historically motivated to promote access to
the public; whereas the administrative tolerance for closed
code was essentially designed to enable circumvention of
disclosure altogether.104 As a result, source code remains, even
to this day, marred by its underlying incoherence between its
expression as a (potentially public) authorial creation, and its
function as a closely held trade secret.

2. Copyrighting Code
While most software shops behaved collaboratively in the

early years, relying on mostly contract and trade secrecy, that
began to change in the early 1980s, when AT&T began to
threaten litigation to enforce its rights to Unix, an operating
system that could run on multiple platforms. In response,
Richard Stallman of the MIT Artificial Intelligence Laboratory
started the Free Software Foundation, which aimed to
distribute code openly and with restrictions in place to
preclude assertions of proprietary control.105

note 98, at 13,176. See also U.S. COPYRIGHT OFFICE, COMPENDIUM OF U.S.
COPYRIGHT OFFICE PRACTICES § 1509.1(C)(4)(d) (3d ed. 2017),
https://www.copyright.gov/comp3/docs/compendium.pdf
[https://perma.cc/73VY-44XM] (detailing the U.S. Copyright Office’s
instructions on the appropriate method for blocking out source code that
contains trade secret material). See also Joseph Potvin, How Is Copyright
Relevant to Source Data and Source Code?, TECH. INNOVATION MGMT. REV. (Feb.
2008), https://timreview.ca/article/121 [https://perma.cc/NC3Q-7WS7]
(outlining how copyright law relates to source data and source code); Scott Bell,
Aly Dossa & Timothy M. Smith, To Protect Your Source Code, Treat It Like
Intellectual Property, SOFTWARE DEV. TIMES (July 12, 2011),
https://sdtimes.com/intellectual-property/to-protect-your-source-code-treat-it-
like-intellectual-property/ [https://perma.cc/XEW5-5HEM] (differentiating the
protections for source code between trade secrets, copyrights, and patents).
 103 See Zimmerman, supra note 83, at 312 (discussing Nat’l Conference of
Bar Examiners & Educ. Testing Serv. v. Multistate Legal Studies, Inc., 692 F.2d
478 (7th Cir. 1982)).
 104 See id. at 313 (discussing how deposit requirements became loosened after
fixation, rather than publication, became the focus of protection, and also due to
space considerations at the Library of Congress).
 105 There is a vast literature exploring the dynamics of the open source
movement. See, e.g., Greg Madey et al., The Open Source Software Development
Phenomenon: An Analysis Based on Social Network Theory, AMCIS 2002 PROCS.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 123

As the Unix dispute demonstrated, the question of how
source code and its secrecy intersected with intellectual
property began to take on more importance before courts, the
Copyright Office, and Congress. Today, despite the initial
application of the rule of doubt in the case of software
protection under copyright, it is well settled that copyright law
protects the original, literal elements of both a program’s
source code and its object code.106 Object code, too, is
protectable under copyright.107 The argument, as it goes,
follows this reasoning: “Since source code is copyrightable, and

247 (2002) (discussing the way the open source software community works in
order to improve reliance on open source software); Joachim Henkel, Simone
Schöberl & Oliver Alexy, The Emergence of Openness: How and Why Firms Adopt
Selective Revealing in Open Innovation, 43 RES. POL’Y 879, 879–90 (2014)
(discussing cooperation in the open source software community); ERIC STEVEN
RAYMOND, THE CATHEDRAL AND THE BAZAAR (2000),
http://www.catb.org/esr/writings/cathedral-bazaar/cathedral-bazaar
[https://perma.cc/LXF6-WNKG] (discussing open source development); Brian
Fitzgerald, The Transformation of Open Source Software, 30 MIS Q. 587, 587
(2006) (arguing that the open source software movement has shifted from a
“proprietary-driven model” to “a more mainstream and commercially viable
form”); ROD DIXON, OPEN SOURCE SOFTWARE LAW (2004) (introducing the legal
framework that has evolved to support the open source software community);
Michael Schwarz & Yuri Takhteyev, Half a Century of Public Software Institutions:
Open Source as a Solution to Hold-Up Problem, 12 J. PUB. ECON. THEORY 609
(2010) (arguing that proprietary software causes underinvestment in
complementary products due to fears of hold up, and using this thesis to explain
the success of open source in software development platforms like operating
systems); Jeevan Jaisingh, Eric W.K. See-To & Kar Yan Tam, The Impact of Open
Source Software on the Strategic Choices of Firms Developing Proprietary Software,
25 J. MGMT. INFO. SYS. 241 (2014) (comparing the effect of open source software
on the marketplace for software innovation); Eric von Hippel, Open Source
Software Projects as User Innovation Networks (unpublished manuscript) (draft
on file with author) (studying conditions for user innovation); Maxim V. Tsotsorin,
Comment, Open Source Software Compliance: The Devil Is Not so Black as He Is
Painted, 29 SANTA CLARA COMPUTER & HIGH TECH. L.J. 559 (2013) (exploring
dimensions of open source software compliance in licensing); V.K. Unni, Fifty
Years of Open Source Movement: An Analysis Through the Prism of Copyright Law,
40 S. ILL. U.L.J. 271 (2016) (providing a broad overview of the history of the open
source software movement); Jonathan Zittrain, Normative Principles for
Evaluating Free and Proprietary Software, 71 U. CHI. L. REV. 265 (2004) (offering
a framework for assessing the value of free and proprietary software).
 106 See Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 702 (2d Cir.
1992) (“It is now well settled that the literal elements of computer programs, i.e.,
their source and object codes, are the subject of copyright protection.”). The
Compendium of U.S. Copyright Office Practices further explains that it “considers
source code to be the best representation of the copyrightable authorship in a
computer program” for the purposes of examination, particularly because object
code cannot be examined since it is unintelligible to humans. U.S. COPYRIGHT
OFFICE, supra note 102, § 1509.1(C).
 107 While there was some initial trepidation over its copyrightability, due to its
functionality, its protection is now well settled. LEMLEY ET AL., supra note 34, at
35.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

124 CORNELL LAW REVIEW [Vol.104:PPP

since source code can readily be translated into object code,
object code must also be copyrightable.”108

As Samuelson explains, the early cases that followed the
1980 Amendments focused on either the copying of
audiovisual elements, code, or both.109 For cases of line-by-line
copying of source and object code, i.e., literal infringement,
copyright served as a useful vehicle of protection.110 The basic
case establishing copyright infringement for the literal
elements of program code was Apple Computer, Inc. v. Franklin
Computer Corp., in which Franklin copied, verbatim, Apple’s
operating system and several application programs.111 While
Franklin did not dispute the question of appropriation, it
argued that Apple’s operating system was not protectable
under copyright, because unlike books or literary works, code
was not intended to be read by a human.112

While the earliest code-related cases were relatively
straightforward cases of misappropriation,113 over time, the
cases that raised more complexity involved “nonliteral”
infringement claims—the program’s structure, its sequence,
its organization, including some of the various steps that a
programmer might take prior to even drafting the code itself.114
And the need for a theory to address those cases became even

 108 Id. at 37 (citing Dan L. Burk, Software as Speech, 8 SETON HALL CONST.
L.J. 683, 678–88 (1998) (noting that courts have rejected arguments that source
code is not copyrightable)).
 109 Samuelson, supra note 14, at 12.
 110 Arsenault, supra note 73, at 138–39.
 111 Apple Comput., Inc. v. Franklin Comput. Corp., 714 F.2d 1240 (3d Cir.
1983).
 112 LEMLEY ET AL., supra note 34, at 33–34. Indeed, the court’s argument
mirrored, almost perfectly, the observations offered by one CONTU
Commissioner, who wrote in his dissent that “[p]rograms are profoundly different
from the various forms of ‘works of authorship’ . . . [which] have always been
intended to be circulated to human beings and to be used by them—to be read,
heard, or seen, for either pleasurable or practical ends.” Id. at 36–37 (quoting
FINAL REPORT OF THE NATIONAL COMMISSION ON NEW TECHNOLOGICAL USES OF
COPYRIGHTED WORKS 28 (1979)). Yet despite these arguments, the court firmly
concluded that object code could be protectable, reasoning that section 101
included an expansive list of categories of literary works, including those that
comprised “numbers, or other . . . numerical symbols or indicia.” Apple Comput.,
Inc., 714 F.2d at 1247 (quoting 17 U.S.C. § 101 (1982)).
 113 See, e.g., Cadence Design Sys., Inc., v. Avant! Corp., 125 F.3d 824 (9th
Cir. 1997) (software manufacturer brought an action against a competitor for
misappropriation of trade secrets); Engenium Sols., Inc. v. Symphonic Techs.,
Inc., 924 F. Supp. 2d 757 (S.D. Tex. 2013) (same).
 114 See Richard Raysman & Peter Brown, Copyright Infringement of Computer
Software and the ‘Altai’ Test, 235 N.Y. L.J., May 9, 2006, at 1–2 (discussing
cases).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 125

more prevalent as more and more cases of appropriation made
their way to the courts.115

For example, structural, nonliteral claims proliferated
throughout the courts, beginning with landmark cases like
Whelan Associates, Inc. v. Jaslow Dental Laboratory, Inc.,
culminating in cases involving the “structure, sequence, and
organization” (SSO).116 Whelan marked a watershed shift in
the area of software protection, because it represented the first
of a few cases that readily extended copyrightability to
structure and organization, and to other nonliteral elements.117
Later, courts began to narrow the breadth of Whelan’s
applicability, articulating tests like Altai that encouraged
courts to separate out unprotectable elements by first
identifying which parts of the software comprise abstract ideas
(as divorced from expression), then to filter out all
unprotectable elements (like elements from the public domain),
and then finally to compare all remaining elements to
determine infringement.118

Afterward, courts and scholars tended to focus mostly on
nonliteral forms of infringement, like the program’s structure
and organization, including flow charts, inter-modular
relationships, parameter lists, and macros.119 Literal forms of
infringement, such as source or object code appropriation,
remained a deceptively simplified area of intellectual property
protection, even though cases continued to quietly percolate
through the courts.

D. The Continuing Overlap Between Copyright and Trade

 115 For such cases, the operable question became how far courts were
prepared to depart from the literal expression of the code to protect other
elements under copyright principles. See Arsenault, supra note 73, at 140
(discussing this in more detail).
 116 Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1240 (3d
Cir. 1986).
 117 See id. at 1239 (explaining that the structure of a program is part of the
expression, not the idea, of that program); see also SAS Inst., Inc. v. S&H
Comput. Sys., Inc., 605 F. Supp. 816, 830 (M.D. Tenn. 1985) (recognizing the
extent that a competitor copied the organizational and structural details of SAS);
Apple Comput., Inc. v. Microsoft Corp., 35 F.3d 1435, 1445 (9th Cir. 1994)
(recognizing user interfaces, input formats, and output reports); Eng’g Dynamics,
Inc. v. Structural Software, Inc., 26 F.3d 1335, 1342–43 (5th Cir. 1994)
(endorsing the abstraction-filtration-comparison method).
 118 Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 693 (2d Cir. 1992).
 119 Raysman & Brown, supra note 114, at 1 (quoting Comput. Assocs., Int’l,
Inc., 982 F.2d at 702).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

126 CORNELL LAW REVIEW [Vol.104:PPP

Secrecy
Nevertheless, despite the potential role of copyright

protection, secrecy continued to dominate, even though one of
the most significant developments in the history of software
was the rise of the open source movement, which emerged out
of a distrust of software secrecy in the 1990s.120 The movement
generally comprises a combination of two core principles: the
first involves the visibility of source code; the second involves
the right to create relatively unencumbered derivative software
for any purpose, including education or commercial.121 Since
the 1990s, the open source movement has also given rise to a
growth of collaborative activity, where commercial and open
source endeavors bundle cooperatively-developed software
with proprietary code.122

Today, in the context of proprietary software, most
companies market products in object code format only; the
source code remains firmly in the developer’s hands, secluded
from the public and only shared upon the execution of a
contract to protect its secrecy.123 There are many reasons for
this, not the least of which is secrecy.124 Object code is easier
to install, since file sizes are smaller, and preserves the secrecy
of the source code.125

But this makes source code an awkward fit for copyright
law as a result. As Gibson has explained, too much private
control over copying and dissemination could deny the public
access to goods and raw materials necessary for innovation.126
But too little private control risks underproduction.127 For this

 120 Wirth, supra note 38, at 37. For a great discussion of issues facing the
open source community, see Philip J. Weiser, Law and Information Platforms, 1
J. ON TELECOMMS. & HIGH TECH. L. 1, 6–16 (2002); see also supra note 105.
 121 See Diomidis Spinellis & Clemens Szyperski, How Is Open Source Affecting
Software Development?, IEEE SOFTWARE, January/February 2004, at 28, 29
(recognizing these two core principles); see Source Code Definition, supra note 45.
As one commentator observes, “Open source appeared as the welcome alternative
to industrial hegemony and abrasive profit, and also against helpless dependence
on commercial software.” Wirth, supra note 38, at 37.
 122 Lerner & Tirole, supra note 75, at 7.
 123 Gibson, supra note 20, at 175.
 124 See Source Code Definition, supra note 45.
 125 Id. See also Mark A. Lemley & David W. O’Brien, Encouraging Software
Reuse, 49 STAN. L. REV. 255, 272–73 (1997) (discussing the reliance on trade
secrecy in software); Data Gen. Corp. v. Grumman Sys. Support Corp., 825 F.
Supp. 340, 359 (D. Mass. 1993), aff’d, 36 F.3d 1147 (1st Cir. 1994) (noting that
object code distribution does not disclose trade secrecy).
 126 Gibson, supra note 20, at 170–71.
 127 Id.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 127

reason, the traditional architecture of copyright offers a limited
scope of protection to the owner, but tempers this private right
with a number of dedicated entitlements to the public,
including a finite term of protection (which then dedicates the
work to the public domain), the first sale doctrine, or fair use
protection in certain cases.128

In other words, as Gibson notes, traditional copyright law
is intended to force a choice onto authors: if they keep the work
from the public, they forego profiting from it; or, they can bring
their creative works to the public and enable the public to see
the expression.129 In most cases of copyrighted works like
literary works, motion pictures, or musical recordings, the
author has a sustained interest in publication, since it
promotes sales of the underlying work. The value of the
copyrighted work is thus inherently tied to the expectation of
publication.

The exact opposite is true in the case of source code
secrecy: its very value lies in its seclusion from the public. The
expected unification between publication and marketability
simply does not exist in the context of software, where secrecy
represents no obstacle to marketability.130 As Gibson further
observes:

With software, however, we have a copyrighted work whose
unique architecture allows its author to profit without
revealing either its creative expression or its ideas to the
purchaser. The software developer thus receives the benefit
of copyright protection—the right to sue anyone who
engages in unauthorized reproduction or adaptation of the
program—without conferring the corresponding benefit on
the rest of us. Whatever ideas exist in the creative source
code of a computer program remain with the developer; all
the public encounters is an impenetrable and unrevealing
string of ones and zeroes.131

In other words, as Gibson concludes, “[o]nly with software may
authors have their cake and eat it too.”132

In contrast to object code, which has a public nature,
source code’s content can be kept secret, even without any
detrimental effect to its marketability.133 Further, the Supreme

 128 Id.
 129 Id. at 178.
 130 Id.
 131 Id. at 181 (footnote omitted).
 132 Id. at 178.
 133 Id. at 173.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

128 CORNELL LAW REVIEW [Vol.104:PPP

Court has suggested that there is no disclosure obligation
under copyright.134 As Laura Heymann notes,

Copyright law may be justified by the ultimate goal of
disseminating works of authorship to the public, but since
the move in the 1976 Copyright Act from publication to
fixation as the triggering event for protection, the diary
tucked away in a desk drawer receives just as much
protection as the best-selling novel.135

In the context of software, this means that both copyright and
trade secret law can overlap—producing something that can be
protected because of its content, but also kept from the public
because it is a trade secret.136
 Moreover, there are other ironies to this situation:
copyright law protects object code, which manifests no
creativity, but is largely functional in nature; whereas trade
secret law (traditionally the legal vehicle for protecting
functional processes) has now become the vehicle to protect
source code (despite its creativity).137 The issue of functionality
in copyrightable processes has troubled courts for years,
starting back in 1880 with Baker v. Selden, when the Supreme
Court rejected the copyrightability of an accounting system on
the grounds that it would confer protection over the system or
process itself.138 The same idea of limiting copyrightability for
actual processes, such as those found in software architecture,
as operations within modules, or as algorithms has remained
a consistent source of judicial attention.139 Similarly, courts
have expressed concerns over the copyrightability of facts, and
have defined “facts” in the software context to include not only

 134 See Laura A. Heymann, Overlapping Intellectual Property Doctrines:
Election of Rights Versus Selection of Remedies, 17 STAN. TECH. L. REV. 239, 257–
58 (2013) (noting that in Eldred v. Ashcroft, the Court noted that “our references
to a quid pro quo typically appear in the patent context”) (quoting Eldred v.
Ashcroft, 537 U.S. 186, 216 (2003)).
 135 Id.
 136 Id.
 137 See id.
 138 Baker v. Selden, 101 U.S. 99, 104 (1880), superseded by statute, Copyright
Act of 1976, Pub. L. No. 94-553, 90 Stat. 2541 (1976). See also generally Pamela
Samuelson, The Story of Baker v. Selden: Sharpening the Distinction Between
Authorship and Invention, in INTELLECTUAL PROPERTY STORIES 159 (Jane C.
Ginsburg & Rochelle Cooper Dreyfuss eds., 2006) (detailing the impact of the case
on copyright law analyses).
 139 See Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 837 (10th
Cir. 1993). See generally Pamela Samuelson, Benson Revisited: The Case Against
Patent Protection for Algorithms and Other Computer Program-Related Inventions,
39 Emory L.J. 1025 (1990).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 129

parts of data structures, but also material that is literally
expressed within source or object code as well.140 Here, when
material that is in the public domain comprises part of a
program, courts have advocated the need to filter out the
unoriginal parts of a program, by relying on both the merger
and scènes à faire doctrines to aid in the filtration.141

Yet—paradoxically—the intersection of trade secrecy with
copyright in software runs contrary to the value of disclosure,
further impoverishing the public domain that is at the heart of
copyright’s architecture.142 The result is that our existing
regime fails to ensure the availability of public domain aspects
of software, and precludes evaluation of the protectability of
the code altogether.143 The resulting irony, Gibson notes, is
particularly striking: “[T]he law tells us that software
comprises more public domain elements than other
copyrighted works, but the architecture of closed code protects
software more thoroughly than any of its copyrighted
counterparts.”144

II
THE SHIFTING BOUNDARIES OF SOFTWARE PATENTABILITY
As the above section suggested, software has a hybrid

character—like other copyrighted works, it expresses various
concepts; but, like a patented invention, it has the power to
physically implement those ideas only with the assistance of a
computer.145 This potentially rivalrous relationship between
copyright and patent to software produced an especially lively
debate from the mid-1980s to 1990s.146 The issue rightfully
led commentators, then-Professor Stephen Breyer among
them, to question the need to extend copyright to computer
programs, on the grounds that there were already substantial
incentives in place to encourage their production.147 Although
some of those controversies waned a bit after the 1990s when

 140 Gates Rubber Co., 9 F.3d at 837–38.
 141 Id.
 142 Gibson, supra note 20, at 178.
 143 Id.
 144 Id.
 145 Gregory J. Maier, Software Protection—Integrating Patent, Copyright and
Trade Secret Law, 69 J. PAT. & TRADEMARK OFF. SOC’Y 151, 151(1987).
 146 Samuelson, supra note 14, at 1.
 147 See Breyer, supra note 29, at 344; Samuelson, supra note 14, at 5. For a
modern-day response to Justice Breyer’s article, see Pamela Samuelson, The
Uneasy Case for Software Copyrights Revisited, 79 GEO. WASH. L. REV. 1746
(2011).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

130 CORNELL LAW REVIEW [Vol.104:PPP

a few appellate courts began to narrow the scope of
copyrightability in software due to its functionality, the debate
has more recently picked up steam with the advent of the
Oracle America, Inc. v. Google Inc. case, which reinvigorated the
overlap between copyright and patent claims for program
interfaces.148 The patentability of code also suffers from similar
issues that, like the copyright regime discussed above, tends
to push developers towards the domain of trade secrecy.149

If copyright’s regime is directed towards maximizing the
benefits of publication, the patent system is equally motivated
towards maximizing the benefits of disclosure.150 Both of these
policy goals contradict the comparative value of secrecy,
however, in the context of source code, and therein lies the
problem.

Of course, law is also not the only reason to opt for secrecy.
The market also tends to support similar choices.151 Surveys
have shown that company executives rank trade secrets as the
area of primary importance in their intellectual property
portfolios.152 Secrecy also becomes incredibly attractive when

 148 Samuelson, supra note 14, at 2 (referring to Oracle Am., Inc. v. Google
Inc., 750 F.3d 1339 (Fed. Cir. 2014), cert. denied, 135 S. Ct. 2887 (2015)).
 149 For more discussion of the trade secrecy/patent interface, see generally
Andrew Beckerman-Rodau, The Choice Between Patent Protection and Trade
Secret Protection: A Legal and Business Decision, 84 J. PAT. & TRADEMARK OFF.
SOC’Y 371 (2002) (discussing the legal and business considerations for an
inventor in choosing between reliance on patent or trade secret law); David S.
Almeling, Seven Reasons Why Trade Secrets Are Increasingly Important, 27
BERKELEY TECH. L.J. 1091 (2012) (detailing the rise in trade secret reliance);
Michael Risch, Trade Secret Law and Information Development Alternatives, in
THE LAW AND THEORY OF TRADE SECRECY: A HANDBOOK OF CONTEMPORARY
RESEARCH, supra note 83, at 167–76 (exploring different incentives underlying
trade secret law versus patent law); Bruce T. Atkins, Trading Secrets in the
Information Age: Can Trade Secret Law Survive the Internet?, 1996 U. ILL. L. REV.
1151, 1174–75 (1996) (noting the decline of trade secret protection in the internet
era).
 150 Stuart J.H. Graham, Robert P. Merges, Pamela Samuelson & Ted
Sichelman, High Technology Entrepreneurs and the Patent System: Results of the
2008 Berkeley Patent Survey, 24 BERKELEY TECH. L.J. 1255, 1317 (2009); see also
Katherine J. Strandburg, What Does the Public Get? Experimental Use and the
Patent Bargain, 2004 WIS. L. REV. 81, 111 (2004) (discussing the benefits of
disclosure under the patent system).
 151 See Andrew A. Schwartz, The Corporate Preference for Trade Secret, 74
OHIO ST. L.J. 623, 624 (2013).
 152 See Hamid Sakaki & Karn Thapar, Trade Secrets Protection and Corporate
Tax Avoidance, J. ACCT. & FIN. (forthcoming) (manuscript at 3) (discussing a
National Science Foundation survey that found that certain for-profit companies
across all industries ranked trade secrets as the most important kind of
intellectual property for their businesses). In 2008, a Berkeley Patent Survey
revealed that in industries like software, internet, manufacturing, and chemical
processing, patenting was perceived to be far less important as a means to ensure

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 131

the nature of the invention is more easily able to be kept secret,
as in software, unlike industries like pharmaceuticals or
consumer products, where the nature of an invention is more
accessible to the public.153

Even aside from these market-based reasons to opt for
secrecy, the law has taken a curious path that has only further
served to quietly marshal resources toward trade secrecy. The
Court, for example, has entertained its own set of debates over
whether software is patentable, first rejecting the prospect,
then reversing itself, only to return to a more cynical view over
patentability more recently.154 As I argue below, the result of
these shifts has only underscored the comparative
attractiveness of trade secrecy, largely at a cost to the public
interest in transparency.

A. Patentability vs. Secrecy
In general, patent and trade secret protection are ideally

supposed to be mutually exclusive, since the patent system
does everything it can to discourage secrecy.155 Rather, the
patent system uses the powerful grant of a monopoly power as
the proverbial carrot in order to compel inventors to reveal the
nature of their inventions to the public.156 This way, the patent
grant forces society to essentially “pay” for secrets which would
be otherwise unavailable to them by making the nature of the
invention informationally available upon conferral of the
patent and by enabling the public to practice the invention
after the term of protection has expired.157

The idea that an applicant is supposed to “elect” between
patent and trade secrecy is a powerful, meaningful aspect of
our system of intellectual property. And disclosure to the
public is a core goal of patent law, as Jeanne Fromer has
argued in her work, because it promotes follow-on

a competitive advantage. See Graham et al., supra note 150, at 1260; see also J.
Jonas Anderson, Secret Inventions, 26 BERKELEY TECH. L.J. 917, 927 (2011).
 153 Anderson, supra note 152, at 927; see also Wesley M. Cohen et al.,
Protecting Their Intellectual Assets: Appropriability Conditions and Why U.S.
Manufacturing Firms Patent (or Not) 3, 24 (Nat’l Bureau of Econ. Research,
Working Paper No. 7552, 2000), http://ssrn.com/abstract=214952
[https://perma.cc/M7NN-3CEQ]. For an excellent study of the role of secrecy in
startups, see David S. Levine & Ted Sichelman, Why Do Startups Use Trade
Secrets?, 94 NOTRE DAME L. REV. 751, 753 (2018).
 154 See infra subpart II.B.
 155 Anderson, supra note 152, at 928.
 156 Id.
 157 Id. at 929.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

132 CORNELL LAW REVIEW [Vol.104:PPP

innovation.158 But in actuality, even in the context of software
patents, the disclosure requirements are so relaxed that they
are minimally effective.159 There is no requirement for source
code disclosure, and because a patent might only cover only
one small portion or module of the code, trade secrecy can still
attach to the rest of the product.160 And software distribution
models are set up, essentially, to protect secrecy at all costs;
even when these practices migrate to the cloud, for example,
they still take pains to protect secrecy above anything else.161
As Greg Vetter explains:

Given the opportunity to continue to rely on trade secrecy,
most proprietary software vendors will continue to do so and
obtain patents when it matters strategically. Patent
protection is much more costly for the software product
vendor than the other modes of protection. It requires a
parallel stream of activity alongside the development of the
patent. . . . In contrast, trade secret protection and
copyright protection in the software is essentially without
additional cost given that the business practices of the
software industry give these modes of protection by
default.162
But even outside of the particular question of software

patentability, there are several fundamental differences
between a patent and a trade secret that may—generally—
compel seclusion over disclosure.163 First, consider duration.
A trade secret can be limitless in its duration, as long as it
remains a secret, in contrast to the twenty-year protection
afforded to patents.164 The twenty-year protection period is of
little value in the software industry, because software typically
becomes obsolete by the time a patent even issues.165

Second, the process of obtaining a patent can be onerous,

 158 Jeanne C. Fromer, Patent Disclosure, 94 IOWA L. REV. 539, 541 (2009).
Disclosure, she argues, stimulates productivity in two ways: first, by enabling
society to use the information after the patent expires; second, by enabling
inventors to design around the invention or to conceive of new inventions even
during the patent term. Id. at 548–50.
 159 Greg R. Vetter, Are Prior Use Rights Good for Software?, 23 TEX. INTELL.
PROP. L.J. 251, 305 (2015).
 160 Id.
 161 Id.
 162 Id. at 306.
 163 Anderson, supra note 152, at 923.
 164 Id.
 165 See Patents, Copyrights, and Your Software Innovation, U. WASH.,
https://comotion.uw.edu/what-we-do/patents-copyrights-and-your-software-
innovation/ [https://perma.cc/VT3P-7JEU] (making this observation).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 133

time consuming, labor intensive, and expensive.166 Patent
attorneys must disclose the nature of the invention and prove
that it meets the requirements of novelty, nonobviousness, and
utility.167 After an initial application is filed (which is often
rejected), the inventor must engage in a lengthy back-and-forth
process with a patent examiner, often necessitating
amendments, further filings, and complicated negotiations
with the patent office.168 With patentability, the process is
uncertain, may lead to years of time-consuming and costly
amendments, and may not always result in a protectable
patent.169

Finally, even after a patent is granted, they are difficult to
enforce. Patent litigation can be extremely costly and
expensive, and inventors are required to constantly monitor
the market for possible infringement, which can often be
complicated depending upon the nature of the invention and
the ease of monitoring.170

By contrast, trade secrecy reduces significant
administrative and judicial costs associated with acquiring a
patent.171 There is no central office to register trade secrets; a
mere assertion of trade secrecy is all that is needed in order to
keep that information from the public.172 Given the expense of
time and resources that are required to acquire a patent, plus
the onerous costs of patent litigation, many inventors
rationally choose the trade secret route.173 “By choosing
secrecy,” one author maintains, “inventors avoid the cost of
obtaining a patent, and the risky, costly business of patent
enforcement.”174 In the case of source code protection, the
uncertainty of patent protection, especially in a post-Alice
world, can push inventors toward the rational belief that the
code is much more valuable as a secret than as a patented
invention—thus eliminating the comparable costs of seeking a
patent.175 If the costs of patenting an invention are higher, and
the grant of protection uncertain, inventors may rationally opt

 166 See Anderson, supra note 152, at 924.
 167 Id.
 168 Id. at 925.
 169 See Himanshu S. Amin, The Lack of Protection Afforded Software Under the
Current Intellectual Property Laws, 43 CLEV. ST. L. REV. 19, 22–23 (1995).
 170 Anderson, supra note 152, at 925.
 171 Id. at 920.
 172 Id.
 173 Id.
 174 Id. at 925.
 175 Id. at 920 (discussing these benefits in trade secrecy generally).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

134 CORNELL LAW REVIEW [Vol.104:PPP

for a trade secret solution instead.
Amplifying this point, Mark Lemley has argued that source

code presents particular characteristics that make trade
secrecy even more desirable.176 Because source code cannot
be discerned by purchasing the product (unless it is reverse
engineered), trade secrecy gives owners an advantage because
it allows them to keep the invention secret, whereas patents
can be invalidated or designed around.177 For this reason,
when secrecy is possible, it is often chosen over patent
protection.178

At the same time, however, trade secrecy is a weaker form
of protection than patent protection, because a trade secret
can be destroyed by independent invention or reverse
engineering, both of which do not serve as defenses in our
patent system.179 In situations where independent discovery
or reverse engineering is possible or likely, patent protection
may be the better choice.180 But in cases where independent
discovery or reverse engineering is less likely, trade secrecy
may be a more preferable route.181

Many of these same characteristics have led others, Robert
Bone most prominently, to question the value of trade secrecy,
arguing that justifications that focus on the shortcomings of
the patent system operate like “a stop-gap measure, like a rag
used to plug a hole in a pipe that actually requires a more
extensive repair job.”182 While trade secrecy might incentivize
owners to share information with potential business partners,
it does very little to encourage sharing with the public or to
encourage follow on innovation.183 While Lemley argues that
trade secrecy reduces the need to overinvest in secrecy,
because it acts as a substitute for investments in physical

 176 See Mark A. Lemley, The Surprising Virtues of Treating Trade Secrecy as IP
Rights, 61 STAN. L. REV. 311, 339–40 (2008); see also Risch, supra note 149, at
165–81 (making a similar point).
 177 See Lemley, supra note 176, at 340.
 178 See id.
 179 See id.
 180 See id. at 340–41; Gregory V. Novak & Matthew Frontz, Tipping the Scales:
Weighing IP Protection Options Post-DTSA and Post-Alice, TEX. LAW., Dec. 2016, at
42, 42.
 181 Lemley, supra note 176, at 340–41.
 182 Robert G. Bone, The (Still) Shaky Foundations of Trade Secret Law, 92 TEX.
L. REV. 1803, 1814 (2014) [hereinafter Bone, Shaky Foundations]; see also Robert
G. Bone, A New Look at Trade Secret Law: Doctrine in Search of Justification, 86
CALIF. L. REV. 241, 265–70 (1998) [hereinafter Bone, A New Look] (considering
whether trade secret law improves efficiency).
 183 Bone, Shaky Foundations, supra note 182.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 135

secrecy, I would point out that software is an example to the
contrary, because physical seclusion is of very low cost.184

But trade secrecy is not a costless enterprise, either.
Inventors who take the secrecy route are also required to
engage in self-help measures to deter discovery, physically
protect the trade secret, and administer a maze of
non-disclosure and employee confidentiality agreements.185
These agreements, as well, are not always enforceable by
courts, introducing added risk factors to the cost-benefit
continuum.186

Despite the costs of secrecy, there are many reasons for its
preferability from a software developer perspective, not always
involving profit and protection.187 Because trade secret
protection can extend to both the underlying design concepts
of a computer program, and its expression of those concepts,
it is considered to be particularly suitable for software.188
Physically, source code secrecy can easily be maintained, in
contrast to other inventions (like an improved pop-top soda
can), which are disclosed by their public nature.189 Inventions
that can be easily shielded from public view or are difficult to
reverse engineer, like source code, can be a particularly
attractive fit for trade secrecy.190

Other motivations for secrecy can also stem from wanting
to protect against security-related risks like malware and other
forms of viruses.191 Still other reasons are motivated toward
authorial self-protection; that is, to avoid the risk that
disclosure of the source code could expose developers to
charges of plagiarism if the code is not considered to be
sufficiently original, or even to place obstacles regarding being
used as evidence in legal decisions.192 Or, the desire to protect
the code might also stem from concerns that clients may try to
modify the source code for their own purposes, instead of

 184 See Lemley, supra note 176, at 333–34.
 185 Anderson, supra note 152, at 925.
 186 Id.
 187 See Source Code Definition, supra note 45.
 188 Arsenault, supra note 73, at 136.
 189 Anderson, supra note Error! Bookmark not defined., at 925.
 190 See Jeanne C. Fromer, A Legal Tangle of Secrets and Disclosures in Trade:
Tabor v. Hoffman and Beyond, in INTELLECTUAL PROPERTY AT THE EDGE: THE
CONTESTED CONTOURS OF IP 271 (Rochelle Cooper Dreyfuss & Jane C. Ginsburg
eds., 2014).
 191 See Source Code Definition, supra note 45.
 192 Id.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

136 CORNELL LAW REVIEW [Vol.104:PPP

contacting the developer directly.193 And there may also be
concerns about revealing the internal commentary inserted by
programmers within the source code, which can often be
colorful or offensive in nature.194 All of these reasons further
undercore the attractiveness of trade secrecy, particularly in
light of the shifting sands of patentability, which I discuss
below.

B. The Rise and Fall of Software Patentability
In the mid-1960s, the U.S. Patent Office first opposed

issuing patents not only for programs but also for processes
that were embodied in programs, on the ground that the former
category were authorial works and the latter were mental
processes.195 Further, there was no established body of prior
art in place for the PTO to conduct comparisons to previous
advances in the field to determine things like novelty and
nonobviousness.196 It further reasoned that it would be
extremely difficult to compile a suitable database of prior art
and design a system of classification on what it had not yet
investigated.197 No centralized patent registry existed for
software, nor does one exist today.198 As a result, when
software receives patent protection, it may be very difficult to
protect due to the difficulties in detecting infringement.199

All of these rationales, collectively, made patenting less
desirable than, say, copyright, for practical reasons. But
courts did not always share the Patent Office’s early
reluctance, and began, albeit slowly, to open the door toward
patentability. Consider this illustration: Back in 1972, in
Gottshalk v. Benson, an applicant was unable to obtain a
patent on a method to convert binary-coded-decimal (BCD)
numbers into pure binary numerals, due to the fact that the
algorithm was an abstract idea, rather than a process.200 Yet
the Court was careful to note, even at that time, that its holding
should not be taken to suggest a complete preclusion of

 193 Id.
 194 Id.
 195 See Samuelson, supra note 14, at 8.
 196 See Gibson, supra note 20, at 189.
 197 See Samuelson, supra note 14, at 8.
 198 See Gibson, supra note 20, at 189.
 199 See Patents, Copyrights, and Your Software Innovation, supra note 165
(making this observation).
 200 See 409 U.S. 63, 68 (1972) (describing applicant’s claim as “so abstract
and sweeping as to cover both known and unknown uses of the BCD to pure
binary conversion”); see also Samuelson, supra note 139 (discussing Gottschalk).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 137

patents for computer programs.201 It further characterized the
debates over patentability as a “policy matter,” suggesting the
need for further legislative intervention to decide the issue.202

1. The Opening of the Window of Patentability
Eventually, a small window of patentability began to open

in the 1981 case of Diamond v. Diehr,203 which extended
patentability to a process of curing rubber that relied, in part,
on a computer program.204 In that case, however, the Court
extended protection to the program on the grounds that it
represented only one element of the process, not because it
could be protected on its own as a software patent.205
Nevertheless, in the mid to late 1980s, as Samuelson explains
in her detailed account, it became clearer that the window for
patentability began to open wider, and the Patent and
Trademark Office began to issue more and more software
patents.206

Although developers largely welcomed the rise of copyright
and patentability involving software, the overlap between them
raised critical questions regarding the accommodation of
nonliteral forms of infringement.207 Limiting copyrightability to
source code would have been too narrow, but broadening
copyrightability beyond source code risked intruding onto
patent law’s domain. “If copyright protection was only

 201 Because the mathematical formulas only worked with a computer, the
court feared that a patent would “pre-empt the mathematical formula and in
practical effect would be a patent on the algorithm itself.” Gottschalk, 409 U.S. at
71–72.
 202 See id. at 72. Specifically, the Court also noted the position of the
President’s Commission on the Patent System, which rejected the idea that
computer programs were patentable because of the lack of fit regarding subject
matter and the inability to classify or search prior art. Id. “Without this search,”
the Commission concluded, “the patenting of programs would be tantamount to
mere registration and the presumption of validity would be all but nonexistent.”
Id. The Court continued to refrain from extending patentability to
software-related inventions in Parker v. Flook, a later case that raised similar
issues of patentability. See Samuelson, supra note 14, at 9–15 (discussing Parker
v. Flook, 437 U.S. 584 (1978)).
 203 450 U.S. 175, 184 (1981).
 204 See Samuelson, supra note 14, at 9–15, 15 n.81 (discussing Diamond v.
Diehr, 450 U.S. 175 (1981); and Maureen A. O’Rourke, The Story of Diamond v.
Diehr: Toward Patenting Software (Patents), in INTELLECTUAL PROPERTY STORIES
194, 212–13 (Jane C. Ginsburg & Rochelle Cooper Dreyfuss eds., 2006)).
 205 See Samuelson, supra note 14, at 15 n.81. In fact, Samuelson argues that
had Whelan not framed software copyrights so broadly, we might have seen even
more of an upsurge. Id.
 206 See id. at 15–16.
 207 See id.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

138 CORNELL LAW REVIEW [Vol.104:PPP

available to literal code, it would be easy to re-write the same
program design in non-infringing source code,” Samuelson
explained.208 On the other hand, however, if copyright is
considered more broadly, that is, if it “extended to the logic,
design, structure, performance, or even the output of the
computer program,” this would risk giving the owner more
patent-like protection, with a longer duration than patent
protection and without meeting the comparably more rigorous
requirements of patentability.209 The ongoing instability over
how to protect software, over time, led to a vigorous series of
debates about whether the frameworks for nonliteral
infringement were too broad and about the impact of software
patents and copyrights on innovation.210

Eventually, courts began to narrow the scope of nonliteral
infringement in cases like the Second Circuit’s Altai211 decision,
which criticized Whelan212 and was followed by other
circuits.213 Altai, in effect, produced a trend that led to greater
discernment among courts in differentiating the roles of patent
and copyright in protecting software.214 But it also indirectly
facilitated another outgrowth of software patenting,
particularly due to the Federal Circuit’s blessing of software
patenting in the early 1990s.215 In 1994, the Federal Circuit,
in In re Alappat,216 built on previous jurisprudence and, over
the recommendations of the PTO, found that a “computer
operating pursuant to software may represent patentable
subject matter,” in a case where the computer relied on an
algorithm to transform a digital screen to display smooth
waveforms in a digital oscilloscope.217 There, the court

 208 Id.
 209 See id. at 16 (citing OFFICE of TECH., ASSESSMENT, INTELLECTUAL PROPERTY
RIGHTS IN AN AGE OF ELECTRONICS AND INFORMATION 78–84 (1986)). Samuelson
describes how, back in 1989, IP lawyers would “characterize nonliteral software
structures as methods when they wanted to patent them and as SSO when
asserting copyright.” Id. at 40 n.258.
 210 See id. at 18.
 211 Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 710 (2d Cir. 1992).
 212 Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1240 (3d
Cir. 1986).
 213 See Samuelson, supra note 14, at 19.
 214 See id. at 21–22.
 215 See id. See generally Alan D. Minsk, The Patentability of Algorithms: A
Review and Critical Analysis of the Current Doctrine, 8 SANTA CLARA COMPUTER &
HIGH TECH. L.J. 251, 277 (1992) (referencing the federal circuit cases).
 216 33 F.3d 1526 (Fed. Cir. 1994).
 217 See Fabio E. Marino & Teri H.P. Nguyen, From Alappat to Alice: The
Evolution of Software Patents, 9 HASTINGS SCI. & TECH. L.J. 1, 4–5 (2017).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 139

explained that program instructions from software essentially
transformed the machine from a “general purpose computer”
into, in effect, a “special purpose computer” deserving of
patentability.218

Looking back, if Diehr cracked a window to software
patentability, Alappat opened it even further. And, after
Alappat, the Federal Circuit decided State Street Bank & Trust
Co. v. Signature Financial Group, Inc.,219 which, in effect, did
more than further open the window—it literally threw open the
door to software patenting. State Street found that
mathematical algorithms, previously dismissed as an abstract
concept, could be patentable if they “transformed” a machine
or were “performed” by a machine and provided “useful,
concrete, and tangible” results.220 This decision, more so than
anything else, dramatically opened the door to software
patenting, particularly in the world of business method
patents.221

With State Street, and eventually AT&T Corp. v. Excel
Communications Marketing, Inc.,222 the golden era of software
patents soon arrived. The PTO addressed this shift by
classifying a specific type of patent for business methods,
Internet, and software-related patents, known as a Class 705
patent.223 By the 1990s and 2000s, companies were patenting
software in droves compared to previous eras.224 In 1998, there
were 1320 patent applications; by 2001, that number rose to
nearly 8000, peaking at over 10,000 applications in 2008.225

During this period, advocates of software patenting lauded
the system’s values of openness, interoperability, protection,
and innovation due to its predication of disclosure and strong
protection.226 Yet, even then, software patents had their wide

 218 In re Alappat, 33 F.3d at 1566 n.28.
 219 149 F.3d 1368 (Fed. Cir. 1998).
 220 See Marino & Nguyen, supra note 217, at 4.
 221 See id.
 222 172 F.3d 1352 (Fed. Cir. 1999).
 223 Class 705 includes a “generic class for apparatus and corresponding
methods for performing data processing operations, in which there is a significant
change in the data or for performing calculation operations wherein the
apparatus or method is uniquely designed for or utilized in the practice,
administration, or management of an enterprise, or in the processing of financial
data.” See Marino & Nguyen, supra note 217, at 6 (quoting the PTO’s
classification of Class 705).
 224 See Samuelson, supra note 14, at 22.
 225 See Marino & Nguyen, supra note 217, at 6–7 (citing PTO statistics and
Starling Hunter’s Article).
 226 See Smith & Mann, supra note 31, at 256.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

140 CORNELL LAW REVIEW [Vol.104:PPP

share of critiques.227 In one representative example of this
perspective, which came to be even more pronounced in later
years, Simson Garfinkel, along with Richard Stallman and
Mitchell Kapor, warned in 1991 that software patents were
“being granted at an alarming rate,” arguing that “most of the
patents have about as much cleverness and originality as a
recipe for boiled rice—simple in itself but a vital part of many
sophisticated dishes.”228 To them, the patents covered
everything from small and specific algorithms to techniques
used in a wide variety of programs that were often used by
others.

Because computer programs from 1991 were so complex,
covering thousands of algorithms and techniques they posed
enormous transaction costs for licensing, particularly when
many of the newfound patents seemed overly broad.229 The
authors offered the example of a lawsuit against Apple for its
violation of a patent that covered a specific technique for
scrolling through a database. While apparently scrolling and
display techniques were ubiquitous throughout software,
separately, the patent at issue covered the combination of the
two.

Aside from being overly broad at times, the length of time,
plus the confidentiality of applications under review, made it
very difficult for other parties to discern the likelihood of an
application being granted.230 It remained nearly impossible for
applicants to search for prior art, because the PTO had not yet
developed a system for classifying algorithms and because the
field of computer science literature is extraordinarily broad and
hard to navigate. As a result, many patents were granted not
because they were truly novel but because the examiner and
the applicant may have been unaware of prior art on the
subject.231 The influx of so many patents meant that

 227 For critiques of software patenting, see Robert E. Thomas, Debugging
Software Patents: Increasing Innovation and Reducing Uncertainty in the Judicial
Reform of Software Patent Law, 25 SANTA CLARA COMPUTER & HIGH TECH. L.J. 191
(2008). See also James Bessen, A Generation of Software Patents, 18 B.U. J. SCI.
& TECH. L. 241, 242 (2012) (challenging the benefits of software patenting in the
software industry); Arti K. Rai, Improving (Software) Patent Quality Through the
Administrative Process, 51 HOUS. L. REV. 503, 504 (2013) (arguing that software
patents are of poor quality and outlining ways to improve them at the PTO level).
 228 See Simson L. Garfinkel, Richard M. Stallman & Mitchell Kapor, Why
Patents Are Bad for Software, ISSUES IN SCI. & TECH., Fall 1991, at 50, 51.
 229 See id. at 52.
 230 See id.
 231 See id. at 53.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 141

developers either rewrote code to avoid allegations of
infringement or decided to avoid introducing new features
entirely, thereby impeding innovation as a result. And their
cost and complexity, not to mention the great amount of time
they required, meant that many companies were shut out of
the patenting process.

One report, examining patents over an eight year period
ending in 1996, found that 46% of all patents were invalidated;
when only software patents were considered, the number rose
to two-thirds, attributable to the absence of a body of prior art,
lower standards for non-obviousness, and PTO institutional
pressures.232 Other studies argued that software patents, far
from encouraging innovation, actually led to more investment
in building patent portfolios and enforcing them in court
instead of research and development.233 This was, the authors
argued, partially attributable to the drop in costs or the
increase in cost effectiveness to obtain a software patent in the
1990s compared to the 1980s.234

And even under a regime of software patentability—
perhaps most ironically—source code secrecy remained firmly
in place. It bears mentioning that, even when software patents
were being registered, the law continued to offer more
solicitude to source code secrecy than one might imagine given
our patent system’s preference for disclosure.235 Greg Vetter
has pointed out that, just like copyright law, it was not
necessary to provide source code in patent disclosure; rather,
all that is needed is a description of the process implemented
in the source code.236

2. Narrowing the Window of Patentability
It was only in the year 2010 that everything, suddenly,

began to change with the onset of Federal Circuit intervention
in the case of In re Bilski,237 which dramatically changed the

 232 See John R. Allison & Mark A. Lemley, Empirical Evidence on the Validity
of Litigated Patents, 26 AIPLA Q.J. 185, 205–06, 217 (1998); Mark H. Webbink,
A New Paradigm for Intellectual Property Rights in Software, DUKE L. & TECH. REV.
(2005).
 233 See JAMES BESSEN & ROBERT M. HUNT, THE SOFTWARE PATENT EXPERIMENT
2 (2004).
 234 See id. at 9.
 235 See Greg R. Vetter, Are Prior User Rights Good for Software?, 23 TEX.
INTELL. PROP. L.J. 251, 256 (2015) (noting that the owner may lose little from this
choice).
 236 Id.
 237 545 F.3d 943 (Fed. Cir. 2008), aff’d sub nom. Bilski v. Kappos, 561 U.S.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

142 CORNELL LAW REVIEW [Vol.104:PPP

landscape for software patents. In that case, which addressed
a method of hedging risk in commodity trading, the Federal
Circuit explained that the claims were unpatentable on the
grounds that the recited method simply comprised a
computerized representation of some fundamental principles
of financial risk and liability.238 In order to satisfy the
boundaries of protection, the court directed that the applicant
had to either demonstrate that the claim was tied to a machine
or transformed an article. In this case, however, the method
was not patentable because “transformations or manipulations
[of] . . . business risks[] or other such abstractions cannot
meet the test because they are not physical objects or
substances.”239

Although it retained some possibility for business method
protection, it explicitly pulled back on State Street’s standard
requiring a “useful, concrete, and tangible result.”240 By the
time the issue reached the Supreme Court, the Court simply
upheld the rejection of the patent application on the grounds
that Bilski had tried to patent an abstract idea, which was
impossible under existing law.241

Suddenly, things had come full circle. Congress, too,
began to involve itself in addressing the dubious breadth of
business method patents by creating three special procedures
for their review in the Leahy-Smith America Invents Act:242
inter partes review, covered business method patent review,
and post-grant review of issued patents.243 Each of these
procedures raised the stakes for business method patents,
making it all the more likely that they could face additional
challenges by others. In his discussion of the Act, Senator
Leahy specifically stated that these new provisions were
motivated, in no small part, by the onslaught of dubious
patents that had been granted as a result of State Street,
noting: “Patents of low quality and dubious validity, as you

593 (2010).
 238 See id. at 963. The fact that the claimed method was performed on a
computer could not transform it into something protectable, because it was
basically a staple of any introductory course in finance See id. at 1013 (Newman,
J., dissenting).
 239 See id. at 963; see also In re Bilski, ELECTRONIC FRONTIER
FOUND., https://www.eff.org/cases/re-bilski [https://perma.cc/64VB-R6NL].
 240 See In re Bilski, 545 F.3d at 959–60 (quoting State Street Bank & Trust
Co. v. Signature Fin. Grp, Inc., 149 F.3d 1368, 1373 (Fed. Cir. 1998)).
 241 See Bilski v. Kappos, 561 U.S. at 611.
 242 35 U.S.C. § 102 (2011).
 243 See Marino & Nguyen, supra note 217, at 10.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 143

know, are a drag on innovation because they grant a monopoly
right for an invention that should not be entitled to one under
the patent law.”244

Things further narrowed after Alice Corp. v. CLS Bank
International245 was handed down by the Supreme Court.
Before Alice, in 2012, the Supreme Court had already
unanimously invalidated a business method patent involving
a blood diagnostic test in Mayo Collaborative Services v.
Prometheus Laboratories, Inc.246 The Mayo test added an
additional wrinkle to claims that implicated laws of nature, by
asking whether the claim added something more to the
relevant field of analysis.247 Then, in Alice, the Supreme Court
returned to the issue of computer-based patents, invalidating
another process for managing risks on the grounds that the
patents did not amount to “significantly more” than just the
abstract concept of managing risk with the use of a
computer.248 Alice directed the use of a two-step test to
determine patentability:

(1) whether the claim is directed to an abstract idea; and (2)
if an abstract idea is present in the claim, determining
whether any part of the claim amounts to significantly more
than the abstract idea to qualify as an “inventive concept.”
If not, the claim is deemed patent ineligible.249
In the years after Alice, the Federal Circuit has largely

continued to evince significant uncertainty in the field of
software patents.250 Part of the problem, commentators
explain, is that both the Supreme Court and the Federal
Circuit have largely failed to offer clear guidance on what
comprises an abstract idea.251 Since Alice, the trend has

 244 Id.
 245 573 U.S. 208 (2014).
 246 566 U.S. 66 (2012). See Marino & Nguyen, supra note 217, at 11–12.
 247 See Marino & Nguyen, supra note 217, at 11–12.
 248 See id. at 12–13.
 249 See id. at 13.
 250 See id. at 13–19; see also Ultramercial, Inc. v. Hulu, LLC, 772 F.3d 709,
717 (Fed. Cir. 2014) (concluding online advertising method is not patent-eligible
subject matter on abstraction grounds); Buysafe, Inc. v. Google, Inc., 765 F.3d
1350, 1355 (Fed. Cir. 2014) (concluding claims are invalid on abstraction
grounds); Planet Bingo, LLC v. VKGS LLC, 576 Fed. Appx. 1005, 1008 (Fed. Cir.
2014) (affirming invalidity for a system of managing a bingo game on abstraction
grounds).
 251 See Marino & Nguyen, supra note 217, at 13–19; see also B.J. Ard, Notice
and Remedies in Copyright Licensing, 80 MO. L.R. 313, 315 (2015); John Clizer,
Note, Exploring the Abstract: Patent Eligibility Post Alice Corp. v. CLS Bank, 80
MO. L.R. 537, 551 (2015) (noting that Alice did not give concrete guidance on how

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

144 CORNELL LAW REVIEW [Vol.104:PPP

militated against protecting business method patents, with
only a few exceptions.252 One of the only Federal Circuit cases
to do so, DDR Holdings, LLC v. Hotels.com, L.P.,253 affirmed two
patents that involved methods of generating a web page that
combined certain visual elements of a host site with content
from a third-party merchant on the grounds that it added
enough to the abstract idea to justify patentability.254

In one of its clearest discussions regarding software
patenting, the Federal Circuit explained in May of 2016 that it
did not think that claims directed to software were inherently
abstract after Alice, observing:

Software can make non-abstract improvements to computer
technology just as hardware improvements can, and
sometimes the improvements can be accomplished through
either route. We thus see no reason to conclude that all
claims directed to improvements in computer-related
technology, including those directed to software, are
abstract and necessarily analyzed at the second step of
Alice, nor do we believe that Alice so directs. Therefore, we
find it relevant to ask whether the claims are directed to an
improvement to computer functionality versus being
directed to an abstract idea, even at the first step of the Alice
analysis.255

Because the patents were not directed to an abstract idea, but
instead to a specific improvement in the way that the computer
operated, the patent survived.256

In a smattering of post-2016 cases, the Federal Circuit has
remained strongly suspicious of software patents, allowing just
a small window for protectability. For example, in June of
2016, the Federal Circuit found that software improvements to
a filtering content tool were eligible for protection in BASCOM
Global Internet Services, Inc. v. AT&T Mobility, LLC.257 But then,
two months later, it invalidated a system for real-time

an abstract idea is defined).
 252 See, e.g., Content Extraction & Transmission LLC v. Wells Fargo Bank,
N.A., 776 F.3d 1343, 1348 (Fed. Cir. 2014) (noting that the patent-at-issue
disclosed an abstract idea using a scanner and computer, and therefore was
ineligible for protection).
 253 773 F.3d 1245 (Fed. Cir. 2014).
 254 See Marino & Nguyen, supra note 217, at 20 (citing DDR Holdings, LLC v.
Hotels.com, L.P., 773 F.3d 1245 (Fed. Cir. 2014)).
 255 See id. at 23 (quoting Enfish, LLC v. Microsoft Corp., 822 F.3d 1327, 1335
(Fed. Cir. 2016)).
 256 See id. at 23–24.
 257 827 F.3d 1343 (Fed. Cir. 2016). See id. (citing BASCOM Glob. Internet
Servs. v. AT&T Mobility LLC, 827 F.3d 1343 (Fed. Cir. 2016)).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 145

performance monitoring of an electronic power grid on the
ground that it focused on independently abstract ideas that
used a computer merely as a tool and was thus insufficiently
inventive.258 In short, the claims were too result-focused and
functional, and they ran the risk of preempting innovation with
their breadth.259 In any event, the post-Alice era suggests that
there is a stronger tendency to cast software patents as
abstract ideas, requiring a stronger focus on whether there are
additional claim elements present that can justify
patentability.260

III
TRADE SECRECY AS DESTINATION

All of the roads I have just detailed lead back to the same
place: trade secrecy as default and destination. And while this
is an underlying problem from a transparency perspective, as
I’ve argued, the roots of this problem lie in the foundational
indeterminacy of software protection. In a powerful,
foundational article (actually, a manifesto), Pamela
Samuelson, Randall Davis, Mitchell Kapor, and J.H.
Reichman, two lawyers and two technologists, warned that the
extension of both copyright and patent law to software might
“impair the effectiveness of both forms of protection,” pointing
out that such overlap creates uncertainties about the scope of
protection under each regime and concluding that “[n]o one
knows just where the boundary line between these domains
does or should lie.”261

The real-life result of this indeterminacy is also plainly
evidenced by the fact that source code remains secret at all
times, irrespective of whatever regime it falls under.262
Consider this excellent description, using a hypothetical of a
person named Ariel who develops a computer program:

 258 See id. at 24–25.
 259 See id.
 260 See Daniel J. Burns, Patent Practice After Alice, in DEVELOPING A PATENT
STRATEGY 43, 44 (2016) (“One way to approach this analysis is to assume that
software patent claims will be characterized as abstract ideas by the USPTO or
by the courts and then to ask whether there are additional claim elements in the
independent claims that contain an inventive concept that can transform the
patent-ineligible subject matter into patent-eligible subject matter per the second
part of the Mayo framework.”).
 261 Pamela Samuelson, Randall Davis, Mitchell D. Kapor & J.H. Reichman, A
Manifesto Concerning the Legal Protection of Computer Programs, 94 COLUM. L.
REV. 2308, 2346–47 (1994).
 262 See Burns, supra note 260, at 44.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

146 CORNELL LAW REVIEW [Vol.104:PPP

Notably, Ariel does not need to publish her source code to
receive protection under the intellectual property laws. She
can register her program for copyright without disclosing
much of the source code or executable code; rather,
Copyright Office regulations require her only to disclose a
portion of the code. From that portion she may even redact
any trade secrets or other proprietary material. On the
other hand, in order to obtain a patent, she must disclose
the invention; however, such disclosure would only require
a description of the invention used in the software that
would enable another person working in the field to make
and use the invention. It would not require her to disclose
the specific code she used to implement it, or the other code
that comprised the rest of the program. Thus, Ariel can
receive a copyright with essentially no disclosure, and a
patent with only a narrow disclosure. Moreover, if she uses
trade secret law to protect the program, publication is
counterproductive.263

In other words, as this quote demonstrates, irrespective of the
changing boundaries of patent and copyright protection
discussed in parts I and II, disclosure is never required, nor
incentivized in any appreciable manner.
 In this section, I turn towards evaluating trade secrecy on
its own terms, showing how the law’s own accommodation of
trade secrecy in software – further cemented its underlying
dominance, posing particular obstacles to the public interest
in transparency.

A. The Lingering Monopoly of Trade Secrecy
Around the early 90s, scholars began to argue that

copyright was the most prudent and effective area of IP to
protect source code.264 Patentability, they reasoned, was a
poor fit for source code, given its lengthy duration of protection
(in comparison to the short shelf life of software), and narrow
subject matter.265 And trade secret protection could essentially
be claimed over much else that was kept from the
public¾protecting everything from disclosure, particularly
whatever copyright or patent did not cover, it seemed.266

 263 Stephen M. McJohn, The Paradoxes of Free Software, 9 GEO. MASON L.
REV. 25, 30 (2000) (footnotes omitted).
 264 See James Ryan, The Uncertain Future: Privacy and Security in Cloud
Computing, 54 SANTA CLARA L. REV. 497, 532–33 (2014).
 265 See id.
 266 There are a great deal of articles exploring trade secrecy in software. See,
e.g., David Bender, Trade Secret Protection of Software, 38 GEO. WASH. L. REV.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 147

Because much of early software was individually
commissioned between a software developer and the client, the
written contract became the principal way to protect against
misappropriation, by characterizing the software as a trade
secret and requiring confidentiality.267

Within these practices, computer hardware companies
bundled the sale of their products with software in order to
optimize their hardware’s capabilities, and also further
customized their models for the client.268 Their client-centric
business models thus enabled them to recoup their
investments, Samuelson explains, without the need for
copyright or patent protection.269 And when they wanted some
assurances against misappropriation, they simply
characterized their source code as a trade secret and only
licensed the object code to customers.

Indeed, the informal and yet ubiquitous role of trade
secrecy in software beautifully illustrates its foundational
justifications and tensions between them. In one influential
article, Mark Lemley asserts that trade secrecy can be justified
by reference to several specific areas of law¾contract, tort,
commercial morality, and property—and commentators and
courts can vary according to their definition of which approach
is the dominant one, or even if one dominates at all.270 But is
it the nature of the property at issue that is secret? Or is it the
relationship vis-à-vis the misappropriation that is at issue? At
times, it is difficult to tell the difference between them, and this
is especially true in the context of software.271

Federal law defines a trade secret to include
information, including a formula, pattern, compilation,
program, device, method, technique, or process, that: (i)
derives independent economic value, actual or potential,
from not being generally known to, and not being readily

909, 914 (1970) (arguing that trade secrecy provides the optimal form of
protection).
 267 See Mark A. Lemley, Intellectual Property and Shrinkwrap Licenses, 68 S.
CAL. L. REV. 1239, 1243–45 (1995).
 268 See, e.g., Samuelson, supra note 14, at 8 n.38 (discussing IBM’s use of
this practice).
 269 See id. at 8.
 270 See Lemley, supra note 267, at 1270; see also Robert C. Scheinfeld & Gary
M. Butter, Using Trade Secret Law to Protect Computer Software, 17 RUTGERS
COMPUTER & TECH. L.J. 381, 384 (noting that some reject a property approach in
favor of one that focuses on the breach of confidential trust).
 271 See, e.g., E.I. Du Pont de Nemours Powder Co. v. Masland, 244 U.S. 100,
101 (1916) (considering the conflict of property rights and disclosures).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

148 CORNELL LAW REVIEW [Vol.104:PPP

ascertainable by proper means by, other persons who can
obtain economic value from its disclosure or use, and (ii) is
the subject of efforts that are reasonable under the
circumstances to maintain its secrecy.272

In the context of source code specifically, as the previous
sections have suggested, trade secret protection extends not
just to protect information that cannot satisfy the
requirements of patentability or copyrightability—it extends to
information that is also protected by those regimes as well.273
Source code might be protected by copyright as a literary work,
even though it is functional, but its functionality might also be
protected by patent law through flowcharts and other
representations.274 And trade secrecy law, as Michael Risch
has pointed out, rewards inventors for keeping material that is
neither new nor original away from public eyes.275

However, without first disclosing and examining the
source code, it is impossible to know whether it even qualifies
as a trade secret.276 But disclosure would potentially
jeopardize its status as a trade secret. To avoid this issue,
most entities simply assert trade secrecy even when the
underlying information may not actually qualify as a trade
secret. There is no way to tell otherwise, absent some form of
disclosure. It is also well settled that even a wide distribution
of software programs does not compromise the intrinsic
secrecy of the program as long as the program is not readily
ascertainable.277

This strange situation, in the case of source code,
produces a puzzle of inconsistency. First, consider the fact
that much of source code is actually drawn from other sources,

 272 See UNIF. TRADE SECRETS ACT § 1(4) (UNIF. LAW COMM’N 1985). There are
also other federal protections in place. See, e.g., Economic Espionage Act of
1996, Pub. L. No. 104-204, 110 Stat. 3488 (protecting trade secrets against theft
or misappropriation in various areas such as industrial espionage); Defend Trade
Secrets Act of 2016, Pub. L. No. 114-153, 130 Stat. 376 (providing a federal civil
cause of action). See Sharon K. Sandeen & Christopher B. Seaman, Toward a
Federal Jurisprudence of Trade Secret Law, 32 BERKELEY TECH. L.J. 829, 833
(2017) (noting the development of federal protection).
 273 See Samuelson, supra note 14, at 2–4.
 274 See id.
 275 See Michael Risch, Why Do We Have Trade Secrets?, 11 MARQ. INTELL.
PROP. L. REV. 1, 11 (2007).
 276 See Charles Short, Guilt by Machine: The Problem of Source Code Discovery
in Florida DUI Prosecutions, 61 FLA. L. REV. 177, 190 (2009) (discussing a case
where the code underlying supposedly proprietary breathalyzer software was
revealed to consist of nothing more than widely available, open-source code).
 277 See LEMLEY ET AL., supra note 34, at 15.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 149

often from the public domain. Yet, because so much of the
code material (i.e., the “source” of some “source code”) is public
in nature, the ability to keep source code from public view
means that material that is closely guarded as a trade secret
may not actually be secret at all.278 Even in cases where the
source code is derived from the public domain, this outcome is
particularly ironic, because the trade secrecy is keeping
information secret that is already within the public domain.
But because it is secret, we may never know this fact, and
never be able to challenge the source code’s origins altogether.

In the past, most of the time, as James Gibson has
suggested, this was completely fine with the public, because
the purchasing public cared not about the intricacies of the
code but whether the software functions in the way it is
expected to.279 The divide between public-minded protections
and private controls becomes especially apparent in the
software context, where, as Gibson notes, “a quirk of
technology allows software developers to hide from the public
the very expression that earns their products copyright
protection in the first place.”280

B. Judicial Accommodation in Kewanee
The Supreme Court, too, has been largely untroubled by

the potential rivalry between trade secrecy and patentability,
and probably never foresaw the public interest implications of
this rivalry in the context of transparency.281 For example, in
the landmark case of Kewanee Oil Co. v. Bicron Corp., a case
that involved synthetic crystals, the Court extensively
considered the question of whether the Patent Act preempted
state-protected trade secrets.282

Because of a seemingly clear delineation between the two
areas of law, the Court concluded that the patent policy of
encouraging invention was “not disturbed” by the existence of
trade secrecy.283 To justify its conclusion, the Court listed
three kinds of categories of trade secrets affected by the patent
regime: (1) those who were considered to be unpatentable; (2)

 278 See Risch, supra note 275, at 11.
 279 See Gibson, supra note 20, at 175.
 280 See id. at 171.
 281 See Anderson, supra note 152, at 929.
 282 416 U.S. 470, 480 (1974). For an excellent analysis of Kewanee, see
Sharon Sandeen, Kewanee Revisited: Returning to First Principles to Determine the
Issue of Federal Preemption, 12 MARQ. INTELL. PROP. L.R. 299, 301 (2008).
 283 See id. at 484.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

150 CORNELL LAW REVIEW [Vol.104:PPP

those whose patentability was considered dubious in nature;
and (3) those who were believed to qualify for patentability.

Consider the category of inventions that would be
unpatentable, for example. Here, the Court reasoned,
abolishing trade secret protection would not benefit disclosure
in any major way, because the patent alternative would be
unavailable.284 Filing doomed applications, in this instance,
would not benefit disclosure to the public, it observed, since
they are still kept confidential by the Patent Office.285

By contrast, the Court reasoned, because trade secret
protection stimulates invention in areas that patent law does
not cover, it still encourages competition and enables the
innovator to still exploit her invention.286 Nevertheless,
because trade secrecy’s duration is uncertain, the Court
argued that inventors would face an added push toward
commercialization.287

But without trade secret protection, the Court reasoned,
society would suffer, even in the case of unpatentable subject
matter.288 Innovative companies would be forced to engage in
expensive self-help, security precautions would have to
increase, and companies with limited resources would be
forced to choose between the costs of added securitization or
innovation. Licensing and other forms of strategic discussions
would level off without binding obligations of secrecy, and the
public would be deprived of the benefit of the invention
because fewer companies would strike agreements.

What about inventions of dubious patentability? Here,
too, the Court continued to remain untroubled by the
relationship between trade secrecy and patent protection.
Those who have genuine doubts regarding patentability will
simply opt out of the patent system, the Court predicted.289

 284 See id. at 485.
 285 Id. Note that this rule has now changed, so that filings are now public
eighteen months after filing. See Press Release, USPTO, USPTO Will Begin
Publishing Patent Applications (Nov. 27, 2000), https://www.uspto.gov/about-
us/news-updates/uspto-will-begin-publishing-patent-applications
[https://perma.cc/M73J-DHRN]. For a different view, see John F. Martin, The
Myth of the 18-Month Delay in Publishing Patent Applications, IPWatchdog (Aug.
3, 2015), https://www.ipwatchdog.com/2015/08/03/the-myth-of-the-18-
month-delay-in-publishing-patent-applications/id=60185
[https://perma.cc/AR5G-RBXJ].
 286 See Kewanee, 416 U.S. at 485.
 287 See id. at 485, 494. See also Anderson, supra note 152, at 930 (stating
that the uncertain duration of protection incentivizes commercialization).
 288 See Kewanee, 416 U.S. at 484–86.
 289 See id. at 487–88.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 151

Others, the Court reasoned, would probably try to obtain a
patent, despite the doubts, because of the comparable benefits
of patent protection over trade secret protection. For those “on
the line” inventors, the Court wrote, the abolition of trade
secret protection would likely push them towards applying for
a patent, despite the dubious outcome.290 The nonpatentable
ones will be invalidated by the Patent Office, the Court
predicted. The Court explained further:

Eliminating trade secret law for the doubtfully patentable
invention is thus likely to have deleterious effects on society
and patent policy which we cannot say are balanced out by
the speculative gain which might result from the
encouragement of some inventors with doubtfully
patentable inventions which deserve patent protection to
come forward and apply for patents. There is no conflict,
then, between trade secret law and the patent law policy of
disclosure291
For the final category, those that are clearly patentable,

the Court noted that the disclosure value is at its peak, and
the systems of trade secret versus patent protection weigh very
strongly in favor of patentability. “[N]o reasonable risk of
deterrence from patent application by those who can
reasonably expect to be granted patents exists,” the Court
stated, explaining that trade secrecy provides a much weaker
level of protection because it cannot bar independent
inventions or reverse engineering, all of which may risk
exposure and destruction of the trade secret.292 “Where patent
law acts as a barrier,” it explained, “trade secret law functions
relatively as a sieve.”293 In the years since, Kewanee has gone
on to stand for a foundational presumption: that trade secrecy,
and patent protection, go hand-in-hand, and a choice between
them, including the variables that go into that choice, are
distinctly untroubling, often incentivizing patentability over
trade secrecy.

C. Rethinking Complementarity in Software
However, there are strong reasons in place to rethink

Kewanee’s assurances, particularly in the area of software
generally. As Sharon Sandeen has argued, the Court’s
analysis is deeply dependent on a set of factual assumptions

 290 Id. at 488.
 291 Id. at 489.
 292 Id. at 489–90.
 293 Id.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

152 CORNELL LAW REVIEW [Vol.104:PPP

and its understanding about the boundaries of each area of
intellectual property protection at that point in time.294 At the
time, the majority of the Court was under the impression that
the availability of trade secrecy would have only a marginal
effect on patent strategy, since its protection seemed so much
less desirable as compared to the strength of a patent grant.295

Today, however, things have certainly changed; as
Sandeen notes, “[t]o the extent such assumptions and laws
have changed, the reasoning underlying Kewanee must
change as well or, at the very least, be re-examined.”296
Further, empirical research has shown that the reliance on
trade secrecy has dramatically expanded since the 1980s,
making it useful to reexamine Kewanee’s presumptions.297
First, much of the opinion appears motivated by a foundational
belief that trade secret law is meant primarily to protect items
that might fall outside of the protectable boundaries of patent
protection items, “which would not be proper subjects for
consideration for patent protection,” as the Court put it.298

However, the reality today is that many trade secrets might
constitute otherwise patentable material.299 Partly because of
the time, effort, cost, and indeterminacy of patentability, many
inventors make the rational decision to avoid patenting
something when they might otherwise keep it secret. But there
is also another reason that pushes applicants towards secrecy:
as Sandeen explains, since Kewanee, the law has broadened
the subject matter and scope of disclosure in patent law.300 In
1974, the only information that was disclosed to the public was
an issued patent application, which required a trip to the
offices of the USPTO to obtain.301 Since 1999, the law has

 294 Sandeen, supra note 282, at 327.
 295 Mary L. Lyndon, Secrecy and Access in an Innovation Intensive Economy:
Reordering Information Privileges in Environmental, Health, and Safety Law, 78 U.
COLO. L. REV. 465, 495 (2007).
 296 Sandeen, supra note 282, at 327.
 297 See Lyndon, supra note 295 (first citing Richard Levin et al., Appropriating
the Returns from Industrial Research and Development, in BROOKINGS PAPERS ON
ECON. ACTIVITY 783 (1987); then citing Wesley M. Cohen, Richard R. Nelson &
John P. Walsh, Protecting Their Intellectual Assets: Appropriability Conditions and
Why U.S. Manufacturing Firms Patent (or Not), 12–15 (Nat’l Bureau of Econ.
Research, Working Paper No. 7552, 2000) (noting the growing reliance on trade
secrecy)).
 298 Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 482 (1974).
 299 Michael R. McGurk & Jia W. Lu, The Intersection of Patents and Trade
Secrets, 7 HASTINGS SCI. & TECH. L.J. 189, 199 (2015).
 300 Sandeen, supra note 282, at 329.
 301 Id.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 153

made all applications public eighteen months after filing,
whether or not they are even issued.302 As a result, as Sharon
Sandeen notes, the end result of these developments “is that
today’s patent disclosure policies result in the disclosure of
more information and, arguably increase innovators’ interest
in trade secrecy as an alternative.”303

Second, the opinion presumes that it is easy (or even
possible) for an inventor to predict, ex ante, whether the
inventor will be able to obtain a patent on their invention.
Especially in the case of software, most developers in a
post-Alice world would characterize their prospects as
indeterminate at least. The indeterminacy, coupled with the
cost and effort of an application, actually deters, rather than
encourages, a provisional filing, making trade secrecy that
much more attractive.

Third, Kewanee dealt with a very different type of
invention¾something that was comparably more
ascertainable¾than the black-box source code of today. Its
assurances, therefore, about the likelihood of the
“ripeness-of-time concept of invention”¾which suggests that
others would likely reach the same solution eventually¾is not
always the case for software, which is sometimes heavily
guarded.304 Since source code is often outside of the public
view, it makes the likelihood of such collaborative (or even
comparative) innovation impossible.

These differences seriously call into question the
presupposed balance between trade secrecy and patentability
in the software context, justifying a need for reexamination.305

 302 Id. at 330.
 303 Id. In fact, Justice Marshall, in a sharply worded concurrence, disagreed
strongly about the remoteness of the risk that an inventor with a patentable
invention would opt for trade secret protection instead of patent protection.
Because a trade secret’s duration is potentially unlimited, Marshall argued that
the existence of trade secret protection deprives the public of the benefit of
disclosure, particularly in this case. Kewanee, 416 U.S. at 494–95 (Marshall, J.,
concurring).
 304 Id.
 305 As an example, just consider the CONTU final report, mentioned at the
opening of the predominant casebook on software:

Although many proprietors feel secure when using trade secrecy,
there are several problems they must face with respect to its use
in protecting programs. Because secrecy is paramount, it is
inappropriate for protecting works that contain the secret and are
designed to be widely distributed. Although this matters little in
the case of unique programs prepared for large commercial
customers, it substantially precludes the use of trade secrecy with
respect to programs sold in multiple copies over the counter to

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

154 CORNELL LAW REVIEW [Vol.104:PPP

As Lemley has explained, in situations of non-self-revealing
technologies, like source code (which is not evident from the
sale of the product— unlike a paper clip, whose innovation is
evident), secrecy can be preferable over patentability because
there is more indeterminacy in the patent system.306 As he
points out, patents can be designed around, or they can be
invalidated, and will eventually expire.307 But this result
produces some inefficiency because the benefits of public
disclosure of the information are lost.308 In such
circumstances, it is important to note that the indeterminacy
of the patent system may compel parties to opt for trade secret
protection, though they might have chosen differently if the
patent system were a stronger choice for protection.309

In those circumstances, Lemley notes, citing Kewanee, the
defenses of independent development and reverse engineering
exist to avoid a reflexive choice toward trade secrecy over
patentability.310 These defenses help make trade secrecy much
less preferable, Lemley assures us as well, thereby keeping
patentability within the range of attractive options.311 While I
share Lemley’s views generally, I would suggest that the
particular difficulties associated with reverse engineering in
the software context might push the scale back toward trade
secrecy.312

Closed code also carries deleterious impacts for software
innovation. Not only does the public lose more of the public

small businesses, schools, consumers, and hobbyists. Protection
is lost when the secret is disclosed, without regard to the
circumstances surrounding the disclosure. The lack of uniform
national law in this area may also be perceived by proprietors as
reducing the utility of this method of protection.

LEMLEY ET AL., supra note 34, at 5–6 (quoting CONTU, FINAL REPORT (July 31,
1978)). Trade secrecy, the Commission noted, also reduces a company’s ability
to do business freely because it necessitates the signing of nondisclosure
contracts. Id. And it also noted that the reduced flow of information due to
secrecy reduces the consumers’ ability to comparison shop, leading to higher
prices. Id.
 306 LEMLEY ET AL., supra note 34, at 339–40.
 307 Id. at 340.
 308 Id.
 309 Id.
 310 Id. at 340–41.
 311 Id.
 312 A similar comment on Lemley is offered by Jeanne Fromer, who points out
that there is evidence from some industries that innovators will still take
excessive precautions to protect their secrets because the legal remedies for
misappropriation are often incomparable to the losses faced from the
extinguishing of a secret. Fromer, supra note 190, at 15–16.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 155

domain, but other developers are unable to build on others’
innovations, making it impossible to optimize efficiency or
increase interoperability without licensing the code first.313
The CONTU report, for example, noted that humans waste a
lot of effort trying to create what is already held in secret.314

Because the code is unavailable to anyone outside of the
company, third parties who might seek to improve upon the
code are unable to do so without permission, stymying the
development of markets for innovation.315 Since trade secret
laws encourage designers to “build fences” around their
secrets, information is often only sparingly revealed, and then,
only under stringent conditions of nondisclosure.316 These
conditions intrinsically discourage the sharing of information,
impeding market-wide vertical interoperability.317 As Jeanne
Fromer has observed, the failure to share this information with
the wider public contributes to an information asymmetry
between the initial innovator and the follow-on competitor,
reducing the democratization of innovation.318 Moreover, the
trend towards secrecy also means that a developer may not
actually detect infringement because a programmer may find
themselves stymied from proving piracy without expending
considerable resources to obtain discovery.319

Further, a trade secrecy regime not only makes it
impossible to compare works with those that exist in the public
domain, it also shrinks the size of the public domain
altogether.320 Fair use may be a laudable public right of access,
but it is meaningless in the face of access restrictions that deny
entrance to all unlicensed uses, fair and nonfair alike.321 While
some courts have used the fair use doctrine to protect
temporary, technically infringing behavior, like copying code or
copyrightable material if it is the only way to access material

 313 Gibson, supra note 20, at 181.
 314 LEMLEY ET AL., supra note 34, at 6 (citing CONTU).
 315 Gibson, supra note 20, at 184.
 316 Lemley & O’Brien, supra note 125, at 290–91.
 317 Id.
 318 See Fromer, supra note 190, at 14.
 319 Gibson, supra note 20, at 187.
 320 Id. at 183; Katherine J. Strandburg, What Does the Public Get?
Experimental Use and the Patent Bargain, 81 WIS. L. REV. 81, 105–06 (2004).
 321 Gibson, supra note 20, at 171. As an example of this complexity, consider
the longstanding litigation in the Google/Oracle fair use case. See Peter Menell,
API Copyrightability Bleak House: Unraveling and Repairing the Oracle v. Google
Jurisdictional Mess, 31 BERKELEY TECH. L.J. 1515, 1521–62 (2016) (discussing
the many stages of litigation).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

156 CORNELL LAW REVIEW [Vol.104:PPP

in the public domain, the doctrine is limited by its
imprecision.322 Since most source code remains unpublished,
it becomes harder to avail oneself of fair use protections in that
context.323 Not only are unpublished works subject to greater
protection than published works, but since fair use is usually
considered only a defense, it does not provide the means to
actually access closed code.324

As a result of these shortcomings of intellectual property
protection to incentivize disclosure and access, source code
remains entirely secluded from outside view, maximizing the
developer’s control, irrespective of whether the goals of third
party access lie in innovation, competition, or investigation.

IV
DUE PROCESS IN AN AGE OF DELEGATION

The ubiquity of trade secrecy in the arena of source code,
as I suggested above, has dramatic implications for innovation,
interoperability, and competition. Although those implications
can be deleterious in the context of private industry, more
troubling is the implications of closed code on the functions of
public governance.325 Danielle Citron, ten years ago, observed
that the administrative state was slowly being overtaken by
closed-proprietary systems in areas of public benefits,
electronic voting, and agency-gathered data, among others.326
Today, the issue is not just that government decision making
is becoming entirely privatized, it is also that these systems are
closed and proprietary, often due to assertions of trade secrecy.
David Levine offers several examples¾from
telecommunications to traditional government operations, like
voting¾that are now being provided by private industry and
immunized from transparency by trade secret doctrine.327
Particularly in the realm of public infrastructure, secrecy has
skyrocketed in importance¾one study cited by Levine
mentions that in 24 out of 33 manufacturing industries,
secrecy was ranked as first or second in importance.328

 322 Gibson, supra note 20, at 192.
 323 Id.
 324 Id. at 193.
 325 Citron, supra note 8, at 363–71.
 326 Id.
 327 David S. Levine, The Impact of Trade Secrecy on Public Transparency, in
THE LAW AND THEORY OF TRADE SECRECY: A HANDBOOK OF CONTEMPORARY
RESEARCH 406, 407 (Rochelle C. Dreyfuss & Katherine J. Strandburg eds., 2011).
 328 Id. at 408 (citing Gerald Carlino et al., Matching and Learning in Cities:

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 157

Although the risks of privatization are not at all new to
legal scholarship,329 few scholars have linked the rise of
privatization to the reliance on closed code, automated
governance, and the rise of trade secrecy. As I suggested in an
earlier article, we continue to view trade secrecy as somehow
separate from civil rights concerns, and that presumption has
facilitated the absence of accountability.330

In this section, I first discuss the rise of delegation to
private industries and the range of trade secrecy claims that
have pervaded attempts toward transparency. In the second
section, I discuss some of the ways in which similar issues of
privatization and delegation have emerged in source code
disputes in the criminal context, and the implications of those
decisions on the liberty and due process interests of criminal
defendants. Finally, in the last section, I discuss the increased
reliance on trade secrecy and the Computer Fraud and Abuse
Act to preclude attempts toward greater transparency and
disclosure.

A. The Rise of Closed Code Governance
As the story that opened this Article demonstrates, many

municipalities are confronting the implications of enabling
private industry, instead of the government, to make decisions
about the lives and services provided to citizens.331 When
automated decision-making and trade secrecy facilitates this
intermingling of public and private, it produces a crisis of
transparency. In this context, private businesses now play the
roles that government used to play but can utilize the
principles of trade secret law to insulate themselves from the
very expectations of accountability that government operated
under.332

Urban Density and the Rate of Invention 5 (Fed. Reserve Bank of Phila., Working
Paper No. 04-16/R, 2005)).
 329 See Craig Anthony (Tony) Arnold, Privatization of Public Water Services:
The States’ Role in Ensuring Public Accountability, 32 PEPP. L. REV. 561, 562
(2005); Laura A. Dickinson, Public Law Values in a Privatized World, 31 YALE J.
INT’L L. 383, 384–85 (2006) (privatization of military support services); Matthew
Diller, Form and Substance in the Privatization of Poverty Programs, 49 UCLA L.
REV. 1739, 1739 (2002); Martha Minow, Public and Private Partnerships:
Accounting for the New Religion, 116 HARV. L. REV. 1229, 1230–31
(2003) (school privatization efforts); David E. Pozen, Managing a Correctional
Marketplace: Prison Privatization in the United States and the United Kingdom, 19
J.L. & POL. 253, 253 (2003) (privatization of prisons).
 330 See Katyal, supra note 17, at 118.
 331 McKenzie, supra note 1.
 332 See Katyal, supra note 17, at 118–19; Levine, supra note 327, at 2.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

158 CORNELL LAW REVIEW [Vol.104:PPP

These tensions¾between democratic transparency and
commercial seclusion¾have become particularly pronounced
in the current day, where government has become increasingly
intermingled with private industry through privatization and
delegation throughout infrastructure involving
telecommunications, government operations, and energy.333
As Gillian Metzger has observed, “[p]rivatization is now
virtually a national obsession.”334 Her work describes
privatization in the context of the sharing of responsibility
between public and private but with a twist: instead of the
government ensuring control over its programs, the private
industry takes the lead.335 In an exhaustive account, Metzger
describes the expansion of privatization in areas like Medicare,
Medicaid, welfare programs, public education, and prisons.336
In each of these contexts, private contractors exercise a broad
level of authority over their program participants, even when
government officials continue to make determinations of basic
eligibility and other major decisions.337

While Metzger’s focus is on the privatization of government
services, each involving a delegation to a private entity, I would
underscore that much of the privatization that she studies is
also facilitated by an additional focus on automated decision-
making. As Robert Brauneis and Ellen Goodman have
eloquently noted, “[t]he risk is that the opacity of the algorithm

 333 Levine, supra note 327, at 2; David S. Levine, Secrecy and
Unaccountability: Trade Secrets in Our Public Infrastructure, 59 FLA. L. REV. 135
(2007).
 334 Gillian E. Metzger, Privatization as Delegation, 103 COLUM. L. REV. 1367,
1369 (2003); see also Alfred C. Aman, Jr., Globalization, Democracy, and the Need
for a New Administrative Law, 49 UCLA L. REV. 1687, 1700–03 (2002) (discussing
democracy issues raised by privatization of prisons and social services for the
poor); Matthew Diller, Going Private—the Future of Social Welfare Policy?, 35
CLEARINGHOUSE REV. 491, 491 (2001) (discussing “broad movement to ‘privatize’
government [poverty] programs”); Mathew Diller, Introduction: Redefining the
Public Sector: Accountability and Democracy in the Era of Privatization, 28
FORDHAM URB. L.J. 1307, 1308 (2001) (describing privatization of government
services, including “contracting out the delivery of services, divestiture of
government owned resources and institutions, the establishment of private
communities with quasi-governmental powers, the creation of voucher programs
to replace the direct delivery of services, the movement toward incentive-based or
private forms of regulation, and the possible replacement of the Social Security
system with individual savings accounts”); Mark H. Moore, Introduction, 116
HARV. L. REV. 1212, 1212 (2003) (introducing a symposium “focus[ed] on the
increased ‘privatization’ of the public sphere”).
 335 Metzger, supra note 334, at 1370.
 336 Id. at 1380.
 337 Id. at 1387.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 159

enables corporate capture of public power.”338 There are also
secondary, less visible forms of automated decision-making
that can also amount to a significant, though related, degree
of delegation to private entities involving contracting with
private entities for the purposes of information gathering or
distribution.

In this context, the government can and has asserted its
own trade secret protection as an exemption to disclosure
under the Freedom of Information Act.339 David Levine has
documented a number of situations where the government has
claimed trade secrecy in a wide variety of scenarios, including
situations where a government entity is directly competing
with a private sector entity or acting as a provider of particular
goods, and where the government has contracted with a private
entity.340 Examples involve government record-keeping,
government-run student loan assistance,341 and even a
government firearm registry.342 In another case, Cincinnati
Public Schools maintained that their ninth-grade multiple
choice and essay questions were protected trade secrets.343 In
yet another, the United States Air Force maintained that
details regarding pricing and particular options on a private
contract with McDonnell Douglas Corporation were protected
trade secrets free from public transparency.344

In the context of private firms, the issue of opacity deepens
even further. Here, firms have learned to obfuscate
transparency by relying on assertions of trade secrecy to avoid

 338 See Robert Brauneis & Ellen P. Goodman, Algorithmic Transparency for the
Smart City, 20 YALE J.L. & TECH. 103, 109 (2018); see also Will Knight, The Dark
Secret at the Heart of AI, MIT TECH. REV. at 1 (2017) (“No one really knows how
the most advanced algorithms do what they do.”).
 339 See David S. Levine, The People’s Trade Secrets?, 18 MICH. TELECOMM. &
TECH. L. REV. 61, 82 (2011).
 340 See generally infra pt. II; Levine, supra note 339, at 84 (discussing
situations in which governments have asserted trade secrecy).
 341 Levine, supra note 339, at 82 (citing Pelto v. Connecticut, No. FIC
2008-341 ¶ 32 (Conn. Freedom of Info. Comm’n May 13, 2009) (final decision),
https://www.state.ct.us/foi/2009FD/20090513/FIC2008-341.htm
[https://perma.cc/U2C6-CWJA]); see also Hoffman v. Pennsylvania, 455 A.2d
731, 733 (Pa. Commw. Ct. 1983) (where a plaintiff sought magazine subscriber
mailing lists).
 342 See Levine, supra note 339, at 90; see also OFF. OF THE INFO. COMM’R OF
CAN., ANNUAL REPORT INFORMATION COMMISSIONER 1999-2000, at 60 (2000)
(explaining the Canadian government’s firearm registry).
 343 Levine, supra note 339, at 83; see State ex rel. Perrea v. Cincinnati Pub.
Schs., 916 N.E.2d 1049, 1052–53 (Ohio 2009).
 344 Levine, supra note 339, at 99; see McDonnell Douglas Corp. v. Widnall, 57
F.3d 1162, 1163–64 (D.C. Cir. 1995).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

160 CORNELL LAW REVIEW [Vol.104:PPP

disclosure of data in the context of environmental, health, and
safety data.345 Even when disclosures are mandated by
regulation, Mary Lyndon has argued that nondisclosure
privileges have grown, leading to trends that tend to favor
commercial interests over public ones.346 The issue of trade
secrecy impeding the public interest has come up in a variety
of disputes, including health care devices and clinical trials,
voting machines, breathalyzer disputes, and search-engine
algorithms.347 Particularly in the context of health or
environmental concerns, which are often underestimated
because they are not immediately visible, firms may resist
disclosing information on the grounds that it may
disadvantage them commercially.348 Annemarie Bridy has
shown how medical device manufacturers have attempted to
keep their pricing information secret as a way to keep
information away from their customers.349 In another
environmental context, after chemicals leaked from a West
Virginia coal processing plant, denying over 300,000 people
access to water, the plant successfully refused to turn over the
specific makeup of its compounds to the public.350

While the sheer variety of these instances deserves a more
comprehensive and searching investigation in the context of
AI,351 these cases suggest two notable elements, each linked to
one another. The first involves the element of privatization,
exemplified by the existence of a contractual relationship with
a private party. The second element is one of (what I call)
“information insulation,” involving an increased willingness to
assert trade secret protection in cases where transparency

 345 See Lyndon, supra note 295, at 471.
 346 Id. at 509.
 347 See Deepa Varadarajan, Trade Secret Fair Use, 83 FORDHAM L. REV. 1401,
1443–44 (2014); Lyndon, supra note 295; see also FRANK PASQUALE, THE BLACK
BOX SOCIETY: THE SECRET ALGORITHMS THAT CONTROL MONEY AND INFORMATION
(2015) 140−44; Rebecca S. Eisenberg, Data Secrecy in the Age of Regulatory
Exclusivity, in THE LAW AND THEORY OF TRADE SECRECY: A HANDBOOK OF
CONTEMPORARY RESEARCH 467, 470 (Rochelle C. Dreyfuss & Katherine J.
Strandburg, eds., 2011).
 348 Lyndon, supra note 295.
 349 See Annemarie Bridy, Trade Secret Prices and High-Tech Devices: How
Medical Device Manufacturers Are Seeking to Sustain Profits by Propertizing Prices,
17 TEX. INTELL. PROP. L.J. 187, 191 (2009), which is discussed in Varadarajan,
supra note 347, at 1442–43.
 350 Varadarajan, supra note 347, at 1443.
 351 In future work, I plan to investigate these cases and others. See generally
Sonia K. Katyal, Delegated Decision Making and Government Transparency
(abstract) (on file with author).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 161

might be justified due to public interest concerns.352 While
Metzger focuses on the dangers of narrowing state action in
such contexts, highlighting the vagaries of discretionary
decision-making, Levine and others emphasize, troublingly,
how these powers can become even more insulated from the
public eye through protections from disclosure to the public.
Added to these risks today is the even greater power of
government-sponsored automated decision-making,
amplifying even further the risks to government accountability
and due process.

The risks to accountability and transparency affects both
individualized cases as well as our democratic system. But
they become particularly pronounced in cases involving source
code secrecy. Consider an example. In more than one voting
issue, assertions of trade secrecy prevented election officials
from releasing software to independent auditors to enable
review and testing.353 In 2005, a voting machine company,
Diebold Election Systems (now called Premier Election
Solutions), refused to follow a North Carolina law that required
electronic voting machine manufacturers to place its software
and source code in escrow with a state Board of
Elections-approved agent.354 Over a series of court battles,
Diebold refused to comply, eventually withdrawing from the
state altogether, rather than reveal its source code.355 In
another event, also discussed by Levine, when hackers
successfully accessed (and manipulated) a series of Diebold
machines, Diebold chose to characterize the events as
“potential violations of licensing agreements and intellectual
property rights,” rather than respond to the threat to the

 352 See Levine, supra note 339, at 111 (discussing the public interest concerns
at stake).
 353 See Andrew Massey, “But We Have to Protect our Source!”: How Electronic
Voting Companies’ Proprietary Code Ruins Elections, 27 HASTINGS COMM. & ENT.
L.J. 233, 235 (2004); Brenda Reddix-Smalls, Individual Liberties and Intellectual
Property Protection¾Proprietary Software in Digital Electronic Voting Machines:
The Class Between a Private Right and a Public Good in an Oligopolistic Market,
19 FORDHAM INTELL. PROP., MEDIA, & ENT. L.J. 689, 742–43 (2009).
 354 Levine, supra note 327, at 96. For an excellent article exploring the use of
software-independent voting systems, compliance audits, and risk-limiting
audits in elections, see P.B. Stark & D.A. Wagner, Evidence-Based Elections, 10:5
IEEE SECURITY & PRIVACY 33 (May 8, 2012) (spec. issue on electronic voting).
 355 Michael A. Carrier, Vote Counting, Technology, and Unintended
Consequences, 79 ST. JOHN’S L. REV. 645, 667–68 (2005); Levine, supra note 327,
at 13; Doris Estelle Long, “Electronic Voting Rights and the DMCA: Another Blast
from the Digital Pirates or a Final Wake Up Call for Reform?”, 23 J. MARSHALL J.
COMPUTER & INFO. L. 533, 545–48 (2005).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

162 CORNELL LAW REVIEW [Vol.104:PPP

democratic dignity of the voting tabulation process.356

B. The Constitutional Cost of Secrecy
As I have suggested above, one of the primary obstacles to

greater transparency involves the increasing privatization of
government functions. While the prior section addressed this
issue in the context of trade secrecy, it is also important to
understand the significance of this difference in the context of
comparing how private, data driven decisions are often free
from scrutiny, as compared to decisions made directly by the
state.

Nowhere is this becoming more apparent than in the
context of criminal law. In the criminal law context,
computer-processing technologies have been employed in
criminal prosecutions involving fingerprinting, DNA match
analysis, facial recognition, drunk driving, and file sharing.357
A further complexity within criminal law lies in the use of
Automated Suspicion Algorithms (ASAs), which apply machine
learning to data with the purpose of identifying individuals who
may be engaged in criminal activity and may produce conflicts
with the Supreme Court requirement of individualized
suspicion under the Fourth Amendment.358 In an eloquent and
comprehensive article, Rebecca Wexler examines a host of
these automated decision-making procedures in the life cycle
of a criminal justice case, including bail investigations, trial
evidence, sentencing, and parole, noting the substantial
deference that courts have extended to trade secret owners in
every one of these areas, even though their processes (and the
decisions that they reach) often implicate the difference
between liberty and imprisonment.359

Issues of admissibility and reliability further highlight the
contradictory paradox of source code secrecy: on one hand,
companies argue that their methods are sufficiently known
and proven to be broadly accepted by the scientific community
and yet, on the other hand, companies will go to enormous
lengths to keep their source code confidential so as to preclude

 356 Levine, Secrecy and Unaccountability, supra note 333, at 182 (quoting Leon
County Supervisor Ion Sancho: “I really think they’re not engaged in this
discussion of how to make elections safer.”).
 357 Chessman, supra note 43, at 180–81.
 358 See Michael L. Rich, Machine Learning, Automated Suspicion Algorithms,
and the Fourth Amendment, 164 U. PA. L. REV. 871, 886 (2016) (discussing ASAs
and individualized suspicion).
 359 See Wexler, Life, Liberty, and Trade Secrets, supra note 12, at 9.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 163

further investigation.360
Assertions of trade secret privilege in most states are

covered by sections of the evidence code, which provides for
protection from disclosure as long as it will not “conceal fraud
or otherwise work injustice.”361 Courts have interpreted this
provision to also include a requirement that the defense in a
criminal case must also show that the trade secret is relevant
and necessary to the defense in order to obtain disclosure
under a protective order.362 In one criminal case involving DNA
analysis and its TrueAllele program, Cybergenetics maintained
that it kept the source code secret because of the “highly
competitive commercial environment,” and it provided defense
experts with its methodology and underlying mathematical
model, arguing that its source code was unnecessary to assess
the program’s reliability.363 The court agreed with
Cybergenetics, concluding that its source code was not
necessary to determine the software’s reliability and that the
defense had failed to demonstrate a particularized showing of
need.364 It further rejected the prospect of a Sixth Amendment
violation, holding that the Confrontation Clause did not require
pretrial discovery of privileged information.365 This outcome is
hardly an anomaly.366

Yet, according to experts, TrueAllele’s match statistic
values dramatically diverge from the findings of other
competitors.367 Whereas other competitors found DNA

 360 See Katherine L. Moss, Note, The Admissibility of TrueAllele: A
Computerized DNA Interpretation System, 72 WASH. & LEE L. REV. 1033, 1071–72
(2015); see also William C. Thompson & Simon Ford, DNA Typing: Acceptance
and Weight of the New Genetic Identification Tests, 75 VA. L. REV. 45, 59–60 (1989)
(noting that asserting trade secrecy shields companies from scrutiny by the
scientific community); Stephanie L. Damon-Moore, Note, Trial Judges and the
Forensic Science Problem, 92 N.Y.U. L. REV. 1532, 1536 (2017) (discussing
“constraints on judges’ abilities to recognize and address problems with forensic
science”).
 361 See, e.g., CAL. EVID. CODE § 1060 (West 2019); People v. Chubbs, No.
B258569, 2015 WL 139069, at *10–14 (Cal. Ct. App. Jan. 09, 2015).
 362 See Chubbs, 2015 WL 139069, at *6–7.
 363 Id. at *8.
 364 Id. at *10. See also Commonwealth v. Foley, 38 A.3d 882, 889–90 (Pa.
Super. Ct. 2012) (reaching the same conclusion).
 365 See Chubbs, 2015 WL 139069, at *11.
 366 Several other courts have reached similar conclusions on TrueAllele. See
Foley, 38 A.3d at 890; see also Moss, supra note 360, at 1062–68 (citing cases).
 367 See Brief of the Innocence Project, Inc. et al. as Amicus Curiae Supporting
Respondents at 13, People v. Johnson, No. F071640 (Cal. Ct. App. 2017); see also
Chessman, supra note 43, at 198 (discussing how widely a RMP calculated by
TrueAllele diverged from a RMP calculated by a conventional DNA lab using the

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

164 CORNELL LAW REVIEW [Vol.104:PPP

analysis to be too unreliable, TrueAllele offered “match
statistics of astounding confidence.”368 At the same time,
TrueAllele’s repeat analyses have reached different outcomes
with the same data, raising concerns about admissibility due
to these internal inconsistencies.369 Under these
circumstances, it is virtually impossible to detect errors. And
errors can often mean the difference between liberty and
imprisonment. For example, consider that source code errors
in other genotyping software programs, like STRmix, produced
materially altered match statistics in over sixty cases.370 It is
precisely to address that problem that STRmix now provides
access to its source code when it is used to generate evidence
in prosecutions.371 Notably, it is also the key reason why, in
September 2016, New York City decided to retire Forensic
Statistical Tool, a previous in-house tool, in favor of STRmix.372

I have discussed the risks of privatization in a variety of
contexts, but consider another set of scenarios that illustrate
its implications. In one criminal case, a defendant was unable
to acquire the source code to challenge his breath-alcohol
score for a simple but surprising reason.373 Since discovery
orders are limited to items or information within the custody,
possession, or control by the State, and since the source code
was held by the manufacturer and considered to be a trade
secret, the court refused to require it to be turned over because
it was essentially out of the boundaries of the discovery
order.374 At least eight states have denied defendants access
to source code due to similar issues of trade secrecy.375 In
some cases, states will argue that they lack possession of the
source code and therefore cannot turn it over for

same data).
 368 Brief of the Innocence Project, Johnson, No. F071640, at 12.
 369 Id. at 13.
 370 Id. at 18–19 (citing David Murray, Queensland Authorities Confirm
‘Miscode’ Affects DNA Evidence in Criminal Cases, COURIER MAIL (Mar. 20, 2015),
https://www.couriermail.com.au/news/queensland/queensland-authorities-
confirm-miscode-affects-dna-evidence-in-criminal-cases/news-
story/833c580d3f1c59039efd1a2ef55af92b [https://perma.cc/YCR7-ZLZW]).
 371 See Brief of the Innocence Project, Inc. et al., supra note 367, at 19 (citing
ESR, ACCESS TO STRMIX SOFTWARE BY DEFENCE LEGAL TEAMS (2016),
https://strmix.esr.cri.nz/assets/Uploads/Defence-Access-to-STRmix-April-
2016.pdf [https://perma.cc/BQF3-9TBP]).
 372 Id. at 19.
 373 State v. Kuhl, 741 N.W.2d 701, 708 (Neb. Ct. App. 2007).
 374 Id.
 375 Wexler, Life, Liberty, and Trade Secrets, supra note 12, at 7.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 165

investigation.376 And the court will adopt this rationale, even
to the detriment of the defendant. In at least one case, in order
to assist prosecutors, law enforcement deliberately avoided
taking possession of the source code in order to avoid turning
the code over to defense counsel/expert.377

Imagine the effect of such a finding on the landscape of
constitutional or human rights¾it would essentially mean that
every time the state handed over information to a private party
that then asserted trade secret protection, it would be out of
the bounds of discovery, unless the party was willing to seek a
subpoena. Effectively, these cases suggest that through
assertions of trade secrecy, the state is practically able to
immunize itself from investigation regarding its forensic
techniques. In other criminal cases, defendants have lost
because courts would reject the proposition that access to the
source code was necessary for a defense. Wexler details the
case of a California appeals court that upheld a software
developer’s refusal to comply with a trial court order to turn
over the source code for a forensic software program used to
convict the defendant on the grounds that the code was not
relevant or necessary to the defense.378 Similar refusals to
compel source code have occurred in the context of the
Intoxilyzer, which is used to measure alcohol intoxication.379
In a similar context involving Alcotest, a popular breath test
device, the company refused to sell its device to non-law
enforcement entities to enable independent verification on
trade secrecy grounds.380

More troublingly, consider the lines between privatization
and public responsibilities. Here, the private status of the
manufacturer facilitates the striking dismissal of core
constitutional protections regarding the right to confront
witnesses at trial. However, as Christian Chessman observed,
there is an even greater irony operating here.381 In these
decisions, both state and federal courts routinely presume the
reliability and accuracy of the techniques they rely upon.382

 376 Chessman, supra note 43, at 213–14.
 377 Id.
 378 Wexler, Life, Liberty, and Trade Secrets, supra note 12, at 7 (discussing
People v. Chubbs, No. B258569, 2015 WL 139069 (Cal. Ct. App. Jan. 9, 2015)).
 379 See Natalie Ram, Innovating Criminal Justice, 112 NW. U. L. REV. 659, 662
(2018).
 380 Id. at 672 (citing State v. Chun, 943 A.2d 114 (N.J. 2008)).
 381 Chessman, supra note 43, at 183.
 382 Id. at 184.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

166 CORNELL LAW REVIEW [Vol.104:PPP

And yet, computer scientists would argue exactly the reverse:
that the programs themselves do not automatically or
inherently ensure reliability.383 As Chessman writes,
“computer programs are not more reliable than human
statements because they are human statements—and no more
than human statements.”384 Since they are tools of human
design, they are often subject to human error, faulty
assumptions, and mistakes, just like any other kind of
evidentiary tool.385 This is perhaps the strongest reason for why
machine testimony deserves the benefit of adversarially
generated scrutiny.386 Errors can constantly reproduce
because each program update can interact negatively with
preexisting code.387

These issues are by no means limited to the government.
In the context of scientific research, academics often offer
general conceptual and functional descriptions of scientific-
created software and withhold source code in favor of releasing
only the binary, executable version.388 This affects the process
of peer review, making it impossible to detect errors from
reproducing results, leading some to allege that the disclosure
problem has led to a “credibility crisis” in research
computation.389

C. The New Secrecy: Information Insulation
As the previous sections have demonstrated, source code

secrecy can have dramatic implications for the public interest,
particularly in the area of criminal justice. Here, rather than
recognizing the deep complexity of trade secret law (and its
limitations), courts are tending to defer to trade secret owners,
often to the detriment of the public interest.390

Today, the circumstances under which trade secrecy is

 383 Id.
 384 Id. at 186.
 385 Id. at 184.
 386 Andrea Roth, Machine Testimony, 126 YALE L.J. 1972 (2017).
 387 Chessman, supra note 43, at 185.
 388 See Darrel C. Ince et al., The Case for Open Computer Programs, 482
NATURE 485, 486–87 (2012) (expressing concern about the need to share source
code among scientific researchers); A. Morin et al., Shining Light into Black Boxes,
336 SCI. 159, 159 (2012) (expressing the same concern).
 389 Morin et al., supra note 388, at 160. In 2010, of the twenty most-cited
science journals, only three had policies requiring source code disclosure, in
contrast to near-universal agreement requiring the availability of other forms of
data. Id. at 161.
 390 I am grateful to Tait Graves for this helpful observation.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 167

asserted, I would argue, change the traditional function of
trade secrecy from protecting against a competitor’s
misappropriation to a function that impedes public
investigation. Early trade secret cases raise paradigmatic fact
patterns that involve some form of misappropriation:
circumstances where departing employees sought to continue
their business; or competitors copied another’s products; or
contracts to keep certain business information confidential.391
In one of the earliest descriptions of trade secrets, the Supreme
Court of Massachusetts observed in 1868:

If [a person] invents or discovers, and keeps secret, a
process of manufacture, whether a proper subject for a
patent or not, he has not indeed an exclusive right to it as
against the public, or against those who in good faith
acquire knowledge of it; but he has a property in it, which a
court of chancery will protect against one who in violation
of contract and breach of confidence undertakes to apply it
to his own use, or to disclose it to third persons.392

Hundreds of years later, this summary still applies to most
cases of trade secrecy.393 The typical defendant in trade
secrecy cases involves a competitor who has allegedly
misappropriated the plaintiff’s trade secret for profit and unfair
competition.394

Yet, more recently, the circumstances I discuss in this
Article demonstrate three core differences from the classic
cases involving trade secrecy. First, in all of the examples we
have examined here, the defendant’s motivation is not to
compete with a trade secret holder but rather to investigate a
particular source of information. Here, the concern is not
motivated by misappropriation for the purposes of competition,
but rather, for the purposes of discovery or investigation.
Second, unlike the classic trade secrecy cases, the parties that
are usually at odds with one another have no formal,
preexisting contractual relationship¾the source code is

 391 See Lemley, supra note 176, at 315.
 392 See Michael Risch, Why Do We Have Trade Secrets?, 11 MARQUETTE INTELL.
PROP. L. REV. 1, 13 (2007) (quoting Peabody v. Norfolk, 98 Mass. 452, 458 (1868)).
 393 See Charles Tait Graves & Brian D. Range, Identification of Trade Secret
Claims in Litigation: Solutions for a Ubiquitous Dispute, 5 NW. J. TECH & INTELL.
PROP. 68, 72 (2006) (“A trade secret case usually begins shortly after a former
employee has resigned and either joined a competitor or formed a new, competing
business.”).
 394 See, e.g., DVD Copy Control Ass’n v. Bunner, 10 Cal. Rptr. 3d 185, 195
(Cal. Ct. App. 2004) (involving such a claim); see also Risch, supra note 275, at
15 (noting that this may be the modern view of trade secrets litigation).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

168 CORNELL LAW REVIEW [Vol.104:PPP

sought for the purposes of disclosure to the public or for the
purposes of investigation of bias, not for the purposes of
financial gain. Third, in many of these examples, the
government plays some key role, either because it is
prosecuting the case or because it is acting in a
decision-making capacity.

All of these differences, I think, help to underscore the role
of trade secrecy as an obstacle to the public interest. But it
requires us to think differently about how to address the role
of trade secrecy in these cases of information insulation. As
the importance of trade secrecy has increased, so has
surrounding litigation, which has grown exponentially since
the 1980s.395

And as litigation has increased, in the civil context, so have
the attempts to insulate trade secrets from inquiry and
investigation. As two leading trade secret experts have
explained, it is typical for the plaintiff to avoid a specific
identification of the trade secret precisely to obfuscate
inquiry.396 Instead, the plaintiff argues “that the defendant
already knows what the alleged trade secrets are because the
defendant knows what it stole, and thus no identification is
necessary.”397 In these cases, the plaintiff will rarely provide a
precise and complete identification of the trade secrets unless
a court forces them to do so.398

If the trade secret owner avoids identifying its trade secrets
in a classic departing-employee case on the grounds of
familiarity, imagine how much more difficult it can be to obtain
the information when the interest at stake involves allegations
of bias. Such cases do not involve misappropriation for the
purposes of unfair competition, but they implicate core
concerns about fairness and accountability to the public.
These interests would only escalate the plaintiff’s impetus to
avoid discovery and identification.

Three results flow from this observation. First, assertions
of trade secret protection, just as the prior section suggests,
remain a key obstacle for researchers and litigants seeking to
test the efficacy and fairness of government algorithms and

 395 See David S. Almeling, Darin W. Snyder, Michael Sapoznikow, Whitney E.
McCollum & Jill Weader, A Statistical Analysis of Trade Secret Litigation in Federal
Courts, 45 GONZ. L. REV. 291, 293 (2009).
 396 Graves & Range, supra note 393, at 72.
 397 Id.
 398 Id. at 68.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 169

automated decisionmaking.399 Even the most effective
investigations, like ProPublica’s projects, which have
addressed a myriad number of issues (Uber’s surge pricing,
Amazon’s pricing algorithm, and the COMPAS recidivism
algorithm, among others), have been undertaken without
access to the underlying source code, forcing investigators to
perform audits without access to key data.

Second, the conventional exceptions to trade secret
protection within the law—reverse engineering, for example—
are usually unavailable in the context of AI. If the source code
is unavailable, the only way to obtain the code is to engage in
reverse engineering, but this is often difficult, costly, and
restricted, either by copyright law (which prohibits reverse
engineering for the purposes of copying or duplication) or by
contract.400 Michael Mattioli has argued, “unlike software, big
data practices cannot be reverse engineered. That is, an expert
cannot decipher just how a set of data was assembled with
nothing more to work from than the data itself.”401 Because
the computer code for an algorithm is so complex, simply
reading the code does not make it interpretable without the
ability to plug in data and see how the algorithm actually
functions.402 In addition, because algorithms increasingly
depend on the input of unique personal data, the outcomes
may be obscure and difficult to study in a systematic capacity
without access to the data as well.403 Finally, there are other
issues raised from relying on self-reporting data as well.404

 399 Christian Sandvig et al., Auditing Algorithms: Research Methods for
Detecting Discrimination on Internet Platforms 9 (paper presented to Data and
Discrimination: Converting Critical Concerns into Productive Inquiry, a
preconference at the 64th Annual Meeting of the Int’l Commc’n Assoc., May 22,
2014.
 400 See Source Code Definition, supra note 45, at 3.
 401 See Michael Mattioli, Disclosing Big Data, 99 MINN. L. REV. 535, 550 -53
(2015) (citing Peter S. Menell, The Challenges of Reforming Intellectual Property
Protection for Computer Software, 94 COLUM. L. REV. 2644, 2652 (1994) (noting
the use of trade-secret protection in software industry)).
 402 Sandvig et al., supra note 399, at 10.
 403 Id. (noting that the input of unique personal data means that “the same
programmatically-generated Web page may never be generated twice”). It is also
difficult to investigate when the data itself is proprietary, which is often the case.
See generally Amanda Levandowski, How Copyright Law Can Fix Artificial
Intelligence’s Implicit Bias Problem, 93 WASH. L.R. 579, 605,
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3024938
[https://perma.cc/P93M-RX35] (discussing how copyright law, which restricts
access to training data, limits algorithmic accountability, including
transparency).
 404 Noninvasive user audits, which involves sharing the search queries from

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

170 CORNELL LAW REVIEW [Vol.104:PPP

Last, legal threats have stymied attempts toward
investigation and transparency. Consider this example. In
2005, an employee of Internet Security Systems, Michael Lynn,
was asked to reverse engineer Cisco’s Internet Operating
System (IOS), which served as the operating system for Cisco’s
routers used by both private and public entities.405 Lynn
discovered that the system had a security vulnerability, known
as “exploit code,” which could potentially allow a remote
intervention into the system.406 Although Cisco corrected the
flaw and ceased distributing the code that enabled the issue,
Lynn remained concerned that Cisco had failed to do enough
to encourage its customers to update its system and correct
the error.407 For this and other reasons, Lynn desired to give a
presentation at Black Hat. When Cisco instructed him not to
give the presentation, he quit his job, even though the
presentation would not have provided enough detail to enable
anyone to take advantage of the exploit without a great deal of
effort.408 Nevertheless, Cisco then sought a court order against
Lynn, preventing him from presenting, on the grounds that
there was a risk that he would disclose Cisco’s trade secrets to
the public.

Although the case eventually settled with an agreement
that Lynn would refrain from disseminating the information, it
serves as a powerful example of the growing reliance on trade
secrecy to impede the circulation of important public
information. This case, according to David Levine, “meant that
this information remained subject to laws designed to protect
Cisco’s interest, not the public’s,” running the risk that it
would deter others from reverse engineering for fear of
suffering the same fate.409

V
TOWARD CONTROLLED DISCLOSURE

As Frank Pasquale and others have explained, disclosure

users and their results (with their consent), have the advantage of not disturbing
the platform itself but can result in a serious sampling issue if the users queried
are not representative of the entire database, and so run the risk of reproducing
other kinds of errors. Id. at 11.
 405 Levine, Secrecy and Unaccountability, supra note 333, at 177.
 406 Id. at 178.
 407 Id.; see also Jennifer Granick, More Tales From ‘Ciscogate’, WIRED (Aug. 8,
2005), https://www.wired.com/2005/08/more-tales-from-ciscogate/
[https://perma.cc/HV6Q-ME29] (offering a first-hand account).
 408 Levine, Secrecy and Unaccountability, supra note 333, at 178.
 409 Id. at 180.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 171

of source code is a deceptively simple solution to the problem
of algorithmic transparency.410 At best, it represents only a
partial solution to the issue of accountability in AI because of
the complexity and dynamism of machine-learning
processes.411 Many systems have also not been designed with
oversight and accountability in mind, and thus, can be opaque
to the outside investigator.412 Auditing, too, has significant
limitations, depending on the technique.413 Further, even if
source code disclosure reveals some elements of a decision
reached through automated processing, it cannot be fully
evaluated without an accompanying investigation of the
training data—why certain types of data were selected (or not),
the choice of rules of operation, and the steps taken to validate
the decision.414 Transparency, then, does not mean
interpretability.415 And then there is the problem of the
dynamic nature of algorithmic decision-making, which often
amplifies issues of opacity as well.416

All these critiques are certainly true in demonstrating that
access to the source code is only one part of a larger issue of a
lack of transparency in AI. However, at the same time, a legion
of civil and criminal cases involving software have

 410 PASQUALE, supra note 347, at 142; see also Pasquale’s work on qualified
transparency in Beyond Innovation and Competition: The Need for Qualified
Transparency in Internet Intermediaries, 104 NW. L. REV. 105, 162, 164 (2010)
[hereinafter Beyond Innovation] (describing qualified transparency as an
“excellent method” for creating a self-sustaining public).
 411 Joshua A. Kroll et al., Accountable Algorithms, 165 U. PA. L. REV. 633, 638,
660 (2017). A code audit, sometimes referred to as “white box testing,” can
include examinations of, as one report describes, “specific system behavior—logs
that record data access, calculations, decision trees, and errors,” and, in some
cases of automated systems, might include a review of the statistical models used
to rank, sort, and score inputs. See the excellent study AARON RIEKE, MIRANDA
BOGEN, & DAVID G. ROBINSON, PUBLIC SCRUTINY OF AUTOMATED DECISIONS: EARLY
LESSONS AND EMERGING METHODS 19 (detailing these methods),
https://www.omidyar.com/sites/default/files/file_archive/Public%20Scrutiny
%20of%20Automated%20Decisions.pdf [https://perma.cc/H4DN-DXC4].
 412 Kroll et al., supra note 411, at 649–50. For a discussion of Kroll’s article,
see Pauline Kim, Auditing Algorithms for Discrimination, 166 U. PA. L. REV. ONLINE
189 (2017).
 413 Kroll et al., supra note 411, at 650–52.
 414 Brauneis & Goodman, supra note 338, at 130–31.
 415 Brauneis & Goodman, supra note 338, at 131. For an excellent discussion
of different types of transparency in automated decision-making, see Cary
Coglianese, Transparency and Algorithmic Governance 26, U. Penn. Law Pub. Law
& Legal Theory Research Paper Series, Research Paper No. #18-38),
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3293008
[https://perma.cc/2PQU-LRKR] (discussing fishbowl and reasoned
transparency).
 416 Brauneis & Goodman, supra note 338, at 131–32.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

172 CORNELL LAW REVIEW [Vol.104:PPP

demonstrated that access to the source code is often an
essential starting place in performing a full investigation or
independent validation of an automated decision.417

As I have suggested, the seclusion of source code masks
an underlying problem within intellectual property law that
intellectual property reform alone cannot solve. The problem,
essentially, is two-fold: one involves the dynamics of a closed,
privatized system of governance, and the other involves the
failure of intellectual property principles to incentivize
harmonization and disclosure in cases of significant public
interest. Both these issues have crystallized around source
code secrecy as a major area of concern.

Because of the complexity of the problem, we need to study
a wide range of variables in reaching an individualized
solution, interrogating the degree, depth, scope, timing, and
audience of the disclosure.418 Each of these elements will vary
according to the type of issue presented, particularly whether
it implicates state or privately sponsored deprivations of
entitlements. At times, therefore, some limited disclosure¾to
experts, for example—might be more appropriate for
investigative purposes.419

Source code is especially paradoxical, as I have argued,
because its very nature is composed of both public and private
property: many programming companies, as I have suggested,
integrate open source code into their proprietary software.420
Evidence suggests that over two-thirds of companies build
proprietary software using open source code.421 Other
companies, as Chessman and others have pointed out, rely on
code, algorithms, or software that draws from industry
standards that are publicly available.422 And yet, we have no
way of knowing, when a company asserts trade secret
protection, whether the underlying asset would satisfy the

 417 See, e.g., Chessman, supra note 43, at 207 (“[A]ccess to source code is
especially significant when evidence produced by a computer plays a prominent
role in a defendant’s trial . . . limiting source code access means . . . ‘the
defendant is effectively disabled from answering the one question every rational
juror needs answered:’ why does a computer think that you are guilty?”)
(footnotes omitted).
 418 Id. For an excellent study of disclosure and its effects, see Bert I. Huang,
Shallow Signals, 126 HARV. L. REV. 2227 (2013); see also Sandeen’s excellent
discussion of disclosure, supra note 282.
 419 PASQUALE, supra note 347, at 142.
 420 Chessman, supra note 43, at 210.
 421 Id. at n.224.
 422 Id. at 210.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 173

doctrinal definition.423
The problem, as I have suggested, is not just a problem of

opacity¾it may also implicate problems of privatization. 424 In
such cases, building accountability does not simply mean
ensuring greater transparency, but it also encompasses, at
times, some form of judicial review to ensure accountability as
well.425

In addition, any menu of potential solutions must be
situated within the background of the fluid nature of
intellectual property protection for software, which I have
argued has only served to heighten the attractiveness of trade
secrecy protection for source code. At the same time, however,
one must be pragmatic about the prospects for a solution.
Patent protection for software is indeterminate and unlikely, at
best. And copyright law has largely bent over backwards to
accommodate the secrecy of source code, essentially
eviscerating its own system of deposit requirements that serve
the public interest. These scenarios make trade secrecy an
especially attractive backup option, but they also impede a
more systemic approach toward balancing the interests of
property, privacy, and disclosure.

In this concluding section, I sketch out a brief architecture
of what I would call a “controlled disclosure” regime¾one that
seeks to balance out the incentives at play in intellectual
property, but one that also recognizes the pillars of discovery,
disclosure, and open governance in order to address the
growing issue of source code secrecy. This section explores a
spectrum of solutions, from systemic to case-by-case
solutions, which can be loosely clustered into “ex ante”
solutions (which aim toward proactively incentivize disclosure
of source code for limited public access) and those which might
be construed as “ex post” solutions (which aim to particularize
disclosure in a specific dispute). The idea here is to sketch out
a wide range of tools for lawyers and litigators addressing these
issues (recognizing, of course, that many of these are only
superficial fixes to a deeper set of problems).

 423 Id. at 209–10.
 424 As Ken Bamberger has observed in a related context, “even though the
functions involved are traditionally those of a public actor, the management of
those functions is private.” Bamberger, supra note 15, at 726.
 425 Id. at 726–27.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

174 CORNELL LAW REVIEW [Vol.104:PPP

A. Strategies Towards Transparency

1. Reforming Intellectual Property: Channeling and
Election Doctrines

The most systemic avenue of reform could involve
addressing the current state of overlap between copyright,
patent, and trade secret protection of software (and source
code specifically). Here, the paradox of software secrecy is
exacerbated by the longstanding judicial principle that the
same aspects of software should not be protected by
overlapping patent and copyright protections.426 And yet, when
it comes to source code, or even broader aspects of software,
more recently, this overlap seems to be not only welcomed, but
also undertheorized.427

Most cases of overlap do not present a problem for
intellectual property owners.428 As Laura Heymann has
explained, overlap is similar to a “belt-and-suspenders form of
enforcement, allowing the intellectual property owner to resort
to a second mode of protection should the first fail or expire.”429
In the case of software, as this Article has argued, the overlap
(coupled with the shifting boundaries of protection) has led to
a reliance on secrecy over disclosure, even in cases with strong
public interest implications, largely because the law has
facilitated it.

Scholars, including Mark McKenna and Christopher
Sprigman, have recognized the role played by “channeling”
doctrines, which operate to police the boundaries between
various areas of intellectual property law, particularly with
respect to subject matter.430 The functionality doctrine in
trademark law is a good example of this because it acts to
ensure that aspects that are functional are “channeled” into
patent, rather than trademark, law for protection.431

However, software—and the way that the law has governed

 426 Samuelson, supra note 14, at 1.
 427 Id. at 1, 3–4 (citing Oracle America, Inc. v. Google Inc., 750 F.3d 1339 (Fed.
Cir. 2014) as evidence).
 428 See Heymann, supra note 134, at 240.
 429 Id. at 240.
 430 Mark P. McKenna & Christopher Jon Sprigman, What’s In, and What’s
Out: How IP’s Boundary Rules Shape Innovation, 30 HARV. J.L. & TECH. 491, 542
(2017). The notion of channeling versus overlap has been addressed by scholars
mostly in the context of design patents. See Mark P. McKenna, An Alternate
Approach to Channeling?, 51 WM. & MARY L. REV. 873, 875–76 (2009); Heymann,
supra note 134, at 240.
 431 McKenna, An Alternate Approach to Channeling?, supra note 430, at 876.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 175

it—lacks a comparable “channeling” influence, to the
detriment of the public. Consequently, some have argued,
particularly in the context of design patents, that an election
doctrine may remedy the issue of overlap.432 The same may be
true here. As Christopher Buccafusco and others have
described, the “election” requirement historically required that
a creator choose a single form of protection for the work.433
This view, they argue, stemmed from the court’s perception
that a work with multiple components may require that
different regimes apply to these different parts.434 Yet as
Buccafusco points out, the absence of a doctrine for election
“has increasingly meant that IP owners use different IP regimes
to protect the same aspects of the same works, leading to
overlapping protection.”435 This allows the IP owner to
“leverage the advantages of all of these systems
simultaneously, rather than accepting the limitations of a
given system as the price of obtaining its benefits.”436

One solution, therefore, is to create a regime that
essentially requires software owners to elect between
doctrines, to force owners to choose at the outset a particular
area of protection, or, relatedly, agree to relinquish one area of
law if the owner selects one over the others.437 One could
imagine a channeling regime at the outset (when a creator
seeks protection) or an election doctrine later on (if one chooses
to litigate an infringement claim).

This argument has been made previously in the context of
software, and it has intuitive appeal at first glance.438 This
framework for straightforward segregation would suggest that

 432 See Christopher Buccafusco, Mark Lemley & Jonathan Masur, Intelligent
Design, 68 DUKE L.J. 75, 81 (2018).
 433 Id. at 127 (citing Jason J. DuMont & Mark D. Janis, U.S. Design Patent
Law: A Historical Look at the Design Patent/Copyright Interface, in THE
COPYRIGHT/DESIGN INTERFACE: PAST, PRESENT & FUTURE 351 (Estelle Derclaye ed.,
Cambridge Univ. Press 2018)); Douglas R. Wolf, The Doctrine of Elections, 9
CARDOZO ARTS & ENT. L.J. 439 (1991) (noting that the doctrine of election has
been “substantially abandoned”).
 434 See Buccafusco et al.’s discussion of a 1974 case involving a watch design,
In re Yardley, where the Court of Customs and Patent Appeals rejected the
election doctrine. Buccafusco et al., supra note 432, at 128 (discussing In re
Yardley, 493 F.2d 1389 (C.C.P.A. 1974)).
 435 Id. at 128.
 436 Id. at 128–29.
 437 Heymann, supra note 134, at 241.
 438 See Buccafusco et al., supra note 432, at 129 (citing Michael J. Kline,
Requiring an Election of Protection for Patentable/Copyrightable Computer
Programs, 6 COMP. L.J. 607 (1986)).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

176 CORNELL LAW REVIEW [Vol.104:PPP

patents should protect functional implementation of concepts,
copyright protects various modes of expression, and trade
secrecy should be available for the protection of functional
elements when patent protection is unavailable or
undesirable.439 Under an election-based theory, one’s choice
would be limited to individual features of a product, rather
than the product as a whole, enabling software—which is a
collection of various elements—to have different areas of
protection, depending on the attribute that is being
protected.440

Yet if we look closely, we see some difficulties with an
election or channeling approach in the context of software. As
many have pointed out, trade secrecy became a dominant form
of protection not because of a pointed intellectual property
strategy but because of the sheer mass of code that is out
there, always changing, and because trade secret protection is
so informal and easy to assert without challenge.441 Moreover,
it is also a powerful weapon in litigation, particularly compared
to copyright, since claims do not require evidence of copying
and can be narrowed further during discovery. Further,
without a corresponding legislative fix that requires disclosure
in the context of a deposit, a developer can still copyright code
without disclosing it.442 And, given the lessons of history, a
regime that requires full disclosure might actually have the
opposite effect of incentivizing trade secrecy even further.

The same is effectively true for software patents, even if
one obtains protection. Evidence shows that the Federal
Circuit, even when it accepts software patents, has been loathe
to require disclosure of source code as a precondition to
patentability.443 And there are other areas where patent law’s
requirements have been more lax than others. More than
fifteen years ago, Dan Burk and Mark Lemley argued that
recent patent law decisions had begun to demonstrate a

 439 Maier, supra note 145, at 151.
 440 See Buccafusco et al., supra note 432, at 132, making this argument in
the context of design patents.
 441 See, e.g., Maier, supra note 145, at 162 (“[I]t is clear that a computer
program including logic, structure, and organization can qualify for trade secret
protection as long as it is not generally known.”).
 442 See Note, Copyright Protection of Computer Program Object Code, 96 HARV.
L. REV. 1723, 1740 (1983).
 443 See Ajeet P. Pai, Note, The Low Written Description Bar for Software
Inventions, 94 VA. L. REV. 457, 479 (2008) (noting that there is a much lower bar
for disclosures of software-related inventions compared to biotechnological
inventions).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 177

striking willingness to excuse software inventions from the
enablement and best mode requirements, limiting the goal of
disclosure that is at the heart of the patent system.444 In a
variety of cases, the Federal Circuit held that software
patentees need not disclose source or object code, flow charts,
or other detailed descriptions of their programs.445 The
collective result of these cases, they argue, is an effective
nullification of the disclosure requirement for software
patents.446 “[S]ince source code is normally kept secret,” they
explain, “software patentees generally disclose little or no detail
about their programs to the public.”447

As a result, as a few leading experts in the field, Richard
Stallman and Mitch Kapor pointed out, even when software
patenting was readily available, it did not affect the preexisting
domains of trade secrecy.448

By withholding the source code, companies keep secret not
a particular technique, but the way that they have combined
dozens of techniques to produce a design for a complete
system. Patenting the whole design is impractical and
ineffective. Even companies that have software patents still
distribute programs in machine code only[,]

concluding that in no area do software patents reduce trade
secrecy.449

 444 See Dan L. Burk & Mark A. Lemley, Is Patent Law Technology-Specific?, 17
BERKELEY TECH. L.J. 1155, 1156 (2002).
 445 Id. at 1162-63 (discussing Northern Telecom v. Datapoint Corp., 908 F.2d
931, 941 (Fed. Cir. 1990) and Fonar Corp. v. Gen. Elec. Co., 107 F.3d 1543, 1549
(Fed. Cir. 1997)). Indeed, Burk and Lemley point out that in multiple cases, the
Federal Circuit has been so relaxed that it has permitted applicants to meet the
requirements for written description and best mode, even when the specification
fails to even use the terms “computer” or “software.” Id. at 1164. Despite the
relaxation of the requirements for disclosure, however, the authors are careful to
point out that obviousness can be a rather tough bar for software patents to
satisfy. See id. at 1167–68 (applying this analysis to Amazon’s ‘one-click’
shopping feature). For more discussion of how obviousness operates in the
context of software, see Jeanne C. Fromer, The Layers of Obviousness in Patent
Law, 22 HARV. J. L. & TECH. 75, 95–98 (2008).
 446 Burk & Lemley, supra note 444, at 1164–65.
 447 Id. at 1165. In fact, one commentary from 1996 described source code
listings as “primarily a relic of the early days of computer program patents when
it was unclear what would suffice for sufficiency of disclosure.” See id. at n.42
(citing MELVIN C. GARNER ET AL., Advanced Claim Drafting and Amendment Writing
Workshop for Electronics and Computer-Related Subject Matter, in ADVANCED
CLAIM AND AMENDMENT WRITING 1996, 227, 275 (PLI 1996)).
 447 Id. at 1165–66.
 448 Garfinkel et al., supra note 228, at 54.
 449 Id. at 54.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

178 CORNELL LAW REVIEW [Vol.104:PPP

2. Reforming Copyright: Deposit and Demarcation
Possibilities

Even if a systemic approach is not available, what about
reforming copyright law? As we know, the Copyright Office will
register software without requiring the deposit of the source
code, and generally speaking, copyright registration is only
required when a person intends to file suit for infringement.450
Deposit requirements, too, are not always enforced and
remedies for noncompliance have been referred to as largely
“toothless.”451 Nevertheless, this section discusses two
possibilities: the first a system that reinvigorates disclosure
through deposit, and the second a system that focuses on
demarcating source code for discovery and other purposes.

First, given the indeterminate benefits of relying on fair use
and reverse engineering in addressing source code secrecy, it
makes sense to consider a simple legislative fix regarding
source code protection in copyright law. Here, it may be worth
revising copyright’s formalities, like registration and deposit,
in certain cases.452

As this Article has discussed, publication formalities
abound in copyright law¾with the notable exception of
software.453 Until 1976, federal protection under copyright
could not attach until something was published, except in one
context: source code, which is protectable without publication,
comprehensive deposit or disclosure.454

For various reasons, I would not favor a publication
requirement for all forms of source code, even under copyright
law. Complete transparency of code, particularly in cases
where the source code addresses issues of vital public
importance like electronic voting, requires some forms of
seclusion and security to protect against hacking, gaming, or
other forms of interference.455 Moreover, a fully transparent
society brings significant risks of invasions of privacy,
voyeurism, and theft of intellectual property.456 Even
disclosures oriented to the public interest can become
compromised by enabling other, less publicly-minded

 450 See Note, Copyright Protection of Computer Program Object Code, 96 HARV.
L. REV. 1723, 1741 & n.120 (1983).
 451 Gibson, supra note 20, at 208.
 452 See id.
 453 See id. at 205–06.
 454 Id. at 206. See infra Part IC.
 455 Id. at 206–07.
 456 PASQUALE, supra note 347, at 142.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 179

individuals to “game” or abuse the algorithm.457
At the same time that these concerns exist, it may make

sense for us to revisit formalities nonetheless. For example,
even if a uniform publication requirement seems unnecessarily
overbroad and undesirable from a security perspective, there
may be room to explore the possibility of a more pronounced
deposit requirement with state officials or special masters in
cases of strong public interest.458 In such circumstances, it
may be feasible to make the code available for inspection under
certain circumstances warranting public interest.459

Indeed, the sui generis approach explored by Samuelson
and others in their famous Manifesto argued that a registration
and licensing system, coupled with an electronic repository for
state-of-the-art software, would enable beneficial exchanges
and facilitate low-cost transactions of software reuse.460 A
repository would facilitate greater public access, making more
knowledge available to software engineers and benefiting the
public as a result.461 Others have also argued that a
compulsory licensing regime might be appropriate for certain
applications, as well.462

Decades ago, the difficulty of finding the right mode of
protection, it seems, actually motivated one agency in Japan,
the Ministry of Industry and Trade, to propose a similar sui
generis regime of protection that would last only fifteen years,
and required deposit of source code.463 Most interestingly, it
also proposed an arbitration system that empowered it to grant
licenses to users when justified by the “public interest.”464
That proposal died as the result of negotiations with the U.S.

 457 Sandvig et al., supra note 399, at 9 (noting that even Reddit, despite its
culture of transparency, doesn’t share all of its source code with the public).
 458 See Christopher Sprigman, Reform(aliz)ing Copyright, 57 STAN. L. REV. 485,
532–33 (2004).
 459 See Gibson, supra note 20, at 208–09. Indeed, Ruckelshaus expressly
authorizes this sort of disclosure. See Ruckelshaus v. Monsanto Co., 467 U.S.
986, 1015–16 (1984) (allowing for government disclosure of trade secrets to
eliminate research duplication and to streamline pesticide registration process).
 460 Samuelson, supra note 261, at 2425.
 461 Id. at 2429.
 462 See Peter S. Menell, Tailoring Legal Protection for Computer Software, 39
STAN. L. REV. 1329, 1371 (1987); Samuelson, supra note 261, at 2414–15; see
also Anthony Mahajan, Intellectual Property, Contracts, and Reverse Engineering
After ProCD: A Proposed Compromise for Computer Software, 67 FORDHAM L. REV.
3297, 3331–32 (1999) (suggesting a “compromise” between compulsory licensing
and a complete ban on reverse engineering).
 463 Oman, supra note 100, at 31.
 464 Id.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

180 CORNELL LAW REVIEW [Vol.104:PPP

Government, who expressed concern regarding its potentially
lowered standard of protection.

Second, even aside from these options for limited
disclosure, there are certainly middle pathways that can be
explored in the marketplace and the courtroom.465 It bears
noting the curious parallel that emerges here between source
code (which might not turn out to be as original as the
developer might warrant) and the kind of concerns that
animated the filtration/abstraction tests that illuminated the
early cases of non-literal infringement. Just as the notion of
non-literal infringement implicates the risks of protecting more
abstract work that comes from the public domain, literal
infringement carries the same risk.

The idea, above, that is captured by the notion of filtration
is that there is a spectrum of original and nonoriginal content
in software. And for this reason, it may be possible to develop
a demarcation system that offers some degree of openness to
capture the complexity of code. Consider Creative Commons
as an example, which in the copyright context enables a menu
of options regarding openness for reuse.466 Here, we could
easily imagine public copyright demarcations that mark
software according to: (1) full release of source code; (2) partial
release of source code generally; (3) restricted release to certain
parties.467 Given the comparative popularity of the GPL model
in open source projects, this may turn out to be an area of
fruitful possibility.

3. Reforming Contract Law and Procurement
Throughout this Article, I have mostly emphasized the

intellectual property aspects of source code protection. There
is, however, more to the story involving the role played by
contract law in the early years of software’s uncertain
protectability. Since Congress did not amend the Copyright
Act to include computer programs until 1980, and since patent
protection emerged only after 1994 as a result of In re Alappat,
trade secrecy became undergirded with a strong reliance on
contract law (in the form of shrinkwrap licenses) for

 465 For an excellent account of reinvigorating copyright’s formalities, see
Sprigman, supra note 458, at 554–64.
 466 See CREATIVE COMMONS, https://creativecommons.org/about/
[https://perma.cc/T8NL-B2KS] (last visited Sept. 29, 2018) (introducing a
network of copyright licenses allowing for greater customization).
 467 This list of options modifies the very helpful framework set forth by Ince et
al., supra note 388, at 487.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 181

protection.468 As a result, contract law has mostly been used
to foreclose things like reverse engineering and imposing
robust controls over subscribers that have been interpreted to
foreclose some forms of auditing.469 While this section begins
by agreeing with many of the critiques of shrinkwrap license
enforceability, I also wish to identify two potentially fruitful
areas of challenge: the first involving a challenge of the
Computer Fraud and Abuse Act to permit third party auditing,
and the second involving the potential for contractual reform
with government entities.

Although there has been a healthy and robust debate
regarding the enforceability of shrinkwrap licenses among
scholars, courts mostly held them unenforceable until the
landmark Seventh Circuit case of ProCD v. Zeidenberg.470
Although I would definitely sympathize with the arguments
regarding unenforceability, it is important to note the need for
other avenues to protect researchers in their efforts to increase
transparency through auditing. The world’s leading computer
science review community¾the Institute of Electrical and
Electronics Engineers (IEEE)¾requires technically,
managerially, and financially independent testing for any
software that might cause “catastrophic consequences,”

 468 See Mahajan, supra note 462, at 3297, 3310 & n.110.
 469 Lemley, supra note 267, at 1246–47.
 470 Mahajan, supra note 462, at 3310 (citing ProCD, Inc. v. Zeidenberg, 86
F.3d 1447 (7th Cir. 1996)). There is vast literature on the topic of enforceability.
See, e.g., David A. Einhorn, Shrink-Wrap Licenses: The Debate Continues, 38
IDEA 383, 401 (1998) (concluding that there is a circuit split regarding the
enforceability of shrinkwrap contracts); Robert W. Gomulkjewicz & Mary L.
Williamson, A Brief Defense of Mass Market Software License Agreements, 22
RUTGERS COMP. & TECH. L.J. 335, 337 (1996) (arguing that courts and legislatures
should validate the use of end user license (shrinkwrap) agreements); Mark A.
Lemley, Intellectual Property and Shrinkwrap Licenses, 68 S. CAL. L. REV. 1239,
1253 n.53 (1995) (discussing the enforceability of shrinkwrap contracts); Mark
A. Lemley, Shrinkwraps in Cyberspace, 35 JURIMETRICS J. 311, 317 (1995)
(stating that “shrinkwrap licenses . . . do not fare well in the courts”); Apik
Minassian, Comment, The Death of Copyright: Enforceability of Shrinkwrap
Licensing Agreements, 45 UCLA L. REV. 569, 608 (1997) (arguing that the Seventh
Circuit inappropriately applied the Copyright Act in ProCD to enforce the
shrinkwrap agreement); Gary H. Moore & J. David Hadden, On-line Software
Distribution: New Life For ‘Shrinkwrap’ Licenses?, 13 COMP. LAWY. 1–10 (Apr.
1996) (arguing that online shrinkwrap licenses “stand[] a far greater chance of
being enforced than [their] hard-copy cousin[s]”); Christian H. Nadan, Software
Licensing in the 21st Century: Are Software “Licenses” Really Sale, and How Will
the Software Industry Respond?, 31 AIPLA Q.J. 555, 640 (2004) (remarking that
“only one significant case in the last five years has refused to enforce a
shrinkwrap”); Maureen A. O’Rourke, Drawing The Boundary Between Copyright
And Contract: Copyright Preemption of Software License Terms, 45 DUKE L.J. 479,
537 (1995) (arguing that shrinkwraps may be enforceable).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

182 CORNELL LAW REVIEW [Vol.104:PPP

defining them to include anything that causes a “[l]oss of
human life, complete mission failure, loss of system security
and safety, or extensive financial or social loss.”471

Indeed, shifts in recent case law suggest growing areas of
protection for independent auditing. Recently, the ACLU sued
on behalf of four researchers who maintained that the
Computer Fraud and Abuse Act—a national anti-hacking
law—prevented them from scraping data from sites and from
creating fake profiles to investigate algorithmic discrimination
on the basis of race and gender.472 The testers’ concern was
that the law permitted researchers to be vulnerable to criminal
and contractual penalties because the research might involve
violating one of the sites’ Terms of Service.473 Ironically, in real
space, even though the use of crowdsourcing or human testers
might be totally uncontroversial, the use of computer programs
to replicate human behavior is often barred by contract.474

But the outcome of the Sandvig case was a strong
statement in favor of protection for auditing techniques. There,
the court joined the Second, Fourth and Ninth Circuits, which
have stated that the CFAA prohibits “only
unauthorized access to information” (e.g. hacking).475 By
narrowing the reach of the CFAA, the Court rejected a broader
interpretation adopted by the First, Fifth and Eleventh Circuits
that the prohibited activities involved an unauthorized use of

 471 IEEE STANDARDS ASS’N, IEEE STD. 1012-2016: IEEE STANDARD FOR
SYSTEM, SOFTWARE, AND HARDWARE VERIFICATION AND VALIDATION 196, 199
(2016); see also Nathaniel Adams, What Does Software Engineering Have to Do
with DNA?, 42 CHAMPION 58, 65 (2018) (discussing importance of subjecting PG
systems to software engineering best practices and independent reviews).
 472 In the case, two researchers attempted to run a sock puppet audit by
creating a number of automated bots that would replicate the browsing habits of
individuals of different races, and then visit a real estate web site and record the
properties that they were shown and advertised to. See Sandvig v. Sessions, 315
F. Supp. 3d 1, 8–10 (D.D.C. 2018); Complaint for Declaratory and Injunctive
Relief at 23–24, Sandvig v. Lynch, No. 1:16-cv-01368 (D.D.C. June 29, 2016); see
also Annie Lee, Online Research and Competition Under the CFAA: The Revocation
Paradigm of Interpreting Access and Authorization, at 26–29 (draft on file with
author); Sandvig et al., supra note 399, at 13.
 473 Complaint for Declaratory and Injunctive Relief at 24–25, Sandvig v.
Lynch, No. 1:16-cv-01368 (D.D.C. June 29, 2016).
 474 See Sandvig et al., supra note 399, at 15. Currently, federal courts
disagree on the question of whether individuals who violate the Terms of Service
restrictions can be prosecuted under the “access” provision of the CFAA, which
provides for fines and punishment of anyone who “intentionally accesses a
computer without authorization or exceeds authorized access, and thereby
obtains . . . information from any protected computer” 18 U.S.C. § 1030(a)(2)(C)
(2018).
 475 Sandvig, 315 F. Supp. 3d at 22–26 (emphasis added).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 183

the information that went beyond authorization for specific
purposes under the Terms of Service.476

Even outside of reforming the private, contractual nature
of Terms of Service agreements and their interpretations,
another potential area of success involves reforming
contractual language with government parties.477 In these
contexts, contract law can serve as a tool for access, rather
than the opposite. Previously, researchers reported that some
cities, the City of San Francisco among them, rarely fought
language in contracts with third party vendors that recognized
that the algorithms must be kept from the public.478 Yet there
is some evidence that this is changing, and that more and more
entities are looking to enhance openness through government
contractual requirements that narrow, rather than expand,
trade secrecy.479

In an important study performed by Robert Brauneis and
Ellen Goodman, the authors note that “governments do not,
and need not, uniformly accede to contractor wishes for
nondisclosure and data ownership.”480 In Florida, for example,
a pretrial risk assessment tool developed by the Arnold
Foundation for use in the state court system was governed by
contractual language that required the Foundation to
specifically designate trade secret material or risk waiving the
right to object to disclosure. By simply shifting the burden to
the contractor to identify and mark its protected material,
filtering out what is protected from what is public, the risk of
overclaiming is reduced. It is also important to note that even
though the Foundation would have preferred a broader scope
of nondisclosure, it still readily agreed to a more transparent
formulation.481

Indeed, as Brauneis and Goodman point out, when the
government is doing the procuring, it is often in a more
powerful position to ensure greater transparency. This means
that governments can adopt a default position that presumes
that all contractor-provided information is public in nature, or,

 476 Id. at 22.
 477 Joel Reidenberg discussed procurement as a potential avenue of reform in
his landmark Lex Informatica, supra note 15, at 589.
 478 Abraham, supra note 1.
 479 See the work being done by Jason Schultz in advising government entities.
E-mail from Jason Schultz to IPProfs (Nov. 28, 2018) (on file with author); AI NOW,
https://ainowinstitute.org/aap-toolkit.pdf, at 16–27.
 480 Brauneis & Goodman, supra note 338, at 164.
 481 Id. at 165.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

184 CORNELL LAW REVIEW [Vol.104:PPP

alternatively, that the intellectual property produced under the
contract is owned by the state. Indeed, in Illinois, their
research revealed that at least one related contractor agreed to
transfer ownership of all intellectual property rights under the
contract to the state. In cases where a jurisdiction designs
custom algorithms, the authors argue that it would be entirely
appropriate to ask for ownership of the source code, or, at the
very least, a nonexclusive license that authorizes the
jurisdiction to authorize others; relatedly, a jurisdiction should
also assert rights over any resulting reports that rely on
particularized data.482 In all cases, the authors urge
jurisdictions to link their disclosure provisions to requests for
full documentation, so that further investigation can take
place, if needed.

4. Reforming Governance: Open Code Strategies
The term “open code governance” was first used over

twelve years ago by Danielle Citron in her sterling exploration
of the topic to denote a world where source code used by
government was publicly disclosed.483 Yet, as I have argued in
this Article, the issues that she raised with respect to closed
code governance have only become further exacerbated in a
world where algorithmic decision-making replaces the norm of
human judgment.484 At the same time, however, that she
sounded the alarm on closed code in automated judgments, we
have also seen a concomitant rise of commitment, at least
during the Obama era, towards greater code transparency in
government.485

In studying ways to reframe the source code paradox that
is the central theme of this Article, we can turn to some of the
core tenets of open government initiatives, and see whether
some examples might shed light on particular ways to
encourage greater transparency.486 A recently proposed law in

 482 Id. at 166.
 483 Citron, supra note 8, at 358.
 484 Id. at 357–58.
 485 See Open Data Policy Guidelines, SUNLIGHT FOUNDATION,
https://sunlightfoundation.com/opendataguidelines/[https://perma.cc/8NT2-
QBSP] (last visited Sept. 29, 2018).
 486 For more on transparency, see generally OPEN GOVERNMENT:
COLLABORATION, TRANSPARENCY, AND PARTICIPATION IN PRACTICE (Daniel Lathrop &
Laurel Ruma eds., 2010) (discussing online tools for government transparency
and participation); Mark Fenster, The Transparency Fix: Advocating Legal Rights
and Their Alternatives in the Pursuit of a Visible State, 73 U. PITT. L. REV. 443, 480
(2012) (analyzing transparency advocacy campaigns); Free & Open Source

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 185

Washington State called for public agencies to compile an
“algorithmic accountability” report, requiring the system (and
its data) to be available for independent verification, testing,
and research to understand the potential for bias, inaccuracy,
or disparate impact.487 This is a perfect example of how law
can address the problem of opacity to enable better
transparency.

In the criminal justice context, Erin Murphy has proposed
a system that would empower a centralized national oversight
board to review and ensure defendants’ access to private or
proprietary data regarding certain forensic techniques.488 The
City Council law¾and the accompanying hearing—that
opened this article is just one example of a growing and larger
trend towards more openness in government through requiring
source code disclosure and enabling black box testing (which
allowed for mechanisms to test inputs and generate results
(outputs)).489

One part of “technological due process”490 (to use Citron’s
language), for example, might involve the creation of interactive
models that allow citizens to see how certain decisions might
change according to the input of a changing continuum of
variables.491 Or it might involve the creation of audit trails that

Software in Government with Code.mil, DIGITALGOV,
https://digital.gov/event/2018/06/05/free-open-source-software-in-
government-with-codemil/ [[https://perma.cc/YF4J-6GV6] (discussing
Code.mil, an effort to catalog open source efforts within the Department of
Defense); Open Government Initiative, THE WHITE HOUSE: PRESIDENT BARACK
OBAMA, https://obamawhitehouse.archives.gov/open [https://perma.cc/76ZP-
YMW2] (last visited Sept. 29, 2018) (discussing President Obama’s Open Data
Initiatives).
 487 See DJ Pangburn, Washington Could Be the First State to Rein in
Automated Decision-Making, FASTCOMPANY (Feb. 8, 2019),
https://www.fastcompany.com/90302465/washington-introduces-landmark-
algorithmic-accountability-laws [https://perma.cc/NEK7-5NV8].
 488 See Erin Murphy, The New Forensics: Criminal Justice, False Certainty,
and the Second Generation of Scientific Evidence, 95 CAL. L. REV. 721, 783–84
(2007).
 489 See Automated Decision Systems Used by Agencies: Hearing Before N.Y.C.
Council Comm. on Tech., 1 (Oct. 16, 2017) (testimony of Helen Nissenbaum, Julia
Powles & Thomas Ristenpart) [hereinafter Nissenbaum et al.]; see also Brauneis
& Goodman, supra note 338, at 164–75 (discussing other ways in which
governments can “promote transparency in their use of predictive algorithms”).
 490 See Danielle Keats Citron, Technological Due Process, 85 Wash. U. L. Rev.
1249, 1260–67 (2008).
 491 See Brauneis & Goodman, supra note 338, at 174-75. In Europe, the
GDPR has provided individuals with a “right to explanation.” See Commission
Regulation 2016/679, 2016 O.J. (L 119) Recital 71, Art. 13, Art. 15, Art. 22;
Bryan Ware, Is the ‘Right to Explanation’ in Europe’s GDPR a Game-Changer for
Security Analytics?, CSO (Jan. 29, 2018),

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

186 CORNELL LAW REVIEW [Vol.104:PPP

enable individuals to see notice of the basis of automated
government decisionmaking, particularly where public
benefits are concerned.492 That is why the New York City
Council law was so significant, because it aimed for a level of
accountability that had not yet been demonstrated at the
hands of local government. As a group of professors explained:

A Bill like this has the potential to address several stark
gaps in our regulatory landscape. When data is fed into a
computer system and used to allocate public services,
penalties, or policing, people deserve to know that the
system is functioning in accordance with the City’s aims
and values. That it is not arbitrary, unfair, or incorrect.
That it does not amplify inequality. This means being able
to find out what data is used, how it is processed, and what
else is taken into consideration in decision-making, both in
general and in individual cases. There should be
opportunities to test and contest the input, processing, and
output.493
Of course, that does not mean that the Bill solved every

issue of government opacity. For example, it failed to offer any
degree of transparency regarding the data that was being used
by an automated system, among other areas of oversight.494
Nor did its commitment to transparency take precedence over
proprietary claims in every instance.495

Nevertheless, there are powerful reasons for a commitment
to open code, particularly in areas of governance, but even in
private industry. Open source advocates argue that greater
exposure to diverse minds will only improve the code,
benefiting innovation more broadly.496 And the market often
favors open source projects as well, like the Apache web server,
the Linux operating system, or the GNU Compiler Collection
(GCC), which contains a variety of widely used compilers for
use with various programming languages.497 Even Microsoft
has a shared source initiative, which enables a select group of
researchers, universities, and government actors to view

https://www.csoonline.com/article/3251727/is-the-gdpr-s-right-to-
explanation-a-game-changer-for-security-analytics.html
[https://perma.cc/7HE2-J6JV].
 492 See Danielle Keats Citron & Frank Pasquale, The Scored Society: Due
Process for Automated Predictions, 89 WASH. L. REV. 1, 28 (2014).
 493 Nissenbaum et al., supra note 489, at 1–2.
 494 See id. for an excellent discussion.
 495 Id.
 496 See Source Code Definition, supra note 45.
 497 Id.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 187

selected portions of the Microsoft code (albeit under restricted
conditions).498

Part of these initiatives, understandably, are motivated by
the desire for better software security.499 But part of it might
also serve as an example to other entities about ways to share
code responsibly with known parties. Frank Pasquale has also
proposed making algorithms available to expert third parties
who would essentially hold them in escrow, thus allowing them
to be studied but not made public.500

Indeed, during the Obama era, the government sought to
develop a number of open government initiatives to support
ideas of transparency, participation, and collaboration.501
Back in 2009, the Department of Defense issued a
groundbreaking memorandum that articulated a clear
commitment to Open Source Software, requiring that executive
agencies conduct market research, and, in justified cases,
prefer open source software over other choices, due to cost and
other considerations.502 It touted open source’s added
reliability and security, due in no small part to its “continuous
and broad peer-review.”503 The memo also predicted that the
ease of modifying open source would enable DOD “to respond
more rapidly to changing situations.”504

Seven years later, in August 2016, the government
released its Federal Source Code Policy, which required that all
new custom source code be shared with other agencies for
reuse, and that at least 20% of all new government custom

 498 See id. (discussing Microsoft’s Shared Source Initiative). But see Anne-
Kathrin Kuehnel, Microsoft, Open Source and the Software Ecosystem: Of
Predators and Prey—The Leopard Can Change Its Spots, 17 INFO. & COMM. TECH.
L. 107, 107 (2008) (questioning whether Shared Source is truly a step towards an
embrace of Open Source philosophy).
 499 See Source Code Definition, supra note 45, at 5.
 500 See Sandvig et al., supra note 399, at 9 (citing Pasquale, Beyond
Innovation, supra note 410).
 501 See Fenster, supra note 486, at 483; Norm Eisen & Ben Noveck, Why an
Open Government Matters, THE WHITE HOUSE: PRESIDENT BARACK OBAMA (Dec. 9,
2009, 3:16 PM),
https://obamawhitehouse.archives.gov/blog/2009/12/09/why-open-
government-matters [https://perma.cc/PAW8-TVLW].
 502 See Memorandum from Dep’t of Def., Clarifying Guidance Regarding Open
Source Software (OSS) 4 (Oct. 16, 2009),
http://dodcio.defense.gov/Portals/0/Documents/FOSS/2009OSS.pdf
[https://perma.cc/4LPT-PEWC] (noting that OSS met the definition of
“commercial computer software” in almost all cases and should be afforded a
statutory preference in market research).
 503 Id.
 504 Id.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

188 CORNELL LAW REVIEW [Vol.104:PPP

code be released to the public as open source software.505 It
also created code.gov as a way to encourage greater citizen
participation, and to release its open source projects to the
public.506 Although the comprehensive nature of the memo
took some by surprise, open source projects had been
percolating for years before at the FDA, DOD, and CFPB.507

Of course, the core objection to open code governance has
to do with the political tides, which often turn in either
direction. Consider the fate of open code governance in our
current Federal Administration. Although the lead government
official on the project, Alvand Salehi, argued that this was not
a partisan issue, and observed “Code.gov is here to stay,” there
are few signs suggesting that the current administration has
prioritized the issue, even though the web site still exists.508

 505 See Nicole C. Baratta, Sharing America’s Code, OPENSOURCE.COM (May 18,
2017), https://opensource.com/article/17/5/sharing-americas-code
[https://perma.cc/RB7N-PLEP].
 506 Id.
 507 See Memorandum from Tony Scott & Anne E. Rung for the Heads of Dep’ts
& Agencies, Federal Source Code Policy: Achieving Efficiency, Transparency, and
Innovation Through Reusable and Open Source Software § 2,
https://sourcecode.cio.gov/ [https://perma.cc/N4CL-XWMD] (last visited Sept.
29, 2018); see also Petitions, GITHUB, https://github.com/WhiteHouse/petitions
[https://perma.cc/H4TM-TDS8] (last visited Sept. 29, 2018) (discussing Obama
administration’s decision to release source code for application that allows
individuals to directly petition governments); Petitions Under the Obama
Administration, THE WHITE HOUSE: PRESIDENT BARACK OBAMA,
https://petitions.obamawhitehouse.archives.gov/[https://perma.cc/D4QK-
QTPR] (last visited Sept. 29, 2018) (implementing APIs which enable users to
gather petition signatures on third-party platforms)). Even the FDA built
OpenFDA, U.S. FOOD & DRUG ADMIN., http://open.fda.gov
[https://perma.cc/56MH-WNYX] (last visited Sept. 29, 2018), which was an API
that enabled individuals to inquire about adverse drug reactions. The Consumer
Financial Protection Bureau also used open source software. See Matthew
Burton, The CFPB’s Source Code Policy: Open and Shared, CONSUMER FINANCIAL
PROTECTION BUREAU (Apr. 6, 2012), https://www.consumerfinance.gov/about-
us/blog/the-cfpbs-source-code-policy-open-and-shared/
[https://perma.cc/LL5E-2BAE].
 508 See Tom Cochran, Farewell to Obama, Our First Digital President, RECODE
(Dec. 1, 2016, 8:00 AM),
https://www.recode.net/2016/12/1/13765002/president-obama-digital-
trump-administration-open-source [https://perma.cc/2M3X-5YMN] (“It is
imperative that our government work with best-of-breed services and
technologies to move our nation forward, and the introduction of open source
models has allowed our government to do just that.”); Alex Handy, As Trump
Moves in, Code.gov Appears to Leave, SOFTWARE DEV. TIMES (Jan. 20, 2017),
http://sdtimes.com/code-gov/trump-moves-code-gov-appears-leave
[https://perma.cc/ERD9-GGCR] (noting that code.gov was down for a short
period, then returned to full functionality); Clare Malone, How Trump’s White
House Could Mess with Government Data, FIVETHIRTYEIGHT (Dec. 15, 2016, 6:29
AM), https://fivethirtyeight.com/features/how-trumps-white-house-could-

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 189

Nevertheless, aside from potential inertia at the federal
level, it appears that many municipalities are well underway in
opening up their code. One example that is particularly
instructive involves efforts by municipalities to adopt
information technologies and policies to make their data sets
available to the public.509 For example, the New York City
Mayor’s Office of Data Analytics (MODA) uses transparent,
open source code for its data analytics, and makes many of its
projects public.510 In October 2016, Boston launched
boston.gov, releasing its source code to the public, and
promising the public that anything it builds going forward will
be “open by default.”511 New York and its Metropolitan Transit
Authority even set up a contest for software developers who
develop apps based on government data sets.512 San Francisco
enacted the first open-data ordinance requiring city
departments to make their data sets open to the public.513

Aside from private and public initiatives towards shared
source, policymakers might also explore a more robust
engagement by government into creating incentives for more
open code initiatives. Ken Bamberger’s excellent work on risk
management technologies proposes the idea of regulators who
might issue forms of “approval regulation,” in which he
describes a process by which technology providers would offer
full transparency regarding their particular technologies, in
exchange for some form of legal safe harbor.514 Or we could
imagine a world by which government funding decisions would
be explicitly tied to more transparent forms of governance or
data-sharing with third parties to ensure greater

mess-with-government-data/ [https://perma.cc/32XG-J9A3] (discussing the
possibility that the practices of the Trump administration will “erode the quality
of government data collection and systems”).
 509 Fenster, supra note 486, at 484–85; see also Jennifer Shkabatur, Cities @
Crossroads: Digital Technology and Local Democracy in America, 76 BROOK. L.
REV. 1413, 1443 (2011) (addressing efforts by municipalities to provide digital
services).
 510 See Testimony of Don Sutherland, DEPARTMENT OF INFORMATION
TECHNOLOGY AND TELECOMMUNICATIONS, at 2 (Oct. 16, 2017) (on file with author).
 511 See Ben Miller, What’s New in Civic Tech: Uncertainty in the Age of Trump,
Open Source Projects Abound, GOV’T TECH. (Nov. 10, 2016),
http://www.govtech.com/civic/Whats-New-in-Civic-Tech-Uncertainty-in-the-
Age-of-Trump-.html [https://perma.cc/6VAN-HQRB]. For a great discussion of
various open-code projects in governance, see OPEN GOVERNMENT, supra note
486.
 512 Fenster, supra note 486, at 484.
 513 Id. at 485.
 514 See Bamberger, supra note 15, at 736.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

190 CORNELL LAW REVIEW [Vol.104:PPP

accountability.515

B. Strategies Towards Disclosure

1. Reforming Trade Secrecy: Identification and Filtration
As this Article has suggested, part of the issue that

inspires the paradox of source code secrecy stems from a
fundamental problem regarding an overbroad delegation of
authority to the trade secret owner. The identification of a
trade secret is an incredibly subjective determination, and the
plaintiff essentially enjoys total deference in deciding what to
include and how to describe the matter at issue.516 Indeed,
even the factors that are normally relied upon to determine
whether a trade secret exists (the extent to which the
information is known outside and inside the business; the
extent of measures taken to protect the secrecy of the
information; its value and its cost of development; and the ease
with which it could be acquired or duplicated by others) have
little to do with the underlying substance of what is
protected.517

As a result, courts display a systemic tendency to conflate
the question of whether a plaintiff has identified an alleged
secret with the question of whether the information is actually
a trade secret.518 Without a precise identification of the source
code elements, a defendant is essentially prevented from
comparing the claims against information in the public
domain, thereby hampering their defense.519

In a fascinating, comprehensive study, two software
lawyers, Tait Graves and Brian Range, explained that it is
“common for a trade secret plaintiff to alter its list of trade
secret claims as the case proceeds¾sometimes dramatically,

 515 See Nissenbaum et al., supra note 489.
 516 See Graves & Range, supra note 393, at 73.
 517 See, e.g., GlobeRanger Corp. v. Software AG, 836 F.3d 477, 492 (5th Cir.
2016) (listing factors); RESTATEMENT (FIRST) OF TORTS § 757 (AM. LAW INST. 1939)
(outlining the factors). To determine whether a trade secret exists, the
Restatement dictates examination of six factors: “(1) the extent to which the
information is known outside of his business; (2) the extent to which it is known
by employees and others involved in his business; (3) the extent of measures
taken by him to guard the secrecy of the information; (4) the value of the
information to him and to his competitors; (5) the amount of effort or money
expended by him in developing the information; (6) the ease or difficulty with
which the information could be properly acquired or duplicated by others.”
RESTATEMENT (FIRST) OF TORTS § 757 cmt. b (AM. LAW INST. 1939).
 518 Id. at 71–72.
 519 Id. at 68–69.

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 191

by replacing entire categories of information or technology, or
by re-combining slippery, multi-element ‘combination trade
secret’ claims into new subsets.”520 For example, the plaintiff
might claim an “entire process”¾consisting of its entire source
code, or its entire chip design¾or it might revise its claim in
different mixes of subsets, what Graves and Range refer to as
“gerrymander[ing] a claim so that the defense cannot focus its
research efforts on defeating the final version.”521

In one representative case from the Fifth Circuit, the court
concluded that the plaintiff had produced enough evidence for
a jury to conclude that “at least some portion of its . . . [source
code] constituted a trade secret.”522 The court simply reached
its conclusion based on assertions regarding the uniqueness
of the technology and its reliance on restrictions on the source
code’s circulation.523 At the end of the day, the court’s
reasoning risks becoming somewhat circular in nature:
something is secret because it is said to be secret, not because
the information, in actuality, is secret or because its secrecy is
proven with particularity.524

Certainly, more nuance or more willingness on the part of
courts to examine the material would be very valuable for two
reasons: first, as a substantive check on the nature of what is
claimed to be protected, and second, as a signaling function to
suggest that courts may be less deferential to future
claimants.525 Without a precise identification of the elements
of software code or hardware architecture, a defendant is
unable to compare the claims against information that is
already in the public domain, and therefore is unable to mount

 520 Id. at 68.
 521 Id. at 77. They further explain: “If we take, for example, seven software
algorithms and assume that five are in the public domain, the plaintiff might alter
the claim several times to create subsets of the seven where at least one of the
included algorithms is secret, in order to claim the non-secret algorithms as
secret as well.” Id.
 522 GlobeRanger Corp. v. Software AG, 836 F.3d 477, 492 (5th Cir. 2016).
 523 Id. (listing the six factors set forth in Restatement (First) of Torts § 757
(AM. LAW INST. 1939)). Note that the six-factor test is arguably obsolete now, given
the increased reliance on UTSA and DTSA factors in jury instructions. See
Correspondence from Tait Graves to author (Jan. 27, 2019) (on file with author).
 524 GlobeRanger, 836 F.3d at 492.
 525 See generally Bertelsen v. Allstate Ins. Co., 796 N.W.2d 685, 703–05 (S.D.
2011) (holding that “claims manuals, training materials, and salary
administration materials” constituted protected trade secrets); In re Bass, 113
S.W.3d 735, 740 (Tex. 2003) (holding that geological seismic data involving the
land was a protected trade secret).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

192 CORNELL LAW REVIEW [Vol.104:PPP

an effective challenge.526 The problem is made even worse by
the fact that courts rarely quote descriptions of trade secrets,
and therefore many published opinions do not serve as guides
for others to follow.527

I would argue for a more nuanced approach to literal forms
of infringement regarding source code, and one that might
interpret questions of source code protection through the lens
of the filtration tests outlined in the previous generation of
software case law.528 Expert testimony, for example, is used
under Altai.529 Gates, for example, emphasized the importance
of filtering out all unoriginal elements of a program, and there
is no reason not to subject source code to a more aggressive
mode of filtration as well.530 Further, in the non-software
context, there is mounting case law that requires parties to
describe, define, and identify, with increased particularity, the
trade secrets in question, rather than offer a blanket assertion
of confidentiality, even before the expert discovery process has
commenced.531 To some extent, some of that nuance is already
starting to occur in some software infringement cases, though
not yet in the criminal context.

One powerful solution to address the issue of trade secret
identification could be to adopt California’s version of the
Uniform Trade Secrets Act, which requires trade secret

 526 See Graves & Range, supra note 393, at 68–69.
 527 Id.
 528 See Gen. Universal Sys. Inc. v. Lee, 379 F.3d 131, 142–43 (5th Cir. 2004)
(“[T]he court filters out unprotectable expression by examining the structural
components at each level of abstraction to determine whether they can be
protected by copyright.”); Gates Rubber Co. v. Bando Chem. Indus., 9 F.3d 823,
836 (10th Cir. 1993) (noting that a court “must filter out those elements of the
program that are not protected by copyright”).).
 529 See Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 712–13 (2d Cir.
1992); Samuelson, supra note 147, at 1770–71 (noting that filtration narrows the
scope of copyright protection by removing “public domain elements of programs,
such as commonplace programming techniques, ideas, and know-how”).
 530 See Gates Rubber Co., 9 F.3d at 837–38 (citing Comprehensive Techs. Int’l,
Inc. v. Software Artisans, Inc., 3 F.3d 730, 736 (4th Cir. 1993); Comput. Assoc.
Int’l, 982 F.2d at 710; Brown Bag Software v. Symantec Corp., 960 F.2d 1465,
1474–75 (9th Cir. 1992); E.F. Johnson Co. v Uniden Corp. of Am., 623 F. Supp.
1485, 1499 (D. Minn. 1985)).
 531 See, e.g., Synygy, Inc. v. ZS Assocs., Inc., Civil Action No. 07-3536, 2015
WL 899408, at *6–9 (E.D. Pa. Mar. 3, 2015) (requiring further definition of the
scope of a trade secret during discovery);see also Michael P. Broadhurst & Ann
E. Querns, Define Trade Secrets Before and During Litigation,
BLANKROME (May 12, 2015), https://www.blankrome.com/index.cfm?contentI
D=37&itemID=3582 [https://perma.cc/DU5W-LZ2N] (“A series of decisions in
Synygy v. ZS Associates, No. 07-3536 (E.D. Pa. March 3, 2015), highlight the
critical importance of defining an enterprise’s trade secret information”).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 193

plaintiffs to provide a reasonably particular identification of
alleged secrets prior to pursuing discovery and provides
remedies for bad faith trade secret claims.532 Courts in several
states¾Delaware, Illinois, Massachusetts, Minnesota, and
possibly Florida, among others¾have adopted similar
requirements.533 But so far, California is the only state to
codify its rule, enacted in part because of its concern over
discovery abuses engaged in by trade secret plaintiffs.534 In a
2005 case, a California appellate court observed:

The letter and spirit of section 2019.210 require the
plaintiff, subject to an appropriate protective order, to
identify or designate the trade secrets at issue with
“‘sufficient particularity’” to limit the permissible scope of
discovery by distinguishing the trade secrets “‘from matters
of general knowledge in the trade or special knowledge of
those persons . . . skilled in the trade.’” . . . Where, as here,
the alleged trade secrets at issue consist of incremental
variations on, or advances in the state of the art in a highly
specialized technical field, a more exacting level of
particularity may be required to distinguish the alleged
trade secrets from matters already known to persons skilled
in that field.535

Even when the discovery and trial process unfolds, Graves and
Range evince a strong set of recommendations that force the
plaintiff to be specific in identifying its alleged secrets,
including directing courts to be wary of high-level, general lists
of trade secrets.536

In one influential California case, Altavion v. Konica
Minolta Systems, Laboratory Inc., the court spent a fairly long
time exploring the adequacy of the trade secret
identification.537 There, even as it offered a broad and inclusive
take on trade secrecy, it also drew up three tiers of “specificity
and secrecy,” ranging from the most secret (source code) to the

 532 See Graves & Range, supra note 393, at 71, 76, 83; CAL. CIV. CODE §
3426.1(d) (defining trade secret under California Uniform Trade Secrets Act).
Massachusetts has also adopted a similar statute. See MASS. GEN. LAWS ch. 93,
§ 42D(b) (2018) (“In an action . . . alleging trade secrets misappropriation a party
must state with reasonable particularity the circumstances thereof, including the
nature of the trade secrets and the basis for their protection.”).
 533 See Graves & Range, supra note 393, at 82 (collecting examples).
 534 See id. at 83 (noting the legislative discussion of abuses).
 535 See id. at 84 (quoting Advanced Modular Sputtering, Inc. v. Superior
Court, 132 Cal. App. 4th 826, 835–36 (2005)).
 536 See Graves & Range, supra note 393, at 91–96.
 537 Altavion, Inc. v. Konica Minolta Sys. Lab. Inc., 226 Cal. App. 4th 26, 43–
46 (2014).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

194 CORNELL LAW REVIEW [Vol.104:PPP

least secret (the idea of the use of barcodes to enable
self-authentication of documents).538 At the middle tier were
the design concepts used for the company’s digital stamping
technology, which could be ascertained by an end user, but
were still protectable as trade secrets.539 What is instructive
about that case is the court’s willingness to delve into the
substance of what constituted the protectable trade secret, as
opposed to simply deferring to the owner. One could imagine
a situation where an expert might postulate particular tests for
filtering the public domain, open source content from its
protectable, secret matter.

Since trade secrecy can attach to a number of different
aspects of code—object code, algorithms, information or
formulas detailed in source code, software architecture, and
data structure, among other categories, Graves and Range
recommend identifying each category specifically, and
sequestering it from auto-generated code, open source
material, or basic code that is mandated by the type of
program, because all of that information is already non-secret
in nature.540 In addition, the lawyers recommend that the
plaintiff literally specify the exact lines of code claimed to be
secret by identifying the allegedly misappropriated lines by
number or highlighting.541

Other strategies might involve requiring the plaintiff to
reference how much of the source code already remains in the
public domain, in addition to considering the conventional
factors to assess trade secret protection.542 Indeed, on the
question of source code discovery and the public domain,
courts can exercise greater scrutiny.543 In one civil case, a
court required a plaintiff to explicitly identify the trade secret
components of the source code, reasoning that merely
providing the defendants with a “reference library” to establish
what portions of the code were in the public domain
impermissibly shifted the burden to the defendants. The court

 538 Id. at 56.
 539 Id. at 48–49.
 540 See Graves & Range, supra note 393, at 93–95.
 541 See id. at 94–95.
 542 Parsons v. Pa. Higher Educ. Assistance Agency, 910 A.2d 177, 184–85 (Pa.
Commw. Ct. 2006).
 543 One court has held that it is plainly insufficient for a plaintiff to establish
source code protection by identifying only those aspects of its source code that
were not trade secrets because they were in the public domain, covered by third
party licenses, or unprotected. MSCI Inc. v. Jacob, 945 N.Y.S.2d 863, 864–66
(N.Y. Sup. Ct. 2012).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 195

quoted from an earlier case that made the argument that:
[A] plaintiff “ha[s] to be able to identify with specificity what
information [it] consider[s] to have been a trade secret[.] . . .
If the plaintiff can’t do that now, it can’t proceed on that
theory, because the defendants have a right during
discovery to test whatever the plaintiff’s theory
is. . . . Plaintiff is the only one who can know what it
believes its trade secrets are. . . . And it is unfair to . . . the
defendants to conduct discovery without knowing what the
assertions are.”544

By requiring greater identification and particularity, judges
can empower more transparency in litigation, effectively
increasing access to source code that already lies within the
public domain.

2. Reforming Discovery: Towards Controlled Disclosure
A final, modest set of solutions focuses on invoking the

familiar themes of discovery and disclosure, enabling greater
procedural due process through transparency while
recognizing the very liberal use of protective orders in trade
secret cases.545 It is well settled in IP cases that a trade secret
holder can either establish a privilege to ensure seclusion or
obtain a protective order to avoid disclosure to the public.546
The task before us is to ensure that this principle translates to
issues that implicate the public interest in transparency,
particularly where automated decisionmaking is concerned.

Typically, the burden rests with the party resisting
discovery to show that the requested information is a trade
secret.547 After the owner shows that its disclosure would be
harmful, the burden then shifts to the opposing party to show
that the trade secret is relevant and necessary to prepare the
case for trial.548 The idea is to ensure that each party can
effectively litigate its case, compelling discovery in situations
where judicial resolution would be impossible but for the
substance of the trade secret.549

 544 Id. (quoting Sit-Up Ltd. v. IAC/InterActiveCorp., No. 05 Civ. 9292 (DLC),
2008 WL 463884, at *6 (S.D.N.Y. Feb. 20, 2008)).
 545 See Stadish v. Superior Court, 84 Cal. Rptr. 2d 350, 359 (Cal. Ct. App.
1999) (noting utility of protective orders in trade secret case).
 546 See Pincheira v. Allstate Ins. Co., 190 P.3d 322, 330 (N.M. 2008).
 547 See Sea Coast Fire, Inc. v. Triangle Fire, Inc., 170 So. 3d 804, 808 (Fla.
Dist. Ct. App. 2014).
 548 Id. at 809.
 549 See id.; MSCI Inc. v. Jacob, 945 N.Y.S.2d 863, 864 (N.Y. Sup. Ct. 2012).
In such cases, the party requesting the information has to show “how the lack of

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

196 CORNELL LAW REVIEW [Vol.104:PPP

Courts generally prefer not to deny discovery merely
because of the risk that the trade secret will be disclosed, but
instead will try to consider the interests of both parties and the
interests of justice.550 As Graves has observed, in most civil
cases involving trade secrets, protective orders are effectively
mandated “so the concept that [a] claimed [trade secret] is
discoverable is already, implicitly, decided.”551 At the same
time, however, litigation around discovery matters can be
costly and maddening at the same time. As former Judge
Grewal has observed:

In a typical patent infringement case involving computer
software, few tasks excite a defendant less than a
requirement that it produce source code. Engineers and
management howl at the notion of providing strangers, and
especially a fierce competitor, access to the crown jewels.
Counsel struggle to understand even exactly what code
exists and how it can be made available for reasonable
inspection. All sorts of questions are immediately posed.
Exactly who representing the plaintiff gets access—and does
this list include patent prosecution counsel, undisclosed
experts, and so-called “competitive decision makers”? Must
requirements and specification documents that explain the
functionality implemented by the [test] code be included?
What compilation, debugging and analysis tools are
required? What about the test database and user manuals?
Make files? Build files? . . . Put simply, source code
production is disruptive, expensive, and fraught with
monumental opportunities to screw up.”552
While Grewal added a note of humor to the monumental

task of source code discovery, his observations offer two key

the information will impair the presentation of the case on the merits to the point
that an unjust result is a real, rather than a merely possible, threat.” In re
Goodyear Tire & Rubber Co., 392 S.W.3d 687, 696 (Tex. App. 2010) (quoting In
re Bridgestone/Firestone, Inc., 106 S.W.3d 730, 732–33 (Tex. 2003)); see also
Laffitte v. Bridgestone Corp., 674 S.E.2d 154, 163–64 (S.C. 2009) (finding that
plaintiff’s experts did not establish the specific need for disclosure of formula of
rubber tire composition).
 550 See Bleacher v. Bristol-Myers Co., 163 A.2d. 526, 528–29 (Del. Super. Ct.
1960) (collecting cases).
 551 See Correspondence from Graves to author (Jan. 27, 2019) (on file with
author).
 552 Andrew Schulman, Source Code ch.09: Discovery, SOFTWARE LITIGATION
CONSULTING, http://www.softwarelitigationconsulting.com/source-code-
book/source-code-ch-09-discovery/ [https://perma.cc/M9U2-72D2] (last visited
Oct. 4, 2018) [hereinafter Source Code & Software Patents] (quoting Apple Inc. v.
Samsung Elecs. Co., No. C 11-1846 LHK (PSG), 2012 WL 1595784, at *1 (N.D.
Cal. May 4, 2012) (Grewal, J.)).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 197

insights. First, while source code production can be
maddening, time consuming, and costly, it is by now relatively
common in software cases.553 Second, given that source code
production is not an uncommon occurrence, litigators have
ready-made tools at their disposal to address the merit of
software-related disputes while ensuring that the source code
remains protected, and yet disclosed in a litigation dispute.554
Parties are by now familiar with drafting protective orders and
other litigation-related tools to protect the seclusion of source
code. There is no need to reinvent the wheel; it has already
been turning for decades.

It is well-settled that courts can typically easily safeguard
trade secrets during litigation; preliminary relief, like
preliminary injunctions and TROs to prevent disclosure, are
often granted.555 Given the above, the lack of disclosure in the
criminal context is particularly striking. If the matter at issue
were about patent infringement, for example, where money
and the marketplace were at stake, a court would routinely
allow for further investigation and order the source code to be
turned over to opposing counsel.556

It is important to note that most of the most stringent
limitations of trade secret disclosure come from a primary
concern – competition— that is not always at issue in the
contexts I have discussed. As one court explains, “[t]he main
concern of parties seeking to impose AEO [Attorney Eyes Only]
restrictions is fear that dissemination of sensitive information,
particularly to decision-makers of its competitors, would
threaten serious competitive harm.”557 If this is true, then the
investigative (rather than competitive) goals I have identified

 553 The Northern District of California has developed a model protective order
source code, available at Model Protective Orders, UNITED STATES DISTRICT COURT:
NORTHERN DISTRICT OF CALIFORNIA, https://www.cand.uscourts.gov/model-
protective-orders [https://perma.cc/LW2K-B648] (last visited Apr. 26, 2019).
 554 For a list of relevant questions and considerations, see Northern District
of California’s Model Protective Order for Litigation Involving Patents, Highly
Sensitive Confidential Information, Northern District of California, available at
http:www.cand.uscourts.gov/model-protective-orders.
 555 See Beckerman-Rodau, supra note 149, at 382.
 556 In fact, the Rules of Practice for Patent Cases before the Eastern District
of Texas require patent defendants to make the following available for inspection:
“source code, specifications, schematics, flow charts, artwork, or other
documentation sufficient to show the elements of an ‘Accused Instrumentality.’”
UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF TEXAS LOCAL PATENT
Rule 3-4, www.txed.uscourts.gov/?=patent-rules [https://perma.cc/955L-
QDBT].
 557 Sioux Pharm, Inc. v. Eagle Labs., Inc., 865 N.W.2d 528, 538 (Iowa 2015).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

198 CORNELL LAW REVIEW [Vol.104:PPP

only weigh further in favor of disclosure. Thus, one cluster of
solutions involves protective orders, in-camera review, trade
secret analysis by mutually agreed-upon third-party experts or
special masters, and other solutions.558 In cases of extreme
sensitivity, it is common for courts to issue protective orders
limiting access to trade secrets only to counsel and their
experts.559 For example, in the election context, laws limit
access to election officials or hold the code in escrow with an
established third party and enable third parties to petition for
access, thereby protecting the integrity of the system.560 The
Tenth Circuit recently observed that the disclosure of trade
secrets on an “‘attorneys’ eyes only’ basis is a routine feature
of civil litigation involving trade secrets.”561 Processes like
interposition allow for a trade secret to be revealed to a neutral
third party who will inspect the trade secret in order to
determine whether it is necessary to prove a case.562 Another
idea is to encourage courts to hold evidentiary, in camera
hearings with expert testimony to determine whether the
source code qualifies as a trade secret.563 Expert testimony
could be introduced to analyze the contents of the source code
and to determine both whether it constitutes a trade secret and
the parameters surrounding disclosure.564

For example, in a case involving algorithms, a district court
upheld a detailed protective order, disclosing the source code

 558 Chessman, supra note 43, at 213.
 559 See Tailored Lighting, Inc. v. Osram, Sylvania Prods., 236 F.R.D. 146, 148
(W.D.N.Y. 2006) (issuing protective order due to risk of economic injury); see also
Seattle Times Co. v. Rhinehart, 467 U.S. 20, 36 (1984) (“The unique character of
the discovery process requires that the trial court have substantial latitude to
fashion protective orders.”).
 560 Gibson, supra note 20, at 190–91 (citing Cal. Elec. Code § 19205 (West
2003)).
 561 Paycom Payroll, LLC. v. Richison, 758 F.3d 1198, 1202 (10th Cir. 2014)
(quoting In re City of New York, 607 F.3d 923, 935 (2d Cir. 2010)). See for
example, Pincheira v. Allstate Ins. Co., 190 P.3d 322, 333 (N.M. 2008) (“If the
parties are not competitors, the trial court should issue an appropriate protective
order and hold an evidentiary, adversarial hearing on the trade secret status of
the information.”).
 562 26 CHARLES ALAN WRIGHT & ARTHUR R. MILLER, FEDERAL PRACTICE AND
PROCEDURE § 5652, at 150 n.74 (1st ed.).
 563 See Sea Coast Fire, Inc. v. Triangle Fire, Inc., 170 So. 3d 804, 808 (Fla.
Dist. Ct. App. 2015); see also Hammock v. Hoffman-LaRoche, Inc., 635 A.2d 533,
538–39 (N.J. Super. Ct. App. Div. 1993), rev’d, 662 A.2d 546 (N.J. 1995) (noting
difficulty with reviewing either judge’s orders).
 564 See Sea Coast Fire, 170 So. 3d at 808 (citing Revello Med. Mgmt., Inc. v.
Med-Data Infotech USA, Inc., 50 So. 3d 678, 680 (Fla. Dist. Ct. App. 2010) (noting
that if the judge is inexperienced in examining source code, he can appoint a
neutral computer expert to review the program)).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 199

information only to counsel and expert consultants and
providing for additional security measures (such as the
requirement that the information must be password protected,
locked when not in use, and connected to a computer that
cannot be connected to the internet).565 The case—which is
hardly unique—clearly shows that source code can be
disclosed AND protected, on a limited basis, in a judicial
dispute. And a review of other cases suggests that courts have
great acuity in addressing the issue.566 In fact, in many
conventional source code cases, it is important to note that
source code has been turned over to authorities and still
maintained its status as a trade secret.567

Finally, it bears noting that although the Federal Rules of
Acquisition prohibit government employees from disclosing
trade secrets, a number of other federal statutes extend
permission to government agencies to disclose trade secret
information when it is necessary to protect the public from
harm to their safety and welfare.568 The SEC, in addition, is
governed by a statutory provision that gives it the authority to
disclose trade secrets if it serves the public interest.569 Even in
the FOIA context, where trade secrets are granted an
exemption, the Supreme Court has unanimously held that the
exemption is discretionary for agencies, creating no mandatory
bar to disclosure.570 To take one example, the Honest and

 565 Superior Edge, Inc. v. Monsanto Co., No. 12-2672 (JRT/FLN), 2014 WL
7183797, at *5 (D. Minn. Dec. 16, 2014).
 566 The EPA statute, for example, allows a submitting company that has
designated certain information as “trade secrets or commercial or financial
information” to institute a declaratory judgment action in federal district court if
the company learns that the EPA plans to disclose that information. See
Ruckelshaus v. Monsanto Co., 467 U.S. 986, 992 (1984) (citing Federal
Environmental Pesticide Control Act of 1972, § 10(a), 86 Stat. 989 (1972)).
 567 Courts have held that the taking of evidence of trade secrets can be done
in camera, with no risk of violating the policy values that favor public trials. See
State ex rel. Ampco Metal, Inc. v. O’Neill, 78 N.W.2d 921, 926–27 (Wis. 1956);
House v. Commonwealth, No. 2007-CA-DG, 2008 Ky. App. Unpub. LEXIS 1220,
at *19) (requiring source code disclosure in breathylzer case). But see State v.
Kuhl, 741 N.W.2d 701, 708–09 (Neb. Ct. App. 2007) (reaching the opposite
conclusion and deferring to trade secret protection).
 568 See Stephen R. Wilson, Public Disclosure Policies: Can a Company Still
Protect Its Trade Secrets?, 38 NEW ENG. L. REV. 265, 278 (2003) (mentioning
statutes governing the Food and Drug Administration, Environmental Protection
Agency, as examples.); see also Elizabeth A. Rowe, Striking a Balance: When
Should Trade-Secret Law Shield Disclosures to the Government?, 96 IOWA L. REV.
791, 826–35 (2010) (addressing the circumstances under which the government
can request disclosure).
 569 Wilson, supra note 568, at 279.
 570 See Chrysler Corp. v. Brown, 441 U.S. 281, 294 (1979) (“We therefore

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

200 CORNELL LAW REVIEW [Vol.104:PPP

Open New EPA Science Treatment Act of 2017, in draft, would
require the EPA to make documents that contained
confidential business information available with redactions to
the general public and without redactions to anyone who
would sign a confidentiality agreement.571

In other words, the prospects for discovery and disclosure
may be mixed, but there is some growing evidence to suggest
that courts and legislators may be more willing to order source
code disclosure in justified cases. As Rebecca Wexler wryly
observes, “disclosure subject to a protective order is better
than no disclosure at all.”572 And review of source code, when
it happens, can often mean a tremendous difference for due
process and accountability, changing people’s lives as a
result.573

CONCLUSION
In Lear v. Adkins, the Supreme Court precipitously wrote,

“federal law requires that all ideas in general circulation be
dedicated to the common good unless they are protected by a
valid patent.”574 Today, it is clear that trade secrecy’s
dominance over source code has been a significant cause for
concern in cases involving the public interest. And, as I have
shown, it is the failures of intellectual property law that have
facilitated this result. To protect civil rights in the age of
automated decisionmaking, I argue, we must limit

conclude that Congress did not limit an agency’s discretion to disclose
information when it enacted the FOIA.”); Carol A. Ellingson, The Copyright
Exception for Derivative Works and the Scope of Utilization, 56 IND. L.J. 1, 2–3
(discussing the derivative works exception). Interestingly, one wrinkle in such
cases is that in some circumstances, trade secret holders have argued that they
have a right to procedural due process, under Mathews v. Eldridge, 424 U.S. 319,
362 (1976) including an opportunity to be heard before the trade secret is
disclosed.
 571 See HONEST Act, H.R. 1430, 115th Cong. § 2 (2017).
 572 Rebecca Wexler, Life, Liberty, and Trade Secrets: Intellectual Property in the
Criminal Justice System 53 (Apr. 14, 2017) (unpublished draft).
 573 In one case, a review of Alcotest revealed that the source code had disabled
catastrophic error detection, necessitating court intervention to secure its
correction. See Ram, supra note 379, at 687 (citing State vs. Chun, 943 A.2d
114, 159 (N.J. 2008)). In another example from Colorado, programmers encoded
over 900 errors in an algorithm that addressed the public benefit system; as a
result, both cancer patients and pregnant individuals were wrongly denied
Medicaid benefits, among other errors, costing the state several hundred millions
of dollars, not to mention the individuals that were also directly affected. See
Automated Decision Systems Used by Agencies: Hearing Before N.Y.C. Council
Comm. on Tech., 4 (Oct. 16, 2017) (testimony of NYCLU) (citing Citron,
Technological Due Process, supra note 490, at 1268–69).
 574 Lear, Inc. v. Adkins, 395 U.S. 653, 668 (1969).

 Electronic copy available at: https://ssrn.com/abstract=3409578

KATYAL FORMATTED 6/24/19 11:31 PM

2019] THE PARADOX OF SOURCE CODE SECRECY 201

opportunities for seclusion in areas of intellectual property,
criminal justice, and governance more generally. The solution,
therefore, does not require a complete overhaul of the existing
system, but rather a more nuanced, granular approach that
seeks to balance the interest of disclosure and public access
with the substantial values of protection, privacy and property.

 Electronic copy available at: https://ssrn.com/abstract=3409578

