
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Experimental investigation of aerodynamic characteristics of a 4-winged flapping 
mechanism

Permalink
https://escholarship.org/uc/item/8dd7t3bq

Author
Zakaria, Mohamed

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8dd7t3bq
https://escholarship.org
http://www.cdlib.org/


  

UNIVERSITY OF CALIFORNIA, 

IRVINE 

Experimental investigation of aerodynamic characteristics of a 4-winged flapping 

mechanism  

THESIS 

submitted in partial fulfillment of the requirements 

for the degree of 

MASTER OF SCIENCE 

in Mechanical and Aerospace Engineering 

by 

Mohamed Zakaria  

 

Thesis Committee 

Professor Haithem Taha, Chair  

Professor Natascha Buswell  

Professor Jacqueline Thomas  

2021 



 
 

2 
 

Acknowledgment 
 To: 

  

First, to my father and Mother. I do not think I have enough to say about you to. Enough to 

thank you two for the huge support you gave me. I love you both so much beyond words. 

You trusted me until the end, even at times when I did not trust myself.  

 

To my sister, the most persistent and supportive person. You will always be my favorite 

person. I rely on you in heavy days. I love you to the moon and back. I would never be here 

without you.  

 

To my friends: Rana, Salma, Hoda, Bayoumi, Maher, and Swailm. You guys went with me 

through thick and thin. You put up with my complaining, my talking, and always tried to 

make me happy.  

 

To My colleagues: Dipan, Nabil, Kevin, Ming, Cody, Marlon, Laura, Mahmoud, and Asmaa. I 

learned so much from each person. I am forever grateful.  

 



 
 

3 
 

To Moatasem, man I cannot thank you enough. You spent nights teaching me “how to walk” 

in the lab. You had so much patience with me. You came at times in the middle of the night 

just to help me out. You taught me how to do proper work, to the extent of perfection and 

nothing below that. I do not know what to say except that I will always remember what you 

did for me until I die. In this small journey, I won a mentor and a friend.   

 

To Professor Taha, you sir changed my life. I know that this can be a bit of an exaggeration 

for you, but I really mean the word. You made me reconsider the way I comprehend 

everything in life. You taught me that life is simple. You taught me that one can master 

anything if persistence and some bravery is present. I called you a lot, talked to you a lot, 

and I was annoying at times. Yet, you always received my complaints with a smile, and 

addressed them. You were always there for me even for personal matters. I know that I 

should have put a lot more effort in this Masters. I recognize that I should have gone more 

than the stage I am in now, and again you always supported me at the end. Thank you, sir, 

for everything! 

 

 

 

 

 

 



 
 

4 
 

 

TABLE OF CONTENTS 

 

List of figures ............................................................................................................................................................ 6 

Abstract .................................................................................................................................................................... 10 

1    Introduction  .................................................................................................................................................. 12 

   1.1    Motivation ............................................................................................................................................... 13 

       1.2    Literature review  ................................................................................................................................ 13 

      1.2.1    Flapping wing aerodynamics .............................................................................................. 13 

      1.2.2    Flight Dynamics ......................................................................................................................... 27 

2    Flapping wing Aerodynamics ............................................................................................................... 29 

   2.1    Dickinson study .................................................................................................................................... 30 

       2.2    Quasi Steady Analysis  ........................................................................................................................ 38 

       2.3    Unsteady analysis ................................................................................................................................ 42 

3   Longitudinal flight Dynamics ................................................................................................................ 48 

       3.1    Averaged Flight Dynamics ................................................................................................................ 48 



 
 

5 
 

       3.2    Vibrational stabilization  ................................................................................................................... 54 

4   Experimental study  .................................................................................................................................... 58 

       4.1    Motivation ............................................................................................................................................... 58 

       4.2    Experimental setup ............................................................................................................................. 59 

       4.3    Results ....................................................................................................................................................... 63 

      4.3.1    Force and moment variation with flapping angle ...................................................... 63 

      4.3.2    Efficiency and performance curves .................................................................................. 73 

5   Conclusion and future work ................................................................................................................... 78 

6    Bibliography .................................................................................................................................................... 80 

 

 

 

 

 

 

 

                      



 
 

6 
 

                           List of figures                                      page 
1     schematic of the stroke plane measurement……………………………………………………………..    20     

2     wingtip path of a hummingbird………………………..……………………………………………………………..    21                     

3     wingbeat of the long-eared bat………………….……………………………………………………………..    21                     

4     downstroke of a Pieiris brassicae ……………..……………………………………………………………..    22                     

5     robotic apparatus used for force measurement. ……………………………………………………..     31                     

6     close up view of the measuring fly. …………….……………………………………………………………..  31                     

7     advanced stroke pattern………………………….………………………………………………………….…..     32                     

8     symmetric stroke pattern………………………….………………………………………………..……………..  32     

9     delayed stroke pattern………………….…………….……………………………………………………………..  33                                     

10     Polar representation of translational force coefficients and comparison to 2D steady 

and 2D transient ……………………………………………………………………………………………………….    33 

11     results of total forces, measured translational, and obtained rotational forces in the        

advanced stroke pattern…………………………………………………………………………………………….    34                 

12     results of total forces, measured translational, and obtained rotational forces in the        

symmetric stroke pattern………………………………………………………………………………………….    34        

13     results of total forces, measured translational, and obtained rotational forces in the        

delayed stroke pattern…………………………………………………………………………………………….    35                                     

14     revisiting of Fig. 11 for the explaining of wake capture……………………………………….   36 

15     evidence of the wake capture mechanism after the wing comes to a halt……………….. 37 

16     robotic apparatus used for force measurement…………………………………………………….  38                     

17     close up view of the measuring fly……………………………………………………………………….  38 

18     rotational coefficient versus angular velocity for each axis of rotation…………………… 40 

19     rotational coefficient versus axis of rotation………………………………………………………....  40 

20     representative values of angular velocities plotted together with the quasi-steady 

prediction…………………………………………………………………………………………………………………..   41 



 
 

7 
 

21     validation of the edited quasi steady model with the three different kinematic 

patterns:  advanced, symmetric, delayed…………………………………………………………………….... 41                     

22     linear/ nonlinear lift build up Vs. α………………………………………………………………………. 44 

23     linear/ nonlinear lift build up Vs. semi-chord s……………………………………………………  44 

24     Cranefly lift curve at f = 45.5 Hz and 𝛼𝑚= 30……………………………………………………….. 42 

25     Ladybird lift curve at f = 54 Hz and 𝛼𝑚= 30……………………………………………………….. 46 

26     Hoverfly lift curve at f = 160 Hz and 𝛼𝑚= 30……………………………………………………….. 47 

27     Fruit fly lift curve at f = 254Hz and 𝛼𝑚= 30…..…………………………………………………….. 47 

28     Schematic diagram of a hovering MAV in a horizontal stroke plane……………………..  49 

29     Eigenvalues of the averaged linear dynamics compared with Sun, and Cheng and 

Deng’s model……………………………………………………………………………………………………………   53 

30     illustration of the vibrational stabilization mechanism, and how the moment arm 

plays a role………………………………………………………………………………………………………………..   56                     

31     close up view of the CAD model of the crank rocker mechanism…………………………,.   59 

32     close up view of the CAD model of the crank rocker mechanism at max φ…………….. 59                     

33     the derivation of the kinematic flapping angle, and the closeness it is to a sin wave 

form…………………………………………………………………………………………………………………………..  59 

34     elliptic wing planform………………………………………………….…………………………………….   60 

35     top view of the 4 axis LC …………………………………………………………………………………….  61 

36     full view of the 4 axis LC …………………………………………………………………………………….  61                    

37     side view of the 4 axis LC …………………………………………………………………………………….  61 

38     front view of the 4 axis LC ……………………………………………………………………………….  61                     

39     full experimental setup………………………………………………………………………………………    62 

40     block diagram for the measurements………………………………………………………………….   63 

41     close up view of the hall effect sensor and attached magnets………………………………  64 

42     mechanism at max φ…………………………………………………………………………………………..   64 



 
 

8 
 

43     Hall effect sensor signal into action, y-axis is volts, with t/T in x-axis…………………….  64 

44     alignment of the flapping angle with the hall sensor signal………………………………..…..  65 

45     thrust measurement with flapping angle Vs t/T at 6 Hz………………………………………… 66 

46     Pitching moment measurement with flapping angle Vs t/T at 6 Hz………………………..  66  

47     thrust measurement with flapping angle Vs t/T at 8 Hz ………………………………………..  66 

48     Pitching moment measurement with flapping angle Vs t/T at 8 Hz………………………   66 

49     thrust measurement with flapping angle Vs t/T at 10 Hz……………………………………...  67 

50     Pitching moment measurement with flapping angle Vs t/T at 10 Hz……………………..   67 

51     thrust measurement with flapping angle Vs t/T at 12 Hz……………………………………...   67 

52     Pitching moment measurement with flapping angle Vs t/T at 12 Hz……………………...  67 

53     Lift measurement with flapping angle Vs t/T at 6 Hz…………………………………………....   68 

54     Lift measurement with flapping angle Vs t/T at 8 Hz…………………………………………….  68 

55     Lift measurement with flapping angle Vs t/T at 10 Hz………………………………………….   68 

56     flapping angle plot important nomenclatures……………………………………………………….  69 

57     thrust measurement with flapping angle Vs t/T at 10 Hz, stressing on max and min φ 

…………………………………………………………………………………………………………………………………    70 

58     thrust measurement with angular velocity Vs t/T at 10 Hz, stressing on maximum 

angular velocity………………………………………………………………………………………………………….  70 

59     large leading-edge vortices at high velocities………………………………………………………..  71 

60     thrust measurement with flapping angle Vs t/T at 10 Hz, 2nd peak position………….. 71 

61     the increase of the clapping effect with the increase in frequency………………………….  72 

62     2nd peak (clapping) time lag due to flexibility…………………………………………………….    73 

63     elliptic wing planform………………………………………………………………………………………..    74 

64     coefficient of power with frequency for small and large areas ………………………………  75 

65     coefficient of power with frequency for small and large areas ………………………………  75 



 
 

9 
 

66     𝐶𝑇/𝐶𝑃   (efficiency) curve for small and large areas……………………………………………….. 77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2021 Mohamed Zakaria 



 
 

10 
 

 

Abstract 

Experimental Demonstration of different characteristics of 4-winged flapping mechanism  

 

The subject of flapping flight has been studied extensively for more than a century. 

Flapping flight, throughout the years, has been observed to have different thrust, lift, and 

moment characteristics that make this phenomenon very efficient when compared to 

conventional aircraft. This work is a step towards developing a novel flying concept: a 

quad-flapping drone. An experimental setup was built to measure these different 

characteristics of a 4-winged flapping mechanism that include lift, drag, pitching moment, 

and rolling moment. These characteristics made us determine how the clapping effect can 

be of use to FWMAV (flapping wing micro air vehicles).  A second part of this work is the 

determination of an optimum design point (frequency) in which the mechanism will 

operate at. This will help in the sizing process of the quad-flapping drone. Lastly, an 

estimation of the beating angle was put forth by using the hall effect sensor raw data. It was 

found that the effect of the clapping effect increases with frequency. Also, that the thrust 

cycle of our FWMAV includes two thrust peaks; one corresponding to the leading-edge 

vortex, and other is due to clapping. The optimal design point was found by taking the 

average thrust and power per cycle, nondimensionalizing each term to get the coefficients, 

and then obtaining  
𝐶𝑇

𝐶𝑃 
 to get the optimal point. This experiment was done for different 
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areas. It was found that the efficiency increases as the area increases, which is a great result 

in the sense that higher areas can be of more thrust and the difference in weight would not 

be great, since the weight of the flapping wing is very small.  
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Chapter 1 

 

Introduction  

Steady analysis has been very sufficient when it comes to conventional aircraft modeling. 

The simple equations of the lift and drag, without the inclusion of the time, eased things up 

very much and made the analysis as simple as it can be. Classical Aerodynamics is mainly 

focused on wings in steady motion, where there is no variation of the wing speed, 

acceleration, or attitude with time. Flapping mechanisms, however, have a periodic 

behavior in which there is a continuous change with time. Due to this periodicity, a more 

descriptive and representative analysis needed to be used; quasi-steady assumption. This 

assumption reduces the time varying problem into a series of static-instantaneous analysis 

in which at each instant the forces and velocities are measured using the steady equations. 

This assumption will be the main groundwork by which we will nondimensionalize our 

results and measurements to obtain the optimum design point in which the 4-winged 

mechanism, and consequently, the quad-flapping drone will operate.  
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1.1 Motivation 

Nature always has its ways of fascinating us. The intricateness of flapping mechanism has 

always been appealing in the sense of being very efficient and agile. Flapping mechanism 

users such as hummingbirds and insects can recover from a perturbation faster than most 

control systems built by humans. Characteristics such as these can be used into designing 

flapping micro air vehicles (FMAVs) that have greater agility than conventional 

quadcopters. Also, the lightness of FMAVs gives it the ability to hover in the air a bigger 

amount of time when compared to conventional quadcopters. These characteristics, along 

with the fact that the flapping mechanism is made from paper wings, makes the quad-

flapping drone safe and suitable to wide variety of applications.  

1.2 Literature review 

The literature review consists of two sections: the first section deals with the aerodynamics 

of the flapping mechanisms in general. The second section talks about the equations of 

motions of the flapping mechanism. These two subsections will demonstrate in a historic 

literary way the development of different aspects of the flapping flight field. In the two 

sections that follow, a detailed introduction to the aerodynamics of flapping wings and its 

flight dynamics will be given.  

1.2.1 Flapping wing Aerodynamics 

The whole story of unconventional aerodynamics began in in the 1930s, when Theodorsen 

[5] devised the theory of aerodynamic instability and flutter. 
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Theodorsen was the first to solve this problem using analytical analysis without the use of 

any numerical methods. Theodorsen divided the velocity potentials due to the flow around 

and aileron into to parts: circulatory flow and non-circulatory flow. Theodorsen solved his 

problem in the frequency domain. He used the three main principles that are sufficient to 

result in a velocity field: Kutta condition, no penetration boundary condition, and the 

conservation of circulation. This along with the unsteady version of Bernoulli’s equation 

enabled him to get the Force and moment on airfoils in pitching and plunging motions. 

Using conformal mapping, Theodorsen applied the non-penetrating boundary condition in 

the non-circulatory solution that related the 𝑢 𝑎𝑛𝑑 𝑣 of the airfoil to the 𝑣𝑟 𝑎𝑛𝑑 𝑣𝜃 of the 

cylinder. After extensive mathematical manipulations and analysis, he calculated the non-

circulatory lift as: 𝑙𝑁𝐶 = −𝑚𝑎𝑑𝑑𝑒𝑑 𝑎1

2

 , where 𝑎1

2

 is the acceleration at the half chord of the 

airfoil. This term can be thought of as the force by the fluid on the source. As for the 

circulatory part, Theodorsen applied the Kutta condition as now, and after using conformal 

mapping to go to the cylinder domain, the vortex will induce velocities on the cylinder as 

net circulation is present. The output was the integral equation of circulation in which, for 

the case of simple harmonic motion, and after extensive mathematical manipulation, leads 

to the ratio of the Hankel functions in which Theodorsen called 𝐶(𝑘).  

Talking about circulatory lift, Taha and Rezaei in [35] tackled the circulatory lift aspect 

from a pure dynamical perspective. The authors shoed that the circulatory lift dynamics is 

different from circulation lift dynamics. They tested the unsteady aerodynamics of a two-

dimensional airfoil, where they used the angle of attack as an input and the lift as the 

output. They found that unlike what is commonly thought regarding that the circulation 

leads the lift, it is actually the other way around. They found that there is a between the lift 
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and circulation in the low frequency range and a fractional integrator in the high frequency 

range. In conclusion, they found that the commonly known fact that circulatory lift is lift 

due to circulation is not true, it is a completely arbitrary classification that of circulatory, 

non-circulatory lift.  

Besides Theodorsen, the other pioneer in the unsteady field is Wagner [6]. Wagner 

analyzed the change in circulation around an airfoil that suddenly started from rest. His 

results showed the time evolution of both the circulation and consequently the lift. These 

two pioneers hold the ground framework on which the unsteady aerodynamics theory is 

built upon. 

At the first glance, the connection between the contributions of the previous two pioneers 

and flapping flight may not be obvious, but in the later sections, such connection will 

become clear. Also as stressed, these two opened the field of non-conventional flying to 

generations to come.  

Fast forwarding few years, in 1956, T. Weis-Fogh and Martin Jensen made a big review on 

insect flight aerodynamics and performance [7], [8]. The authors made a review on the 

three theories of the most complexity at the time, [9] [10] [11] [12], to understand more 

about the aerodynamics of flapping flight. Weis-Fogh and Jensen concluded that [9] model 

can only give results, such as the drag profile, the average induced drag, and the oscillation 

drag on large birds and insects that typically have a small wing beat frequency to forward 

speed ratio k. This was mainly since Holst, E. v. & Kuchemann [9] theory was kinematically 

oversimplified. As for Walker’s theory [10], [11], the authors saw that this theory was more 

complete as it considered the effect of k by accommodating for extra wind pressure as k 
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increases. Although, a small refinement of this theory would later be made because for an 

inclined stroke plane, the induced velocity calculations would differ. Osborne’s theory [12] 

was the most complex of them all as it considered many parameters. Osborne tackled the 

problem from a theoretical perspective. His main assumption was that the force acting on 

the wing surface due to arbitrary movement was proportional to the relative wind velocity 

squared. The force is then resolved into lift and drag, integrated over the wing surface, and 

then averaged over the total wing beat. Osborne’s analysis was mainly concerned with 

inclined stroke planed flyers and vertical ones. He assumed that all the aerodynamic force 

comes from the downstroke phase only. This assumption is not applicable to 

hummingbirds, for instance. In hi numerical results, he found most insects adhere to 

normal aerodynamic phenomena in which unusual forces such as the inertial forces are not 

effective. Some of his results had unexpectedly high 𝐶𝐿 coefficients, but again he concluded 

that those results do not mean that there are inertial forces involved partly because the 

assumptions regarding these bird with high lift coefficients were not right or the analysis 

accuracy was misleading in some way. Again, all the analysis done here was on forward 

flight, the limiting case of hovering is still yet to be discussed. This is also one of the reasons 

why the standard aerodynamics can suffice and gave the above authors satisfactory results.  

Furthermore, in their second review paper [2], the authors made a study on how the 

different stroke parameters can affect the different aerodynamic forces produced by a 

Desert Locus insect. The insect was suspended from a balance and flew against a wind 

tunnel. The wind speed was the speed at which the thrust of the locust equals the drag. The 

lift was measured as the apparent weight reduction. It was found that although the lift 

varied significantly, stroke parameters such as the stroke angle, the stroke plane angle, and 
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the time course of the angular movement of the entire wing had a very little to no change at 

all. The authors found that the lift variation must be explained by a more intricate way than 

the simple actuator disk.  

It was not until 1972 that T. Weis-Fogh made his first breakthrough in the study of flapping 

flight; the “clap and fling mechanism” [14]. Although Weis-Fogh concluded that even in 

hovering, the majority of animals including large lamellicorn beetles sphingid moths can 

still be studied using quasi steady models, some small sized groups especially the ones 

flying in low Reynolds number such as the true-hoverflies, large dragonflies, and numerous 

butterflies. On his study in Encarsia Formosa (a species of chalcidoid wasp), in a Reynolds 

number of (10-20) the insect produced a very high lift coefficient that cannot be attained 

using normal aerodynamics. He then concluded that there must be an unconventional 

aerodynamics mechanism that helps the Encarsia reach this high lift coefficient. Weis 

divided this novel phenomenon relating to the movement of the Encarsia wings into 3 

phases: the clap, the fling, and the flip. The clap is the part in which the wings are closely 

bound together in the upstroke, the fling in which the insect’s wings start descending in its 

plane in the downstroke phase, and the flip in which the wings supinate at the beginning of 

the upstroke. Weis described the fling part as the part responsible for setting up the 

appropriate amount of circulation around the wing. This description proved right in the 

findings of the experiments done by T. Maxworthy in 1979 [15].  

In 1984, Ellington, C. P. produced the most complete study on flapping wings, up to date, in 

which he included nearly all engineering and biological parameters that relates to bird and 

insect flight [1], [2], [3], [4], [17], [18]. He wanted to address dome of the points studied by 
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T. Weis-Fogh in his papers [7], [8], [13], [14], and specifically the validity of the quasi – 

steady assumption.  

In his first paper [1], Ellington started by answering the question in why flutter analysis, for 

instance, cannot be used to study flapping aerodynamics. He reasoned that flutter analysis 

is restricted to linearizations that depend on small amplitude oscillations, which is not 

applicable to neither insects nor birds. Drone-flies, for example, can reach a flapping angle 

of 106 degrees. The author started by introducing the blade element theory, which is the 

one used to treat aerodynamics of flapping flight by previous pioneers such as Osborne 

[12].  The basic unit of analysis is the wing element, infinitesimal wing element 𝑑𝑟, in the 

spanwise direction. The aerodynamic force 𝐹′ is then resolved into a horizontal component 

and a vertical component. More accurately, the component normal to the flow velocity, lift, 

and the component parallel to the flow velocity, drag. The lift and drag on this wing section 

with a spanwise width 𝑑𝑟:  

                         𝐿′ =
1

2
𝜌𝑐𝑈𝑟

2𝐶𝐿                          (1)                     

                                 𝐷′ =
1

2
𝜌𝑐𝑈𝑟

2𝐶𝐷,𝑝𝑟𝑜                      (2) 

Where 𝑝𝑟𝑜 here stands for profile drag. Since we are talking about the quasi-steady 

assumption, the coefficients 𝐶𝐿  & 𝐶𝐷,𝑝𝑟𝑜 are functions of the Reynolds number and the 

relative angle of attack at a given time instant. For hovering flight, the drag equation should 

be equated to zero and the lift equation to the weight of the animal.  
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The 𝑈𝑟 is the vector sum of the velocity of the flapping 𝑈 and the induced bound and wake 

vortices. The blade element theory ignores the existence of the wake and bound velocity 

vortices, and the induced velocity is estimated using the Rankine-Froude axial momentum 

theory of propellers. Another drawback of this method is the need of complete kinematic 

data in order to solve in a successive step wise solution using equations (1) and (2): the 

longitudinal wing axis motion, angle of attack, and the section profile all must be known as 

a function of time and radial positions. The coefficients 𝐶𝐿 𝑎𝑛 𝐶𝐷,𝑝𝑟𝑜 to be known from 

experimental measurements. This method, though, becomes fallible as we get close to 

hovering state, where considerations of bound vortices and wake induced velocities 

become significant. In the coming chapter, we will talk about the aerodynamic of flapping 

flight of hovering insects in detail following the groundbreaking work of Dickinson and 

Sane [16]. Moving on, Osborne [12] introduced a new way of analysis that solves for the 

mean values of the coefficients, 𝐶𝐿 𝑎𝑛𝑑 𝐶𝐷,𝑝𝑟𝑜, satisfying the net balance force. This method 

greatly simplifies calculations since the measurement of the angle of attack in each profile 

section is extremely difficult and taking the force coefficients as constant will waive the 

need for such measurement. Ellington in this series of study chose this mean lift coefficient 

method in all the hovering analyses to test the quasi – steady assumption. He tested it 

theoretically by proof – of contradiction: the mean forces are calculated according to quasi 

– steady assumptions. If these calculated forces do not satisfy the net force of the flying 

animal, then the assumption fails. If it does satisfy, then this assumption cannot be 

discounted.  
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Ellington then went on to dividing all the animals studied into three functional groups, for 

which the mean force analysis using the quasi – steady assumption can be applied with 

some approximation:  

- Horizontal stroke plane group  

- Inclined Stroke plane group  

- Vertical Stroke plane group 

During a cycle, animals beat through an approximate stroke plane. It is measured with 

respect to an the horizontal by an angle 𝛽. Each of the groups mentioned has its unique 

characteristics due to its stroke plane classification. This will impact the way in which the 

calculation is conducted and, as will be discussed, how the relative velocity measurements 

will differ from one group to another.  

 

 

Fig.1 Taken from reference 1, schematic of the 

stroke plane measurement. 
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Fig. 2 Taken from reference [1], wingtip path of a hummingbird. 

Fig, 3, taken from reference [1], 

wingbeat of the long-eared bat. 
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Starting with the horizontal stroke plane group, it is the most observed hovering animals 

between the three groups. This group is also characterized by a large angle of attack in both 

the upstroke and the downstroke. According to Ellington in [20], the wake induced velocity 

for this group is insignificant with respect to the flapping velocity, which makes the use of 

the horizontal flapping velocity 𝑈𝑟 appropriate in this case. This assumption allows an easy 

calculation of the mean lift coefficient by balancing equation (1) with the body mass and 

integrating over the span. An example of this family is the hummingbird in figure (1).  

The wingbeat of the long-eared bat in figure (2) is an example of the inclined stroke plane 

flyer. The flyers of this family can hover with a stroke plane up to 𝛽 equal 60 degrees. The 

birds and bats in this family flex their wings during upstroke and the wings come to near 

Fig, 4, taken from reference [1], downstroke of a Pieiris 

brassicae. 
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90 degrees. This causes all the force in the upstroke to be directed towards the horizontal, 

and very negligible lift. This indicates that the downstroke is the main source for weight 

support.  

Unlike the horizontal stroke plane family, the relative velocity 𝑈𝑟 cannot be estimated as 

the flapping velocity effect alone. Due to the inclination of the stroke plane, the induced 

velocity will affect the value of 𝑈𝑟.  

As for the vertical stroke plane family, like the butterfly shown in figure (3), the wings clap 

together at the ends of downstroke, and then “fling” open. This is one of the animals that 

use the “clap and fling” mechanism that was discovered by Weis – Fogh [14] and that was 

talked about previously in this review. Similar to the inclined stroke plane family, all the 

weight support force comes from the downstroke part, leaving little force generated in the 

upstroke. The thrust component, though, is augmented in both the strokes. The clap and 

fling mechanism here is obvious, leaving a little room for any doubt about using the quasi-

steady analysis.  

Ellington concluded that for animals in the inclined or vertical stroke plane family, the 

quasi – steady analysis treatment is insufficient as these groups rely mainly on 

unconventional unsteady flight mechanisms. For the horizontal stroke plane family, the 

proof was not conclusive for most animals as the 𝐶𝐿 values are close to those of 𝐶𝐿,𝑚𝑎𝑥 

(maximum steady – state lift coefficient). The only obvious exception was the insect 

Encarsia, which is the same insect that Weis – Fogh experimented on and discovered the 

“clap and fling” mechanism in 1973 [14]. 
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 In his second paper [2], Ellington discusses the morphological parameters of the birds’ and 

insects’ wings. Ellington divided theses parameters into two groups: gross parameters and 

shape parameters. The gross parameters provide a crude description of the animal’s 

morphology: the body’s mass, body length, wing length, and wing area. Another very 

important parameter that was first invoked upon by Theodorsen in his paper [5], is the 

virtual mass or added mass. This is the air mass that is accelerated under the wing at the 

upstroke and the downstroke. This virtual mass approximately equals the air mass 

contained in an imaginary cylinder, with the chord as its diameter. Experiments showed 

that the value of the virtual mass ranges from 0.3 to 1.3 times the actual wing mass, which 

is significant.  

Non-dimensional radii derived from the non-dimensional moments of distributions are the 

shape parameters. These parameters include the first radius of wing mass which gives the 

center of mass position of the wing, and the second radius of wing mass or simply the 

radius of Gyration. Lastly, Ellington found relations between the radii of mass, wing area, 

and virtual. He concluded from these relations that flying animals follow some form of “law 

of shape”, he called it, irrespective of their biological differences.  

In Ellington’s third paper in this series [3], he demonstrated how he filmed each of the wide 

range of insects and birds. Insects were filmed at a rate of 5000 frames per second to be 

able to extract the wing and body motion accurately. Ellington used a projection technique 

that transforms the insect body coordinate system to the camera’s, and vice versa. This 

transformation allowed Ellington to output all the kinematic details of the longitudinal 

wing and body axes from the films.  
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Ellington observed that a lot of the sequences were devoid of complete hovering. Most 

animals would fly around the test chamber, and in only few moments would there be 

“hovering”. This made him observe that there was a tilt in the stroke plane angle 𝛽 prior to 

the forward acceleration, and this makes sense in that the flying animal is directing its 

dominant force to move and maneuver in specific directions.  

Another nice observation is that the body angle itself oscillates with the upstroke and the 

downstroke. Maximum oscillations found were around ± 3 degrees for the Ladybird. 

Maximum and minimum body angles were at the end of the strokes, where the biggest 

nose-down pitch moments at the upstroke (dorsal) and the biggest nose-up pitch moments 

at the downstroke (ventral). Ellington reasoned that the pitching moment is caused by 

three forces:  

- Lift force acting on the wing length. 

- Drag force acting on the moment arm between the wing base and 𝑐𝑔.  

- The virtual mass (inertial wing forces)  

We will be talking in detail about the body oscillations and how such oscillations stabilize a 

bird in hovering, a groundbreaking work by Haithem Taha [21].  

In his 4th paper of this review, Ellington went on and explicitly reviewed the unsteady 

mechanisms in the hovering state of flying animals. Ellington first made a small 

introduction about the conventional lift mechanism and how the famous 2𝜋𝛼 result is 

found. He also called this result a circulatory lift, since it originated from how the 

circulation Γ is calculated.  



 
 

26 
 

Fast forwarding into 1999, Dickinson and Sane made their groundbreaking on the basis of 

insect flight [16]. They made an experiment do discover the underlying physics on to how 

the birds can maintain their weight in hover. They attributed the bird flight into three 

different phenomena: Delayed stall, Rotational circulation, and Wake capture. A detailed 

explanation will be provided in chapter 2 of this thesis talking about this paper.  

In 2001, Dickinson went further as to assess the feasibility of the used quasi-steady model 

in the field [28]. He found that the quasi-steady modeling overestimates the delayed stall 

phenomenon at some moments and underestimates the rotational circulation. He made an 

edit to the model in which he measured the rotational force coefficient using a series of 

experiments and included it in the total force term. Details of this paper are also found in 

chapter two of the thesis.  

As just has been mentioned, the quasi-steady modeling still does not capture the full 

physics of the aerodynamics. This motivated Taha and Hajj in [23] to approach the 

aerodynamics modeling problem of flapping wings from a complete unsteady perspective. 

The idea was that Taha used the Duhamel superposition principle to capture non-

conventional lift mechanisms such as big leading edge vortex formulation which is the 

underlying cause of the delayed stall mechanism. The results were confirmed with CFD 

analysis by Sun & Du in [24].    

Since lift production and the formation of vortices are basically viscous processes, this fact 

motivated Taha and Rezaei in [36] to develop viscous model that is appropriate enough for 

insect flights at low Re. This is the first model of its kind. The authors used the triple deck 

boundary layer theory, which is a theory that models the aerodynamics going through the 
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transition phase from zero slip on the trailing edge to zero stress on the wake. The main 

modification the authors did to the thin airfoil theory is the introduction of a singularity 

term in the pressure distribution that corresponds to the trailing edge. Using this 

developed model, they went on and extended Theodorsen’s lift frequency response to 

include viscous effects. They found that as Re decreases, amplitude of the lift transfer 

function increases. Lastly, the model showed that the viscosity induces a lift lag that is not 

captured by Theodorsen’s model. More on this matter can be found in [37] and [38] written 

by Taha.   

1.2.2 Longitudinal Dynamics  

In 2014, Taha made a great work in coupling between dynamics and longitudinal dynamics 

of a 2-winged flapping animal [34]. He started the analysis with rigid body longitudinal 

dynamics and incorporated with it a quasi-steady model. He then derived the stability 

derivatives for with the flapping angular velocity equals zero. Taha then went on and 

assessed the stability of this nonlinear time periodic system by using averaging theorem. 

The author went on to obtain the stability derivatives using complex step finite difference. 

He found that this technique greatly matches the results of those by Sun in [29]. Although 

the model lacks unsteadiness, it gives a good estimate for the cycle average stability 

derivatives.  

Does averaging really capture the whole dynamics? In their work in [39], Taha and Hassan 

assessed the feasibility of the averaging dynamics from a geometric control’s perspective. 

They found that averaging theorem is not capable of capturing all the dynamics because 

there exists an induced mechanism in the insects, vibrational stabilization, that is due to 
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high frequency periodic flapping that is ignored in the averaging model. This was further 

stressed upon and showed by Taha, Tahmasian, and Woolsey in their work for the need of 

higher order averaging in [40].  

As mentioned in the preceding paragraph, the vibrational stabilization is a mechanism in 

which the insect stabilizes itself in midair at hover by making its wings oscillate at very 

high frequencies. This was found first experimentally by Taha, Kiani, and Navarro in [41]. 

They setup at a two degree of freedom setup in which a model bird is able to move about a 

pendulum and pitch around its own axis. They found that at high frequencies, the bird 

stabilizes itself back to its original position following any perturbation, even huge ones. 

This was proven on a real hawkmoth and mathematically modeled using chronological 

calculus that there is a new term in the pitch dynamics model that accounts for this 

stabilizing motion. This was found by Taha, Kiani, Hedricks, and Greeter in their 

groundbreaking work in [11].    
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Chapter 2  

 

Flapping wing Aerodynamics 

In this chapter, extensive explanation of the flapping wing aerodynamics will be given. The 

first section will be concerned with the groundbreaking work of Dickinson, Lehmann, and 

Sane on the basis of insect flight and the phenomenon of “wake capture” [16]. This paper 

explains how insect fly and explores and explains the fundamental causes of why the birds 

and most insects can have lift forces up to twice their weight. The second section will focus 

on pronation and supination; their meaning and how they affect the bird flight 

performance and lift and drag. The third section will be on quasi – steady analysis and 

some experimental work on this assumption that proves that it suffices for flapping wing 

analysis. Final section will be on the stroke plane classification. All birds and insects are 

categorized into 3 classes: Horizontal stoke plane fliers, inclined stroke plane fliers, and 

vertical stroke plane fliers. Each class has its own characteristics when it comes to 

aerodynamic analysis.  
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2.1 Basis of insect flight 

Dickinson is considered one of the pioneers of the flapping wing area, his paper about the 

basis of insect flight opened a new dimension in flapping wing research, and more 

importantly, made us understand more about the flapping mechanism.  

Dickinson attributed the insect performance to three different yet interactive mechanisms:  

- Delayed stall 

- Rotational circulation  

- Wake capture  

His motivation for proposing such theory came from the fact that when putting insects 

inside a wind tunnel and tested over a range of velocities that they encounter, the 𝐶𝐿 was 

found to be a lot smaller than required for the insects to sustain flight. As mentioned earlier 

by Weis-Fogh in [14], the clap and fling mechanism is substantial to many flapping fliers, 

however, it was argued by Dickinson based on Marden work in [19] that not all insects use 

this mechanism. More studies using a hawkmoth dynamically scaled model suggested that 

“delayed stall” might be the cause that birds, and insects have such high 𝐶𝐿 , they are not 

sufficient to explain why some insects can have lift values that can exceed twice their body 

weight. As mentioned earlier, “delayed stall” is a phenomenon in which a leading-edge 

separation bubble forms at high angles of attack by the generating of circulatory forces that 

enhances the lift status of the bird or insect compared to those measured in steady state 

conditions. In this paper, Dickinson answered the questions of the basis of insect flight by 



 
 

31 
 

setting up an experiment in which he can measure the forces off a dynamically scaled 

model of the fruit fly, Drosophila melanogaster.  

 

 

 

 

The dimensions of the tank are 1m by 1m by 2m. The tank is filled with mineral oil with a 

density of 0.88(103) 𝑘𝑔𝑚−3 and kinematic viscosity of 115 cSt. These parameters were 

chosen to be able to match the 𝑅𝑒 of the Drosophila. The results were taken at stroke 

amplitude of 160 degrees, frequency of 145 mHz, and midstroke angle of attack at 40 

degrees upstroke and 40 degrees downstroke.  The average inclination of the wing was 

10.3 degrees with respect to the vertical. In the experiment, Dickinson applied three 

different configurations that he used for comparison to determine which the physics of 

flapping and in which one is the rotational affects less subtle:  

Fig. 5, taken from reference [16], 

robotic apparatus used for force 

measurement. 

Fig. 6, taken from reference [16], close 

up view of the measuring fly. 
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- Advanced wing rotation: in which the model starts turning before reaching the end 

of the stroke.  

- Symmetric wing rotation: in which the model wing starts rotating at the end of one 

stroke and spans the time until the beginning of another.  

- Delayed wing rotation: in which the model wing rotates after beginning the new 

stroke.  

The following schematics show the definitions mentioned applied to the upstroke and the 

downstroke: 

 

 

 

 

 

 

 

 

Fig. 7, taken from reference [16], advanced stroke 

pattern. 

 

Fig. 8, taken from reference [16], symmetric stroke 

pattern. 
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Dickinson started by testing whether the translational effect of delayed stall plays the role 

of the lift augmentation. He first measured the total force given the parameters mentioned, 

and then to isolate the translational component, he moved the wing 180 degrees at a fixed 

angle of attack. As shown in figure (), 

       

 

 

 

 

 the 3D steady component (experimental data is manifested in the dots) are below the 2D 

transient component, and above the 2D steady. This is mainly because that in 2D flow, 

unstable vortices named “von Karman street” arise, whereas in 3D flow the leading-edge 

vortex was stable throughout the flight. Moreover, the 𝐶𝐿𝛼 and 𝐶𝐷𝛼 curves were found to be 

nicely fitted by equations (3) and (4):  

Fig. 9, taken from reference [16], delayed stroke 

pattern. 

 

Fig. 10, taken from reference [16], 

Polar representation of translational 

force coefficients and comparison to 

2D steady and 2D transient. 
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- 𝐶𝐿 = 0.225 + 1.58 sin(2.13𝛼 − 7.2)                   (3)              

- 𝐶𝐷 = 1.92 − 1.55 cos(2.04𝛼 − 9.82)                     (4) 

The results, as shown in figures (11), (12), and (13) suggested that 

 

 

 

 

 

 

 

 

Fig. 11, taken from reference [16], results of total forces, measured 

translational, and obtained rotational forces in the advanced stroke pattern. 

 

Fig. 12, taken from reference [16], results of total forces, measured translational, 

and obtained rotational forces in the symmetric stroke pattern. 
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these two force peaks coming from the rotational forces might represent a new 

aerodynamic mechanism. The rotational forces were obtained from subtracting the already 

calculated translational forces from the total lift over the cycle. The rotational forces then 

outputted two peaks as shown in the figure.  

Dickinson suggested that these peaks are the result of the wing’s own rotation as it changes 

direction at the end of each stroke. But one important note is that for the wing to 

accommodate for the coming stroke, it must change direction early (advanced wing 

rotation) in order not to lose energy and force as was demonstrated in figure (7). Early flip 

for the wings means the relative angle of attack that is meeting the flow increases, and 

thereby increasing the lift. If the wing flips late (delayed wing rotation), then at the coming 

stroke that means the relative angle of attack that is meeting the flow decreasing, and the 

leading edge meeting the flow is rotating forward with respect to translation, and this will 

create the downward force. For the symmetric wing rotation, the wing will first generate 

Fig. 13, taken from reference [16], results of total forces, measured translational, 

and obtained rotational forces in the delayed stroke pattern. 
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lift, then a downward force and both will cancel each other. Dickinson concluded in this 

part that the bird can optimize the timing of its wing flip in order to maximize the force.  

The rotational circulation can explain the stroke reversal forces but cannot explain the 

large transient peaks after the wing immediately flips going to the beginning of the next 

stroke, as shown in figure (14) (the transient peaks are the whit dots). 

 

 

 

 

 

 

These peaks are in all the configurations; advanced, symmetrical, and delayed wing 

rotations. The difference between these peaks and the rotational peaks defined before is 

that the timing of these peaks is independent from the wing rotation configuration. It 

happens nearly at the same time during the cycle in the three configurations. One 

explanation, Dickinson proposed, that enables this transient peak is the mechanism of 

wake capture. Dickinson defined the wake capture as the process in which the wing reuses 

the shed vorticity of the previous stroke. In order to test this hypothesis, Dickinson tested 

whether there is an effect from the previous stroke on each cycle by starting the wing and 

Fig. 14, taken from reference [16], revisiting of Fig. 11 for the 

explaining of wake capture. 
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ending its movement at the end of the cycle. If the hypothesis is true, the wing should 

generate the force at the end of the half stroke even after stopping the wing motion. His 

predictions came true, as shown in figure (15).  

 

 

Again, the timing of the wing rotation makes a significant impact in the magnitude and 

direction of the force peak. An advanced wing rotation wing rotation will make the wing 

intercept its own wake, generating a positive lift peak. A delayed wing rotation means the 

wing intercepts the flow at an angle that hinders the lift, or more accurately produces 

negative lift. A symmetric wing rotation, the wing has 90 degrees at exactly half of the 

stroke reversal, and thereby produces no additional lift if stopped at the end of the stroke.  

Fig. 15, taken from reference [16], evidence of the wake capture 

mechanism after the wing comes to a halt. 
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In summary, the author has shown that bird flight cannot be caused by translational forces 

alone, even if the force is an unconventional translational mechanism such as delayed stall. 

Rather, the flapping aerodynamics are caused of three phenomena: delayed stall, rotational 

circulation, and wake capture. The latter two work together in harmony in the pronation 

and supination phases during stroke reversals.  

2.2 Quasi Steady Modeling 

In this section, we will be summarizing Dickinson and Sane work they did in editing the 

known quasi steady model they devised in [28] and adding the rotational effect to it. The 

authors used the same model they used in [16] (this is the same paper that was 

summarized in the last section, 2.1): 

  

 
Fig. 16, taken from reference [16], robotic 

apparatus used for force measurement. 

 

Fig. 17, taken from reference [16], close up 

view of the measuring fly. 
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All experiments were done on a Reynolds number of 115, calculated as [4]. The experiment 

was done over a range of angular velocities: 0 to 1.5 𝑟𝑎𝑑 𝑠−1 by increments of 0.085 

𝑟𝑎𝑑 𝑠−1. The angular velocity was expressed in a non-dimensional form as:  

- �̂� =
𝜔𝑐

𝑈𝑡
                        (5) 

 where 𝜔 is the absolute angular velocity, 𝑐 is the mean chord length, and 𝑈𝑡 is the tip 

velocity. The experiment was also done over a range of non-dimensional axis of rotation 

(�̂�𝑜) from 0 to 0.66, 0 indicating the leading edge and 1 the trailing edge. Values higher than 

0.66 threatened to damage the sensor on the wing due to large moments.  

The total force on the wing is:  

- 𝐹𝑖𝑛𝑠𝑡 = 𝐹𝑎 + 𝐹𝑡𝑟𝑎𝑛𝑠 + 𝐹𝑟𝑜𝑡 + 𝐹𝑤𝑐            (6) 

 where 𝐹𝑖𝑛𝑠𝑡 is the instantaneous force on the wing, 𝐹𝑎 is the inertial force due to added 

mass, 𝐹𝑟𝑜𝑡 is the force due to rotation, and 𝐹𝑤𝑐 is the force due to wake capture.  

If we are to neglect the wake capture effect and inertial added mass, we can isolate our 

rotational force component:  

- 𝐹𝑟𝑜𝑡 = 𝐹𝑖𝑛𝑠𝑡 − 𝐹𝑡𝑟𝑎𝑛𝑠           (7) 

The 𝐹𝑖𝑛𝑠𝑡 is the force measured from the sensor. 𝐹𝑡𝑟𝑎𝑛𝑠 was estimated using the following 

equation:  

- 𝐹𝑡𝑟𝑎𝑛𝑠 =
𝜌𝑆𝑈𝑡

2�̂�2
2(𝑆)

2
(𝐶𝐿𝑡

2 (𝛼) + 𝐶𝐷𝑡
2 (𝛼))

1

2        (8) 
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where 𝑆 is the projected surface area of the wing and �̂�2
2(𝑆) is the non-dimensional second 

moment of area according to [4]. 

Since the rotational forces will be measured form the experiment, we can call 𝐹𝑟𝑜𝑡 to be 

𝐹𝑟𝑜𝑡,𝑒𝑥𝑝. The non-dimensional coefficient of the rotational force can be calculated as:  

- 𝐶𝑟𝑜𝑡,𝑒𝑥𝑝 =
𝐹𝑟𝑜𝑡,𝑒𝑥𝑝

ρUt𝜔𝑐2𝑅 ∫ �̂�𝑐̂2(�̂�)𝑑�̂�
1
0

          (9) 

The results shown in figures (19), (20), (21):  

 

 

 

 

 

 

Fig. 18, taken from reference [28], rotational coefficient 

versus angular velocity for each axis of rotation.  

Fig. 19, taken from reference [28], rotational coefficient versus axis of rotation.  
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that there is a strong dependence on the magnitude of 𝜔, unlike the quasi-steady treatment 

derived by Theodorsen in [5] (see also [21]). The authors chose 𝐶𝑟𝑜𝑡,𝑒𝑥𝑝 = 1.55. This was 

based on the highest angular velocity �̂� = 0.374 and �̂�𝑜 =  0.25. The authors could not go 

higher than this regarding the non-dimensional rotational axis due to mechanical 

constraints.  

As shown in the validation results in figure (22),  

 

the revised model (black) nicely estimates the end of stroke rotational component and 

translational component but falls short in estimating the wake capture mechanism. 

Fig. 20, taken from reference [28], representative values of angular 

velocities plotted together with the quasi-steady prediction.  

 

Fig. 21, taken from reference [28], validation of the edited quasi steady model with the 

three different kinematic patterns: advanced, symmetric, delayed.  
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2.3 Unsteady Modeling 

In order to account for the full leading edge vortex dynamics, Taha at [23] proposed a 

complete unsteady model. The author compared the model to CFD [24] and found the 

results matching and the physics present.  

The author makes use of the static lift curve to determine the unsteady lift for an arbitrary 

wing motion. A unique feature of this work is that instead of using the angle of attack or 

airfoil speed as the unput, the author uses the quasi-steady circulation as the forcing input. 

This enables the model to predict the temporal lift build up coming from the stabilized 

leading-edge vortex, including the lag and phase shifts of unsteady flows. The basic 

principle in this model is the Duhamel superposition principle. 

The first step in incorporating the unsteadiness is the basis of unsteady aerodynamics: the 

Wagner effect [6]. We can write the unsteady lift in terms of the static lift and the Wagner 

functions as:  

- 𝑙(𝑠) = 𝑙𝑠𝑊(𝑠)                (6) 

where 𝑙𝑠 is the static lift and 𝑊(𝑠) is the Wagner function. The non-dimensional parameter 

𝑠 is defined as  

- 𝑠 =
2

𝑐
∫ 𝑈(𝜏)𝑑𝜏

𝑡

0
                   (7) 
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for varying stream 𝑈(𝜏). Duhamel superposition principle enables the author to write the 

circulatory lift as a superposition of indicial response (known) and time-variation of the 

input variable as:  

- 𝑙(𝑠) = 𝜋𝜌𝑈2𝑐(𝛼(0)𝑊(𝑠) + ∫
𝑑𝛼(𝜎)

𝑑𝜎
𝑊𝑑𝜎)

𝑠

0
             (8) 

𝑊(𝑠) can be used as an indicial response to aerodynamic inputs, as done by Van der Wall 

and Leishman [25]. For a relatively high angle of attack, like the one used by birds and 

insects, a more exact form of normal velocity is used 𝑤 = 𝑈𝑠𝑖𝑛(𝛼):  

- 𝑙(𝑠) = 𝜋𝜌𝑈(𝑠)𝑐(𝑈(0)sin𝛼(0)𝑊(𝑠) + ∫
𝑑𝑈(𝜎)sin𝛼(𝜎)

𝑑𝜎
𝑊𝑑𝜎)

𝑠

0
           (9) 

The main problem in the equation mentioned above, and in the classical unsteady approach 

in general, is that it cannot account for lift mechanisms, such as that coming from the 

leading-edge vortex forming. As can be seen from above equations, there is a dependence 

of the lift on 𝛼, 𝑈𝛼, 𝑎𝑛𝑑 𝑈𝑠𝑖𝑛𝛼. This dependence enabled the author to generalize the above 

equation to using the circulation as an input, knowing that the lift is linearly dependent on 

circulation in a potential flow. The above equation can be written as:  

- 𝑙(𝑠) = 𝜌𝑈(𝑠)(Γ𝑄𝑆(0)𝑊(𝑠) + ∫
𝑑Γ𝑄𝑆(𝜎)

𝑑𝜎
𝑊(𝑠 − 𝜎)𝑑𝜎)

𝑠

0
            (10) 

where Γ𝑄𝑆 is the quasi-steady circulation. It should be noted that the above-mentioned 

equation reduces to all previous forms of Duhamel’s integral for each specific case. This 

equation allows us to account for all the instantaneous effects, and this can be done by 

writing Γ = Γ𝑟𝑜𝑡 + Γ𝑡𝑟𝑎𝑛𝑠. Using results from Fung [22] for a pitching airfoil, Γ𝑟𝑜𝑡 can be 

written as:  
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- Γ𝑟𝑜𝑡 = 𝜋𝑐2�̇� (
3

4
− �̂�𝑜)          (11) 

The main assumption here is that the nonlinearity of the 𝐶𝐿 − 𝛼 curve is accounted for in in 

the input of the equation, which is the circulation, and this does now affect the temporal 

build-up of the circulatory lift as shown in figures (22), (23).  In order to apply this model 

to stability purposes and control, the author wrote equation (10) in state space form. The 

author started by writing the finite space model approximation of the Wagner function for 

a constant 𝑈:  

- 𝑊(𝑠) = 1 − 𝐴1𝑒
−𝑏1𝑠 − 𝐴2𝑒

−𝑏2𝑠         (12) 

 

 

  

 

 

The author then used Laplace transform to get a transfer function and then get the 

equivalent state space model. Writing Eq. (10) in terms of 𝑡 𝑎𝑛𝑑 𝜏:  

- 𝑙(𝑡) = 𝜌𝑈(𝑡)Γ𝑒𝑓𝑓(𝑡) = 𝜌𝑈(𝑡)(Γ𝑄𝑆(𝑡)𝑊(0) − ∫
Γ𝑄𝑆(𝜏)𝑑𝑊(𝑡−𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0
           (13) 

Fig. 22, taken from reference [23] linear/ nonlinear 

lift build up Vs. 𝜶 

Fig. 23, taken from reference [23] linear/ nonlinear  

lift build up Vs. semi-chord s 
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where Γ𝑒𝑓𝑓 is the effective unsteady circulation. Using the finite state approximation of the 

Wagner function presented in Eq. (12):  

- 
𝑑𝑊(𝑡−𝜏)

𝑑𝜏
= −

𝐴𝑖2𝑏𝑖

𝑐
𝑈(𝜏)𝑒−

2𝑏𝑖
𝑐

∫ 𝑈(𝜏)𝑑𝜏
𝑡
𝜏 ,   𝑖 = 1,2             (14) 

- Γ𝑒𝑓𝑓(𝑡) = (1 − 𝐴1 − 𝐴2)Γ𝑄𝑆(𝑡) + 𝑥𝑖(𝑡),   𝑖 = 1,2        (15) 

where 𝑥𝑖(𝑡) is:  

- 𝑥𝑖(𝑡) =  ∫
Γ𝑄𝑠(𝜏)𝐴𝑖2𝑏𝑖

𝑐
𝑈(𝜏)𝑒−

2𝑏𝑖
𝑐

∫ 𝑈(𝜏)𝑑𝜏
𝑡
𝜏 𝑑𝜏, 𝑖 = 1,2

𝑡

0
          (17) 

This equation represents the solution for:  

- 𝑥�̇�(𝑡) =
2𝑏𝑖𝑈(𝑡)

𝑐
(−𝑥𝑖(𝑡) + 𝐴𝑖Γ𝑄𝑠(𝑡)) ,   𝑖 = 1,2           (18) 

This is basically an ordinary differential equation with an initial condition of 𝑥𝑖(0) = 0. 

Finally, the lift can be written as:  

- 𝑙(𝑡) = 𝜌𝑈(𝑡)[(1 − 𝐴1 − 𝐴2)Γ𝑄𝑠 + 𝑥1(𝑡) + 𝑥2(𝑡)]        (19) 

where the state equation is Eq. (), and Γ𝑞𝑠 is written as:  

- Γ𝑄𝑆 =
1

2
𝑐𝑈(𝑡)𝐶𝐿,𝑠(𝛼(𝑡)) + 𝜋𝑐2(

3

4
− 𝑥0̂)         (20) 

The developed model requires the static lift curve to be known. As mentioned in the 

previous sections, the quasi-steady 𝐶𝐿 equation developed by Dickinson has been used 

extensively (refer to sections 2.1 and 2.2). However, this model does not account for any 

wing geometry variation. The author used the Extended lifting line theory to obtain:  
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- 𝐶𝐿𝛼 =
𝜋𝐴𝑅

1+√(
𝜋𝐴𝑅

𝑎0
)
2
+1

           (21) 

where 𝐴𝑅 =
𝑅2

𝑆
 and 𝑎0 is the lift curve slope of a two-dimensional airfoil section. Using 

conventional lift curves, we can write 𝑎𝑂 as:  

- 𝐶𝐿 = 
𝜋𝐴𝑅

2(1+√(
𝜋𝐴𝑅

𝑎0
)
2
+1)

𝑠𝑖𝑛2𝛼         (22) 

Lastly, the total lift can be written as the sum of circulatory lift and non-circulatory lift as:  

- 𝑙(𝑟, 𝑡) = 𝑙𝑁𝐶(𝑟, 𝑡) + 𝜌𝑟|φ̇(𝑡)|[(1 − 𝐴1 − 𝐴2)Γ𝑄𝑠(𝑟, 𝑡) + 𝑥1(𝑟, 𝑡) + 𝑥2(𝑟, 𝑡)]             (23) 

where 𝑈 is written as 𝑟�̇�(𝑡) given that 𝜑(𝑡) is the flapping angle about the 𝑧𝑏 axis.  

The kinematics of the flapping bird is explained explicitly in the paper. As mentioned in the 

introduction, the author validated his model with CFD done by Sun and Du in [24]. Here are 

the results:  

   

 

 

Fig. 24, taken from reference [23] 

Cranefly lift curve at f = 45.5 Hz and 

𝜶𝒎= 30 

Fig. 25, taken from reference [23] Ladybird 

lift curve at f = 54 Hz and 𝜶𝒎= 43 
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In conclusion, as seen from the results in figures (24, 25, 26,27), the unsteady model 

proposed by Taha in [23] greatly matches the CFD results, and predicts the unconventional 

flight mechanisms that increase the force of a flapping flyer, such as the LEV.  

 

 

Fig. 26, taken from reference [23] 

Hoverfly lift curve at f = 160 Hz and 𝜶𝒎= 

29 

 

Fig. 27, taken from reference [23] Fruit 

fly lift curve at f =254 Hz and 𝜶𝒎= 46 
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Chapter 3 

 

Longitudinal Flight dynamics 

In this chapter, we will be discussing two papers written by Taha, [34] and [21]. The first 

chapter will be concerned with the longitudinal flight dynamics and how it is incorporated 

with quasi-steady modeling. The derived flight dynamics will then be assessed for its 

stability using averaging techniques. The second chapter will be concerned with the 

groundbreaking work of Taha on the insect’s vibrational stabilization during hover, a 

problem that has been in question for more than two decades.  

3.1 Longitudinal Flight dynamics of Hovering MAVs/insects  

In this paper, the focus in on longitudinal motion, so only pitching rotation 𝜃 is considered. 

There are two frames that will be used to get the model, a body-fixed frame and a wing-

fixed frame. The insect model considered are those of the horizontal stroke plane family. 
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The author assumed that there is no out of plane motion. Here is a schematic of for a 

flapping MAV:  

 

The derivation starts with laying out the longitudinal dynamics of a conventional aircraft: 

                                                            [

�̇�
�̇�
�̇�

�̇�

] = [

−𝑞𝑤 − 𝑔𝑠𝑖𝑛𝜃
𝑞𝑢 + 𝑔𝑐𝑜𝑠𝜃

0
𝑞

] +

[
 
 
 
 
 

1

𝑚
𝑋

1

𝑚
𝑍

1

𝐼𝑦
𝑀

0 ]
 
 
 
 
 

                                         (24) 

 or in vector form as �̇� = 𝒇(𝒙) + 𝒈𝒂(𝒙, 𝒕), where g is the gravitational acceleration, m is the 

body mass, and 𝐼𝑦 is the body moment of inertia around the 𝑦𝑏 axis. 𝒙 is out state variable, 

with 𝒙 = [𝑢, 𝑤, 𝑞, 𝜃]𝑇. 𝑢 is the center of mass velocity in the 𝑥𝑏 direction, 𝑤 is the center of 

mass velocity in the 𝑧𝑏 direction, 𝜃 is the pitching angle about the 𝑦𝑏 axis, and 𝑞 is the 

angular velocity about the 𝑦𝑏 axis.  

In the previous chapter, we explored the papers by Taha and Dickinson in their analysis 

and modeling of flapping wings. We will not be going into many details regarding 

Fig. 28, taken from reference [34] Schematic diagram of a hovering MAV 

in a horizontal stroke plane. 
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aerodynamic analysis in this chapter. Taha used a quasi-steady model in his aerodynamic 

analysis in this work. 𝐶𝐿 was showed by Wang in [27] that in can be written as:  

- 𝐶𝐿 = 𝐴 𝑠𝑖𝑛2𝛼               (25) 

Taha showed in [23] (details are summarized in section 2.3) that A can be written as:  

- 𝐴 =
𝜋𝐴𝑅

2[1+√(
𝜋𝐴𝑅

𝑎0
)
2
+1]

                   (26) 

And also, that 𝐶𝐷 can be written as:  

- 𝐶𝐷 = 𝐶𝐿𝑡𝑎𝑛𝛼 = 2𝐴𝑠𝑖𝑛2𝛼                    (27) 

It was shown by Dickinson in [28] (also in section 2.2) that the experiments are very close 

to the theoretical results for the Γ𝑟𝑜𝑡 if written as: 

- Γ𝑟𝑜𝑡 = 𝜋𝑐2�̇�(
3

4
− �̂�0)              (28) 

where c is the chord length, �̇� is the pitching angular velocity of the wing, and �̂�0 is the 

normalized chord position of the pitch axis from the leading edge. Using the preceding 

equations, for an airfoil section a distance r from the wing root:  

- 𝑙(𝑟, 𝑡) =
1

2
𝜌𝐴𝑐(𝑟)𝑈2(𝑟, 𝑡)𝑠𝑖𝑛2𝛼(𝑟, 𝑡) + 𝜋𝜌 (

3

4
− �̂�0)𝑈(𝑟, 𝑡)𝑐2(𝑟)𝜂(𝑡)̇                 (29) 

- 𝑑(𝑟, 𝑡) = 𝜌𝐴𝑐(𝑟)𝑈2(𝑟, 𝑡) sin2 𝛼 (𝑟, 𝑡)                   (30) 

where U is the velocity of the wing section relative to the air.  
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Next, the author went on to incorporate the dynamic model into the aerodynamic model. 

For that to be done, the effects of the body motion variables on U should be included:  

- 𝑈 = √(𝑟�̇� + 𝑢𝑐𝑜𝑠𝜑)2 + 𝑤2, 𝑤ℎ𝑒𝑟𝑒 𝛼 = 𝛼𝜂 + 𝛼𝑖 𝑎𝑛𝑑 �̇�           �̇� + 𝑞𝑐𝑜𝑠𝜑         (31) 

where 𝛼𝜂 and 𝛼𝑖 can be written as:  

- 𝛼𝜂(𝑡) = {
𝜂,                    𝑈 > 0 
𝜋 − 𝜂,           𝑈 < 0 

       and       𝛼𝑖 = tan−1 𝑤−𝑞(𝑟𝑠𝑖𝑛𝜑+𝑥ℎ)

𝑈
         (32) 

where 𝛼𝜂 and 𝛼𝑖 are the angles of attacked induced by the wing pitch angle and the angle of 

attack induced by the body motion, respectively. We can now write the lift and drag per 

unit span as:  

- 𝑙(𝒙, 𝑡; 𝑟) =
1

2
𝜌𝐴𝑐(𝑟)𝑈2 [𝑠𝑖𝑛2𝛼𝜂(𝑡) + 2𝑐𝑜𝑠𝛼𝜂(𝑡)

𝑤𝑒𝑓𝑓(𝒙,𝑡;𝑟)

|𝑈(𝒙,𝑡;𝑟)|
 ] + 𝜋𝜌 (

3

4
−

�̂�0) 𝑐2(𝑟)𝑈(𝒙, 𝑡; 𝑟)[�̇�(𝑡) + 𝑞𝑐𝑜𝑠𝜑(𝑡)]            (33) 

- 𝑑(𝒙, 𝑡; 𝑟) = 𝜌𝐴𝑐(𝑟)𝑈2(𝒙, 𝑡; 𝑟)[sin2 𝛼𝜂(𝑡) + 𝑠𝑖𝑛2𝛼𝜂(𝑡)
𝑤𝑒𝑓𝑓(𝒙,𝑡;𝑟)

|𝑈(𝒙,𝑡;𝑟)|
            (34) 

where 𝑤𝑒𝑓𝑓 = 𝑤 − 𝑞(𝑟𝑠𝑖𝑛𝜑 + 𝑥ℎ).  We can now write the flight dynamics model as:  

                        [

�̇�
�̇�
�̇�

�̇�

] = [

−𝑞𝑤 − 𝑔𝑠𝑖𝑛𝜃
𝑞𝑢 + 𝑔𝑐𝑜𝑠𝜃

0
𝑞

] +

[
 
 
 
 
 

1

𝑚
𝑋0

1

𝑚
𝑍0

1

𝐼𝑦
𝑀0

0 ]
 
 
 
 
 

+ [

𝑋𝑢 𝑋𝑤 𝑋𝑞 0

𝑍𝑢 𝑍𝑤 𝑍𝑞 0

𝑀𝑢 𝑀𝑤 𝑀𝑞 0

0 0 0 0

] [

𝑢
𝑤
𝑞
𝜃

]                      (35) 

where for �̇� = 0, i.e., no change in the wing pitch angle, we have:  

- 𝑋0(𝑡) =  −2𝐾21𝜑˙(𝑡)|𝜑˙(𝑡)|𝑐𝑜𝑠 𝜑(𝑡)𝑠𝑖𝑛2 𝜂 ,       𝑍0(𝑡)  =  −𝐾21𝜑˙(𝑡)|𝜑˙(𝑡)| 𝑠𝑖𝑛 2𝜂           

(36) 
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- 𝑀0(𝑡)  =  2𝜑˙(𝑡)|𝜑˙(𝑡)| 𝑠𝑖𝑛 𝜂[𝐾22∆�̂� 𝑐𝑜𝑠 𝜙(𝑡)  + 𝐾21𝑥ℎ 𝑐𝑜𝑠 𝜂(𝑡)  +

 𝐾32 𝑠𝑖𝑛 𝜑(𝑡) 𝑐𝑜𝑠 𝜂]            (37) 

where 𝐾𝑚𝑛 =
1

2
𝜌𝐴𝐼𝑚𝑛 and 𝐼𝑚𝑛 = 2∫ 𝑟𝑚𝑐𝑛(𝑟)𝑑𝑟 

𝑅

0
. As for the time-varying stability 

derivatives:  

𝑋𝑢 = −
4𝐾11

𝑚
|�̇�| cos2 𝜑 sin2 𝜂 ,          𝑋𝑤 = −

𝐾11

𝑚
|�̇�|𝑐𝑜𝑠𝜑𝑠𝑖𝑛2𝜂 

𝑋𝑞 =
𝐾21

𝑚
|�̇�|𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛2𝜂 − 𝑥ℎ𝑋𝑤,          𝑍𝑢 = 2𝑋𝑤 

𝑍𝑤 = −
2𝐾11

𝑚
|�̇�| cos2 𝜂 ,          𝑍𝑞 =

2𝐾12

𝑚
|�̇�|𝑠𝑖𝑛𝜑 cos2 𝜂 −

𝐾𝑟𝑜𝑡12

𝑚
�̇�𝑐𝑜𝑠𝜑 − 𝑥ℎ𝑍𝑤                     (36) 

𝑀𝑢 =
4𝐾12Δ𝑥

𝐼𝑦
|�̇�| cos2 𝜑  𝑠𝑖𝑛 𝜂 +

𝑚

𝐼𝑦
(2𝑋𝑞 − 𝑥ℎ𝑍𝑢),          𝑀𝑤

=
2𝐾12Δ𝑥

𝐼𝑦
|�̇�|𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜂 +

2𝐾21

𝐼𝑦
|�̇�|𝑠𝑖𝑛𝜑 cos2 𝜂 −

𝑚𝑥ℎ

𝐼𝑦
𝑍𝑤  

𝑀𝑞 = −
2Δx

𝐼𝑦
|�̇�|𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜂 (𝐾12𝑥ℎ + 𝐾22𝑠𝑖𝑛𝜑) +

1

𝐼𝑦
�̇�𝑐𝑜𝑠𝜑(𝐾𝑟𝑜𝑡13

Δ𝑥 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜂

+ (𝐾𝑟𝑜𝑡22
 𝑠𝑖𝑛𝜑) −

2

𝐼𝑦
|�̇�| cos2 𝜂  𝑠𝑖𝑛𝜑(𝐾21𝑥ℎ + 𝐾31𝑠𝑖𝑛𝜑) −

𝐾𝑣𝜇1𝑓

𝐼𝑦
cos2 𝜑

−
𝑚𝑥ℎ

𝐼𝑦
𝑍𝑞  

Where 𝐾𝑟𝑜𝑡 = 𝜋𝜌 (
1

2
− Δ�̂�) 𝐼𝑚𝑛, 𝐾𝑣 =

𝜋

16
𝜌𝐼04.  

The preceding model has been tested for stability and validated with results from 

benchmark results from Sun at [28].  

In the stability analysis, the authors applied the averaging theorem. The averaging theorem 

can be written in the form of:  

- �̇̅� = 𝜖�̅�(�̅�)  
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Where �̅�(𝑿) =
1

𝑇
∫ (𝑿, 𝜏)

1

0
𝑑𝜏. According to the averaging theorem, if 𝜖 is small enough, then 

the exponential stability of the averaged system concludes the potential stability of the 

NLTP system.  

Applying the averaging theorem to our original system, it can be written in the following 

form:  

- 

(

 
 

�̇̅�(𝑡)

�̇̅�(𝑡)

�̇̅�(𝑡)

�̇̅�(𝑡))

 
 

= 

(

 

−�̅�(𝑡)�̅�(𝑡) − 𝑔𝑠𝑖𝑛(�̅�(𝑡))

�̅�(𝑡)�̅�(𝑡) + 𝑔𝑐𝑜𝑠(�̅�(𝑡))
0

�̅�(𝑡) )

 + 

(

  
 

1

𝑚
𝑋0
̅̅ ̅

1

𝑚
𝑍0
̅̅ ̅

1

𝐼𝑦
𝑀0
̅̅ ̅̅

0 )

  
 

+

[
 
 
 
 
𝑋𝑢
̅̅̅̅ 𝑋𝑤

̅̅ ̅̅ 𝑋𝑞
̅̅ ̅ 0

𝑍𝑢
̅̅ ̅ 𝑍𝑤

̅̅ ̅̅ 𝑍𝑞
̅̅ ̅ 0

𝑀𝑢
̅̅ ̅̅ 𝑀𝑤

̅̅ ̅̅̅ 𝑀𝑞
̅̅ ̅̅ 0

0 0 0 0]
 
 
 
 

(

 

�̅�(𝑡)

�̅�(𝑡)

�̅�(𝑡)

�̅�(𝑡))

          

(37) 

The nice thing about the averaging theorem is that it converts the nonlinear time periodic 

system, into an autonomous equation such as the one in equation (37).  Now, the process of 

finding a periodic orbit is reduced to finding a fixed point of the averaged system. The trim 

conditions for hovering of insects now are:  

- 𝑋0
̅̅ ̅ = 0,   − 𝑍0

̅̅ ̅ =  𝐿0
̅̅ ̅ = 𝑚𝑔,    𝑀0

̅̅ ̅̅ = 0                    (38) 

The stability of the trimmed system was tested, and the results were validated with those 

by Sun [29]. Here are the results:  

 

 

 

 

 

 

Fig. 29, taken from reference [34] Eigenvalues of the averaged linear dynamics compared with 

Sun, and Cheng and Deng’s model 
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As can be seen, the model results are very close to the results by Sun than those of Cheng. 

The deviation of the results of Cheng may be caused by Cheng’s model ignoring of 

rotational effects. Finally, these results are very well known in the flapping flight 

community. The LTI system eigenvalue structure has two stable non-oscillatory modes and 

an unstable oscillatory mode. So, the system is rendered as unstable. Is this really the case? 

Or is it only because averaging does not show the whole range of dynamics? It appeared 

that actually insects have vibrational stabilization, that there is no feedback action needed. 

Also, the first order averaging was not enough in showing the whole dynamic spectrum of 

insects. This is what Taha discovered in his groundbreaking work in [21]. That insects have 

its own stability characteristics inherited in a vibrational stabilization mechanism.  

3.2 Vibrational stabilization  

Applying direct averaging on equation (24) and linearizing about the hovering equilibrium, 

it can be written as:  

- 

(

 

�̇̅�
�̇̅�
�̇̅�

�̇̅�)

 =  

[
 
 
 
𝑋𝑢
̅̅̅̅ 0 0 −𝑔

0 𝑍𝑤
̅̅ ̅̅ 0 0

𝑀𝑢
̅̅ ̅̅ 0 𝑀𝑞

̅̅ ̅̅ 0

0 0 1 0 ]
 
 
 

(

�̅�
�̅�
�̅�

�̅�

)         (39) 

where the bar over the variables indicates average quantity of the aerodynamic stability 

derivative. The function of each stability derivative is embedded in its name. For instance, 

𝑍𝑤 is the change in Z force due to a disturbance w. As mentioned in the last section, this 

system has two stable oscillatory modes and an unstable oscillatory mode that comes from 
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the complex conjugate pair of eigenvalues with a positive real part, which concludes the 

instability of the system.  This instability comes from the absence of an 𝑀𝜃 term. That is, 

there is no moment that restores the insect to its original position due to a disturbance in 𝜃. 

However, Taha revealed that in using higher order averaging and chronological calculus, 

such term exists [21].  

Agrachev and Gamkrelidze were the ones who developed a new calculus for time varying 

dynamical systems: the chronological calculus [30]. Sarychev in [31] introduced the 

concept of higher order averaging:  

- �̇̅� = 𝜖�̅�(�̅�) = 𝜖𝚲1(�̅�) + 𝜖2𝚲2(�̅�) + 𝜖3𝚲3(�̅�) + ⋯            (40) 

where:  

- 𝚲1(𝑿) =
1

𝑇
∫ 𝑭

𝑇

𝑜
(𝑿, 𝑡)𝑑𝑡    (41) 

- 𝚲2(𝑿) =
1

2𝑇
∫ [∫ 𝑭

𝑇

𝑜
(𝑿, 𝜎)𝑑𝜎, 𝑭(𝑿, 𝑡)] 𝑑𝑡

𝑇

𝑜
     (42) 

- 𝚲3(𝑿) = −
𝑇

2
[𝚲1(𝑿), 𝚲2(𝑿)] +

1

3𝑇
∫ [∫ 𝑭

𝑇

𝑜
(𝑿, 𝜎)𝑑𝜎, [∫ 𝑭

𝑇

𝑜
(𝑿, 𝜎)𝑑𝜎, 𝑭(𝑿, 𝑡)]]𝑑𝑡

𝑇

𝑜
        

(43) 

where [,] is the lie bracket operation which is:  

- [𝑼𝟏, 𝑼𝟐] =
𝜕𝑼𝟐

𝜕𝑿
𝑼𝟏 −

𝜕𝑼𝟏

𝜕𝑿
𝑼𝟐           (44) 

In the complete averaged dynamics in Eq (41), 𝚲1(𝑿) is the first order averaging terms. As 

can be seen from Eq (40), if 𝜖 us small enough, the second and third average dynamics will 

vanish. Applying these concepts on the hawkmoth system, we have:  
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- 
𝜕𝚲𝟏

𝜕𝒙
(0) = [

−3.59 0 0 −9.81
0 −3.3 0 0

39.95 0 −7.92 0
0 0 1 0

],          (45) 

 

- 
𝜕(𝚲𝟏+𝚲𝟐)

𝜕𝒙
(0) = [

−3.58 0 0 −9.81
0 −3.09 0 0

29.98 0 −8.13 −28.45
−2.9 0 0.96 0

]            (46) 

This higher order averaging resulted in the shifting of the eigen values to being a 

completely stable system. Taha, using chronological calculus, derived the following 

equation for vibrationally induced pitch stiffness for insect flight dynamics:  

- 𝑘𝜃 =
𝑔

2𝑇
 ∫ [𝑀𝑉𝑥

(𝑡)𝑑𝑡 − ∫ 𝑀𝑉𝑥
(𝜏)𝑑𝜏

𝜏

𝑜
]𝑑𝑡

𝑇

𝑜
        (47) 

where T is the flapping period, and 𝑀𝑉𝑥
 is the change of pitching moment due to the 

velocity 𝑉𝑥 = 𝑢𝑐𝑜𝑠𝜃 + 𝑤𝑠𝑖𝑛𝜃. Equation (47) simply tells us that 𝑘𝜃 is related to two 

phenomena: gravity and cycle variation. For a constant 𝑀𝑉𝑥
, like a non-oscillatory system 

such as fixed wing,  𝑘𝜃 would vanish.  As all stability derivatives, 𝑘𝜃 can be decomposed to 

𝑀𝑉𝑥
̅̅ ̅̅ ̅ and Δ𝑀𝑉𝑥

. The oscillation of the latter comes from the change in positions between the 

body center of gravity and the center of pressure of the wing. The following figure shows 

Emergence of the 𝑀𝜃  term  

Fig. 30, taken from reference [34] illustration of the vibrational stabilization mechanism, and how the 

moment arm plays a role. 
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how the stabilization occurs due to the fact that the moment arm oscillates with respect to 

the CG.  
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Chapter 4 

 

Experimental study 

4.1 Motivation 

The ADCL at UCI under supervision of Professor Haithem Taha is in the development of a 

new flying concept: a quad-flapping drone. The lab is aiming to utilize all the mentioned 

concepts in order to exploit this novel configuration. Up until now, the ADCL lab had a 

proof of concept for this flying machine. Our current objective is to develop an optimal 

design such as to make use of unsteady phenomena such as the clap and fling and delayed 

stall in how they can augment thrust.  In order to do this, we need to know at which phase 

of the stroke to each phenomenon uniquely happens.  
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4.2 Experimental setup 

The first part of the experimental apparatus is the 4-winged FWMAV, with a chassis of a 

crank-rocker mechanism that enables it to transmit rotational motion coming from the 

motor and gears. The mechanism is shown in figure ():  

 

 

 

 

 

 

The mechanism is fabricated so that the output angle follows a near-sine waveform with 

time. The position loop equation of the rocker was derived by my senior colleague 

Moatasem Fouda, and a comparison with the sine wave form was made:  

 

 

 

 

Coupler link 

 

Rocker 

Wing leading edge 

Motor pinion  

Fig. 31, close up view of the CAD 

model of the crank rocker 

mechanism.  

 

Fig. 32, close up view of the CAD 

model of the crank rocker 

mechanism at max 𝝋  

 

Fig. 33, the derivation of the kinematic flapping 

angle, and the closeness it is to a sin wave form 
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This resemblance will help us see how the forces vary with time as we can just input the 

sinusoidal wave for ease of calculation and use. The function used will be of the form: 

sin (𝜔𝑡 − 𝜑), where 𝜔 = 2𝜋𝑓 for flapping frequency 𝑓 and 𝜑 as the phase difference, i.e., 

the angle in which the bird was on at the beginning of each experiment.  

The whole system relies on only one DC brushless motor with peak power of around 2.5 - 3 

W with load. And can go up to 4 W without load. The gears are an 0.3 module, with gear 

ratio of 10:40.  

The wings are elliptic wings, made from paper. The dimensions of the wings are 𝑏 =

140 𝑚𝑚, 𝑎 = 95 𝑚𝑚, where a and b are the semi minor axis and semi major axis, 

respectively, as shown in the figure ():  

  

 

 

 

 

There are 4 wings, each attached to the carbon fiber rod coming out of the rocker as 

mentioned. The area of each wing is calculated as 𝐴 = 0.25𝜋𝑎𝑏. The area of one wing is 

equal to 10446 𝑚𝑚2. The a here corresponds to the maximum chord of the wing and b the 

semi span. The wings are completely flexible with no kind of support such as spar inside 

them. This fact is extremely important to the generation and augmentation of thrust. The 

flexibility fact will utilize the clapping mechanism and, as we will see, will be the main 

phenomenon behind the highest force production in a flapping cycle.  

Fig. 34, ellipting wing planform used. 
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The second main part of the apparatus is the 4-axis load cell. The 4-axis load cell consists of 

4 load cells attached together in a special way in which it can measure thrust, lift, moment 

around the x-axis, and moment around the y-axis. Before going any further, here is a 

picture that defines the axes of the load cell:  

 

 

 

 

 

 

This 4-axis load cell design was patented here in the lab, the design was made by my senior 

colleague Moatasem Fouda, more on this can be found here [42]. As mentioned, this design 

Fig. 35, top view of the 4 axis LC 

 

Fig. 36, full view of the 4-axis LC 

 

Fig. 37, side view of the 4 axis LC 

 

Fig. 38, front view of the 4 axis LC 
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is used to measure different forces and moments, captured using the LABVIEW software. 

The bird is attached on the vertical load cell, as demonstrated in the coming figure (40):  

 

 

 

 

 

 

 

 

 

 

 

Fig. 39, full experimental setup 
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The forces measurements were acquired using NI 6211 DAQ assistant through LABVIEW 

program. The complete experimental apparatus is shown in figure ():  

 

 

In order to detect the frequency, a Hall sensor was attached on the chassis that gives a 

signal every time the wing reaches maximum flapping angle 𝜑. The data is also acquired 

using the LABVIEW program and the frequency is calculated as the number of edges per 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒
 . Forces and moments were measured for frequencies from 5 Hz up to 13 

Hz with an increment of 0.5 Hz. All captured data with frequencies from 5-9.5 Hz were 

filtered using a digital low pass filter at a cutoff frequency of 2-3 times the flapping 

frequency. For frequencies of 10-13 Hz, an analogue low pass filter to make sure all the 

physics was captured. The analogue low pass filter was set at a cut off of 3 times or more of 

the flapping frequency and added to it a digital low pass filter at the same cut off frequency.  

4.3 Results  

4.3.1 Force and moment variation with flapping angle 

As mentioned before, the Hall sensor was used to measure the frequency of the flapping 

wing. Not only that, its signal variation with time was also utilized to tell us when of the 

forces happen at what time. This will help us improve in the design of the new mechanism 

developed here at the ADCL lab.  

Fig. 40, block diagram for the measurements 
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The Hall sensor is attached at the side of the chassis, in which it gives a signal when the 

wing reaches maximum flapping angle 𝜑 at approximately 35 degrees. Zero degrees 

happen when the leading edges of the upper and lower wings clap with each other. The Hall 

sensor is wired to the power using a pull up resistor circuit, in which the default value it 

has is at 5 Volts. If the Hall sensor detects a magnet, the Hall sensor gives a 0 Volts 

measurement, in other words, it emits a signal in the LABVIEW software.  

 

 

 

 

 

 

 

 

 

Max flapping angle 𝜑 = 35 

 

𝜑 = 35 

 Magnet 

Fig. 41, close up view of the hall effect sensor 

and attached magnets. 

 

Fig. 42, mechanism at max 𝝋 

 

Fig. 43, Hall effect sensor signal into action, y-axis is 

volts, with t/T in x-axis.  
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As mentioned, since we now know from the kinematic property that the actual flapping 

angle is almost sin waveform, we have a position with time plot:  

 

One of the things to note here is the placement of the Hall sensor is imperfect, i.e., there is a 

small 𝛿𝑡 in which the Hall sensor detects the magnet before reaching the maximum 

flapping angle 𝜑. The value of this 𝛿𝑡 is irrelevant since we know that in the way up, 

upstroke, whatever the 𝛿𝑡 is, the same 𝛿𝑡 will be detected in the downstroke also. This 

makes the approximation of the sin angle correct in the sense that the peak of the upstroke 

should be exactly at half length of the edge corresponding to it. So, any imperfection in 

placing the sensor on the chassis would not cause a big problem. Another thing to note is 

that compared, for instance, with the motion capture system for flapping angle capture, the 

hall effect sensor here is placed on the chassis, only the magnet with is less than 0.2 grams 

is on a rigid part of the wing. This results in that there will be no alteration in the 

dynamics/kinematics of the wing and thus of the whole system.   

Fig. 44, alignment of the flapping angle with the hall sensor signal 
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In the coming few pages, results of the thrust, lift, and pitching moment will be displayed 

with flapping angle for frequencies of 6-12 Hz. We will be discussing the results and the 

aerodynamics of thrust and lift and how in each position there us an underlying 

aerodynamic phenomenon that causes this behavior.  
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Fig. 45, thrust measurement with 

flapping angle Vs t/T at 6 Hz 

 

Fig. 46, Pitching moment measurement with 

flapping angle Vs t/T at 6 Hz 

 

Fig. 47, thrust measurement with flapping angle 

Vs t/T at 8 Hz 

 

Fig. 48, Pitching moment measurement with 

flapping angle Vs t/T at 8 Hz 
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Fig. 49, thrust measurement with flapping 

angle Vs t/T at 10 Hz. 

 

Fig. 50, Pitching moment measurement with flapping 

angle Vs t/T at 10 Hz 

 

Fig. 51, thrust measurement with 

flapping angle Vs t/T at 12 Hz.  

 

Fig. 52, Pitching moment measurement with 

flapping angle Vs t/T at 12 Hz. 
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Fig. 53, Lift measurement with flapping angle Vs 

t/T at 6 Hz. 

 

Fig. 54, Lift measurement with flapping angle Vs 

t/T at 8 Hz. 

 

Fig. 55, Lift measurement with flapping angle Vs t/T at 10 Hz. 
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As has been highlighted before regarding the Hall sensor discussion, we will be calling the 

phase in which the wing goes from 𝜑 = 35𝑜 to zero the downstroke, and vice versa the 

upstroke. This is simulated in the following figure:  

 

 

 

  

 

 

This naming will be very important for the coming discussions as it will be important to 

understand where the wing is at any instant.  
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Fig. 56, flapping angle plot important nomenclatures. 
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The flapping force per cycle, plotted with time is characterized by the existence of two 

peaks. As can be seen in the figures, the first peak is between the maximum and minimum 

flapping angles (circled in orange), with corresponds to the fact that the maximum angular 

velocity occurs somewhere in between as the wing is speeding up. This is confirmed by the 

presence of a negative peak in the Thrust Vs. angular velocity curve on the right (circled in 

blue). As mentioned before in this review and shown in [16], the leading-edge vortex is 

mainly characterized by a wing starting from zero to a maximum velocity at a high angle of 

attack, which is exactly the case here. This result is further confirmed by [32], in which the 

authors made a CFD simulation on an Encarsia Formosa wing and found that at very high 

speed in which the wings are approaching the clapping phase, there are two huge leading-

edge vortices that are formed. The leading-edge vortices they found can be seen in figure 

(59). 
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Fig. 57, thrust measurement with flapping 

angle Vs t/T at 10 Hz, stressing on max and 

min 𝝋 

 

Fig. 58, thrust measurement with angular 

velocity Vs t/T at 10 Hz, stressing on 

maximum angular velocity 
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Going to the second peak, this peak is mostly dominated by the clapping effect. As can be 

seen in figure (60) 

 

 

 

 

 

 

This peak happens right after the minimum flapping angle, in which the wings collide with 

each other. This is a direct of the flapping mechanism. This clapping squeezes the air 
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Fig. 59, taken from reference [32] large leading-edge vortices 

at high velocities 

Fig. 60, thrust measurement with flapping angle Vs t/T at 10 Hz, 2nd 

peak position.  
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between the two wings, and thereby producing a jet flow that augments the thrust. The 

enhancement even surpasses the thrust coming from the LEV at the maximum speed phase, 

i.e., the first peak. One thing to note is that this squeezing actually increases in force as the 

frequency increases.  

 

 

 

 

 

As can be seen in figure (61), as the frequency increases, the second peak rises more and 

more.  

Another thing to note is that there is a time lag between the flapping angle in which the 

clapping should take effect, and the thrust peak at which it is seen. This lag is from the fact 

that the leading-edge “leads” the trailing edge during a cycle. The cause again is the wing 

flexibility. Remember, the magnet is placed on the rigid pard of the wing, which is a part of 

the rigid leading-edge. The material of the wing is a type of paper that is very thin, and thus 

it takes time for the full clap effect to be pronounced. This is shown in figure (). This lag 
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decreases as frequency increases. Going back to figures () and (), you can see that this lag is 

the largest at the 6 Hz measure, and minimal at the 12 Hz one.  

 

 

 

 

4.3.2 Efficiency  

The performance curves will enable us to see the optimal design point that can will help us 

in designing the new Quad flapping drone here at the ADCL lab. Knowing these mentioned 
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Fig. 62, 2nd peak (clapping) time lag due to flexibility 
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details in the previous section, the thing missing is the optimum design point: which 

frequency and which wing area should we be operating around?  

Using the same experimental setup, the thrust and lift output was averaged over a cycle for 

frequencies from 5-13 with an increment of 0.5 Hz. The same wing planform as in figure () 

was used (brought down here in figure ()), the only difference is that the half span was 

decreased. The large area half span is equals to 140 millimeters, while the small area half 

span is 95 millimeters. Since we are talking about an elliptic wing, this half span 

corresponds to the quarter ellipse semimajor axis.  

 

 

 

 

 

 

The ratio of the areas is:  

- 
𝐿𝑎𝑟𝑔𝑒 𝑎𝑟𝑒𝑎

𝑆𝑚𝑎𝑙𝑙 𝑎𝑟𝑒𝑎
= 1.75          (48) 

The average thrust and power per cycle were both nondimensionalized by:  

Half span 

Fig. 63, elliptic wing planform  
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- 𝐶𝑇 =
𝑇ℎ𝑟𝑢𝑠𝑡

0.5𝜌𝑉2𝑆∗4
           (49) 

- 𝐶𝑃 =
𝑃𝑜𝑤𝑒𝑟

0.5𝜌𝑉3𝑆∗4
         (50) 

In which the velocity here was taken to be the tip velocity at the leading edge. The velocity 

is calculated as:  

- 𝑉 = 2𝜋𝑓 ∗ 𝑏 ∗ 𝜑𝑀𝑎𝑥          (51) 

where 𝑓 is the flapping frequency, b is the semimajor axis or half span, 𝜑𝑀𝑎𝑥 is the 

maximum flapping angle, which is taken constant equals to 35, and the constant of 4 is for 

having 4 wings. The results are shown in figures (65), (66), (67):  

  

 

 

Fig. 64, coefficient of power with 

frequency for small and large 

areas 

 

Fig. 65, coefficient of thrust with 

frequency small and large areas. 
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The efficiency curve is obtained by dividing the calculated coefficient of thrust by 

coefficient of power per cycle. As can be seen in figure (64), the 𝐶𝑇 of the smaller area is 

higher than that of the larger one. It is logical in a mathematical sense, since the thrust is 

now divided by a smaller area. The same concept applies to the 𝐶𝑝 also.  

The result coming from the efficiency curve actually tells us that the increase in area is 

favorable, which is a very great thing to have. Increasing the area means increase thrust 

with a very minimal weight addition, which is always favorable. One reason for this trend 

that we see is that the wing flexibility used here may be optimized for big area. The smaller 

wing used here was made by cutting a part of the leading edge. It may be that smaller area 

might need similar optimization for maximum efficiency. A small thing to note is that the 

curve here is very smooth because fitting was used after the obtaining of thrust and power 

per cycle.  
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Fig. 66, 
𝑪𝑻

𝑪𝑷
 (efficiency) curve for small and large areas  
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Another perspective for looking at the curve in figure (66), is that small insects always 

seem to be hovering at higher frequencies when compared to big flyers, in a way that is 

consistent with this curve. As can be seen, the curve is shifted to the left as the area 

increases.  

A small note on the sizing of the bird. The size of the wing is an off-shelf one bought online. 

The setup was ready when I came to start to work, which is the big area one in figures (44-

46).  The smaller area one was cut by hand, that is why I mentioned the optimization note 

earlier.  
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Chapter 5 

 

Conclusion and future work 

5.1 Conclusion  

Flapping wing aerodynamics was discussed for a four-winged flapping mechanism. This 

system was composed of the flapping mechanism and the four-axis load cell to measure 

different forces and moments. The hall effect sensor was utilized to measure the frequency 

and to estimate the flapping angle position with time. The placement of the Hall effect 

sensor was substantial in that it was used in favor of motion capture in order not to affect 

the sensory of the mass matrix, i.e., any dynamics or kinematics of the wings. By having 

such information about the flapping angle, the thrust force was investigated along the 
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flapping angle to see where the dominating aerodynamics and its causes are. It was found 

that the thrust force is characterized by two peaks, one peak is caused by the leading- edge 

vortex (delayed stall) that is in turn caused by the speeding of the wing from zero angle to 

the max flapping angle. The results showed that this corresponded to the point of 

maximum velocity. The second peak was the direct cause of the clapping effect. The 

clapping effect is basically the collision of the upper and lower wing at zero flapping angle. 

This collision yielded a jet of velocity which augmented the lift even higher beyond the first 

peak. To utilize such concepts to the use of FWMAV, performance curves were derived for 

two different areas. The larger area showed larger efficiency, this is favorable since this will 

produce large thrust with a small added weight. This can a way be revolutionary to flight in 

the sense of efficiency that less lift will be needed than the rigid wing one.  

5.2 Future work   

The next steps will be toward design, build a fly a quad flapping drone based on the 

aerodynamics that was just explained here in this work. The clapping mechanism is to be 

more utilized into making a double clapping flapper. The optimal design point coming from 

the efficiency curves would be used for preliminary design purposes.  

Secondly, the efficiency curve showed a very favorable feature in the sense that it increases 

with the increase in area. This has to be investigated more and with more areas, especially 

in increasing the area trend. Because a legitimate question to be asked is that until what 

area can we increase? Can we go to full scale aircraft?  
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Lastly, in order to know the physics more, a PIV setup can be put in use. This will help in 

the seeing of the sizes and positions of the vortices.   
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