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Abstract. Functional optical imaging in neuroscience is rapidly growing with the development
of optical systems and fluorescence indicators. To realize the potential of these massive spatio-
temporal datasets for relating neuronal activity to behavior and stimuli and uncovering local
circuits in the brain, accurate automated processing is increasingly essential. We cover recent
computational developments in the full data processing pipeline of functional optical microscopy
for neuroscience data and discuss ongoing and emerging challenges. © The Authors. Published by
SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.NPh.9.4.041402]
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1 Introduction

Modern neuroscience has been propelled forward by the development of new technologies that
offer unique windows into the brain’s activity. These new techniques, including high-density
electrodes,1,2 functional ultrasound imaging,3–6 high magnetic field functional Magnetic
Resonance Imaging (fMRI),7–9 and optical imaging10,11 all stand to further our fundamental
understanding of the brain and represent potential new tools for future therapies. One of the
fastest growing directions in this push for advanced neural recording technologies is functional
optical microscopy, in particular, in-vivo recordings using fluorescence microscopy.

Fluorescence microscopy holds a number of unique advantages over other imaging methods.
Unlike fMRI and functional ultrasound, the activity measured is more directly related to neural
activity and not as spatially and temporally blurred by the hemodynamic response.12,13

Furthermore, optical methods do not require inserting probes into the brain, making them typ-
ically less invasive than electrophysiology. The drawback to this advantage is the limited pen-
etration depth of the photons. Imaging deeper structures requires more invasive methods, such as
implanting a gradient refractive index (GRIN) lens.14,15 Additionally, fluorescence microscopy
provides entire images that capture not just the neural activity, but also the morphology of
the cells. Thus fields of view can in theory be registered across days to enable chronic long-
term recordings of the same identified neurons, e.g., during learning. However, these high-
dimensional and spatiotemporally rich data require significant computational power to extract
the core information contained within. Moreover, fluorescence microscopy is actively growing
and new volumetric imaging techniques10,11,16–18 promise to even further increase the scale of
such data and the spatiotemporal statistics that must be leveraged in the analysis. To solve this
“big data” explosion and to process the ever-growing datasets, there is an ongoing need to meet
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the challenge of designing robust automated algorithms to accurately extract information from
these rich data.

In functional optical imaging of neurons, a fluorescing indicator (typically a protein) sensi-
tive to a biomarker of neural activity is introduced to a cell. Examples of biomarkers include
voltage, calcium, potassium, glutamate, sodium, etc.19–23 Out of these, calcium indicators have
been the most widespread. When the level of given biomarker changes, i.e., during or right after a
neural firing event, a fluorescent property such as the brightness or emission color of the indi-
cator changes as well. At each image frame, the tissue is illuminated with light at a specific
wavelength, and any fluorescing indicators have a probability of raising their energy level.
When the energy level falls back to the lower-energy state, light at a longer wavelength is emitted
and collected by the microscope. The measured value of the collected light thus reflects the value
of the biomarker at a given location.

Practically, the tissue can be illuminated in a number of ways. For example, in single photon
widefield microscopy, an entire plane is illuminated at once, using a camera to collect full frames
simultaneously. Widefield microscopy can thus acquire high-resolution videos at kilohertz fram-
erates; however, it is limited in its ability to image deeper regions in highly scattering tissues.
Specifically, scattering of light in brain tissue greatly blurs images, requiring optical methods that
better localize fluorescence at depth. Multiphoton imaging, e.g., two- and three-photon micros-
copy can penetrate deeper tissue 400 to 1000 μm, but rely on raster scanning technologies to
sequentially measure small volumes throughout the plane of imaging.24–26 Hence, multiphoton
imaging is often used to image smaller structures, such as axons, dendrites, and somas, whereas
one-photon imaging is used at meso- and cortex-wide scales24,27–29 or at somatic resolution under
challenging optical conditions, such as via endoscopes and miniscopes in freely moving
animals.30,31

Here, we discuss the emerging line of work that has focused on the task of building the
analysis tools required to realize the full potential of high-resolution large scale imaging.
The primary goal is extracting time-courses of all the individual units (e.g., neurons, dendrites,
brain regions, etc.) from the data so as to relate these to behavior and stimuli in downstream
analyses. This is often accomplished by decomposing the movies into two sets of variables:
the spatial profiles, representing the area in the field-of-view (FOV) that a unit occupies, and
the corresponding temporal fluorescence traces. While this goal is simply stated, the unique
properties of in-vivo fluorescence imaging create a number of challenges in misalignment of
data, tissue aberrations and signal distortion, imaging-dependent noise levels, and severe lack
of large-scale ground truth data for validation. These challenges have led to a myriad of
approaches, from solving one specific step in the process, e.g., denoising,32 to whole pipeline
implementations.33 Approaches also range from imaging of specific structures, e.g., widefield34

to methods aimed at many imaging classes.35 We aim to provide here a walkthrough of the basic
challenges, the landscape of current approaches, and finally emerging challenges with no current
solutions.

2 Functional Fluorescence Microscopy

Functional fluorescence microscopy in neuroscience is used to capture the dynamics of neural
activity in a wide variety of animal models and targets. Improvements in bioengineering have
allowed researchers to study targets from nanometer-sized targets in individually labeled neurons
to spanning multiple brain regions across centimeter-wide fields of view. Recordings are taken at
several different timescales and framerates, up to hours long recordings at kilohertz rates.
Accordingly, specialized microscopes have been developed to tackle these individual experimen-
tal requirements.

Most microscopes can be described by two properties: illumination and sampling, of which
either one or both may be time-varying. The illumination is a structured light source that aims to
excite fluorophores (indicators) in the targeted region of interest without needlessly exciting
other areas. The sampling is a mapping of the light emitted from targeted regions onto the
sensor. The two most common configurations used for functional imaging today are two-photon
laser scanning microscopy (TPM)36 [Figs. 1(a) and 1(b)] and widefield microscopy [Figs. 1(c)
and 1(d)].
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In TPM, the illumination is a focused, pulsed near-infrared (NIR) laser that is raster-scanned
in a two-dimensional (2D) pattern [Fig. 1(a)] and the sensor is a single pixel detector (typically a
photo-multiplier tube) collecting all emitted light from the whole FOV. The fluorophores are
excited via two-photon absorption,37 which has a squared-law relationship with the intensity
of the excitation beam. This results in the absorption process being confined to a small,
point-like focal volume [Fig. 1(b)]. As emitted light is typically bulk-collected in TPM, the exci-
tation focal volume describes the point-spread function (PSF) for these systems. TPM has been
widely adopted primarily due to its excellent optical sectioning properties and use of NIR wave-
lengths. Because scattering of NIR light is much lower in brain tissue than visible light and
scattering of the fluorescence does not impact image quality, TPM achieves a practical imaging
depth of up to 500 μm, even in the highly scattering mammalian or avian brain.

In widefield microscopy [Fig. 1(c)], the illumination is a visible LED or laser that excites the
imaged volume and the sensor is a camera that maps onto the target volume. The excitation light
propagates through the whole imaging volume, strongest near the surface of the sample, and is
attenuated over a couple of 100 μm into the sample via tissue absorption. The emitted light is
imaged onto the camera, with the contribution from the focal plane mapped most closely onto the
sensor and out-of-focus light diffusely collected as well [Fig. 1(d)]. The PSF for the system is
determined by the imaging optics, with light from the focal plane having the sharpest response
and blurring away from the focus. The image quality is further degraded by scattering in the
emission. In reasonably transparent animal models (such as C. elegans or larval zebrafish), this
effect is minimal. In highly scattering tissues, like the mammalian brain, this effect limits the
overall depth with acceptable imaging quality for neuron-scale recordings to typically 200 μm.
While the emitted light frequently comes from the whole volume, as in densely labeled samples,
genetic targeting or microscopy techniques can isolate the signal to a smaller population of cells.
A major advantage of widefield microscopy is the ease of setup in a variety of animal models and
scalability to very large areas and framerates.

Lateral res.
Axial res.

Dwell time

Dynamic range
Smallest features
Sampling rate
noise statistics

ControlsQuantity

PSF falloff Dynamic range
neuropil level

(a) (b)

(c) (d)

Fig. 1 Optical imaging basics. (a) Laser scanning microscopy (e.g., two-photon microscopy)
focuses the laser on a point inside the tissue, sequentially illuminating a chosen plane.
Neurons intersecting the plane show up in the rendered images, whereas out-of-plane neurons
accumulate as background, and combined nonsomatic activity (e.g., smaller dendritic and axonal
components) as neuropil. (b) Choices in the optical illumination impact image properties. The
image resolution is defined by the PSF, which is determined by microscope optics and optical
properties of the sample. The dwell time controls the time spent at each location and is related
to the scanning speed, i.e., the framerate, and can influence the number of photons collected per
pixel and thus the signal strength. In laser scanning microscopy, these, in combination with scan-
ning and laser technology, the image size, resolution, framerate, and noise characteristics of the
image are determined. (c) Widefield imaging simultaneously illuminates the entire cortical surface
plane, capturing dynamics across multiple brain areas. (d) In widefield imaging, camera character-
istics primarily determine the image acquisition size and rate. The optical resolution for widefield
imaging is strongly limited by microscope optics and optical aberrations from the sample.
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Several microscopes have been designed to optimize functional neural recordings. For TPM,
development has focused on improving the acquisition speed and volume size. The illumination
shape of the PSF has been transformed for imaging sparse tissues effectively38 or for volumetric
imaging.16 Three-photon microscopy enables even deeper imaging.39 Changing the illumination
time course with custom scanning paths can make fast jumps from cell to cell.40 Live updating
of both the scanning pattern and timecourse is used for high-speed image acquisition.41 For
collection, cameras have been used to replace the single-pixel detectors to improve acquisition
rates.42 Recently, the combination of multiple techniques and technologies has reported cellular
resolution imaging of up to a million neurons simultaneously.11

Changes to the techniques of widefield microscopy have focused on optical sectioning and
volume scanning. Optical sectioning can be achieved by structuring the illumination such that
only the plane mapping onto the camera is excited. This has been achieved primarily through
light-sheet microscopy, which has been scanned to image three-dimensional (3D) volumes in
larval zebrafish43 and also with a single objective in mice.10 Light field microscopy has been used
to structure mapping of the sampling from the imaged region to the camera44 and in combination
with confocal microscopy enables high-quality optical sectioning.45 One of the most major
developments has been the miniaturization of microscopes (miniscopes) for head-mounted func-
tional imaging, which has greatly expanded the types of problems and brain areas researchers
can explore.46–48

All of the advances outlined have enriched the space of acquired brain recordings, especially
when intersected with the range of available indicators. Specifically, they create a range of
spatiotemporal resolutions, signal quality, and imaged morphology, a subsection of which

(a) (b) 

(d) 

(f) 

(c) 

(e) 

Fig. 2 Examples of functional microscopy data. Functional microscopy data obtained via different
modalities, at different scales, and in different animal models expressing different indicators
can take on a diversity of signal characteristics. Shown are six examples spanning a range of
datasets. (a) Laser scanning two-photon calcium imaging (GCaMP5) in mouse hippocampus.49

(b) Glutamate (iGluSnFR3.v857) spine imaging using laser-scanning two-photon microscopy in
layer two-third mouse cortex.50 (c) One-photon widefield calcium (GCaMP6f) imaging of rat dorsal
cortex using a head-mounted macroscope.48 (d) One-photon calcium imaging using a head-
mounted microendoscope in mouse striatum.51 (e) One-photon voltage imaging (Voltron525-ST)
in layer 1 of mouse cortex.52 (f) Whole-brain light-sheet calcium imaging (GCaMP6f) in larval
zebrafish.53 Only one of 29 imaging planes each recorded at 2 Hz is depicted here. Note that the
spatial and temporal statistics range dramatically across domains, requiring flexible data process-
ing approaches.
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we depict in Fig. 2. To bridge the gap between the raw data and scientific discovery, these data
must be analyzed to extract useful neuronal activity.

3 Fluorescence Microscopy in Space and Time

The current state of functional fluorescence microscopy analysis can be understood through the
long history of developments that have led to today’s state-of-the-art. Initially, fluorescence
microscopy had long scan times and was thus focused on imaging static tissue (see Ref. 54
for a review of the very early history of fluorescence microscopy for biology). Thus, all the
relevant information was anatomical in nature and could be traced manually or, later on, iden-
tified automatically to discover complex biological structures. Fluorescence microscopy contin-
ues to play a vital role in imaging static anatomical structures and morphological fitting
algorithms have evolved with the technology.55–57

As scan times improved and the ability to inject fluorescent indicators into live tissue
emerged, fluorescence microscopy expanded to the imaging of time-varying biomarkers,
e.g., voltage indicators in the 1970s58,59 and calcium indicators in the 1980s.60 With this shift
came the added dimension of time, as now fluorescence was a temporal quantity. In neurosci-
ence, this enabled the study of the activity of the neurons over time. Initially, however, labeling
methods were in their nascent stage and the use of viruses to introduce fluorescing proteins into
cells created a high variability in labeling strength and longevity. The result was often sparsely
labeled tissue where overlapping neurons were rare. Without overlap, isolating a single cell’s
activity could thus be accomplished by identifying individual neurons anatomical extent in the
video (e.g., based on the temporal mean or variance of the imaging stack), and then averaging the
pixels belonging to each neuron to extract their time-trace.

To see this, we consider the statistical assumption that each neuron is modulated in a linear
way (i.e., the spatial shape and temporal fluctuations are independent). Each N-pixel frame
yt ∈ RN at time t, stacked as an N × 1 vector, can be thought of as the linear combination of
the d cell shapes ai ∈ RN for i ¼ 1; : : : ; d and its activation ϕit at time t:

EQ-TARGET;temp:intralink-;e001;116;391yt≍
Xd
i¼1

aTi ϕit ¼ Aϕt; (1)

where A ∈ RN×d is a matrix consisted of the spatial components and ϕt ∈ RN is the activation of
all cells at time t. Solving a least-squares optimization of the form

EQ-TARGET;temp:intralink-;e002;116;317ϕ̂t ¼ arg min
ϕ

kyt − Aϕk22 (2)

for the activity of all cells ϕ̂t at time t can then be written as the pseudo-inverse

ϕ̂t ¼ ðATAÞ−1ATyt. With no overlap the Gram matrix, ATA is simply a diagonal matrix with
the norms of the cell shapes on the diagonal. Thus, the activity for the ith cell at time t is simply a
weighted average of the pixel values at that time-point, which has been exactly the methodology
with hand-drawn spatial profiles, sometimes also called regions of interest (ROIs).

As labeling methods advanced and indicator designs provided brighter fluorescent tags, over-
laps between neurons and with other processes (e.g., dendrites) became more common. The
increased cell count vastly increased the burden of manual annotation and the increased overlaps
mathematically results in a nondiagonal Gram matrix ATA, removing the validity of direct aver-
aging. Thus, new conceptual approaches were required for cell identification. Rather than solely
relying on spatial cues to isolate neurons, activity had to be demixed in space and time. In fact, as
opposed to purely anatomical studies, many modern systems neuroscience analyses abstract
away from space, analyzing a neuron-×-time matrix irrelevant of anatomy. Methods such as
dimensionality reduction,61–63 dynamical systems analysis,64 statistical connectivity,65 etc. oper-
ate on the time-traces and thus suffer more from inexact estimation of neural activity rather than
inexact estimation of spatial shapes.
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Under the statistical assumption that each neuron is modulated in a linear way, i.e., the spatial
profile is constant over time with brightness controlled by a time-vector representing the cell’s
activity, the problem of isolating neurons can be considered as a matrix factorization problem.
If the data matrix Y ¼ ½y1; : : : ; yT � ∈ RN×T is the pixel-by-time fluorescence video matrix,
each neuron contributes one rank-1 component

EQ-TARGET;temp:intralink-;e003;116;675Y ≈
Xd
i¼1

aiϕT
i ¼ AΦT; (3)

where ai ∈ RN is again the i’th neuron’s spatial profile (how it appears visually in the data), and
Φ ¼ ½ϕ1; : : : ;ϕN � ∈ RN×T is the matrix where the i’th column, ϕi ∈ RT is the i’th neuron’s
time-trace (how the biomarker-driven fluorescence changes over time). To find the rank-d
decomposition, Mukamel et al.66 used a combination of PCA and ICA: first, PCA was used
to reduce the overall dimension of the data and to obtain an initial guess Y ≈

P
d
i¼1 uiv

T
i , where

ui and vi are the left and right singular vectors, respectively. ICAwas then performed on the set of
vectors zi ¼ ½αuTi ; ð1 − αÞvTi �T , i.e., identifying a rotation of Z ¼ ½z1; : : : ; zd� that makes the col-
umns more independent, and the parameter α trades off importance of the spatial and temporal
components obtained via PCA (i.e., the left and right singular vectors). The rotation in the ICA
step transforms the PCA components into their independent components, demixing both the
spatial and the temporal components at once. This procedure allowed for overlapping compo-
nents and included temporal independence when identifying neurons.

The matrix factorization approach continued to expand,67–69 primarily formulated as an
optimization program:

EQ-TARGET;temp:intralink-;e004;116;454fÂ; Φ̂g ¼ arg min
A;Φ

kY − AΦTk2F þRAðAÞ þRΦðΦÞ; (4)

where RAðAÞ and RΦðΦÞ represent appropriate regularization terms over space and time,
respectively, that can vary between methods, and often include terms such as the component
norms, number of components, sparsity, non-negativity, and spatial cohesion. As direct optimi-
zation is often difficult for problems of this size, alternating descent type algorithms are often
employed, i.e., iteratively solving

EQ-TARGET;temp:intralink-;sec3;116;355

ÂjΦ̂ ¼ arg min
A

kY − AΦ̂Tk2F þRAðAÞ;

Φ̂jÂ ¼ arg min
Φ

kY − ÂΦTk2F þRΦðΦÞ:

Positive aspects of this approach include that each of these optimization problems can be
solved reasonably efficiently (conditioned on judicious choices of regularization) and that differ-
ent assumptions on the time-traces and component shapes can be incorporated naturally via
regularization.

Thus, in the current landscape of algorithms that extract neural signals from fluorescence
microscopy data we now see a combination of approaches. One approach focuses primarily
on anatomical identification, leaving the identification of functional traces as a later stage, and
another which places identification of the time-traces on equal ground (or more) with the spatial
maps and extracts the two jointly.

3.1 Methods Focusing on Space

The class of methods that focus on anatomical identification have been mostly inspired by image
segmentation, using both classical and modern approaches. Each of these methods relies on
a spatial model of the data, either preset or learned from the data.

One such approach, dictionary learning, stems from the broader image processing literature.70

Dictionary learning assumes a sparse generative model for image patches71 and has been applied
to calcium imaging to learn spatial dictionaries whose atoms represent neuronal shapes.
The identified neuron shapes can then be used to estimate corresponding time courses.72–74
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An early approach ignored temporal information entirely and developed a spatial generative model
based on convolutional sparse block coding,72 applied to normalized mean projections of the im-
aging data. A dictionary of cellular shapes was learned with corresponding locations of these
shapes in the mean image.

Modern deep learning methods for image segmentation have also been adapted to the ROI
extraction problem. These are supervised approaches that require labeled training data.
UNet2DS75 is a neural network based on the fully convolutional UNet76 model, an architecture
that was developed for biomedical image segmentation. UNet2DS takes the mean image as an
input and outputs two probability masks of a pixel belonging to either a cell or the background.
Since U-Net2DS ignores temporal information, it has difficulty separating overlapping neurons
and detecting sparsely firing cells. Such methods also cannot differentiate active cells, i.e., cells
that exhibit deviations from baseline fluorescence consistent with spiking events, from non-
active cells.

3.2 Methods Using Time Information to Identify Spatial Masks

Another class of methods still emphasizes the identification of the spatial components, however,
they rely on temporal information, e.g., in calculating correlations between pixels in the FOV
based on their temporal activity.

One approach is to view cell detection as a clustering problem.77,78 For example, in
HNCcorr78 after selecting a set of seeds (superpixels), this method aims to find a cluster within
a patch containing the seed by solving the Hochbaum’s normalized cut (HNC) problem, which is
similar to normalized cut. The HNC formulation balances a coherence term, which maximizes
the total similarity of the pixels within each cluster, with a distinct term that minimizes the sim-
ilarity between the cluster and all others, where similarity is based on time-trace activity. Local
selective spectral clustering (LSSC)79 also solves the cell identification problem as clustering
pixels in a high-dimensional feature space. Following the construction of a sparse graph whose
nodes are the pixels and whose weights are determined by pairwise similarity of the time-traces
of the pixels, the nodes are embedded using the eigenvectors of the random-walk graph
Laplacian. Pixels are then clustered together in an iterative approach based on selecting subsets
of the eigenvectors that best separate a cluster from the rest of the data, and enabling overlapping
clusters. After detecting neuronal components (the graph construction allows for morphology-
agnostic clustering), time traces are demixed and calculated by projecting to a low-rank space.

Activity-based level set segmentation (ABLE)80 is an image segmentation approach relying
on active contours.81 ABLE defines multiple coupled active contours in the FOV where an active
contour seeks to partition a local region into an interior corresponding to a neuronal component
and a local exterior, such that the pixels within each region are similar to one another temporally.
The evolution of the contours is performed by the level set method,82 where only neighboring
cells directly affect a cell’s evolution. ABLE handles overlapping cells by coupling the evolution
of active contours that are close to one another. ABLE automatically merges two cells if they
are close and temporally correlated and prunes cells if their size is too small or too large. An
advantage of this method is that it makes no assumption on a cell’s morphology or temporal
activity, therefore it can potentially generalize to different indicators and spatial morphologies.

Convolutional deep learning networks taking into account temporal statistics or activity have
also been developed in recent years.83–85 A (2+1)D convolutional neural network83 was trained
on spatiotemporal sliding windows and the output represented the probability of a pixel belong-
ing to an ROI centroid. Apthorpe et al.83 demonstrated that adding the temporal domain helps
suppress noisy detections compared with a 2D network that only took as input the time-averaged
image. However, the network they trained only learned spatial 2D kernels.

In comparison, STNeuroNet84 is a 3D convolutional neural network based on DenseVNet
(similar to a U-Net) also trained on overlapping spatiotemporal blocks, and its output is a binar-
ized probability map. By adding a temporal max-pooling layer to a typical DenseVNet archi-
tecture, the spatiotemporal features are reduced to a spatial output, which increases the speed of
training and inference. This gain is important for network validation and low-latency inference in
closed-loop experiments. Shallow U-net neuron segmentation (SUNS)85 aims to simplify the
neural network architecture of STNeuroNet to further improve speed while still incorporating
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temporal information. To this end, a temporal matched filter tailored for shot noise is applied
to the input video, thereby enhancing calcium transients occurring across multiple frames,
and reducing temporal information into individual 2D frames. Preprocessing also includes
whitening, which normalizes the fluorescence time series of each pixel by the estimated noise
of that pixel. This yields an SNR representation that highlighted active neurons and obscured
inactive neurons. The SNR video is then processed by a shallow UNet, whose output is a prob-
ability map.

Postprocessing for both of these deep-learning methods includes clustering of the output
probability maps to detect individual cells and aggregation of detected cells across the proba-
bility maps for merging and pruning. Finally, deep learning, instance segmentation, and corre-
lations (DISCo)86 uses a combination of time-trace correlation-based pixel segmentation on a
graph and a convolutional neural network to identify individual spatial profiles. Note that while
these methods identify cells based on a spatiotemporal analysis, they do not address the issue of
estimating time-traces.

3.3 Methods Focusing on Space and Time

Rather than leave time-trace estimation as a secondary step, spatiotemporal demixing methods
aim to simultaneously identify the spatial maps with their corresponding fluorescence traces.

One such method builds off of the dictionary learning framework first used in spatially-
focused cell identification. Specifically, Diego et al.73 generate a space-time dictionary learning
extension of convolutional sparse coding to video data with nonuniform and temporally varying
background components. Petersen et al.74 approach the dictionary learning of spatial components
via iterative merging and clustering. The former of these extracts sparse spike trains in the
convolutional dictionary. The latter mainly emphasizes identifying the spatial maps but, as a
by-product of the decomposition algorithm, computes the time traces as well.

Many algorithms that jointly estimate both spatial profiles and time traces aim to optimize the
cost of the form of the optimization program in Eq. (4). In particular, many of these methods
follow developments in analyzing somatic calcium imaging data, which are based on matrix
factorization with non-negative constraints that represent the expected positive deviations from
baseline: non-negative matrix factorization (NMF).35,67–69,87–89 The main difference between
these methods is the specific choices of regularization and the specific implementation of the
algorithmic steps. For example, multiple methods follow the aforementioned alternating opti-
mization,35,67,69,87 whereas another approach instead uses semidefinite programming.68 Versions
of matrix factorization methods have been perhaps the most widespread, with special versions
being designed for one-photon endoscopy data,90 widefield data,34,35 and voltage data.91

Regularization has been applied both on the temporal and spatial dimensions. Temporally,
sparsity over the time traces has been a popular constraint. Specifically, neurons often fire infre-
quently, relative to the number of frames in a video.16,67 Taking advantage of this sparsity
requires accounting for the biophysically-induced exponential decay of fluorescence. While
more sophisticated methods have been developed for postprocessing deconvolution (see
Sec. 4.5), a simple way that has been applied to cheaply deconvolve data is based on the obser-
vation that exponentially decaying responses (i.e., a single-pole response function) with decay
rate α can be expressed as the difference equation FðtÞ ¼ αFðt − 1Þ þ SðtÞ, where SðtÞ is the
instantaneous impulses over time. Thus simply computing ~SðtÞ ¼ FðtÞ − αFðt − 1Þ should give
a reasonable estimate of a sparse impulse train. The parameter α can further be tuned to maxi-
mize sparsity max kSðtÞk0.

Spatial regularization is more complex and often requires a model for neural processes of
interest. Initial ideas included ensuring connected components, or by minimizing the total varia-
tion (TV) norms to minimize the complexity of shapes and remove spurious pixels.68 In more
recent versions of matrix factorization algorithms, deep networks trained on human-annotated
labeled data have been used to classify true and false cells,49 the resulting system serving as a
posthoc filter that effectively double-checks the spatial regularization.

As an alternative to shape-based regularization, recent work has leveraged sparsity and
spatial correlations in a new way.35 Instead of using spatial locations of pixels to constrain the
components’ spatial profiles, graph-filtered temporal (GraFT) dictionary learning builds a graph
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among all pixels that enables like-pixels to share time-trace decompositions. This approach
effectively gives up completely on space and instead focuses on the learning of a dictionary
of time traces over the data-driven pixel graph.

More recently, another important modification to the base optimization in (4) has been
emerging. Rather than focusing on changing the regularization terms used, the least-squares
form of the data fidelity term has instead been reconsidered. The least-squares cost enforces
a linear-Gaussian data generation hypothesis, however, a number of nonlinearities in fluores-
cence dynamics, incompleteness in component discovery, and the non-Gaussian statistics of the
photo-diodes all contribute to various extents of errors in demixing. Four main alternatives have
emerged, including a robust-statistical approach leveraging a Huber cost function,87 a contami-
nation-aware generative model approach,92 a zero-Gamma mixture model,93 and a deep-learning
approach.94

4 Imaging Analysis Pipeline

The fundamental output of an optical functional imaging analysis pipeline is the identified spatial
profiles and more importantly their corresponding time traces. While demixing thus serves as the
core of analysis, often multiple preprocessing and postprocessing steps are typically part of the
pipeline to facilitate this output (Fig. 3). Motion correction is typically the first step in the analy-
sis pipeline, to register all frames in the imaging stack such that the neuronal components to be
extracted occupy the same spatial footprint in all frames. Denoising can be applied as a pre-
processing step either temporally35 or spatially79 to improve the detection of ROIs. Normalizing
per-pixel time-traces, e.g., by z-scoring, can enhance dim cells, and improve cell detection.
Following ROI extraction, postprocessing in the temporal domain can include the following:
neuropil estimation, denoising of time traces (if not implicitly part of the extraction itself), and
calculating normalized time traces (ΔF∕F). Postprocessing in the spatial domain can include
automatic classification49 of identified components into true or false neuronal components or
manual quality control. To identify single spiking events, deconvolution is a postprocessing step
that aims to recover sparse firing events from the fluorescence time traces. Finally, in longi-
tudinal studies, postprocessing in the spatial domain can include registration of imaging sessions
and matching of ROIs across sessions.

4.1 Motion Correction

The majority of ROI extraction methods rely on neuronal components being within a fixed/
consistent spatial footprint in the FOV – thus necessitating image registration of the individual
frames. Motion between frames can be due to several factors:95–99 animal motion during imaging
(e.g., locomotion), scanning artifacts, mechanical strain, drift relative to the objective, changes in
the brain, e.g., due to hydration, etc. Given the length of imaging sessions (tens of thousands of
time frames), computational complexity of the registration approach is an important consider-
ation. For fast acquisition rates, interframe motion can be considered as a global constant offset
of the FOV, therefore rigid registration of translational shifts is sufficient.100–102 For example,
registration can be performed to a reference (template) image using cross-correlation or phase-
correlation.69 The reference image is typically set as an average over the initial frames and then
regularly updated as an average over later subsets of frames, or an average over the full stack. The
reference frame can be made more precise by an iterative refinement procedure to reduce
blurring.69,103 As an alternative to performing correlation-based translation registration, bright
cells can be detected and tracked over time using particle tracking.104 A rigid (translation and
rotation) transform is then calculated for each frame to the next by minimizing the residual
displacements of all tracked cells. This approach can also be applied to volumetric imaging.

Nonrigid motion artifacts can occur due to lower acquisition speeds, which result in artifacts
such as shearing in later scanned lines of the image, or slow distortions over long recording
sessions due to mechanical (z-drift with respect to the objective) and biological issues (warping
of brain tissue due to metabolic activity, dilation of blood vessels, and liquid reward consump-
tion).105 Nonrigid motion correction usually relies on splitting the image into overlapping spatial

Song, Mishne and Charles: Review of data processing of functional optical microscopy for neuroscience

Neurophotonics 041402-9 Oct–Dec 2022 • Vol. 9(4)



patches and performing registration at the patch level. This registration can be rigid at subpixel
resolution69,106 or a more flexible affine transform.103

Most methods for motion correction target two-photon somatic imaging. However, such
methods can struggle with nonsomatic neuronal components such as dendrites, due to the differ-
ence in size and impact of z-drift. While a cell-body is typically on the order of ≈ 15 μm—with
variation depending on brain area, species, etc.—the width of an axon or a dendrite is ≈ 1 μm.
Thus, slight registration errors can have a significant effect on identifying the spatial footprint of
these components. Furthermore, z-drift can cause segments of tuft dendrites to shift in and out of
the FOV. This can lead to difficulties in aligning the dendrite to the reference image. From a
computer vision perspective, this can be thought of as image registration under occlusions.

Another potential complication is the use of GRIN lenses to image deeper structures in the
brain. Optical aberrations near the edges of GRIN lenses can significantly change the motion
characteristics, requiring distortion-aware realignment. Finally, niche technologies can also
create novel situations, such as the rotating platform developed for near-freely moving
imaging.107,108

Fig. 3 The optical imaging pipeline, expanded. The first step in analyzing fluorescence micros-
copy data is to correct any motion, reducing interframe misalignment. Between motion correction
and demixing (i.e., cell-finding), steps to remove imaging noise and confounding factors are taken.
Specific steps include de-trending to remove photobleaching, denoising to increase SNR, and
hemodynamic correction in widefield data. The core pipeline stage of focus is demixing or iden-
tification of individual fluorescing components. Demixing should always be paired with some sort
of validation on the output to prevent artifacts and other errors. The output of the demixing can be
used to infer firing events (in single-cell resolution imaging), align multiple imaging sessions, or
register to a global brain atlas (in widefield data). One important step: the ΔF∕F calculation, which
normalized fluorescence traces to their baseline, can be computed before or after demixing.
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4.2 Denoising and Normalization

The absolute noise levels present in optical imaging create a challenging signal extraction
environment. It is only because many sequential frames of the same population are recorded
that individual cells can be identified. This process, however, can be improved by modest noise
filtering as a preprocessing stage. A number of methods (with example applications) are used
across the literature, including median or low-pass filtering,16,79 downsampling, PCA projec-
tion,69,79 z-scoring, wavelet denoising,35 other hierarchical models,109 and deep learning-based
denoising.32,110 All these approaches make different noise and signal model assumptions and
should be used judiciously.

For example, median/low-pass filtering and downsampling, are simple, quick steps that can
be run on the data at the early stages. Median filtering is effective at reducing shot noise common
in low-photon environments, at the cost of making shapes in the image more “convex”
(i.e., filling in corners). Low-pass filtering and downsampling reduce high-frequency noise,
however, blur the data via the convolutional filter. Downsampling83,111 has the further benefit
of reducing the data size in space or time, thus reducing later computational costs, however,
effectively reduces the sampling resolution.

Other signal models are more complex. Hierarchical models can provide flexible ways of
both incorporating different noise classes (e.g., Poisson) and flexible signal models (e.g., via
interpixel correlations), however, at a heavy computational overhead.109 Wavelet-based
denoising112,113 is perhaps the most versatile in this class, as both per-image and per-pixel
time-trace denoising are computationally efficient, readily implemented across programming
languages, and can handle sharp transitions, thereby reducing blurring.

Yet other methods model the noise in ways based on the data itself. PCA-based projections
identify a low-dimensional space that captures much of the data variance, effectively assuming
that low-variance principal components represent noise. Sparsely firing cells or dim cells, how-
ever, can often end up in low-variance components and thus removed with the noise. Penalized
matrix decomposition91 denoises the imaging data by performing a patch-wise penalized low-
rank decomposition. Recently, general advances from deep learning32,110,114 have been proposed
for denoising calcium imaging.

For example, DeepInterpolation32 uses a clever design that trains a neural network to predict a
movie frame based on previous and past frames. Independent noise, which cannot be predicted,
is thus filtered out. A broader image-restoration method CARE,115 uses a U-net trained on high-
and low-resolution images to enhance signal quality. As with all deep-learning methods, the
drawbacks include training the network (if the pre-trained options do not fit the application)
and a general lack of knowledge as to the exact expected biases of the black box system.

Usually performed at the same time as denoising, normalization plays an important role in the
numerical stability of algorithms. Having data with large (or small) overall fluorescence values
can cause problems in the condition numbers of the matrices used in optimizing costs in the
demixing step. Normalizing, e.g., to unit-median or unit-max values help constrain these effects,
and all normalization can be undone after demixing to return meaningful fluorescence values to
the identified time-traces. As an example, methods based on deep networks typically employ
preprocessing to ensure appropriate dynamic range across the data, regardless of background or
other inhomogeneities in the illumination (e.g., via homomorphic filtering85).

As a final note, a form of normalization that often is required in preprocessing is detrending
to remove photobleaching116 (e.g., see Refs. 117 and 118). Photobleaching is the reduction in
overall fluorescence over time stemming from the fluorescent proteins becoming trapped in an
intermediate quantum state and becoming inactive. The result is a large imbalance over time in
the dynamic range of the signal, which can hinder most demixing algorithms.

4.3 Neuropil Estimation

In 2p imaging, neuropil is a “background” signal that contains the fluorescence of neuronal
elements that are out-of-focus (e.g., dendritic and axonal) and scattering. This signal can con-
taminate the estimated fluorescence of an ROI if it is not properly accounted for. Some methods
estimate neuropil as part of the ROI extraction process by automatically identifying the signal of
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the exterior surrounding the cell,80 or explicitly or implicitly adding at least one background
signal in the linear decomposition model,35,49,67,89 e.g.

EQ-TARGET;temp:intralink-;e005;116;711Y≍Xd
i¼1

aiϕT
i þ abϕT

b ; (5)

where ab and ϕb are the spatial and temporal components of the background, respectively. In
other methods, neuropil is estimated in a posthoc process by calculating the average time trace
from the pixels within the ring surrounding each extracted spatial profile.69,119 The signal is then
subtracted from the time trace of the spatial profile. Care should be taken in neuropil subtraction
not to over-correct. Over-correction can often be identified by noting significant negative dips in
the fluorescence baseline

4.4 Normalized Fluorescence (ΔF∕F )

Neurons have different concentrations of fluorescence indicator, e.g., GCaMP, which can result
in varying levels of fluorescence both across cell populations and between individual
neurons.120,121 Additional variation also occurs across the image field of view due to imaging
technique, microscope optics, and sample variation.

Therefore, to obtain comparable signals from varying neural sources, extracted time-traces
are normalized122 to remove the baseline fluorescence activity and adjust the amplitude as
follows:

EQ-TARGET;temp:intralink-;e006;116;468

ΔF
F

ðtÞ ¼ FðtÞ − F0

F0

; (6)

where FðtÞ is the extracted time trace and F0 is the baseline fluorescence.
Calculation of baseline fluorescence relies on the assumption that neurons have sufficiently

sparse activity, and thus a baseline level that does not correspond to neuronal activity can be
estimated using varying heuristics. A common method of estimating F0 is averaging the activity
of the time frames with p ¼ 10% lowest activity (the exact value of p can vary from lab to lab,
for widefield imaging p ¼ 50% may be used to instead describe the percent change from the
mean activity level). This method assumes neurons are quiescent for long enough periods that the
change in fluorescence level is effectively zero at this percentile. A lower percentile is not used to
account for error caused by sources such as shot noise or axial motion.

The running percentile calculation additionally assumes there is little to no fluorescence from
other sources. In datasets that are densely labeled or have high background fluorescence, the
technique will consistently underestimate the true ΔF∕F as contributions from other sources
get added to the baseline estimate. Estimating the baseline fluorescence with overlapping sources
requires separating the fluorescence contributions from individual sources and any background
source, which is automatically achieved in most segmentation algorithms.67,69 This approach
may be more reliable than the running percentile calculation by integrating additional informa-
tion provided by activity transients. A test using synthetic data demonstrated that these estimates
of baseline fluorescence were reliable for the brightest cells, and another estimation procedure
making use of pixel-wise spatial information further improved estimates of baseline activity.123

4.5 Deconvolution

The product of the core demixing stage includes a set of time traces—one per component—that
contain the temporal fluorescence fluctuations. Due to the complex interactions and resulting
buffering of nonvoltage fluorescence-inducing biomarkers, the transient increases in fluores-
cence due to individual spiking events are stretched out over time. For example, calcium indica-
tors can observe deviations from baseline in the recorded fluorescence from a single spiking even
for seconds.

As spiking events are typically considered the primary source of neural communication,
efforts to infer underlying spiking from fluorescent data have emerged, taking a number of
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forms.73,124–131 The attempt to invert a generative model of fluorescence FðtÞ as a function of
spike times fτ1; τ2; : : : ; τKgis fundamental. The full biophysical model dictates that at each time
τk of a spike event, a stochastic influx of the biomarker (e.g., calcium) flows into the cell and
drives nonlinear differential equations and nonlinearity that determine the level of bound fluo-
rescent protein over time. While the full biophysical model includes nonlinear differential
equations and nonlinearities,123,132,133 this model can be linearly approximated as

EQ-TARGET;temp:intralink-;e007;116;663FðtÞ ¼
XK
k¼1

gkhðt − τkÞ þ eðtÞ; (7)

where hðtÞ is the response curve (e.g., exponential rise-and-decay) to a single event and gk rep-
resents the stochasticity of the influx of biomarker at the k’th event.

Given the convolutional form of this model, identifying the time-points of events has taken
the form of deconvolution. These algorithms have taken the form of assuming functional forms
over hð·Þ, such as exponential67 or double exponential124 kernels, or taken more model-free
approaches in a deep-learning framework.130,131,134 Specific algorithms have also varied widely,
including exact l0-regularized optimization,127 marked point process,129 interior point optimi-
zation,135 active-set methods,136 and variational autoencoders.134

One of the core difficulties in deconvolution is the probabilistic relationship between spikes
and fluorescence. In addition to the biomarker levels being variable, simultaneous recordings of
electrophysiology and calcium imaging show that at times optical imaging can miss single events
at significant levels (i.e., missing 70% to 80% of individual spikes).137 Thus, in general across
noise, indicators, and other experimental conditions, deconvolution may have highly varying
performance limits. In fact, for assessment, benchmarking attempts have avoided direct timing
comparisons, opting instead for using local rate averages over >40 ms bins as a validation
metric.130 Interestingly, spike ambiguity in optical imaging has seeded another approach: to
remove spiking events from the equation—literally—by marginalizing out the spiking events
and directly estimating a latent spike rate.138

4.6 Multisession Registration

The ability to record from the same identified population of neurons with functional optical
imaging in longitudinal experiments across multiple days is a major advance and enables under-
standing of long-term processes such as learning and memory. One of the crucial postprocessing
steps of such longitudinal experiments is the alignment of the recorded imaging data across days
to enable one-to-one mapping of neurons across all sessions. This is essential to understanding
the changes in neural representation over time. However, alignment is challenging due to the 3D
nonrigid transformations between imaging sessions. These are a result of, for example, day-to-
day variance in the imaging angle due to slight changes in the angular placement of the micro-
scope objective, day-to-day variance in optical clarity of cranial windows, and changes in the
brain tissue over days. Specifically, in TPM, this can lead to differences in the shape of recorded
cells since slight z-drift and tilts can result in relatively large changes in the cross-section of a
cell. Semiautomated approaches to calculate the transform between imaging sessions and match
neurons exist, however these rely on user input to select matching ROIs and only align pairs of
sessions.69 Recent methods propose registering imaging sessions based on fully affine invariant
methods originally developed for natural image registration.139 A recent approach140 based on
the classical SIFT141 algorithm enables fast automatic registration of calcium imaging sessions
and one-to-one matching of ROIs, even if the neuron was not detected in all sessions.

In one-photon imaging, alignment is challenging due to light scattering and lack of optical
sectioning, which increase the similarity between the time traces of neighboring neurons in the
FOV.142 In addition, only active cells can be tracked, as opposed to multiphoton imaging.
Sheintuch et al.142 developed a probabilistic method for automated registration across one-
photon imaging sessions that is adaptive and optimized to different datasets. First, all cells are
mapped to the same image by registering each session to a reference session using a rigid trans-
formation based on the centroid locations of extracted ROIs. Next, the probability for any pair of
neighboring cells from different sessions to be the same cell is calculated, given their spatial
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correlation and centroid distance and a probabilistic model for similar and dissimilar matched
cells. Cells are finally aligned across sessions by an iterative procedure based on the estimated
probabilities.

5 Widefield Imaging Analysis

Multiphoton microscopy, which was the main focus of the previous sections, provides a way to
record neuronal activity at the cellular and sub-cellular levels in a given FOV, typically limited to
a few 100 μm. These recordings allow one to thoroughly investigate local microcircuits
comprised from 100s to 1000s of cells at a time. At the other end of the spectrum, cortex-wide
(i.e., widefield) imaging trades cellular resolution for increased FOV (millimeters) and enables
exploration of the overall activity through imaging of the entire cortical surface through one-
photon illumination143 [Figs. 4(a) and 4(b)]. The captured signal exhibits significantly different
statistics from micron-resolution imaging both in time and space: the spatial resolutions are too
coarse to isolate activity signals of individual neurons, but instead can capture brain-wide activity
patterns.48 As a developing modality it presents many open questions regarding processing and
analysis. Current approaches are nascent and inconsistent across labs. Moreover, validation and
comparisons between distinct approaches are limited. In this section, we review the arising chal-
lenges and leading technological and computational approaches for capturing and processing of
widefield calcium imaging.

The collection of widefield signals is performed using a scientific CMOS camera, capable of
imaging hundreds of frames per second. To control the acquired data size and increase framerate,
most researchers reduce the spatial resolution to 512 × 512 pixels, resulting in 102 to 104 μm
spatial resolution.

The acquired time traces reflect an aggregated summary of the neuronal activity captured
from thousands of cells, cellular compartments, and depths (although mostly superficial
layers12). Estimation of spike rates is usually not performed for widefield signals as the captured
signals may originate from various cell parts such as axons, dendrites as well as somas, each
related to a different kernels. While this issue can be resolved by calcium indicators targeting
specific parts of the cell at the expense of limited temporal resolution,145,146 most researchers find
the standard GCaMP indicators as the (current) best in terms of spatial and temporal resolution
for capturing synaptic activity, providing a valuable tool for exploration of the dynamics of large-
scale networks and their relation to complex behavior, perception, and cognition.147,148

Preprocessing of widefield recordings typically includes four stages: alignment, normaliza-
tion, hemodynamics correction, and parcellation. Below we describe the motivation for each

(c)

(b)(a)

(d)

Fig. 4 Widefield imaging. (a) Imaging frames of widefield signal. (b) Left—a single frame, red “x ”
correspond to motor, retrosplenial (RS), somatosensory (SS), and visual cortices, right—time-
traces of the corresponding locations. (c) Left—anatomical atlas CCFv3, right—functional parcel-
lation by LSSC. (d) Spatial components derived by SVD. Data from Ref. 144.
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stage and common practices. Imaging of the entire cortical surface naturally enables analysis/
modeling across animals. To facilitate a one-to-one correspondence of data acquired from differ-
ent animals, frames of each session are registered to align to a global template of the cortex,
according to several anatomical control points using an affine transform.149 In many cases, the
captured time traces exhibit a slow decrease in baseline activity, ascribed to bleaching. This
effect is easily removed by subtracting the slow trend (evaluated by low-pass filtering) from
each pixel.150 To equalize spatial differences of expression levels, each pixel is normalized with
respect to its own overall variance post detrending.

The next stage of preprocessing aims to correct the hemodynamics artifacts, which is unique
to widefield signals and is not typically present in multiphoton imaging. Fluctuations in blood
flow and oxygenation alter excitation and emission of photons due to hemoglobin absorption.
This phenomenon contaminates the captured signals with unwanted dynamic components.12 The
most common approach to correct this artifact is to alternate the emitted light with an additional
reference channel, for example, UV light (∼400 nm). As GCaMP6 is isosbestic to UV light, the
emitted photons are assumed to be independent of neuronal activity whereas the data channel
(typically blue ∼488 nm) will cause emission of photons affected by fluctuations of both neuro-
nal activity and hemodynamics signals.

The Beer–Lambert law is an exponential model for the measured light intensity as a function
of wavelength, absorption, and traveled path. Assuming that temporal deviations from the aver-
age signal are small (as they often are for widefield calcium imaging) this relation is simplified
by taking a first-order estimation of the signal in a given pixel i

EQ-TARGET;temp:intralink-;e008;116;484ytðiÞ ¼
Fblue
t ðiÞ

FUV
t ðiÞ

FblueðiÞ
FblueðiÞ ; (8)

where Fblue and FUV are N-dimensional vectors of the recorded signals at time t through the blue
and UV channels respectively and N is the number of pixels in a frame. The corrected signal, yt,
is evaluated using a pixelwise linear regression.150,151 Recently, a computational approach for
improving hemodynamics reduction based on a single reference wavelength was proposed.152

This approach exploits spatial dependencies between pixels by formulating a multivariate model

EQ-TARGET;temp:intralink-;e009;116;377Fblue
t ¼ zt þ yt þ νt FUV

t ¼ Azt þ ξt; (9)

where Fblue;FUV; y; z; ν, and ξ are the n-dimensional vectors, and n is the number of pixels
included in a certain local patch. The corrected signal is estimated using the optimal linear pre-
dictor, ŷ ¼ H1Fblue þH2FUV, where the matrices H1;H2 are evaluated from the signals at both
wavelengths. Taking the patch size to be 1, this approach reduces to pixelwise regression Eq. (8)
where using n > 1 leads to improved reduction of the hemodynamics artifact.152 An alternative
approach relies on using two reference wavelength (thus alternating three channels altogether) to
obtain a more accurate correction of hemodynamic absorption.153

The signals at this stage are time-traces of the activity at individual pixels. The data are high-
dimensional in space (typically over 104 pixels) and subject to several noise sources (e.g., elec-
tronic, photonic shot noise). The final stage of widefield preprocessing is therefore to extract a
compact representation of brain activity and filter out the noise component. As with spatiotem-
poral decomposition models in TPM, most methods for extracting this representation can be
formulated as a linear decomposition model: Y ≈ AΦT , where Y is a N × T matrix of the activity
of N pixels at T time frames, A is a N × d matrix of spatial components, ΦT is a d × T matrix of
temporal components, and d < N. Different methods for decomposing Y vary from solely rely-
ing on anatomical features to being completely data-driven, which affects the spatial interpret-
ability of A accordingly. Choosing one method over another should be done considering what
downstream analyses will be used and the overall biological hypothesis of the research.

Using singular value decomposition (SVD) to reduce the dimension of widefield data relies
on the assumption that the variance of neuronal activity within the widefield signal is signifi-
cantly higher than the noise variance. The activity is decomposed to Y ¼ USVT where S is a
diagonal matrix of the singular values and U;V are orthogonal matrices and a low-dimensional
representation AΦT is obtained by setting
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EQ-TARGET;temp:intralink-;e010;116;735ΦT ¼

0
B@
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. .
.

sd

1
CAð v1 : : : vd ÞT; A ¼ ð u1 : : : ud Þ; (10)

where vi and ui are the columns of V and U, respectively and si is the singular values. The
number of components, d, is selected to capture at least 80% to 90% of variance explained
of the data, assuming that the remaining 10% to 20% relates to noise. The spatial components
ui are not constrained to be localized or non-negative and therefore the temporal components
extracted in Eq. (10) do not indicate a trace of activity related to a specific brain region.
Postprocessing is performed in the reduced dimension domain and then projected back to the
full dimension using U. For example, in Ref. 149, SVD components were used to measure how
well external variables (behavior and stimuli) can predict brain activity. The trained regression
parameters, each computed per temporal component, were projected to the brain-mask domain to
biologically interpret the statistical findings.

A different approach is to take advantage of the spatial structure of widefield signals where
adjacent pixels are typically highly correlated while noise is uncorrelated. Therefore a compact
and (spatially) filtered representation can be obtained by dividing the brain into localized
subregions (parcels) and extracting the average trace within each parcel. In this case A is non-
negative where each row relates to a specific brain parcel with the corresponding column in Φ as
its activity time trace. Unlike imaging of local circuits, where identifying cell boundaries is
a well-defined task (although not simple for automation), detection of parcel boundaries is not
straightforward.

The most common approach for cortex-wide parcellation is to use a predefined atlas based on
anatomical features such as the common coordinate framework (CCFv3) proposed by the Allen
Institute for Brain Research154 or the mouse brain atlas of Paxinos and Franklin155 [Fig. 4(c)].
Parcellation based on anatomical atlases presents many advantages—each brain parcel repre-
sents a well-known biological functionality (e.g., vision, motor, and sensory) and a straightfor-
ward way to compare neuronal activity across animals (and studies). However, it is often
observed that the spatial patterns of activity in some regions are not well described by anatomical
outlines [e.g., via principal components analysis Fig. 4(d)]. Identification of subcortical borders
can be performed experimentally by presenting sensory stimuli, e.g., the auditory cortex156 or the
visual cortex.157 These methods are highly efficient for detecting boundaries of subregions
within a specific cortical area (visual cortex and auditory cortex), but cannot be used to detect
regions that are not responsive to sensory stimuli. Therefore, computational methods for func-
tional parcellation [Fig. 4(c)] have been a major target of research in recent years for calcium
imaging as well as in the fMRI community.158

Localized seminonnegative matrix factorization (LocaNMF) is a recently proposed approach
aiming to tackle this issue by formulating an optimization problem for minimizing the mean-
squared error between the widefield signal Y and the estimated signal AΦT such that the columns
of A are non-negative and localized according to anatomical clusters.34 LocaNMF produces, by
nature, spatial patterns that are similar to the anatomical boundaries used by the optimization
process and therefore typically does not deviate much from the anatomical atlas. Related to
NMF, a linear one-hidden-layer autoencoder has also been used to identify parcellations in audi-
tory cortex.159 Similar in spirit, GraFT,35 being agnostic to spatial morphology due to its under-
lying graph-based modeling, has also been applied to extracting (potentially overlapping)
widefield spatial maps in rat and mouse macroscopic data. In a recent study, functional parcel-
lation took a different turn by adding a temporal component to brain parcellation. This approach
is based on finding repeated spatiotemporal patterns of activation termed motifs, which can be
viewed as a time-varying brain parcel. The overall activity is therefore represented as a sum of
convolution terms between each motif and its corresponding time trace.160

A different approach for brain parcellation is to cluster the brain into regions of coactivity,
with no regard to anatomical features. In this case, the matrix A is comprised of binary vectors,
each corresponding to a specific brain parcel. Li et al.161 proposed an iterative greedy algorithm
for parcellating the brain based on correlation similarity. Other approaches use correlations as
graph weights connecting pixels serving as nodes. Parcels are obtained by clustering the graph
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using Ncut, where the number of parcels is a hyperparameter,162 or a greedy adaptation of spec-
tral clustering, where the number of parcels is learned from the data.163

Overall, the product of functional parcellation methods describe the spatial distribution of
coactivity in a given session (per animal). These patterns may be consistent across sessions163 but
are not, in general, uniform across animal and obviously vary with the nature of the experiment
(e.g., spontaneous activity and task directed). In that regard, as performed for the SVD approach,
postprocessing values produced per functional parcel (e.g., goodness of fit and modeling
coefficients) can be projected onto the brain mask using the spatial components.

Mapping of cortical neuronal activity is also recently addressed experimentally through
multimodal imaging where widefield calcium imaging recording is performed simultaneously
with fRMI signals164 or imaging of local circuit using two-photon microscopy150 or
electrophysiology165–168 where specific regions are identified as highly correlated to a specific
cell (or subpopulation).

6 Modern Challenges in Optical Functional Imaging

While there remain numerous challenges in widespread multiphoton and widefield imaging,
there are further emerging challenges that will necessitate new data processing solutions in the
near future. We outline here a number of primary avenues that we believe show promise but
have many outstanding problems to solve.

6.1 Imaging Morphologies Beyond the Soma

More recently, variants of optical imaging have aimed to expand the scope of accessible brain
signals by imaging both larger and smaller neural structures. At one end of this spectrum, zoom-
ing in enables the imaging of dendritic and spine structures, which captures how individual
neurons communicate.169–174 Dendritic175 and axonal176 imaging, while also having sparse tem-
poral statistics, can have long, thin spatial profiles that span the entire FOV. We note that these
types of neural morphologies are also vital in some species, such as Drosophila melanogaster,
where dendritic activity is vital to tracking neural processing.177,178 Approaches to dendritic/
axonal imaging have largely followed the path of somatic imaging analysis. For example, recent
versions of Suite2p69 can be run in “dendrite mode.” The long, stringy morphologies, however,
are at odds with typical built-in assumptions of spatial locality. A more recent approach instead
redefines pixel ordering on a data-driven graph to better identify irregular morphologies.35

Astrocytes also exhibit irregular morphologies and size, for which targeted approaches have
been recently developed.179,180 Interestingly, larger-scale optical imaging of hemodynamic
activity also captures components (i.e., blood vessels) that have spatial statistics more similar
to dendrites than somas.181

6.2 Voltage Imaging

Voltage imaging is a technique that has been used for decades to record changes in neural activity
using voltage-sensitive dyes.182 Voltage imaging, as compared with recording changes in cal-
cium, is a more direct way of measuring neural signals. A comparison of population responses to
optical recordings using calcium indicators and voltage indicators showed major differences in
the temporal response of the recorded calcium signal as compared with the voltage signal.183

Widefield voltage imaging has also been explored184 and faces many of the same challenges
as widefield imaging with calcium sensors (see Sec. 4.6).

Technology for the optical recording of voltage signals has improved rapidly over the past
few years. The development of improved voltage sensors in the form of bright genetically
encoded voltage indicators (GEVIs) has enabled high-resolution voltage recordings at multiple
spatial scales.185 Genetic targeting of these indicators to subcellular structures isolate signal to
particular neuronal structures, further increasing the signal-background ratio (SBR). These
improvements have allowed researchers to generate optical voltage recordings from a population
of cells in awake, behaving animals.186
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Several challenges still exist that prevent the generation of large-scale optical voltage record-
ings. Voltage indicators are membrane-bound, which limits the total concentration of the sensors
is compared with calcium indicators, which may fill the whole cytoplasm. Generally, GEVIs are,
at least for now, dimmer than their GECIs counterparts. To take advantage of the improved
temporal response function, recordings must be made at much higher framerates as compared
with calcium indicators (∼1000versus ∼30 Hz). The combination of these challenges reduces
the overall spatial scale of current cellular or subcellular resolution recordings with voltage
indicators.

Current-voltage imaging analysis includes both matrix factorization91,187 and deep learning52

demixing approaches similar to methods used in calcium imaging. The potential for low-SNR
and non-Gaussian noise statistics can complicate demixing. Moreover, extremely high temporal
resolutions create much larger datasets, increasing the computational cost of processing. Finally,
non-negativity is a basic assumption built into many calcium imaging analysis methods: i.e.,
deviations from baseline are only positive, however, voltage traces have no such constraint.

6.3 Computational Imaging

One critical avenue that may completely upend much of how optical imaging data is processed is
computational imaging. Computational imaging represents a paradigm wherein optical and algo-
rithmic components are codesigned to compensate and enhance each other and achieve superior
results to advances in either area independently.188,189 Codesigned approaches are nascent in
in-vivo functional imaging of the brain, with only a few examples aimed at faster imaging41,190

or volumetric imaging.16,45,191,192 The algorithmic designs for computational imaging tend to
require specialized and often unique processing elements that invert the optical path of the
co-designed microscope.189 Examples include tomography,41 light-field imaging,45,192–194 com-
bined light-field and tomography,191 stereoscopy,16 and computational systems for imaging
through scattering tissue.195

While basic denoising or other discussed techniques might still be applicable, more highly
coded optics may not even be able to use the same motion correction, let alone the other advances
in demixing of individual neuronal signals. For example, lightfield and stereoscopy methods
need demixing methods for decoding projections of volumetric components onto 2D arrays.
Thus, new frontiers are constantly expanding and requiring novel advances in our handling
of functional optical data.

7 Validation and Assessment

One of the most difficult tasks in creating widely applicable and robust calcium image processing
methods is proper assessment.196 The effects of mismatch between the necessary simplified
statistical assumptions in the signal processing models and the actual data properties must be
explored in terms of the effect on the fidelity of extracted signals and, when possible, the later
scientific analyses. A prime example of such an effect is explored in Ref. 92, in which it is shown
that the i.i.d. Gaussian noise assumption often considered can create bleed-through between
overlapping cells and additional fluorescent biological processes in the tissue. The result is that
the time traces have high levels (between 15% and 25%) of transient events being false transients
in that they do not reflect the activity of that cell, but rather other, nearby, fluorescing compo-
nents in the tissue. While significant in and of itself, it is further noted that these errors can cause
errors in the interpretation of the neural activity, including the skewed discovery of location
encoding in the hippocampus.92

To identify the accuracy of optical imaging processing algorithms, a number of avenues have
emerged. Specifically, four current available avenues are assessment based on (1) manual anno-
tation, (2) biophysical simulation, (3) local self consistency of global decompositions, and
(4) consistency based on external experimental variables.

We note that a fifth form of validating signals extracted from optical measurements take the
form of simultaneous electrophysiological recording and optical imaging.130,137,197 The number
of simultaneous cells that can be recorded during imaging within an FOV, however, is limited.
Thus these recordings have primarily taken a role in assessing either the accuracy of estimated
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spikes from optically recorded calcium,130,197 or the similarity between electrically and optically
recorded neural signals.137 Until now, this approach does not meet the scale required to com-
pletely assess the processing of a full FOV.

7.1 Manual Annotation

The most basic assessments of optical imaging analysis are the manual labeling of cells. This is
typically done by annotating an image summarizing the structure in an imaging session,
i.e., temporal max projection, temporal average, local temporal correlation,198 or nonlinear
embeddings.199 We note that while manual labeling is typically done on the processed data,
labels can also be obtained via anatomical imaging (e.g., z-stacks or nuclear labeling with activ-
ity-invariant fluorescent proteins). Comparison to manual annotation gives clear metrics: hits
(manually identified cells that overlapped significantly with a match in the returned spatial
profiles) and misses (those with no match) [Fig. 5(a)].

However, there are limitations to assessment via manual annotation. Time traces are not
available as ground truth and must be inferred from the data given in the annotations.
Additionally, the annotations are often incomplete, excluding sparsely firing cells, or nonsomatic
components. The effect is that found profiles that do not match well to the manual annotations
could appear as “false alarms” but fall into many categories. They may be actual cells in the data
missed by the annotator, they may be algorithmic artifacts caused by merging or splitting parts of
cells,92 or they may be overfitting to noise or neuropil. Thus at best, manual annotations give a
lower bound on true hits and missed detections but not much information on false positives.
Some of the limitations stemming from human error can be removed in new datasets consisting
of electron microscopy reconstructions of the imaged tissue.51 This dataset, and any that follow,
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Fig. 5 Assessing optical imaging analysis outputs. (a) Manual annotation, e.g., the NeuroFinder
benchmark dataset (example shown here), can help detect true detections (white) and missed
cells (red), as compared with a labeling of the spatial area imaged (right). Manual annotation,
however, does not provide information on cells that do not match any of the manual annotations
(left). (b) Simulation-based assessment uses in silico simulations of activity and anatomy to create
faux fluorescence microscopy data. The outputs of an analysis pipeline using the data can be
compared with the simulated ground truth. (c) Self-consistency measures use the global demixed
components and analyze local space-time extents of the movie to check if the spatial and temporal
components still describe the data well. For example, is activity erroneously attributed to a found
cell. (d) Consistency with external variables examines if expected gross behavior of the imaged
neural populations match behavioral or stimulation events corecorded with the fluorescence video.
For example, shown here are neurons in motor cortex responding to a motion made by a mouse
responding to an auditory cue.200
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provide anatomical ground truth in the form of a registerable volume to match spatial compo-
nents to, although time traces are still unavailable.

7.2 Biophysical Simulations

Another important form of assessment is in-silico simulation.123,201 Simulation plays an impor-
tant role in assessing the fundamental limits of algorithms across signal processing and machine
learning. In particular, simulations are vital when ground truth information is difficult to obtain,
either efficiently, or at all. Functional fluorescence microscopy is exactly one such situation. The
time, effort, and expense of simultaneous recording fluorescence imaging and electrophysiology
is a remarkable effort for only a limited portion of the ground-truth data. Simulations offer a
potential solution by leveraging anatomical and physical knowledge of the system to generate
data where the underlying activity and anatomy driving the synthetic observations are com-
pletely known and can be compared with Fig. 5(b).

Simulations, however, pose their own risk. Simplistic simulations can miss complexities in
the real-data imaging statistics, e.g., non-Gaussian or non-i.i.d. noise. Complex simulations run
the opposite risk of being so detailed that the computational run-time and memory requirements
become excessive and capture details irrelevant to the assessment being conducted. Recent work
on the neural anatomy and optical microscopy (NAOMi) simulator seeks to balance these com-
peting needs.123 To date, NAOMi has been applied to a number of scenarios, such as testing
different demixing algorithms,35 denoising methods,32 sensitivity to negative transients,202 and
testing/training calcium imaging demixing algorithms.131

7.3 Data Consistency

A third form of assessment uses no ground truth data, manual or synthetic, and instead focuses
on self-consistency of the data model. The spatial profiles and time traces give a global decom-
position of the data by minimizing data fidelity and regularization terms over the entire dataset.
In this approach, one can focus on a smaller segment of the data and check if the global decom-
position matches the local statistics. Specifically, one can check if in the movie frames, during
which a given cell was purported to have fired (a transient burst in the time trace during those
frames), if the shape of the cell truly appears in the video. Recent work used this local averaging
idea to identify how many algorithms are not locally consistent: i.e., demonstrating that activity
from different sources bleed into each other92 [Fig. 5(c)]. The resulting errors (termed false tran-
sients) can influence scientific findings and can appear in the time-trace estimates of many differ-
ent algorithms and across many datasets.92 To address this finding, additional work has sought to
develop more robust time-trace estimators that prevent these errors.87,92,94

7.4 Consistency with External Measures

The final form of validation we discuss is with respect to external measures outside the imaged
brain area. To explore the relation between brain activity and behavior, perception, and cognition
most experimental setups record, simultaneously with the brain activity, external variables such
as spontaneous behavior (whisking, running, and pupil size), responses to sensory stimuli, and
task-related behavior. A thorough examination of the extracted traces of activity with respect to
external variables can be an important tool for the assessment of fluorescence microscopy
processing. For example, aligning the activity traces to external onsets such as repeated presen-
tations of a sensory cue, specifically trained behavior or even running onsets allows one to exam-
ine brain activity in a behavioral context. Applying this strategy should be done with caution, as
uninstructed behavior may cause significant cell-to-cell and trial-to-trial variability.149 Still, aver-
aging across dozens of well-pronounced presentations (visual or auditory cues for example) and
across cells usually yields a significant increase of activity in the visual/auditory cortices203,204 or
to a distinct pattern of activation of the motor cortex in well-trained animals200 [Fig. 5(d)]. For
widefield imaging, these same strategies can be applied with respect to the appropriate brain
parcels. If no sensory cues are presented, averaging across running onsets should lead to a sig-
nificant increase in the overall activity of the cortex.152 Alternatively, additional modalities of
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neuronal activity can be used for validation of calcium imaging signals such as electrophysi-
ology,115 fMRI,164 or dual imaging of widefield and two-photon imaging.150

8 Discussion

We have aimed to review here a large portion of the literature related to the analysis of functional
optical microscopy data. The topics we have covered aim to provide a practical overview of how
optics choices affect signal processing challenges, and the many methods that have been devel-
oped to solve these challenges. While broad categories, such as denoising, motion correction,
and in particular signal extraction, have been explored in detail in the literature, there are many
other challenges that have yet to be solved.

For one, robust alignment across sessions is an ongoing challenge. While matching cells
based on anatomical morphology is currently possible, effects such as nonlinear shearing in the
brain and axial drift can create situations where only portions of an FOV can be recovered and
aligned across recording sessions. Even within long sessions, these effects can remove cells from
parts of the recording or reduce the signal quality. Identifying the periods where cells are not
visible is critical in determining how subsequent analyses should interpret zero values. Passing
zero values for these times into typical analyses assumes a cell not firing, rather than the neuron's
activity being unavailable. Instead, missing data methods must be employed, which need to
know exactly when the missing data occurred. As chronic recordings become more common-
place, we expect that cross-session alignment and axial shift compensation will become critical
hurdles to pass.

Another growing area of interest is the real-time analysis of functional microscopy data.
Real-time analysis enables closing of the loop, i.e., the ability to use estimates of neural activity
to drive future experimental trials.205 While basic manual annotation is trivial to move to an
online setting, full demixing algorithms that solve many of the aforementioned challenges are
still in their nascent stages. Initial work is promising in the ability to motion correct104 and infer
calcium activity.206,207 However, the ability to infer activity and cell shapes completely online for
dense neural fields is still an ongoing research direction.

A critical aspect of analysis methods that we have not discussed here is the computational
cost across methods. There are large variations in cost from simple averaging to training entire
deep neural networks. Unfortunately in some regards, these disparities match the high variability
in the computational infrastructure available across labs. Moreover, as optical imaging of neu-
rons continues to advance, computationally efficient techniques will only become more critical.
Already at moderate fields of view, there are up to 103 neurons. New methods leveraging the
latest microscope designs are recording 105 − 106 neurons at once.10,11 Furthermore, volumetric
(3D) imaging complicates image analysis by rendering many planar segmentation methods
inapplicable.16,38,208–213 In these cases new methods will need to be developed, and computa-
tional efficiency will be key to analyzing these very high dimensional datasets.

Another topic we have not elaborated upon is the effect of indicators on signal analysis. We
have focused primarily on generic properties of fast- and slow- calcium indicators and, as a faster
comparison, voltage indicators. Most indicators share basic characteristics with these classes. In
the spirit of universal analysis pipelines, one possible approach is to further abstract all indicators
into basic quantities, e.g., quantum efficiency, coupling affinity, etc., which can be used to tune
parameters in more generic versions of the current algorithms. This approach, which requires a
precise estimate of these quantities and their variation, would greatly benefit the user base.

Another change with different indicators is the assumption of non-negativity. Calcium im-
aging analysis has largely assumed only positive deviations from baseline. Voltage imaging and
widefield calcium imaging all display negative dips as well, which will represent more degrees of
changes that need to be implemented into more general pipelines. We note that even for calcium
imaging, interestingly new explorations discuss the presence of so-called negative transients, as
well as the ability of various algorithms to cope with these unexpected dips.202

One increasingly popular group of approaches in the analysis of functional optical imaging is
to leverage advances in deep learning. Critical to the success of deep learning approaches is
(1) the availability of training data and (2) the generalization of the trained system to new
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datasets. For training data, most systems use NeuroFinder197 and/or the Allen Institute Mouse
Brain Observatory.214 However, both datasets suffer from both mislabeled data and missing
labels, or erroneous time-trace estimates.92 Generalization is tougher to ensure, as image statis-
tics can affect deep learning systems in a myriad of unexpected ways. Therefore extensive exper-
imentation is required, e.g., by testing a trained system on imaging from different depths to
explore the effect of tissue distortion.84 Thus, despite the fact that pre-trained networks are fast
to run, these challenges create a high level of uncertainty in using pretrained networks accurately.
Individual labs can instead choose to annotate their data to train networks from scratch, such that
they are optimized for the imaging used locally. While this solves some of the aforementioned
challenges (assuming care is taken in annotation), the training procedure can be computationally
intensive relative to a lab’s computational capabilities.

One path to improving training data has been to augment the dataset, such as using random
rotations and reflections.215 For optical imaging, augmentation should use the degrees of varia-
tion known through characterizations of optical-tissue interactions. The use of biophysical sim-
ulators to generate synthetic training data, or even modulate real data, can prove useful. In fact,
recent work used the NOAMi simulation suite123 to generate data for training a spike estimation
network.131 Finally, another consideration in deep learning approaches is a heavy class imbal-
ance both spatially and temporally between neurons and background in functional fluorescence
imaging datasets, i.e., background frequently dominates the acquired FOV, and the desired neu-
ral activity may be temporally sparse.

As we have noted, assessment of data segmentation quality is, in general, challenging.
Evaluation datasets must reflect typical use cases of the community, and therefore they need
to constantly be updated and expanded. Due to the rapid expansion of functional microscopy
technology, the typical use case is already eclipsing standard datasets, requiring the description
of new benchmarks. New datasets are beginning to fill the void, e.g., in voltage imaging.52

However, the quality and diversity of imaging data are only accelerating. For example, it would
be immensely valuable to the community to provide benchmark data for especially difficult sit-
uations, such as cortex-wide widefield data. Even more powerful would be an amalgamation of
different benchmark datasets—both real and synthetic—similar to what SpikeForest216 has done
for spike sorting algorithms. Only with such a wide-ranging set of tests will the strengths and
weaknesses of different algorithms become apparent.

Assessment is even more difficult in widefield data, where anatomy provides minimal aid in
assessing the validity of spatial component shapes. Neighboring brain areas can share tracts of
coordinated activity, and activity can likewise be constrained to a small portion of a brain area.
Parcellations thus need to be carefully considered in the context of the behavior and other record-
ings. In this line of consideration is the nature of parcellations themselves. An unsolved question
currently facing the community is whether parcels can overlap: current methods include both
solutions that allow34,35,159 or prohibit161–163 overlapping parcels. Both confer different interpre-
tations: nonoverlapping parcels provide a solution wherein each component represents a given
brain area’s activity while overlapping can enable the time traces to be better event- or behavior-
locked in the case of a brain region having multiple uses. Future work should explore the inter-
play between these two windows into widefield data.

One final major concern is the reproducibility and accessibility of functional imaging analy-
sis techniques (which we note is not restricted to this modality217). Making code available and
easier to use33,218 is only the first step in this path. Learning the intricacies in robustly running the
software in new hardware environments, such as local clusters or desktops, is a hard-earned
expertise. One option is to ensure that the software is robust and tested on many systems.
This approach requires either systems engineering skills that are not typically within the budget
or scope of a typical research lab. Instead, a concerted effort across an entire community is
required. The community has to coalesce around—and contribute actively to—a specific
approach. An alternative being explored is to have individual labs containerize their software,
i.e., create shareable virtual environments that are tested with the given software. In neurosci-
ence, an emerging example is the NeuroCAAS system,219 which provides Dockerized imple-
mentations of algorithms to be run, e.g., on the amazon web service.

In conclusion, functional optical imaging in neuroscience is rapidly growing and is accurate,
and automated processing of the massive data being generated is becoming increasingly essential
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to the continued progress of understanding the brain. Solving these challenges will take both
forms of methods that enable, e.g., real-time, robust, fast analyses, and well-engineered infra-
structure that democratizes the current advances to the growing number of labs employing func-
tional microscopy in their experiments. We thus expect that this area will continue to grow
rapidly in the next decade, drawing on increased interest from labs across neuroscience, data
science, imaging, and other related disciplines.
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